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Abstract—Network diagnosis in Wireless Sensor Networks (WSNs) is a difficult task due to their improvisational 

nature, invisibility of internal running status, and particularly since the network structure can frequently change due 

to link failure. To solve this problem, we propose a Mobile Sink (MS) based distributed fault diagnosis algorithm for 

WSNs. An MS, or mobile fault detector is usually a mobile robot or vehicle equipped with a wireless transceiver that 

performs the task of a mobile base station while also diagnosing the hardware and software status of deployed 

network sensors. Our MS mobile fault detector moves through the network area polling each static sensor node to 

diagnose the hardware and software status of nearby sensor nodes using only single hop communication. Therefore, 

the fault detection accuracy and functionality of the network is significantly increased. In order to maintain an 

excellent Quality of Service (QoS), we employ an optimal fault diagnosis tour planning algorithm. In addition to 

saving energy and time, the tour planning algorithm excludes faulty sensor nodes from the next diagnosis tour. We 

demonstrate the effectiveness of the proposed algorithms through simulation and real life experimental results.  

 

Keywords —Diagnostics, Infrastructure protection, Network monitoring, Wireless sensor networks. 

 

1. Introduction 

Recently, Wireless Sensor Networks (WSNs) have risen as a practical solution for a variety of remote 

applications, such as battlefield surveillance, environmental monitoring, home security and automation, weather 

forecasting, medical and industrial monitoring, etc. (Banerjee et al., 2014;  Wu et al., 2008; Chen et al. 2006; Lee and 

Choi, 2008 & Chanak et al. 2014). A WSN comprises of a set of smart sensing devices where each sensor node is 

equipped with limited memory, typically a low performance microcontroller, a power constrained transceiver and 

limited power availability.  
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In a monitoring field, sensor nodes are usually deployed without a preconfigured infrastructure. After deployment, 

sensor nodes form an ad-hoc network using a nearby node discovery process. In WSNs, the deployed sensor nodes 

are prone to various faults such as transceiver unit fault, sensor unit fault, processing unit or microcontroller unit 

fault and the power unit fault (Banerjee et al., 2014; Lee and Choi, 2008;  Chen et al., 2012 ; Misra et al., 2014 & Bari 

et al., 2012). Faulty sensors produce erroneous data during the normal operation of the network which can reduce 

the number of available multihop paths in the network. Hence, faulty sensor nodes can potentially degrade the 

Quality of Service (QoS) of the WSN, since it is desirable to detect, locate, and ignore faulty sensor nodes during 

normal operation of the network.  

Due to instability and uncertainty, fault diagnosis is very difficult in WSNs. However, network diagnosis is 

more crucial within a highly dynamic topology as the network structure of the WSN frequently changes due to 

environmental interference and uncertainty of the wireless medium. Therefore, the design of a Mobile Sink (MS) 

based distributed fault diagnosis scheme can effectively help network administrators monitor the network operation 

and maintain a wireless sensor network system. 

 In existing fault detection approaches, most of the energy available to a sensor node is consumed on two major 

tasks, viz. diagnosis status selection of deployed sensor nodes and localization of faulty nodes within the network. 

Fault diagnosis strategies depend on the network topology or the location of sensor nodes since fault diagnosis is an 

important factor that can directly impact the performance and lifetime of the network. In dynamic applications of 

WSNs, the network structure can frequently change due to rapid fault occurrences within the network. Existing 

static sink based fault diagnosis approaches lead to large numbers of messages sent over the network (both data and 

status) in order to adapt to the topological changes. Hence, the available energy of the sensor nodes in the network 

can be rapidly depleted. In addition, sensors close to the sink suffer from much more traffic being routed through 

them compared to sensors at the boundary of the network due to the need to route data and status packets from 

sensors that are far away from the sink (Lau et al., 2014 & Koushanfar et al., 2003). After these sensors fail, 

communication holes, or energy holes, are created near to the sink node and the network can then become unreliable 

or even disconnected. In some cases, nodes and link failures may potentially portion an entire network into several 

sub-networks, hence these sub-networks become disconnected from the rest. Then, a Base Station (BS), or network 

administrator can declare these sub-networks dead due to the lack of available health information and exclude these 

sub-network nodes from the main network, despite most of the sub-network nodes can still survive for a long period 



of time. Recently, interesting approaches have been used for MS data gathering that can collect data from deployed 

sensor nodes in an energy efficient manner (Zahhad et al., 2015 & Mi et al., 2015). These MS based data gathering 

strategies successfully collected data from different sub-networks in the network portion state. In these approaches, 

it was argued that MS based WSN management strategies are more effective in improving the performance of the 

network in dynamic environments. These works motivated us to propose an MS based fault diagnose strategy for 

WSNs.   

