
1

PLAN: Joint Policy- and Network-Aware VM
Management for Cloud Data Centers

Lin Cui, Member, IEEE, Fung Po Tso, Dimitrios P. Pezaros, Senior Member, IEEE ,
Weijia Jia, Senior Member, IEEE , and Wei Zhao, Fellow, IEEE

Abstract—Policies play an important role in network configuration and therefore in offering secure and high performance services
especially over multi-tenant Cloud Data Center (DC) environments. At the same time, elastic resource provisioning through
virtualization often disregards policy requirements, assuming that the policy implementation is handled by the underlying network
infrastructure. This can result in policy violations, performance degradation and security vulnerabilities. In this paper, we define PLAN,
a PoLicy-Aware and Network-aware VM management scheme to jointly consider DC communication cost reduction through Virtual
Machine (VM) migration while meeting network policy requirements. We show that the problem is NP-hard and derive an efficient
approximate algorithm to reduce communication cost while adhering to policy constraints. Through extensive evaluation, we show that
PLAN can reduce topology-wide communication cost by 38% over diverse aggregate traffic and configuration policies.

Index Terms—Data centers, Policy, Virtual Machine, Migration.

F

1 INTRODUCTION

N Etwork configuration and management is a complex
task often overlooked by research that focuses on

improving resource usage efficiency. However, providing
secure and balanced distributed services while maintain-
ing high application performance is a major challenge for
providers. In Cloud Data Centers (DC)s in particular, this
challenge is amplified by the collocation of diverse services
over a centralized infrastructure, as well as by virtualization
that decouples services from the physical hosting platforms.
Applications over DC networks have complex communica-
tion patterns which are governed by a collection of network
policies regarding security and performance. In order to im-
plement these policies, network operators typically deploy
a diverse range of network appliances or “middleboxes”,
including firewalls, traffic shapers, load balancers, Intrusion
Detection and Prevention Systems (IDS/IPS), and applica-
tion enhancement boxes [1]. Across all network sizes, the
number of middleboxes is on par with the number of routers
in a network, hence such deployments are large and require
high up-front investment in hardware totalling thousands
to millions of dollars [2] [3].

• Lin Cui is with Department of Computer Science, Jinan University,
Guangzhou, China.
E-mail: tcuilin@jnu.edu.cn

• Fung Po Tso is with Department of Computer Science, Liverpool John
Moores University, L3 3AF, UK.
E-mail: p.tso@ljmu.ac.uk.

• Dimitrios P. Pezaros is with School of Computing Science, University of
Glasgow, G12 8QQ, UK.
E-mail: dimitrios.pezaros@glasgow.ac.uk.

• Weijia Jia is with Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai China.
E-mail: jia-wj@cs.sjtu.edu.cn.

• Wei Zhao is with Department of Computer and Information Science,
University of Macau, Macau SAR, China.
E-mail: weizhao@umac.mo.

Network policies demand that traffic traverse a sequence
of specified middleboxes. As a result, network administra-
tors are often required to manually install middleboxes in
the data path of end points or significantly alter network
partition and carefully craft routing in order to meet policy
requirements [3]. There is a consequent lack of flexibility
that makes DC networks prone to misconfiguration, and it
is no coincidence that there is emerging evidence demon-
strating that up to 78% of DC downtime is caused by
misconfiguration [2] [4].

In order to combat the complexity of middleboxes man-
agement, a body of research works have been proposed
to dynamically manage network policies. These works can
be broadly classified into the two categories. Virtualiza-
tion and Consolidation: Software-centric middlebox applica-
tions, including network function virtualization (NFV) [5],
have been proposed to separate policy from reachability
(i.e., virtualization) [3] [4] and middlebox functions can be
consolidated [3] dynamically. SDN-based policy enforcement:
Software-Defined Networking (SDN) [6] has enabled a new
paradigm for enforcing middlebox policies [7]. SDN ab-
stracts a logically centralized global view of the network and
can be exploited to programmatically ensure correctness of
middlebox traversal [8] [9] [10].

On the other hand, Cloud applications can be rapidly
deployed or scaled on-demand, fully exploiting resource
virtualization. Consolidation is the most common technique
used for reducing the number of servers on which VMs are
hosted to improve server-side resource fragmentation, and
is typically achieved through VM migration. When a VM
migrates, it retains its IP address, and the standard 5-tuple
(source and destination addresses, source and destination
ports, protocol) used to describe a flow remains the same.
This implies that migrating a VM from one server to another
will inevitably alter the end-to-end traffic flow paths, requir-
ing subsequent dynamic change or update of the affected
policy requirements [11]. Clearly, the change of the point

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288360049?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

of network attachment as a result of VM migrations sub-
stantially increases the risk of breaking predefined sequence
of middlebox traversals and leads to violations of policy
requirements. It has been demonstrated that, in PACE [1],
VM placements in Cloud DC without considering network
policies may lead to up to 91% policy violations.

It is common in DCs that a multi-tier application in-
volving multiple VMs (e.g., indexing, document, web, etc.)
is hosted in non-collocated servers. The underlying traffic
flows need to traverse distinct firewalls and IPSes that are
attached to different switches and routers, making the true
end-to-end paths longer than the shortest paths due to
middlebox traversals (see Fig. 1), incurring redundant cross
traffic between switches. Therefore, when deciding where
to migrate any one of these VMs, not only dependency of
VMs but also the locations of these middleboxes have to be
taken into consideration. Failing to do so will not only lead
to sub-optimal performance due to much longer middlebox
traversal paths, but will also cause service disruption and
unreachability as a result of being unable to follow a prede-
fined sequence of middlebox traversal rules.

Using the SDN+NFV paradigm described above, such as
OpenNF [8] and FlowTags [9], may be able to implement the
correct sequence of traversal even when VMs migrate, but
they neither ensure shortest traversal paths nor reduce network
communication cost. S-CORE [12] has demonstrated that the
shortest path between any two communicating VMs gives
minimal communication cost in data center network envi-
ronments. PACE [1] jointly considers middlebox traversal
and VM placement in a Cloud DC environment, however
it only considers static placement and does not provide
any reliable mechanisms to facilitate subsequent dynamic
VM migration. In comparison, we focus on dynamic VM
management, and our initial effort has shown that policy-
aware dynamic VM consolidation can remarkably improve
network utilization [13].

In this paper, we explore the joint policy-aware and
network-aware VMs migration problem, and present an ef-
ficient PoLicy-Aware and Network-aware VM management
(PLAN) scheme, which, (a) adheres to policy requirements,
and (b) reduces network-wide communication cost in DC
networks. The communication cost is defined with respect to
policies associated to each VM. In order to attain both goals,
we model the utility (i.e., the reduction ratio of commu-
nication cost) of VM migration under middlebox traversal
requirements and aim to maximize it during each migration
decision. To the best of our knowledge, this is the first joint
study on policy-aware performance optimization through
elastic VM management in DC networks [13].

In short, the contributions of this paper are three-fold:
1) The formulation of the policy-aware VM management

problem (PLAN), the first study that jointly considers
policy-aware VM migration and performance optimiza-
tion in DC networks;

2) An efficient distributed algorithm to optimize network
communication cost and guarantee network policy
compliance; and

3) A real-life implementation of PLAN1 and an extensive

1. The source code for our implementation is available at:
https://github.com/posco/policy-aware-plan

performance evaluation demonstrating that PLAN can
effectively reduce communication cost while meeting
policy requirements.

The remainder of this paper is organized as follows.
Section 2 describes the model of policy-aware VM man-
agement (PLAN), and defines the communication cost and
utility for VM migration. An efficient distributed algorithm
is proposed in Section 3, followed by presentation of our
python-based testbed implementation in Section 4. Section 5
evaluates the performance of PLAN. Section 6 outlines re-
lated work on VM migration and policy implementations.
Finally, Section 7 concludes the paper and discusses future
works.

2 PROBLEM MODELING

2.1 Motivating Example

We describe a common DC Web service application as an
example to demonstrate that migrating VMs without policy-
awareness will lead to unexpected results and application
performance degradation.

2.1.1 Topology and Application

Fig. 1 depicts a typical Fat-tree DC network topology [14]
that consists of a number of network switches and several
distinct types of middleboxes. Firewall F1 will filter un-
wanted or malicious traffic and protect tenants’ networks in
the DC from the Internet. Intrusion Prevention Systems (IPS),
e.g., IPS1 and IPS2, are configured with a ruleset, moni-
toring the network for malicious activity, and subsequently
log and block/stop it. They also provide a detailed view
and checking of how well each middlebox is performing
for the traffic flow. A Load Balancer, e.g., LB1, provides
one point of entry to the web service, but forwards traffic
flows to one or more hosts, e.g. v1, which provide the actual
service. In this example, v1 is a web server, which accepts
HTTP requests from an Internet client (denoted by u). After
receiving such requests, v1 will query data server v2 (i.e., a
database), perform some computation based on the fetched
data, and feed results back to the client.

