630 research outputs found

    Automated Meter Reading and SCADA Application for Wireless Sensor Network

    Get PDF
    Currently, there are many technologies available to automate public utilities services (water, gas and electricity). AMR, Automated Meter Reading, and SCADA, Supervisory Control and Data Acquisition, are the main functions that these technologies must support. In this paper, we propose a low cost network with a similar architecture to a static ad-hoc sensor network based on low power and unlicensed radio. Topological parameters for this network are analyzed to obtain optimal performances and to derive a pseudo-range criterion to create an application-specific spanning tree for polling optimization purposes. In application layer services, we analytically study different polling schemes

    Energy Harvesting Aspects of Wireless Sensor Networks: A Review

    Get PDF
    Energy harvesting is the process by which energy is derived from external sources e.g., solar power, thermal energy, wind energy, salinity gradients, and kinetic energy captured and stored for small, wireless autonomous devices, like those used in wearable electronics and wireless sensor networks.Energy harvesters provide a very small amount of power for low-energy electronics. The energy sourced from energy harvesters is present as ambient background and is free

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper

    Improving forwarding mechanisms for mobile personal area networks

    Get PDF
    This thesis presents novel methods for improving forwarding mechanisms for personal area networks. Personal area networks are formed by interconnecting personal devices such as personal digital assistants, portable multimedia devices, digital cameras and laptop computers, in an ad hoc fashion. These devices are typically characterised by low complexity hardware, low memory and are usually batterypowered. Protocols and mechanisms developed for general ad hoc networking cannot be directly applied to personal area networks as they are not optimised to suit their specific constraints. The work presented herein proposes solutions for improving error control and routing over personal area networks, which are very important ingredients to the good functioning of the network. The proposed Packet Error Correction (PEC) technique resends only a subset of the transmitted packets, thereby reducing the overhead, while ensuring improved error rates. PEC adapts the number of re-transmissible packets to the conditions of the channel so that unnecessary retransmissions are avoided. It is shown by means of computer simulation that PEC behaves better, in terms of error reduction and overhead, than traditional error control mechanisms, which means that it is adequate for low-power personal devices. The proposed C2HR routing protocol, on the other hand, is designed such that the network lifetime is maximised. This is achieved by forwarding packets through the most energy efficient paths. C2HR is a hybrid routing protocol in the sense that it employs table-driven (proactive) as well as on-demand (reactive) components. Proactive routes are the primary routes, i.e., packets are forwarded through those paths when the network is stable; however, in case of failures, the protocol searches for alternative routes on-demand, through which data is routed temporarily. The advantage of C2HR is that data can still be forwarded even when routing is re-converging, thereby increasing the throughput. Simulation results show that the proposed routing method is more energy efficient than traditional least hops routing, and results in higher data throughput. C2HR relies on a network leader for collecting and distributing topology information, which in turn requires an estimate of the underlying topology. Thus, this thesis also proposes a new cooperative leader election algorithm and techniques for estimating network characteristics in mobile environments. The proposed solutions are simulated under various conditions and demonstrate appreciable behaviour

    PLAN: Joint policy- and network-aware VM management for cloud data centers

    Get PDF
    Policies play an important role in network configuration and therefore in offering secure and high performance services especially over multi-tenant Cloud Data Center (DC) environments. At the same time, elastic resource provisioning through virtualization often disregards policy requirements, assuming that the policy implementation is handled by the underlying network infrastructure. This can result in policy violations, performance degradation and security vulnerabilities. In this paper, we define PLAN, a PoLicy-Aware and Network-aware VM management scheme to jointly consider DC communication cost reduction through Virtual Machine (VM) migration while meeting network policy requirements. We show that the problem is NP-hard and derive an efficient approximate algorithm to reduce communication cost while adhering to policy constraints. Through extensive evaluation, we show that PLAN can reduce topology-wide communication cost by 38 percent over diverse aggregate traffic and configuration policies

    Mobile sink based fault diagnosis scheme for wireless sensor networks

    Get PDF
    Network diagnosis in Wireless Sensor Networks (WSNs) is a difficult task due to their improvisational nature, invisibility of internal running status, and particularly since the network structure can frequently change due to link failure. To solve this problem, we propose a Mobile Sink (MS) based distributed fault diagnosis algorithm for WSNs. An MS, or mobile fault detector is usually a mobile robot or vehicle equipped with a wireless transceiver that performs the task of a mobile base station while also diagnosing the hardware and software status of deployed network sensors. Our MS mobile fault detector moves through the network area polling each static sensor node to diagnose the hardware and software status of nearby sensor nodes using only single hop communication. Therefore, the fault detection accuracy and functionality of the network is significantly increased. In order to maintain an excellent Quality of Service (QoS), we employ an optimal fault diagnosis tour planning algorithm. In addition to saving energy and time, the tour planning algorithm excludes faulty sensor nodes from the next diagnosis tour. We demonstrate the effectiveness of the proposed algorithms through simulation and real life experimental results
    corecore