To address the above problems, this paper proposes an MS based distributed fault diagnosis approach. In our 

approach, a mobile fault detector starts the fault diagnosis tour periodically from the BS, traverses the network, 

performs a diagnosis action on each static sensor node using single-hop communication and at the end of each fault 

diagnosis tour the mobile fault detector transports the entire network health information to the BS. During the fault 

detection tour, each deployed sensor node is directly diagnosed by the mobile fault detector and hence the current 

network structure is not affected by the fault diagnosis process. Moreover, if the fault detection tour is well planned, 

the mobile fault detector can accurately localize the abnormal nodes within in the network thus reducing the fault 

detection delay. This will give network administrators an up to date status of the network. 

The major contributions of this paper can be summarized as follows: 

1) We propose a Mobile Sink based fault detector to perform fault diagnosis in WSNs. It reduces the message 

overhead and is resilient to network topology changes during the fault diagnosis process.  

2) We propose a hardware fault detection mechanism where each hardware component of the deployed sensor 

nodes is diagnosed by the mobile fault detector. Therefore, network administrators find the exact causes of any 

faults within the network. The proposed detector may also help to maintain the network. 

3) We focus on the problem of minimizing the length of each fault diagnosis tour by excluding faulty sensor nodes 

from the WSN, improving QoS. 

4) We carry out extensive simulations and real life experiments. The effectiveness of the proposed scheme is 

verified by comparing our method with other fault detection approaches in the literature. In addition, the real 

time applicability of the proposed scheme is confirmed by the real life experimental results. 

 

The rest of the paper is organized as follows. Section 2 introduces the related work. Section 3 describes 

preliminaries and architecture of the proposed algorithm. The proposed fault diagnosis mechanism is presented in 



Section 4. In Section 5, we discuss the shortest fault diagnosis tour planning mechanism. Section 6 gives the 

simulation results and discussion. Finally, Section 7 concludes this paper. 

2. Related works  

Existing fault detection approaches can be classified into two groups: a) centralized fault detection approaches 

(Lau et al., 2014), and b) distributed fault detection approaches (Lee and Choi, 2008; Chen et al., 2012 & Bari et al., 

2012).  

2.1 Centralized Fault Detection Approaches  

In the existing centralized fault detection approaches, a centralized static sink makes diagnostic decisions by 

periodically injecting health requests or query messages to other nodes. Therefore, a large number of message 

exchanges are needed over the network for data and status exchange. This process also puts a significant level of 

traffic onto the network which itself depletes the energy of the deployed sensor nodes. Hence, the functionality of 

the network can be decreased due to the fault detection process itself. 

Lau et al. (2014), proposed a centralized fault detection strategy for a WSN based on the Naïve Bayes 

framework. This approach explored end-to-end packet transmission delay to analyze the network status. The 

disadvantage of this approach was that it did not work in a dynamic environment where network topology frequently 

changes due to faulty nodes. It required a large time frame to diagnose the fault condition of the deployed sensor 

nodes in large scale WSNs and it also created a high volume of traffic through the central fault diagnosis node. 

Therefore, this approach is not suitable for large scale WSNs.     

A management architecture based fault detection scheme for WSNs was proposed by Ruiz et al. (2014) where 

faulty sensor nodes were detected by the central manager. In this approach, a central manager with a global vision of 

the network was primarily responsible for diagnosis of sensor node failures within the network. This approach led to 

a large number of message exchanges over the network for status and data exchange which potentially reduces the 

lifetime of the network. This approach also puts a significant traffic load on the central node for large scale WSNs.     