2.1.2 Policy Configurations

Polices are identified through a 5-tuple and a list of mid-
dleboxes (A more formal definition is given in Section 2.2).
The following policies are configured through the Policy
Controller to govern traffic related to the web application
in this example:
• p1 = {u, LB1, ∗, 80, HTTP} → {F1, LB1}
• p2 = {u, v1, ∗, 80, HTTP} → {IPS1}
• p3 = {v1, v2, 1001, 1002, TCP} → {LB2, IPS2}
• p4 = {v2, v1, 1002, 1001, TCP} → {IPS2, LB2}
• p5 = {v1, u, 80, ∗, HTTP} → {IPS1, LB1}
• p6 = {LB1, u, 80, ∗, HTTP} → {}
Policy p1: The Internet client first sends an HTTP request

to the public IP address of LB1. All traffic from the Internet
must traverse firewall F1, which is in charge of the first line
of defense and configured to allow only HTTP traffic.

Policy p2: LB1 will load-balance among several web
servers and change the destination to web server v1 in the

3

Internet

CR

AS

ES

CR

AS

ES

v1

LB1

F1

IPS1

Networking components:

CR: Core Router

AS: Aggregate Switch

ES: Edge Switch

Middleboxes:

F: Firewall

LB: Load Balance

IPS: Intrusion Prevention

System

Servers:

s1~s3

Virtual machines:

v1: Web server

v2: Data server

Flows:

Original flows

Migrated flows

Migration decisions

flow 1

flow 2

flow 3

LB2

s1 s3

v2

AS

ES

AS

ES

AS

ES

AS

ES

AS

ES

AS

ES

CR CR

IPS2

v2'

s2

Middlebox and

Policy Controller

Fig. 1: Flows traversing different sequences of middleboxes in DC networks. Without policy-awareness, v2 will be migrated
to s1, resulting in longer paths for flow 1 and wasting network resources.

example. Traffic will need to traverse IPS1, which protects
web servers.

Policy p3, p4: v1 will communicate with a data server to
fetch the required data, which is in turn protected by IPS2.
This traffic will be forwarded toLB2 for load-balancing first,
and then reach the data server v2 after traversing IPS2. The
response traffic from v2 to v1 also needs to traverse both
IPS2 and LB2.

Policy p5, p6: Upon obtaining the required data from the
data server, the web server will send computed results to
the client. The reply traffic is sent to LB1 first, traversing
IPS1, and then forwarded to the Internet client by LB1.
Any traffic originating from v1 and destined to an Internet
client needs no further checks, and hence does not need to
traverse F1.

2.1.3 Migration Rule

The DC network is often increasingly oversubscribed from
bottom to core layers in a bid to reduce total investment. In
order to reduce congestion in the core layers of DC network,
effective VM management schemes cluster VMs to confine
traffic in lower layers of the network such that as much
traffic as possible is routed only over the edge layer (which
is not oversubscribed) [15] [12]. As a result, VMs as well
as middleboxes, which communicate and exchange packets
more often and intensively, are collocated in order to keep
traffic within the edge layer boundaries.

Consider the migration of v2 in the above example appli-
cation. v2 was originally hosted by server s2. A large traffic
volume needs to be exchanged between web server v1 and
data server v2. This would cost precious bandwidth on core
routers. Without policy awareness, in order to consolidate
VMs on servers and keep traffic in the edge layer, v2 may be
migrated to s1 so that v1 and v2 are close to each other.
However, it will increase the route length of flow 3 and
waste more network bandwidth. This is because that all
traffic between v1 and v2 need to traverse LB2 and IPS2,

according to the policy rules (i.e., p3 and p4). Considering
policy configurations and traffic patterns in this example,
when migrating v2, it should be migrated to server s2 to
reduce the cost generated between v2 and IPS2.

Clearly, policy-aware VM migration will require finding
an optimal placement whilst satisfying network bandwidth
and policy requirements. Unless stated otherwise, our dis-
cussion and problem formulation in the rest of this paper
focus on policy-aware VM migration with an aim to reduce
communication cost.

2.2 Communication Cost with Policies
For simplicity, in the following, we use a multi-tier DC
network which is typically structured under a multi-root
tree topology (canonical [16] or fat-tree [14]) as example.
However, with appropriate link weight assignments (see
Section 4.2.3), the model and solution described in this paper
can be extended to any other data center topologies.

Let V = {v1, v2, . . .} be the set of VMs in the DC
network hosted by the set of servers S = {s1, s2, . . .}. Let
λk(vi, vj) denote the traffic load (or rate) in data per time unit
exchanged between VM vi and vj (from vi to vj) following
policy pk. Here, λk(vi, vj) can be the average pairwise traffic
rates over a certain temporal interval, which can be set
suitably long to match the dynamism of the environment
while not responding to instantaneous traffic bursts. This is
reasonable that many existing DC measurement studies sug-
gest that DC traffic exhibits fixed-set hotspots that change
slowly over time [17] [18] [19].

For a group of middleboxes MB = {mb1,mb2, . . .},
there are various deployment points in DC networks. They
can be on the networking path or off the physical net-
work [4]. Without loss of generality, we consider that mid-
dleboxes are attached to switches for improved flexibility
and scalability of policy deployment [4]. These middleboxes
may belong to different applications, deployed and config-
ured by a Middlebox Controller, see Fig. 1. The centralized

4

Middlebox Controller monitors the liveness of middleboxes
and informs the switches regarding the addition or fail-
ure/removal of a middlebox. Network administrators can
specify and update policies, and reliably disseminate them
to the corresponding switches through the Policy Controller
in Fig. 1.

The set of policies is P = {p1, p2, . . .}. Each policy pi is
defined in the form of {flow → sequence}. flow is rep-
resented by a 5-tuple: {srcip, dstip, srcport, dstport, proto}
(i.e., source and destination IP addresses and port num-
bers, and protocol type). sequence is a list of middleboxes
that all flows matching policy pi should traverse them in
order: pi.sequence = {mbi1,mbi2, . . .}. We denote pini and
pouti to be the first (ingress) and last (egress) middleboxes
respectively in pi.sequence. Let P (vi, vj) be the set of all
policies defined for traffic from vi to vj , i.e., P (vi, vj) =
{pk|pk.src = vi, pk.dst = vj}.

We denote L(ni, nj) to be the routing path between
nodes (e.g., VM, middlebox or switch) ni and nj . l ∈
L(ni, nj) if link l is on the path. If a flow from VM vi to
vj is matched to policy pk, its actual routing path is:

Lk(vi, vj) = L(vi, p
in
k)

+
∑

mbks 6=pout
k

L(mbks ,mb
k
s+1)

+ L(poutk , vj)

(1)

Not all DC links are equal, and their cost depends on the
particular layer they interconnect. High-speed core router
interfaces are much more expensive (and, hence, oversub-
scribed) than lower-level ToR switches [15]. Therefore, in
order to accommodate a large number of VMs in the DC
and at the same time keep investment cost low from a
providers perspective, utilization of the “lower cost” switch
links is preferable to the “more expensive” router links. Let
ci denote the link weight for li. In order to reflect the in-
creasing cost of high-density, high-speed (10 Gb/s) switches
and links at the upper layers of the DC tree topologies,
and their increased over-subscription ratio, we can assign
a representative link weight ωi for an ith-level link per data
unit. Without loss of generality, in this case ω1 < ω2 < ω3.

Hence, the Communication Cost of all traffic from VM vi
to vj is defined as

C(vi, vj) =
∑

pk∈P (vi,vj)

λk(vi, vj)
∑

ls∈Lk(vi,vj)

cs

=
∑

pk∈P (vi,vj)

(Ck(vi, p
in
k) + Ck(p

in
k , p

out
k)

+ Ck(p
out
k , vj))

(2)

where Ck(vi, p
in
k) = λk(vi, vj)

∑
ls∈L(vi,pin

k)

cs is the commu-

nication cost between vi and pink for flows which matched
pk. Similarly, Ck(p

out
k , vj) is the communication cost be-

tween poutk and vj for pk, and Ck(p
in
k , p

out
k) is the communi-

cation cost between pink and poutk .
Since we jointly consider compliance of network poli-

cies and minimization of network communication cost
through VM migration, which will affect both Ck(vi, p

in
k)

and Ck(p
out
k , vj) above. The value of Ck(p

in
k , p

out
k) in (2)

remain unchanged when migrating either vi or vj , and can

be ignored as it makes no contribution to the minimization
of the communication cost during VM migration.

For policy-free flows, which are not governed by any
policies, their communication cost can be calculated directly
between the source and destination VMs. Unless otherwise
stated, we only consider policy flows for ease of discussion
in the rest of the paper.

2.3 Policy-Aware VM Allocation Problem
We denote MBin(vi) to be the set of ingress middleboxes of
all outgoing flows from vi, i.e., MBin(vi) = {mbj |mbj =
pink , pk.src = vi}. Similarly, MBout(vi) = {mbj |mbj =
poutk , pk.dst = vi} is the set of egress middleboxes of all
incoming flows to vi.

As each server is connected to an edge switch, and each
edge switch can retrieve the global graph of all middleboxes
from the Policy Controller, we define all the servers that
can reach middlebox mbk as S(mbk). Thus, to preserve the
policy requirements, the acceptable servers that a VM vi can
migrate to are:

S(vi) =
⋂

mbk∈MBin(vi)∪MBout(vi)

S(mbk) (3)

Hence, for traffic not governed by any policies, S(vi) is all
servers that can be reached by vi, i.e., possible destinations
where vi can be migrated to.

The vector Ri denotes the physical resource require-
ments of VM vi. For instance, Ri could have three compo-
nents that capture three types of physical resources such as
CPU cycles, memory size, and I/O operations, respectively.
Accordingly, the amount of physical resource provisioning
by host server sj is given by a vector Hj . And Ri � Hj

means all types of resource of sj are enough to accept vi.
We denote A to be an allocation of all VMs. A(vi) is

the server which hosts vi in A, and A(sj) is the set of
VMs hosted by sj . Considering a migration for VM vi
from its current allocated server A(vi) to another server ŝ:
A(vi) → ŝ, the feasible space of candidate servers for vi is
characterized by:

Si = {ŝ|(
∑

vk∈A(ŝ)

Rk +Ri) � Hj ,∀ŝ ∈ S(vi) \A(vi)} (4)

Let Ci(sj) be the total communication cost induced by vi
between sj and MBin(vi) ∪MBout(vi), where sj = A(vi).

Ci(sj) =
∑

pk∈P (vi,∗)

Ck(vi, p
in
k) +

∑
pk∈P (∗,vi)

Ck(vi, p
out
k) (5)

Migrating a VM also generates network traffic between
the source and destination hosts of the migration, as it
involves copying the in-memory state and the content of
CPU registers between the hypervisors. The live migration
allows moving a continuously running VM from one phys-
ical host to another. To enable that, modern DC networks
use a technique called pre-copy [20], which is comprised of
three phases: pre-copy phase, pre-copy termination phase
and stop-and-copy phase.

According to [21], the amount of traffic generated during
migration depends on the VMs image sizeMs, its page dirty
rate Pr , and the available bandwidth Ba. Xmin and Tmax

are user setting for minimum required progress for each

5

pre-copy cycle and the maximum time for the final stop-
and-copy cycle respectively [21]. Let Nj denote the traffic
on the jth pre-copy cycle. The first iteration will result in
migration traffic equal to the entire memory size N0 = Ms,
and time Ms/Ba. During that time, Ms

Pr

Ba
amount of mem-

ory becomes dirty. Then, the second iteration results in
N2 = Ms

Pr

Ba
amount of traffic. It is easy to obtain that

Nj = Ms(
Pr

Ba
)j−1 for j ≥ 1. Thus if there are n pre-

copy cycles and one final stop-and-copy cycle, the estimated
migration cost, i.e., total traffic generated during migration,
for VM vi is [21]:

Cm(vi) =Ms ·
1− (Pr/Ba)

n+1

1− (Pr/Ba)
(6)

There are two conditions for stopping the pre-copy
cycle corresponding to the minimum required progress
for each pre-copy cycle and the maximum time for the
final stop-copy cycle respectively [21]: (1) Ms(

Pr

Ba
)n <

Tmax · Ba, and (2) Ms(
Pr

Ba
)n−1 −Ms(

Pr

Ba
)n < Xmin. Thus,

we can derive that the number of pre-copy cycles n =
min(dlogPr/Ba

Tmax·Ba

Ms
e, dlogPr/Ba

Xmin·Pr

Ms·(Ba−Pr)
e).

Such migration overhead in (6) can be measured by the
hypervisor hosting the VM and should not outweigh the
reduction in the overall communication cost. We then con-
sider the utility in terms of the expected benefit (of migrating
a VM to a server) minus the expected cost incurred by such
operation. The utility of the migration A(vi) → ŝ, where
ŝ ∈ Si, is defined as:

U(A(vi)→ ŝ) = Ci(A(vi))− Ci(ŝ)− Cm(vi) (7)

And the total utility UA→Â is the summation of utilities for
all migrated VMs from allocation A to Â.

The PoLicy-Aware VM maNagement (PLAN) problem is
defined as follows:

Definition 1. Given the set of VMs V, servers S, policies P, and
an initial allocation A, we need to find a new allocation Â that
maximizes the total utility:

max UA→Â

s.t. UA→Â > 0

Â(vi) ∈ Si,∀vi ∈ V
(8)

PLAN can be treated as a restricted version of the Gener-
alized Assignment Problem (GAP) [22]. However, the GAP
is APX-hard to approximate [22]. The existing centralized
approximation algorithms are too complex and infeasible
to implement over a DC environment, which could include
thousands or millions of servers, VMs, switches and traffic
flows.

Theorem 1. The PLAN problem is NP-Hard.

Proof. To show the non-polynomial complexity of PLAN, we
will show that the Multiple Knapsack Problem (MKP) [23],
whose decision version has already been proven to be
strongly NP-complete, can be reduced to this problem in
polynomial time. Consider a special case of allocation A0,
in which all VMs are allocated to one server s0, then the
PLAN problem is to find a new allocation Â for migrating
VMs that maximizes the total utility UA0→Â. We denote
S′ = S \ {s0} to be the set of destination servers for

migration. For a VM vi, suppose the computed communi-
cation cost induced by vi on all candidate servers is the
same, i.e., Ci(ŝ) = δi,∀ŝ ∈ S′, where δi is a constant.
Consider each VM to be an item with size Ri and profit
U(A(vi) → ŝ) = Ci(A(vi)) − δi − Cm(vi), each server
sj ∈ S′ to be knapsack with capacityHj . The PLAN problem
becomes finding a feasible subset of VMs to be migrated to
servers S′, maximizing the total profit. Therefore, the MKP
problem is reducible to the PLAN problem in polynomial
time, and hence the PLAN problem is NP-hard.

3 PLAN ALGORITHMS

The PLAN problem is a restricted version of the General-
ized Assignment Problem (GAP), which has been proven
APX-hard to approximate [22]. We can use some existing
centralized algorithms to approximately maximize the total
gained utility by migration, e.g., [24], [25]. However, the
computation times of those algorithms are unacceptable for
DCs, especially considering the large scales of servers, VMs,
switches and millions of traffic flows [12]. In this section, we
design a decentralized heuristic scheme to perform policy-
aware VMs migration.

3.1 Policy-Aware Migration Algorithms
Server hypervisors (or SDN controller, if used, see Section 4)
will monitor all traffic load for each collocated VM vi. A mi-
gration decision phase will be triggered periodically during
which vi will compute the appropriate destination server ŝ
for migration. If no migration is needed, U(A(vi)→ ŝ) = 0.
Otherwise, the total utility is increased after migration when
A(vi) 6= ŝ.

Algorithm 1 and Algorithm 2 show the corresponding
routines for VMs (PLAN-VM) and servers (PLAN-Server),
respectively. PLAN-VM is only triggered for a migration
decision every Tm + τ time. PLAN-VM operations will
be suppressed for Tm time period if vi is migrated to a
new server, avoiding too frequent migration or oscillation
among servers. The value of Tm depends on the traffic
patterns, e.g., smaller value for a DC with more stable
traffic. τ is a random positive value to avoid synchronization
of migrations for different VMs. Its value range can be
determined by the scale of VMs, e.g., smaller range for few
number of VMs. PLAN-Server is designed for hypervisors on
servers which can accept requests from VMs based on the
residual resources of the corresponding server and prepares
for migration of remote (incoming) VMs.

Several control messages will be exchanged for both
PLAN-VM and PLAN-Server. The interface sendMsg(type,
destination, resource) sends a control message of a specified
type and resource declaration to the destination. The in-
terface getMsg() reads such messages when received. The
request message is a probe from VM to a destination server
for migration. A server can respond by sending back an
accept or reject message, according to the residual resource
of the server and the requirements of the VM. If the server
accepts the request from the distant VM, a migrate message
will be sent back as confirmation.