The taxonomy for classification of faults in the WSN and an on-line model based fault testing mechanism was 

introduced by Koushanfar et al. (2003). This fault detection system worked for a heterogeneous sensor network with 

an arbitrary type of fault model. In this centralized fault detection approach, the BS gathered all the sensor node 

information and conducted an on-line fault diagnosis process. This centralized fault detection approach suffered 

from large message overhead which potentially decreases the functionality of the network. Furthermore, this 



approach is not an efficient fault detection algorithm in terms of detection accuracy since it did not consider the 

dynamic changes of the network during the fault detection process.        

A centralized fault detection approach “Sympathy” was studied by Ramanathan et al. (2005) and in this 

approach, a centralized sink node gathered data from the deployed sensor nodes and analyzed the gathered data 

through their “Sympathy” fault detection tool. Using this approach the fault diagnosis time and message overhead 

was very high because of the time taken to make a decision for each sensor node to send their data to the central sink 

node. This approach suffered from poor network lifetime and detection accuracy.     

2.2 Distributed Fault Detection Approaches  

In the distributed approaches in the literature, sensor nodes themselves make node failure decisions on the basis 

of results from their neighbor nodes and updates individual node status information to the sink or BS. Hence, 

distributed fault detection approaches can handle fault detection delay and traffic load problems that have been 

created during the centralized fault diagnosis process.  

Lee and Choi (2008) proposed a distributed algorithm, termed FDWSN, for detecting and isolating faulty sensor 

nodes from a WSN. Faulty sensor nodes in FDWSN were detected based on local comparisons between the 

neighbor nodes. Each individual sensor made its own decisions based on the local comparison results. This approach 

reused faulty sensor nodes as communication nodes for data routing, but they are logically isolated from the 

network. This approach tolerated transient faults through time redundancy during the data exchange process. The 

main drawback of this distributed approach was that each sensor node collected data from their neighbor nodes 

multiple times. As a result, this approach consumed more energy compared to other distributed fault detection 

approaches. Furthermore, this approach did not consider transmission faults that occur during the fault diagnosis 

process.  

A fault tolerant mechanism using out-of-band monitoring was introduced for WSNs by Chen et al. (2012) where 

separate nodes were placed within the network for monitoring other deployed nodes. Furthermore, an Integer Linear 

Programming (ILP) problem was formulated for small size networks and heuristic algorithms were used to place the 

monitoring nodes within the network. This approach added a message overhead on the network during the separate 

nodes placement and also suffered from high transmission and computation cost.  

A two-tier architecture based fault detection scheme was studied by Bari et al. (2012), being similar to the 

proposed method by Chen et al. (2012), but factors concerned with load balancing were also considered with the 



fault detection problem. Interestingly, this approach was a distributed fault detection mechanism where relay nodes 

with high energy were used as Cluster Heads (CHs). The ILP problem based relay node placement and cluster 

formation strategy were analyzed and this approach also proposed a load balancing routing strategy for reducing the 

load of the deployed sensor nodes and the relay nodes. 

Ding et al. (2005) proposed a localized fault detection approach for WSNs where each sensor node compared its 

own sensed data with the median of its neighbor nodes data in order to diagnose its own health status. The 

disadvantage of this approach is that, if all neighbors of the diagnostic sensor nodes are faulty, then a functioning 

diagnostic sensor node can detect itself as having a fault when a fault may not be present. Therefore, the fault 

detection performance of this approach is very poor. 

A probabilistic fault diagnosis mechanism was introduced by You et al. (2011) which proposed a probabilistic 

fault diagnosis model for local and global performance analysis of a network. In their approach, the fault diagnosis 

mechanism was divided into four sessions: (a) a diagnosis session, (b) a testing session, (c) a comparison session, 

and (d) a dissemination session. This approach led to a large number of message exchanges over the network for 

multiple copies of data and status exchange which potentially decreases the lifetime of the network.     