For each VM vi, the PLAN-VM algorithm starts with
checking feasible servers, in a greedy manner, for improving

6

Algorithm 1 PLAN-VM for vi

/∗ Triggered every Tm + τ period∗/
1: L = ∅
2: DECISION-MIGRATION(vi, L)
3: loop
4: msg ← getMsg()
5: switch msg.type do
6: case reject
7: L = L ∪ {msg.sender}
8: DECISION-MIGRATION(vi, L)
9: case accept

10: sendMsg(migrate, msg.sender, Ri)
11: perform migration: vi → s

12: end switch
13: end loop

14: function DECISION-MIGRATION(vi, L)
15: s0 ← A(vi)
16: Si ← feasible servers in Equation (4)
17: X ← argmaxx∈Si\L U(A(vi)→ x)
18: if X 6= ∅ && s0 6∈ X then
19: s← the one with most residual resources in X
20: sendMsg(request, s, Ri)
21: else
22: exit . exit whole algorithm if no migration
23: end if
24: end function

utility by calling the function Decision-Migration(), i.e., line 2
and 7. The function Decision-Migration() will find a potential
destination server for vi to perform migration. A blacklist
L is maintained during each execution of PLAN-VM to
avoid repeating request for the same servers which reject
vi previously. The function Decision-Migration() tries to find
a set of servers with maximum migration utility, i.e., line
17. If the current server, which hosts vi, is not included
in this set, the one with most residual resources will be
chosen as a candidate server for migration, i.e., line 18 ∼ 20.
Otherwise, no migration action will take place. This will
avoid oscillation of VM migration among the same set of
servers. If a feasible server s accepts vi’s request, vi will be
migrated to s, e.g., line 10 ∼ 11.

For each server sj , the PLAN-Server algorithm keeps
listening incoming migration requests from VMs. For a
request from vi, sj will check its residual resources and send
back an accept message if it has enough resource to host vi,
i.e., line 5 ∼ 8. Otherwise, it will reject the migration request
of vi, i.e., line 16. For accepted VMs, sj will prepare for the
incoming migration by provisionally reserve resources for
them, i.e., line 14.

The PLAN scheme described in Algorithms 1 and 2 can
decrease the total communication cost and will eventually
converge to a stable state:

Theorem 2. Algorithms 1 and 2 will converge after a finite
number of iterations.

Proof. The cost of each VM vi is determined by its hosting
server and related ingress/egress middleboxes in MBin(vi)
and MBout(vi). Hence, under the policy scheme described

Algorithm 2 PLAN-Server for sj

1: loop
2: msg ← getMsg()
3: switch msg.type do
4: case request
5: vi = msg.sender
6: Ri = msg.resouce
7: if

∑
vk∈A(sj)

Rk +Ri ≤ Hj then
8: sendMsg(accept, vi)
9: else

10: sendMsg(reject, vi)
11: end if
12: case migrate
13: if

∑
vk∈A(sj)

Rk +Ri ≤ Hj then
14: provisionally resource reservation etc.
15: else
16: sendMsg(reject, vi)
17: end if
18: end switch
19: end loop

in the previous section, the migrations of different VMs are
independent. Furthermore, each time a migration occurs in
line 11 of Algorithms 1, say, A(vi) → s, the utility gained
from the migration is varied and always larger than zero
during each migration, i.e., U(A(vi) → s) > 0. Thus, the
total induced communication cost, which is always a pos-
itive value, is strictly decreasing while VMs are migrating
among servers. Furthermore, the amount of decreased cost
(i.e., utilities) is variable for each migration. So, the two
algorithms will finally converge after a finite number of
steps.

Suppose the total number of VMs is m and total number
of servers is n. In the worst case, each VM needs to send a
request to all the other servers and is rejected by all of them
except the last one. Thus, the total message complexity of
PLAN is O(mn).

In Fig. 2, we use the same scenario in Fig. 1 as an example
to show operations of PLAN algorithms. We consider the
same policies configuration as described in Section 2.1.2.
Link weights are assigned to grow exponentially for each
layer, i.e., e0 for edge layer links, e1 for aggregation layer
links, e2 for core layer links respectively. Fig. 2a lists all ex-
ample flows with src/dst, rates and applied policies. Fig. 2b
is the initial placement. Numbers within brackets are total
resources (or requirements) of servers (or VMs). Initially, v1
and v2 are hosted on s1 and s3 respectively. Based on the
flow rates and route path, the total communication cost is
10692.15. Assume v1 first called PLAN-VM in time 1, and
find its current hosted server s1 is the best choice. v1 exit
PLAN-VM on line 22. At time 2, v2 called PLAN-VM. Both
s1 and s2 can accept v2, but migrating to v2 receives more
utility (line 17). So, v2 sent a request to s2 which would
accept the request since s2 has enough space to host v2 (line
8 in PLAN-Server). Finally, v2 is migrated to s2 and the total
communication cost becomes 6997.62.

7

Flow: src→dst(rate) Policies
f1 : u→ v1(30kbps) p1, p2
f2 : v1 → v2(50kbps) p3
f3 : v2 → v1(200kbps) p4
f4 : v1 → u(100kbps) p5, p6

(a) Example flows

Server(res.) VMs(req.)
s1(20) : v1(10)
s2(15) : −
s3(28) : v2(8)

(b) Initial placement (total cost =
10692.15)

Server(res.) VMs(req.)
s1(20) : v1(10)
s2(15) : −
s3(28) : v2(8)

(c) Time 1 (total cost = 10692.15)

Server(res.) VMs(req.)
s1(20) : v1(10)
s2(15) : v2(8)
s3(28) : −

(d) Time 2 (total cost = 6997.62)

Fig. 2: Example of PLAN Algorithms

3.2 Initial Placement

Policy-aware initial placement of VMs is also critical for
new VMs in DC networks. When a VM instance, say vi,
is to be initialized, the DC network controller needs to
find a suitable server to host the VM. Initially, predefined
application-specific policies should be known for vi. To-
gether with vi’s resource requirement Ri and all servers’
residual resources in the DC network, the feasible decision
space Si can be obtained through Equation (4). Since the
VM has just been initialized, its traffic load might not be
available. However, we can still choose the best server to
host vi by considering traffic of all policies for vi equally,
e.g., λk = 1,∀pk ∈ P (vi, ∗) ∪ P (∗, vi). In particular, the
migration cost Cm(vi),∀vi ∈ V, is set to be zero during
initial placement. Then, the destined server to host vi is
argmaxs∈Si Ci(s).

4 IMPLEMENTATION

In this section, we discuss a real-world implementation of
the PLAN scheme, highlighting the rationale as well as the
operational and design details of the individual compo-
nents.

The foremost principle for the implementation of PLAN
is to be efficient and deployable in production DC - should
we adopt fully or partly decentralized implementation? Although
a fully decentralized PLAN implementation is possible, it
requires substantial modification to middleware for it to
be able to collect relevant VM and flow statistics. Given
most of the required information such as temporal network
topology, per-flow and per-port based traffic statistics are
readily available in SDN paradigm, we have, hence, adopted
a partially decentralized approach, i.e. computing com-
munication cost –most computationally expensive part as
defined in Equation (7) – in the hypervisors and monitoring
flow statistics using a centralized SDN-based orchestration
in [26].

4.1 Decentralized Modules

4.1.1 VM vs Hypervisor

While conceptually, PLAN relies on VMs to make their own
migration decisions, in practice this is unsuitable because
the hosts being virtualized should not be aware that they are
in fact running within a virtualized environment preventing
VMs from communicating directly with the underlying
hypervisor. Since migration is a facility provided by the
hypervisor, we have decided to implement our solution
within Dom0, a privileged domain [20], of the Xen [27].

4.1.2 Distributed Cost Computation
Ubuntu 14.04 was used for Dom0 and the Python-based xm
was used as the management interface. Open vSwitch [28] is
enabled in Xen hypervisor as it only provides more flexible
retrieval of local traffic flow tables, but allows Dom0 to
interact with a SDN controller through OpenFlow protocol.
Therefore, in order to compute the communication defined
in Equation (7), this module needs to query SDN controller
for the pair-wise flow statistics, λ, and the link weight, c,
along the network path. Upon receiving requests, the SDN
controller will return a JSON object containing all necessary
information.

4.1.3 Server Resource Measurement
Similar to the distributed cost computation described above,
Dom0’s privilege can be exploited to measure residual
server resources such as CPU utilization as well as available
memory size. The measurement should be reported to and
aggregated in the controller as part of a JSON object being
exchanged between Open vSwitch and the controller.

4.1.4 Flow Monitoring
In order to keep track of communicating VMs, flow history
gathering is required. However, Open vSwitch only main-
tains flows for as long as they are active and discards any
inactive flows after 5 seconds, hindering the accumulation
of any long-term history. To overcome this limitation, we
have extended the flow table for storing flow-level statistics.
For the purposes of PLAN, the flow table must support the
following operations: Fast addition of new flows; Retrieval of
a subset of flows, by IP address; Access to the number of bytes
transmitted per flow; Access to flow duration, for calculation
of throughput. The flow table will be periodically updated
through polling Open vSwitch for datapath statistics allow-
ing for the storage of flows for as long as it is required.
Flows will be stored from when they start up till a migration
decision is made for a VM.

4.2 Centralized Modules
4.2.1 Policy Implementation
A centralized Policy Controller that stores and dissemi-
nates policies to the corresponding switches/routers, and
accepts queries from them is a common deployment model
in both non SDN [4] and SDN-based implementation [9].
We adopted SDN-based FlowTags [9] architecture to ensure
correct sequence of middlebox traversals regardless of the
location of VMs. In the following discussion we assume
that, as a result of FlowTags, network policies are strictly
followed no matter wherever VMs are migrated to and
whenever new flows are emitted to the DC network.

8

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Utility Improvement (%)

C
D

F
 o

f
U

ti
lit

y
/C

o
s
t

PLAN

PLAN−RIP

(a) CDF: ratio of utility to communi-
cation cost

No Migration One Two Three
0

10

20

30

40

50

60

70

P
e

rc
e

n
ta

te
 (

%
)

Number of Migrations

PLAN

PLAN−RIP

(b) Number of migrations before
convergence

Fig. 3: Performance of PLAN

4.2.2 Topology Discovery
The knowledge of the network topology is crucial for PLAN
to assign link-cost each individual link. By utilising the
OpenFlow Discovery Protocol (OFDP) and Link Layer Dis-
covery Protocol (LLDP) we can easily construct the network
topology. Through the SwitchEnter and SwitchLeave events
invoked by OpenFlow enabled switches, active switches
within the topology can be discovered. Similarly, LinkAdd
and LinkDelete events are triggered on the addition and
removal of network links, allowing us to keep track of
interconnected switches and physical ports.

4.2.3 Link Weights
In order to reflect the higher communication cost for using
links in the higher layers of the topology, increasing weights
with respect to the topology are adopted. In our implemen-
tation, link weights are set to grow exponentially for each
layer, e.g., e0 for edge layer links, e1 for aggregation layer
links, e2 for core layer links respectively. However, in the
general case, link weight assignment can be based on DC
operator’s policy to reflect diverse metrics, such as energy
consumption, performance, fault tolerance, and so on.

4.2.4 Flow Statistics
To collected pairwise utilization, we used OpenFlow’s
Statistic Request messages to periodically collect the number
of packets and bytes processed by the flow entry since the
flow was installed. Both edge switches at the source and
destination have similar flow entries for a particular VM-
to-VM communication, therefore during collection of flow
statistics, it is important to collect the metrics from the
same switch for a particular VM-to-VM flow. In the current
implementation, the first time a new flow is discovered from
the flow statistics, the Data Path ID (DPID) of the switch is
stored and subsequent measurements must originate from
the same switch or will otherwise be discarded.

5 EVALUATION

5.1 Simulation Setup

We have implemented PLAN in ns-3 [29] and evaluated it
under a fat-tree DC topology. In our simulation environ-
ment, a single VM is modeled as a collection of socket
applications communicating with one or more other VMs
in the DC network. For each server, we have implemented a

VM hypervisor application to manage all collocated VMs.
The hypervisor also supports migration of VMs among
different servers in the network. Fat-tree is a representative
DC topology and hence, results from this topology should
extend to other types of DC networks without loss of
generality.

In order to model a typical DC server’s capability, we
have limited the CPU and memory resources for accom-
modating a certain number of VMs. For example, a server
equipped with 16GB RAM and 8 cores can safely allow 8
VMs running concurrently if each VM occupies one core
and 1GB RAM (the CPU and memory occupied by VMs
can be varied). Throughout the simulation, we created 2320
VMs on the 250 servers. Each VM has average of 10 random
outgoing socket connections, which are CBR traffic with
a randomly generated rate. We have considered practical
bandwidth limitations such that the aggregate bandwidth
required by all VMs in a host does not exceed the network
capacity of its physical interface. Therefore, a VM migration
is only possible when the target host has sufficient system
resources and bandwidth, i.e., a feasible server as defined in
Equation (4).

We have also implemented the policy scheme described
in Section 3. In all experiments, we have set 10% of flows
to be policy-free, meaning that they are not subject to any
of the existing network policies in place. For the other 90%
of flows, they have to traverse a sequence of middleboxes
as required by policies before being forwarded to their
destination [4]. Each policy-constrained flow is configured
to traverse 1∼3 middleboxes, including Firewall, IPS or LB.

To demonstrate the benefit of PLAN, we compare it with
S-CORE [12], a similar but non policy-aware VM manage-
ment scheme which has been shown to outperform other
schemes, e.g., Remedy [21]. S-CORE is a live VM migra-
tion scheme that reduces the topology-wide communica-
tion cost through clustering VMs without considering any
underlying network policies. A VM migration takes place
so long as it yields a positive utility, the communication
cost reduction outweighs the migration cost, and the target
server has sufficient resources to accommodate the new
VM. In addition, PLAN by default is used with the initial
placement algorithm described in Section 3.2. In contrast,
S-CORE initially starts with a set of randomly allocated
VMs. In order to offset such a bias, we have also simulated
PLAN without using the initial placement algorithm (which
is referred to as PLAN with Random Initial Placement or
PLAN-RIP in the sequel).

Alongside the communication cost, we also consider
the impact of policies on average route length and link
utilization. Route length is defined as the number of hops
for each flow, including the additional route for traversing
middleboxes. Link utilization is calculated on each layer of
links in the fat-tree topology, i.e., Edge Layer links intercon-
nect servers and edge switches, Aggr Layer links intercon-
nect edge and aggregation switches, and Core Layer links
interconnect aggregation switches to core routers.

5.2 Simulation Results

We first evaluate the performance of PLAN. Fig. 3 demon-
strates some unique properties of PLAN in progress towards

9

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

of VMs per Server

C
D

F
 o

f
V

M
s
 p

e
r

S
e

rv
e

r

Initial State

Converged State

Fig. 4: VMs clustering on servers at different states

convergence in terms of communication cost improvement
as well as number of migrations. Fig. 3a depicts the im-
provement of individual VM’s communication cost after
each migration through calculating the ratio of utility to
the communication cost of that VM before migration. It can
be observed that each migration can reduce communication
cost by 39.06% on average for PLAN and 34.19% for PLAN-
RIP, respectively. Nearly 60% of measured migrations can
effectively reduce their communication cost by as much as
40%. Such improvements are more significant when PLAN is
used without an initial placement scheme in which VMs are
allocated randomly at initialization. Fig. 3b shows the num-
ber of migrations per VM as PLAN converges. In PLAN, as a
result of initial placement, only 30% of VMs need to migrate
only once to achieve a stable state throughout the whole
experimental run. In comparison, 60% of VMs in PLAN-RIP
need to migrate once when it converges. Nevertheless, in
both schemes (with and without initial placement), we ob-
serve that very few (< 1%) VMs need to migrate twice and
no VM needs to migrate three times or more. These results
demonstrate that low-cost, low-overhead initial placement
can significantly reduce migration overhead in general.

We also study the transitioning state behavior of PLAN
to reveal its intrinsic properties. Fig. 4 shows the snapshot
of VM allocations at both the initial and the converged
states of PLAN. Initially, before PLAN is running, VMs are
nearly randomly distributed on servers, e.g., each server
hosts 5∼12 VMs. After PLAN converges, plenty of VMs
are clustered into several groups of servers, e.g., nearly
16% of servers host 56.55% of the total VMs. Moreover, an
important property we can exploit is that 3.2% of servers are
idle when PLAN converges and they can be safely shutdown
to, e.g., save power.

Next, we present performance results of PLAN when
compared to S-CORE. Fig. 5 shows the overall commu-
nication cost reduction (measured in terms of number of
bytes using network links), average end-to-end route length,
as well as link utilization for all layers, for all the three
schemes. Fig. 5a demonstrates that PLAN and PLAN-RIP
can efficiently converge to a stable allocation. PLAN reduces
the total communication cost by 22.42% while PLAN-RIP
achieves an improvement of up to 38.27% which is a factor
of nearly eight times better than S-CORE whose improve-
ment is a mere 4.79%. The reason that PLAN-RIP has higher
improvement is that the initial random VM placement offers
more space for optimization than the already policy-aware
initial placement of PLAN. However, it is evident that this
potential is not exploited by S-CORE. More importantly,

as shown in Fig. 5b, by migrating VMs, the average route
length can be significantly reduced by as much as 20.12%
and 10.08% for PLAN-RIP and PLAN, respectively, while
S-CORE only improves it by 4.22%. Being able to reduce
the average route length is an important feature of PLAN
as it implies that flows can be generally completed faster
and are less likely to create congestion in the network. Both
Fig. 5a and 5b show that PLAN can effectively optimize the
network-wide communication cost by localizing frequently
communicated VMs as well as to reduce the length of the
end-to-end path.