A majority voting based distributed fault diagnosis approach was studied by Jiang (2009) were each sensor node 

compared its own sensed data with its neighbors’ sensed data. The data was either marked as ‘likely fault free’ or 

‘likely faulty’ based on the neighbor nodes voting majority. On the basis of rigid criteria, then the likely fault free 

nodes were finally selected as fault free nodes. The fault free nodes were then used to identify other functioning and 

faulty sensor nodes from the remaining likely fault free or likely faulty nodes. In this approach, communication 

overhead was very high due to multiple message exchange between the neighbor nodes. 

A three-sigma edit test based Distributed Soft Fault Detection (DSFD) approach was introduced by Panda and 

Khilar (2012). In DSFD, each sensor node shared their own sensed data with neighbor nodes in order to identify 

probable faults of its own and neighbor nodes using the three-sigma edit test. Then, probable fault status was shared 

with the neighbor nodes. For fault diagnosis, each sensor node compared its own sensed data with its neighbor node 

sensed data and fault decisions were made based on a threshold value. This approach detected faulty nodes within 

the network, but it did not identify the detailed hardware and software condition of the deployed sensor nodes. 

Therefore, this approach detected many non-faulty nodes as faulty nodes during the faulty diagnosis phase and 



decreased the performance of the network. In addition, it was unable to tolerate any communication link failure 

problems during the data exchange process. 

It was seen from the literature that centralized fault detection approaches diagnose faulty sensor nodes more 

accurately compared to self-fault diagnosis processes because a central fault detector has a global vision of the 

network that can help compare sensed data more accurately with the other deployed nodes. However, in the central 

fault detection approaches, the performance of the network is very poor compared to the distributed fault detection 

approaches in terms of energy consumption, detection delay, network lifetime, etc. On the other hand, the 

centralized fault detection approaches are unable to diagnose node status when an entire network is portioned into 

several sub-networks. Existing static sink based network diagnosis approaches suffered from different problems 

such as poor detection accuracy, huge detection message overhead, etc.  

In this paper, we propose a mobile sink based distributed fault diagnosis scheme for WSNs that can detect faulty 

sensor nodes in a distributed manner which also provides a centralized fault detection approach with improved 

accuracy. In addition, it also detects network status when a network is divided into several sub-networks, i.e. the 

mobile fault detector can tolerate topological changes during the network diagnosis process. The difference between 

existing approaches and our work is that our objective is to minimize the dynamic environment effect on the fault 

detection process. In addition we focus on energy consumption during the fault diagnosis process where mobile sink 

base fault diagnosis strategy minimizes energy consumption of the deployed network. 

3. Preliminaries and Architecture 

Let 1 2 3{ , , ,......, }nS s s s s  be the set of static nodes that constitutes the considered WSN infrastructure 

considered in this paper, that are randomly deployed in a monitoring area. The network structure of WSNs can 

frequently change due to the presence of error-prone or faulty nodes; therefore prior information about the 

topological connection is hard to obtain for the packet transmission from a sensor node to sink node, particularly for 

the case of a MS. To solve this problem we propose a MS based fault detection mechanism where a mobile fault 

detector can visit the transmission range of every static sensor node, such that the hardware and software status can 

be diagnosed by single hop communication, i.e. without any relay. In our method, topological connections do not 

affect the diagnosis process. Before describing our MS based fault detection system, we will first define some terms 

that will be used throughout the paper. 



While a mobile fault detector is moving, it can poll nearby sensor nodes one by one in order to diagnose their 

fault status. When a static sensor node receives diagnostic messages from the nearby mobile fault detector, the 

sensor node transmits its own health information to the mobile detector directly without any relay. We define the 

position where a mobile fault detector polls static sensor nodes for fault detection as diagnosis hub points. Diagnosis 

hub points are calculated depending on the deployed sensor node positions and when the mobile fault detector 

moves to a diagnosis hub point, it obtains the nearby sensor node status with the same transmission power, such that 

nodes that receive the diagnostic messages can directly upload health information status to the mobile fault detector 

using single-hop communication. After checking the health status of all the sensor nodes around the diagnosis hub 

point, the fault detector moves directly to the next diagnosis hub point in a fault diagnosis tour. Each fault diagnosis 

tour consists of a number of diagnostic hub points and the straight line segment connecting them.  