For the same reasons, Fig. 5c and 5d demonstrate that
PLAN can mitigate link utilization at the core and ag-
gregation layers by 30.55% and 7.01%, respectively. For
PLAN-RIP, because it starts with random allocation of VMs,
which is non-optimal and inefficient compared to PLAN
with initial placement, it can reduce link utilization across
the core and aggregate layer links by 42.87% and 12.81%,
respectively. The corresponding reduction for S-CORE is
only 4.6% and 4.8%, respectively. On the other hand, uti-
lization improvement on edge links is marginal for all three
schemes, since they try to fully utilize lower-layer links
where bisection bandwidth is maximum. Mitigation of link
utilization at core and aggregation layers means that PLAN
can effectively create extra topological capacity headroom
for accommodating larger number VMs and services. Mean-
while, Fig. 5 also reveals that PLAN’s initial placement al-
gorithm can greatly improve the communication cost, route
length and link utilization, and the algorithm itself can then
continue to adaptively optimize network resource usage as
it evolves.

In order to examine PLAN’s adaptability to dynamic
changes in policy configuration and traffic patterns, Fig. 6
presents the algorithm’s performance results when policies
are changed at 50s, 100s, and 150s, respectively, and after the
algorithm had initially converged. Since S-CORE does not
consider the underlying network policies, its performance is
independent of policy configurations and is, thus, omitted.
Throughout the experiments shown in Fig. 6, 10% of policies
are removed at 50s, making the corresponding flows policy-
free. This leads the DC to an non-optimized state, leaving
room for further optimizing VMs allocations. Due to policy-
awareness, PLAN can promptly adapt to new policy pat-
terns, reducing the total communication cost, route length
and link utilization to a great extent. The sudden drop
at 50s is due to policy-free flows not needing to traverse
through any middleboxes, hence causing the total commu-
nication cost to fall immediately. The same phenomenon
can be observed when new policies are added at 100s and
existing policies are modified at 150s. In particular, disabling
some policies produces new policy-free flows so PLAN can
localize their hosting VMs, greatly improving bandwidth.
So, core-layer link utilization is promptly reduced when
some policies are disabled at 50s. All the above results
demonstrate that PLAN is highly adaptive to dynamism in
policy configuration.

5.3 Testbed Results on VM Migration
We have also set up a testbed environment to assess the
algorithm’s footprint and the performance of actual VM mi-
grations. The servers used all have an Intel Core i5 3.2GHz

10

5 10 15 20 25
3.5

4

4.5

5

5.5

6

6.5

7
x 10

7

T
o

ta
l
C

o
s
t

Time(s)

PLAN

PLAN−RIP

S−CORE

(a) Total communication cost

5 10 15 20 25
6.5

7

7.5

8

8.5

A
v
e

ra
g

e
 R

o
u

te
 L

e
n

g
th

 (
h

o
p

s
)

Time(s)

PLAN
PLAN−RIP
S−CORE

(b) Average route length

5 10 15 20 25
0.2

0.25

0.3

0.35

0.4

L
in

k
 u

ti
liz

a
ti
o
n

Time(s)

Edge Layer (PLAN−RIP)
Aggr Layer (PLAN−RIP)
Core Layer (PLAN−RIP)
Edge Layer (S−CORE)
Aggr Layer (S−CORE)
Core Layer (S−CORE)

(c) Link utilization

5 10 15 20 25
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

L
in

k
 u

ti
liz

a
ti
o
n

Time(s)

Edge Layer (PLAN)
Aggr Layer (PLAN)
Core Layer (PLAN)

(d) Link utilization

Fig. 5: Performance comparison of PLAN and S-CORE VM migration schemes

10
0

10
2

10
4

10
60

100

200

300

400

500

No. of Flows

M
em

or
y

U
sa

ge
 (

M
B

)

(a) Flow table memory usage

10
0

10
2

10
4

10
6

0

2

4

6

8

10

No. of Flows

T
im

e
(s

)

Add

Lookup

Delete

(b) Flow table operation times for up
to 1 million unique flows

10
0

10
50

5

10

15

20

No. of Flows

C
P

U
 U

sa
ge

 (
%

)

1s polling interval
2s polling interval
3s polling interval
4s polling interval
5s polling interval

(c) CPU utilization when updating
flow table at varying polling intervals

 0

 1

 2

 3

 4

 5

 6

16 (k=4) 54 (k=6) 128 (k=8) 250 (k=10) 432 (k=12) 686 (k=14)

T
im

e
 t

o
 c

o
lle

c
t

fl
o

w
 s

ta
ti
s
ti
c
s
 (

s
)

Number of hosts (k-value)

20 VMs (80 flows) per host
16 VMs (64 flows) per host
12 VMs (48 flows) per host

8 VMs (32 flows) per host
4 VMs (16 flows) per host

(d) Controller’s flow collection time

Fig. 7: Testbed Results

50 100 150 200
3.4

3.45

3.5

3.55

3.6

3.65

3.7

3.75

3.8

3.85
x 10

8

T
o
ta

l
C

o
s
t

Time(s)

Total Cost

(a) Change of total communication
cost

50 100 150 200
7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

A
v
e

ra
g

e
 R

o
u

te
 L

e
n

g
th

 (
h

o
p

s
)

Time(s)

Avg Route Length

(b) Change of route length

Fig. 6: Performance of PLAN with dynamic policies.

CPU with 8GB RAM running Xen hypervisor Ver. 4.2 with
Ubuntu server 12.04 as Dom0. VMs are Ubuntu 12.04 with
1GB RAM allocated to each VM. We mainly stress-tested our
decentralized module to see if it will be the performance bot-
tleneck. We omitted testing our SDN controller since most
functions are readily available in OpenFlow specification
and hence will not create bottlenecks.

We first created 1 million flows with all source IP ad-
dresses being unique to examine flow tables (Section 4.1.4).
This results in a new entry being created at the root of the
flow table for each flow. As shown in Fig. 7a, the size of
the flow table scales sub-linearly. With 10,000 and 100,000
entries, the flow table has a memory footprint of only 16MB
and 91MB respectively. However, a number of studies have
reported that the total number of concurrently active flows
between VMs is much more contained: a busy server rarely
talks to servers outside the rack [19] and the number of

active concurrent flows going in and out of a machine
is 10 [17]. With a more realistic scenario in which every
virtual server concurrently sends or receives 10 flows, with
100 in the worst case, we anticipate that actual memory
consumption of the flow table will be between 24.75 KB -
186.47 KB for a hypervisor hosting 16 VMs.

To understand the time taken to perform the different
operations on the flow table, we have measured the time to
add, lookup and delete flows, summing the times over the
number of flows, for the same sets of flows. Fig. 7b shows
the time to perform various flow table operations with dif-
fering numbers of flows in a single operation. Nevertheless,
addition, lookup and deletion operations will not need more
than 100ms for a realistic DC production workload of 100
concurrent flows.

Next, we measured the CPU usage for manipulating the
flow table. This experiment was done by measuring the
CPU usage for gradually adding and looking up the flow
table with an interval between 1 second to 5 seconds, as
shown in Fig. 7c. It is evident that the performance impact
for adding up to 10,000 flows is negligible for any polling
interval accounting for less than 5% CPU utilization. In the
best case for 10,000 flows added or updated each time, CPU
utilization was only around 1% at a polling rate of 5 seconds,
while the worst case CPU utilization was 3.6% at a polling
rate of 1 second. For a more realistic load of 1,000 flows, the
best and worst cases are 0.002% and 0.01%, respectively.

Next, we test the centralized controllers performance on
collecting flow statistics from the network. Flow statistics
are collected from all software switches (Open vSwitch 2.3.1)
operating at the hypervisors to be able to account for all
VM communication as described in Sec. 4. The controller

11

periodically pulls OpenFlow flow statistics from all hosts to
retrieve fine-grained statistics. According to our measure-
ments, this is a reasonable solution with a single controller
for mid-sized infrastructures, giving around 5.0s to retrieve
flow statistics from 631 hosts each hosting 20 VMs, as shown
in Fig. 7d. For larger infrastructures, for example, when
there are > 1000 hosts, multiple SDN controllers can be
deployed to collect flows or sampling them using, e.g.,
DevoFlow [30].

Similar to other DC management schemes, PLAN will
inevitably impose control overhead on the network, such as
querying for flow statistics. An improperly designed control
scheme may overwhelm the network with additional –
control– load, but how much overhead will PLAN create? As we
described in Section 4, fully distributed network is limited to
a few control messages for triggering migration as described
in Algorithm 1 and 2. The partial centralized approach
will inevitably have higher overhead. With the best and
worst scenario in a production DC (assuming 500 clusters)
described above, the will be 5MB and 500MB respectively
for every Tm + τ (used to set sparse intervals).

6 RELATED WORKS

Network policy management research to date has either
focused on devising new policy-based routing/switching
mechanisms or leveraging Software-Defined Networking
(SDN) to manage network policies and guarantee their
correctness. Joseph et al. [4] proposed PLayer, a policy-aware
switching layer for DCs consisting of inter-connected policy-
aware switches (pswitches). Vyas et al. [3] proposed a middle-
box architecture, CoMb, to actively consolidate middlebox
features and improve middlebox utilization, reducing the
number of required middleboxes for operational environ-
ments. Abujoda et al. [31] present MIDAS, an architecture
for the coordination of middlebox discovery and selection
across multiple network functions providers.

Recent developments in SDN enable more flexible mid-
dlebox deployments over the network while still ensuring
that specific subsets of traffic traverse the desired set of
middleboxes [7]. Kazemian et al. [32] presented NetPlumber,
a real-time policy-checking tool with sub-millisecond av-
erage run-time per rule update, and evaluated it on three
production networks including Google’s SDN, the Stanford
backbone and Internet2. Zafar et al. [10] proposed SIMPLE, a
SDN-based policy enforcement scheme to steer DC traffic in
accordance to policy requirements. Similarly, Fayazbakhsh
et al. presented FlowTags [9] to leverage SDN’s global
network visibility and guarantee correctness of policy en-
forcement. Yaniv et al. [33] designed EnforSDN, a manage-
ment approach that exploits SDN principles to decouple the
policy resolution layer from the policy enforcement layer
in network service appliances. Based on SDN, Chaithan et
al. [34] tackled the problem of automatic, correct and fast
composition of multiple independently specified network
policies by developing a high-level Policy Graph Abstrac-
tion (PGA). Anat et al. [35] presented OpenBox, which de-
couples the control plane of middleboxes from their data
plane, and unifies the data plane of multiple middlebox
applications using entities called service instances. Shameli
et al. [36] studied the problem of placing virtual security

appliances within the data center in order to minimize
network latency and computing costs while maintaining
the required traversing order of virtual security appliances.
However, these proposals are not fully designed with VMs
migration in consideration and may put migrated VMs on
the risk of policy violation and performance degradation.

Multi-tenant Cloud DC environments require more dy-
namic application deployment and management as de-
mands ebb and flow over time. As a result, there is con-
siderable literature on VM placement, consolidation and
migration for server, network, and power resource opti-
mization [12] [37] [38] [39] [40] [41]. However, none of
these research efforts consider network policy in their de-
sign. The closest work to PLAN is a framework for Policy-
Aware Application Cloud Embedding (PACE) [1] to support
application-wide, in-network policies, and other realistic
requirements such as bandwidth and reliability. However,
PACE only considers one-off VM placement in conjunction
with network policies and hence fails to deal with and
further improve resource utilization in the face of dynamic
workloads.

Some other research works focus on scheduling of mid-
dleboxes. Duan et al. [42] studied latency behaviours of
software middleboxes, and proposed Quokka which can
schedule both traffic and middlebox positions to reduce
transmission latencies of the network. Based on a Clos
network design, Tu et al. [43] studied programmable mid-
dlebox that can distribute traffic more evenly to improve
QoS. A SDN controller is used to collect global information
to improve bandwidth utilization and reduce latency of
middleboxes. Tamás et al. [44] focused on theoretical anal-
ysis of middleboxes placement problem. They presented
a deterministic and greedy approximation algorithm for
incremental deployment scenarios and showed that it can
achieve near optimal performance in the offline scenario.
However, all those works above ignore the influence of
network polices on VM migration. They present detailed
theoretical analysis on incremental middlebox deployment

Our another work in [45] proposed Sync, which also
studies policy-awareness VMs management but focuses on a
different problem. The PLAN proposed in this paper mainly
focuses on VMs management with both policy-awareness
and network-awareness. However, Sync studies the syner-
gistic between VMs and middleboxes and focuses on the
consolidation of both computing and networking resources
in datacenters.

7 CONCLUSION AND FUTURE WORK

In this paper, we have studied the optimization of DC net-
work resource usage while adhering to a variety of policies
governing the flows routed over the infrastructure. We have
presented PLAN, a policy-aware VM management scheme
that meets both efficient DC resource management and
middleboxes traversal requirements. Through the definition
of communication cost that incorporates policy, we have
modeled an optimization problem of maximizing the utility
(i.e., reducing communication cost) of VM migration, which
is then shown to be NP-hard. We have subsequently derived
a distributed heuristic approach to approximately reduce
communication cost while preserving policy guarantees.

12

Our results show that PLAN can reduce network-wide com-
munication cost by 38% over diverse aggregate traffic loads
and network policies, and is adaptive to changing policy
and traffic dynamics.

In this paper, we mainly focus on VM migration and
hardware middleboxes. For virtualized middlebox or NFV,
new software MB instances can be easily launched on
commodity servers located within the network, and can
be scheduled dynamically. By utilizing the capability of
virtualized Network Function, the communication cost and
efficiency of VM migration can be further improved, which
is our following work currently.

ACKNOWLEDGMENTS

This work is partially supported by Chinese National
Research Fund (NSFC) Chinese National Research Fund
(NSFC) Project No.: 61402200 and 61373125; NSFC Key
Project No. 61532013; National China 973 Project No.
2015CB352401; Shanghai Scientific Innovation Act of
STCSM No.15JC1402400 and 985 Project of Shanghai Jiao
Tong University with No. WF220103001; Macau FDCT
project 009/2010/A1 and 061/2011/A3; University of
Macau project MYRG112; US National Science Founda-
tion (NSF) under grant 0963979; the UK Engineering
and Physical Sciences Research Council (EPSRC) grants
EP/N033957/1, EP/L026015/1, and EP/L005255/1.

REFERENCES

[1] L. E. Li, V. Liaghat, H. Zhao, M. Hajiaghayi, D. Li, G. Wilfong,
Y. R. Yang, and C. Guo, “PACE: Policy-aware application cloud
embedding,” in Proceedings of 32nd IEEE INFOCOM, 2013.

[2] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: Network
processing as a cloud service,” ACM SIGCOMM Computer Commu-
nication Review, vol. 42, no. 4, pp. 13–24, 2012.

[3] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, “Design
and implementation of a consolidated middlebox architecture.” in
NSDI, 2012, pp. 323–336.

[4] D. A. Joseph, A. Tavakoli, and I. Stoica, “A policy-aware switching
layer for data centers,” in ACM SIGCOMM Computer Communica-
tion Review, vol. 38, no. 4. ACM, 2008, pp. 51–62.

[5] “Network functions virtualisation white paper #3.” [Online].
Available: http://portal.etsi.org/NFV/NFV White Paper3.pdf

[6] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN,” Queue,
vol. 11, no. 12, p. 20, 2013.

[7] A. Gember, P. Prabhu, Z. Ghadiyali, and A. Akella, “Toward
software-defined middlebox networking,” in Proceedings of the 11th
ACM Workshop on Hot Topics in Networks. ACM, 2012, pp. 7–12.

[8] A. Gember, C. P. Raajay Viswanathan, R. Grandl, J. Khalid, S. Das,
and A. Akella, “OpenNF: enabling innovation in network function
control,” in Proceedings of the 2014 ACM conference on SIGCOMM.
ACM, 2014, pp. 163–174.

[9] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul,
“Enforcing network-wide policies in the presence of dynamic
middlebox actions using flowtags,” in Proc. USENIX NSDI, 2014.

[10] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu,
“SIMPLE-fying middlebox policy enforcement using SDN,” ACM
SIGCOMM Computer Communication Review, vol. 43, no. 4, pp. 27–
38, 2013.

[11] S. Sivakumar, G. Yingjie, and M. Shore, “A framework and prob-
lem statement for flow-associated middlebox state migration,”
2012.

[12] F. P. Tso, K. Oikonomou, E. Kavvadia, and D. Pezaros, “Scalable
traffic-aware virtual machine management for cloud data centers,”
in IEEE International Conference on Distributed Computing Systems
(ICDCS), 2014.

[13] L. Cui, F. P. Tso, D. P. Pezaros, W. Jia, and W. Zhao, “Policy-aware
virtual machine management in data center networks,” in IEEE
International Conference on Distributed Computing Systems (ICDCS),
2015.

[14] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” in ACM SIGCOMM Computer
Communication Review, vol. 38, no. 4. ACM, 2008, pp. 63–74.

[15] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost
of a cloud: research problems in data center networks,” ACM
SIGCOMM computer communication review, vol. 39, no. 1, pp. 68–73,
2008.