For example, let denote a set of diagnostic hub points and BS be 
1 2 3

{ , , ,...., }
n

D h h h h  the starting and ending 

point of each fault diagnosis tour at the BS. Then the fault diagnosis tour can be represented by the 

1 2
....

n
BS h h h BS      path. The problem of finding faulty sensor nodes under the each diagnosis hub point 

and an optimal fault diagnosis tour can be considered as the problem of determining the locations of diagnosis hub 

points and the order of the visit. Before a mobile fault detector starts a fault detection tour, it needs to identify the 

positions of all diagnosis hub points and which static sensor nodes can be diagnosed at each diagnosis hub point. We 

define the neighbor set of a diagnosis hub point in the plane as the set of sensor nodes, from this diagnosis hub point 

where a mobile fault detector can diagnose all static sensor nodes health status directly. Since the mobile detector 

can only diagnose at a diagnosis hub point, each sensor node must be in the neighbor set of at least one diagnosis 

hub point for verifying its health status, i.e. the union of neighbor sets of all diagnosis hub points must cover all 

static sensor nodes. 

If the initial network connection pattern of the deployed WSN can be determined, or if the one hop neighbor set 

of each node is known, the neighbor node set of each diagnosis hub point can be found. To identify the connection 

pattern within the nodes, a triangle formation process has been conducted between the deployed nodes. After the 

sensor nodes are deployed, every sensor node broadcasts “ADVERTISE” messages with the same transmission 

power as the data transmissions. Fig. 1 details the format of the advertisement packet (ADVERTISE) and Table 1 

explains the symbols in Fig.1. 

 



 

 

AFI: Advertisement Frame Identification                                          XPS: X Position of Source 

SID: Source ID                                                                               YPD: Y Position of Source 

DID: Destination ID                                                                                 

XPS 

 

YPD 

 

DID SID 

 

AFI 

 

Fig. 1. The advertisement packet (ADVERTISE) format. 

 

Table 1 

Explanation of symbols in Fig. 1 

AFI Identification field for the advertisement frame 

SID The MAC (Media Access Control) ID of source node 

DID The MAC (Media Access Control) ID of destination node 

XPS X determines geographic position of the source node 

YPD Y determines geographic position of the source node 

 

 

Each sensor can decode the “ADVERTISE” messages and reply with an “ACK” message to acknowledge the 

neighbor nodes. In the acknowledgement message, the first field contains the identification for the 

acknowledgement frame. The second field is designated as the MAC address of the previous node that forwarded 

the advertisement frame. The third field refers to the MAC address of the original source node and last two fields of 

this frame contain geographic position of the forwarding node. Each node identifies all its single hop neighbor node 

set and then neighbor information is uploaded to the mobile fault detector when it polls for neighbor information. 

Initially the mobile fault detector visits all sensors and collects neighbor node information from the deployed sensor 

nodes. Then, the BS identifies the optimal number of diagnostic hub points and their location within the network 

according to the present network connection pattern by the triangle based hub point identification method. In 

addition, the BS computes the optimal fault diagnosis path between the optimal fault diagnosis hub points. A detailed 

description on the optimal number of diagnosis hub point selection and the tour planning algorithm is summarized in 

Section 5.  

4. Fault Diagnosis Mechanism 

This section considers the sink mobility based fault detection problem during the fault diagnosis tour. 

Sensor nodes are primarily constructed of four major hardware components: a) sensor unit, b) transceiver unit, c) 

power unit, and d) processing or microcontroller unit. The mobile fault detector separately identifies each hardware 



unit status (hard fault) and software status (soft fault) of the deployed static sensor nodes. Detailed hardware and 

software health information of the deployed sensor nodes can help network administrators to recover or reuse the 

faulty sensor node and maintain the sensor network system effectively. Algorithm 1 depicts the pseudo code of the 

proposed fault detection algorithm and Table 2 describes the symbols in Algorithm 1. 

 

Algorithm 1: Fault diagnosis 

Input: 
1 2

{ , ,....., }
n

S s s s . 1 2 3{ , , ,.... }mH h h h h  

Output: Fault status of the sensor nodes. 