[16] Cisco, “Data center: Load balancing data center services,” 2004.
[17] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,

D. A. Maltz, P. Patel, and S. Sengupta, “VL2: a scalable and flexible
data center network,” in Proc. ACM SIGCOMM’09, 2009, pp. 51–
62.

[18] T. Benson, A. Akella, and D. A. Maltz, “Network traffic character-
istics of data centers in the wild,” in Proceedings of the 10th ACM
SIGCOMM conference on Internet measurement. ACM, 2010, pp.
267–280.

[19] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken,
“The nature of data center traffic: measurements & analysis,” in
Proc. ACM SIGCOMM Internet Measurement Conference (IMC’09),
2009, pp. 202–208.

[20] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield, “Live migration of virtual machines,” in
Proceedings of the 2nd conference on Symposium on Networked Systems
Design & Implementation-Volume 2. USENIX Association, 2005, pp.
273–286.

[21] V. Mann, A. Gupta, P. Dutta, A. Vishnoi, P. Bhattacharya, R. Pod-
dar, and A. Iyer, “Remedy: Network-aware steady state vm man-
agement for data centers,” in NETWORKING 2012. Springer, 2012,
pp. 190–204.

[22] D. G. Cattrysse and L. N. Van Wassenhove, “A survey of algo-
rithms for the generalized assignment problem,” European Journal
of Operational Research, vol. 60, no. 3, pp. 260–272, 1992.

[23] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack problems.
Springer Verlag, 2004.

[24] R. Cohen, L. Katzir, and D. Raz, “An efficient approximation
for the generalized assignment problem,” Information Processing
Letters, vol. 100, no. 4, pp. 162–166, 2006.

[25] H. Ramalhinho and D. Serra, “Adaptive search heuristics for
the generalized assignment problem,” Mathware & soft computing,
vol. 9, no. 3, pp. 209–234, 2008.

[26] R. Cziva, D. Stapleton, F. P. Tso, and D. Pezaros, “SDN-based
virtual machine management for cloud data centers,” in Cloud
Networking (CloudNet), 2014 IEEE 3rd International Conference on,
Oct 2014, pp. 388–394.

[27] “The xen project.” [Online]. Available:
http://www.xenproject.org/

[28] “Open vSwitch.” [Online]. Available: http://openvswitch.org/
[29] “NS-3.” [Online]. Available: http://www.nsnam.org
[30] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,

and S. Banerjee, “Devoflow: Scaling flow management for high-
performance networks,” in ACM SIGCOMM Computer Communi-
cation Review, vol. 41, no. 4. ACM, 2011, pp. 254–265.

[31] A. Abujoda and P. Papadimitriou, “MIDAS: Middlebox discovery
and selection for on-path flow processing,” IEEE COMSNETS,
Bangalore, India, 2015.

[32] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real time network policy checking using header space
analysis,” in USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2013.

[33] Y. Ben-Itzhak, K. Barabash, R. Cohen, A. Levin, and E. Raichstein,
“EnforSDN: Network policies enforcement with SDN,” in 2015
IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM). IEEE, 2015, pp. 80–88.

[34] C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Banerjee,
C. Clark, Y. Ma, P. Sharma, and Y. Zhang, “PGA: Using graphs
to express and automatically reconcile network policies,” in ACM
SIGCOMM Computer Communication Review. ACM, 2015, pp. 29–
42.

[35] A. Bremler-Barr, Y. Harchol, and D. Hay, “Openbox: Enabling
innovation in middlebox applications,” in Proceedings of the 2015
ACM SIGCOMM Workshop on Hot Topics in Middleboxes and Network
Function Virtualization. ACM, 2015, pp. 67–72.

13

[36] A. Shameli-Sendi, Y. Jarraya, M. Fekih-Ahmed, M. Pourzandi,
C. Talhi, and M. Cheriet, “Optimal placement of sequentially or-
dered virtual security appliances in the cloud,” in 2015 IFIP/IEEE
International Symposium on Integrated Network Management (IM).
IEEE, 2015, pp. 818–821.

[37] M. Wang, X. Meng, and L. Zhang, “Consolidating virtual machines
with dynamic bandwidth demand in data centers,” in 2011 Pro-
ceedings IEEE INFOCOM. IEEE, 2011, pp. 71–75.

[38] J. W. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang, “Joint vm
placement and routing for data center traffic engineering,” in 2012
Proceedings IEEE INFOCOM. IEEE, 2012, pp. 2876–2880.

[39] A. Song, W. Fan, W. Wang, J. Luo, and Y. Mo, “Multi-objective vir-
tual machine selection for migrating in virtualized data centers,”
in Pervasive Computing and the Networked World. Springer, 2013,
pp. 426–438.

[40] Z. Zhang, L. Xiao, M. Zhu, and L. Ruan, “Mvmotion: a metadata
based virtual machine migration in cloud,” Cluster Computing, pp.
1–12, 2013.

[41] M. H. Ferdaus, M. Murshed, R. N. Calheiros, and R. Buyya,
“Network-aware virtual machine placement and migration in
cloud data centers,” Emerging Research in Cloud Distributed Com-
puting Systems, pp. 42–61, 2015.

[42] P. Duan, Q. Li, Y. Jiang, and S. T. Xia, “Toward latency-aware
dynamic middlebox scheduling,” in 24th International Conference
on Computer Communication and Networks (ICCCN), Aug 2015, pp.
1–8.

[43] R. Tu, X. Wang, J. Zhao, Y. Yang, L. Shi, and T. Wolf, “Design
of a load-balancing middlebox based on sdn for data centers,”
in 2015 IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), April 2015, pp. 480–485.

[44] T. Lukovszki, M. Rost, and S. Schmid, “It’s a match!: Near-optimal
and incremental middlebox deployment,” SIGCOMM Comput.
Commun. Rev., vol. 46, no. 1, pp. 30–36, Jan. 2016.

[45] L. Cui, R. Cziva, F. P. Tso, and D. P. Pezaros, “Synergistic policy
and virtual machine consolidation in cloud data centers,” in IEEE
International Conference on Computer Communications (INFOCOM),
April 2016, pp. 217–215.

Lin Cui is currently with the Department of Com-
puter Science at Jinan University, Guangzhou,
China. He received the Ph.D. degree from City
University of Hong Kong in 2013. He has broad
interests in networking systems, with focuses
on the following topics: cloud data center re-
source management, data center networking,
software defined networking (SDN), virtualiza-
tion, distributed systems as well as wireless net-
working.

Fung Po Tso received his BEng, MPhil and
PhD degrees from City University of Hong Kong
in 2006, 2007 and 2011 respectively. He is
currently Lecturer in the School of Computer
Science at the Liverpool John Moores Univer-
sity (LJMU). Prior to joining LJMU, he worked
as SICSA Next Generation Internet Fellow at
the School of Computing Science, University of
Glasgow. His research interests include: network
measurement and optimisation, cloud data cen-
tre resource management, data centre network-

ing, software defined networking (SDN), virtualisation, distributed sys-
tems as well as mobile computing and system.

Dimitrios P. Pezaros is Senior Lecturer at the
Embedded, Networked and Distributed Systems
(ENDS) Group in the School of Computing Sci-
ence, University of Glasgow, which he joined in
2009. He is leading research on next generation
network and service management mechanisms
for converged and virtualised networked infras-
tructures, and is director of the Networked Sys-
tems Research Laboratory (netlab) at Glasgow.
His research is being funded by the Engineering
and Physical Sciences Research Council (EP-

SRC), the London Mathematical Society (LMS), the University of Glas-
gow, and the industry.

Weijia Jia is currently a full-time Zhiyuan Chair
Professor at Shanghai Jiaotong University. He
is leading currently several large projects on
next-generation Internet of Things, environmen-
tal sensing, smart cities and cyberspace sensing
and associations etc. He received BSc and MSc
from Center South University, China in 82 and
84 and PhD from Polytechnic Faculty of Mons,
Belgium in 1993 respectively. He worked in Ger-
man National Research Center for Information
Science (GMD) from 93 to 95 as a research

fellow. From 95 to 13, he has worked in City University of Hong Kong
as a full professor. He has published over 400 papers in various IEEE
Transactions and prestige international conference proceedings.

Wei Zhao is currently the rector of the University
of Macau, China. Before joining the University
of Macau, he served as the dean of the School
of Science, Rensselaer Polytechnic Institute. Be-
tween 2005 and 2007, he served as the direc-
tor for the Division of Computer and Network
Systems in the US National Science Foundation
when he was on leave from Texas A&M Univer-
sity, where he served as senior associate vice
president for research and professor of computer
science. As an elected IEEE fellow, he has made

significant contributions in distributed computing, real-time systems,
computer networks, cyber security, and cyber-physical systems.