/* Fault diagnosis process */   

1: When mobile fault detection reaches to a diagnosis hub point.   

2: for 1,.....,i m do 

3:     Mobile fault detector broadcasts DIAGNOSIS_REQ message within it single hop neighbor set. 

4:     Set
timer timer. 

5:      If static sensor node receives diagnosis message from the nearest fault detector, it prepares a HEAL_INFO 

massage including its current power condition, present sensor reading and then sends to the nearest detector.   

/*Hardware fault diagnosis*/  

6:     if  
j

timer x
T  then 

7:       Receive HEAL_INFO message for si sensor node.  

8:       Transceiver unit or processing unit of node si is good. 

9:       if  
i wx

P B then 

10:            Power unit fault has occurred in node si. 

11:            Node si  is inserted into faulty node set (SF).   

12:        end if 

13:   else 

14:      Transceiver unit or processing unit of node si is faulty. 

15:       Node si is inserted into faulty node set (SF). 

16:   end if 

17:   if HEAL_INFO content SD then 

18: Sensor unit of node si is likely non faulty. 

19:   else 

  20: Sensor unit of node si  is likely faulty. 

21:   end if  

22: end for 

/* Software fault diagnosis*/  

23: for 1,.....,i m do 

24:    if  
j

timer x
T  then 

25: Receive HEAL_INFO message for node si. 

26: Identify x’s k nearest neighbors in the training data set. 

27: 2 2

1

1 k

x xjj
D d

k 
    

28: if 2 2

x
D D


 then 

29: Software or sensor circuit of node si is non faulty. 

30:       else 

31: It is detected as a faulty. 

32:           Faulty node is inserted into faulty node set (SF). 

33:       end if 

34: end if 

35:     Current acting node set Acurr= \ FS S . 



36:      Update current acting node set Acurr to the BS. 

37: end for 

38: return 

    

Table 2 

Explanation of symbols in Algorithm 1. 

 

DIAGNOSIS_REQ Diagnostic message broadcasts by the mobile 

fault detector within the single hop neighbor 

node set  

timer  Timer is started by the mobile fault detection 

H Diagnostic hub points 

 
j

x
T  Threshold value for mobile fault detector 

decision making. 

S Static node set 

SF Faulty node set 

si Sensor node 

HEAL_INFO Health information message 

SD Current data reading 

i
P  Remaining battery power of sensor node, si, 

 

 

In the fault diagnosis phase, when a mobile fault detector reaches a diagnosis hub point, it broadcasts a 

diagnostic message “DIAGNOSIS_REQ” within the single hop neighbor node set and starts timer,
timer . Fig. 2.a is 

the format of a diagnostic message that is sent by the mobile fault detector and Table 3 explains the symbols Fig. 2. 

In the diagnostic message, the first field contains the identification for the diagnostic frame. The second field of this 

frame is designated to the MAC address of the mobile sink that is forwarding the diagnostic message. The last two 

fields of this frame contains the pair of coordinates x and y that determine the geographic position of the mobile fault 

detector. If a single hop neighbor node set receives the DIAGNOSIS_REQ message from the nearest mobile fault 

detector, each static node prepares a health information message “HEAL_INFO” and then sends the message to the 

nearest mobile fault detector. Fig 2.b is the format of a health information message that sent by the sensor node. In 

health information message, the first field of this frame contains identification for the health information frame. The 

second field refers to the MAC address of the actual node that is forwarding the health information message. The 

third field is designated to the MAC address of the mobile fault detector. The fourth field contains current sensor 

reading. The fifth field is designated as the battery reading and last two fields containing the pair of coordinates x 

and y that determines the geographic position of the node. If the mobile fault detector receives the HEAL_INFO 

message from a static sensor node (si) within time, timer , the mobile fault detector makes a decision that the 



transceiver unit and the processing unit of the node si are functioning properly. The upper bound of 
timer is 

dependent on the Round Trip Delay (RTD). It can be calculated as: 

  
,

max ,   ( )
timer j i i j

RTD s Neg d                                                    (1) 

where RTDj,i is the estimated transmission time delay between the diagnosis hub point j and its sounding neighbor 

node set Neg (dj). RTD can be calculated as:  

   

 
,

,
2

j i

j i ij

dis d s
RTD P

c
  

 
 
 

                                                        (2) 

where c is the speed of light and Pi is the processing delay. 

 

 

 

DFI: Advertisement Frame Identification                            MFDID: Mobile Fault Detector ID 

DID: Destination ID                                                             XPMFD: X Position of Mobile Fault Detector 

YPMFD: Y Position of Mobile Fault Doctor 

(a) 

  

 

 

 

HIF: Health Information Frame                                         SID: Source ID 

CSR: Current Sensor Reading                                            BR: Battery Reading 

XPS: X Position of Source                 YPD: Y Position of Source 

(b) 

MFDID 

 

Health  XPS YPD SID HIF 

CSR BR 

DID 

 

XPMFD YPMFD MFDID 

 

DFI 

  

Fig. 2. (a) The diagnostic packet (DIAGNOSIS_REQ) format. (b) The format of health packet (HEAL_INFO) 

sent by sensor node. 

 

 

 

 



 

Table 3 

Explanation of symbols in Fig. 2 

 

DFI Identification for the diagnostic frame 

HIF Identification for the health information frame 

SID The ID of source node 

MFDID The ID of the mobile fault detector 

DID The ID of destination node 

CSR Current sensor reading  

BR Battery reading 

XPMFD x position of mobile fault detector 

XPMFD y position of the mobile fault detector 

XPS x position of source node 

 

Initially, a sensor unit fault of a sensor node is likely to be detected by the mobile detector on the basis of the 

current data reading (SD) of the sensor unit. If a HEAL_INFO message contents the current SD value of node si, the 

mobile detector decides that the sensor unit of node si likely has a non-fault otherwise the sensor unit of the node is 

considered likely faulty. The SD value of deployed sensor nodes may vary depending on the applications, and in our 

experiments, we demonstrate our method using a hardware based temperature sensor. Therefore, during the 

experiment, SD was measured as 39
o
C ambient by the deployed sensor nodes. However, a sensor unit fault is finally 

checked by the mobile fault detector during the software fault diagnosis process. The power unit fault of a sensor 

node is diagnosed by the mobile detector on the basis of the current battery reading of the sensor node. If the 

remaining battery power, Pi, of sensor node, si, is less than a threshold value Bwx, then the mobile fault detector 

makes a decision that the power unit of si is faulty.  

In a WSN, if any software or sensor failure occurs within the deployed sensor node, the node can generate an 

incorrect data sample and respond to the mobile fault detector with this incorrect data sample. Therefore, this work 

uses the k-nearest neighbor (kNN) rule to diagnose a software fault in the deployed sensor nodes. The main concept 

of the kNN based fault detection system is that a normal data sample trajectory is similar to the trajectories of normal 

training data, therefore some deviation exists between the trajectory of a faulty sample and a normal one in the 

training data. A fault sample deviation or distance to the nearest neighboring training data samples must be greater 

than that of a normal data sample. This detection strategy is implemented by the average squared distance between a 

data sample to it k nearest neighbors in the normal training data samples. A threshold is determined based on the 

distribution of the normal training samples’ distances to their k nearest neighboring training data samples. This 

threshold value is utilized to detect the unclassified sample or faulty nodes in a diagnosis hub point. If a sample 



distance to its nearest neighboring training samples is below the threshold, the sample is considered as normal, 

otherwise it is detected as faulty. In this MS based fault detection scheme, a threshold is determined based on the 

distribution of the collected data on a diagnosis hub point. This threshold can be utilized to detect the unclassified 

sensed data sample of the next nearest diagnosis hub point. If the sensed data sample distance to its nearest 

neighboring training data samples is below the threshold, the sample sensor node software is considered as normal. 

Otherwise, it is a faulty. For example, a training data set    
1 2

  ,  , ., ,  , 1, 2, .,
m d

m
X x x x R i j m



      where m is the 

number of sensor nodes covered by a single diagnostic hub point and d as the original dimension is covered by m 

sensors. The mobile fault detector discovers k number of nearest neighbor nodes for each data sample in the training 

data set. The squared distance of each sensed data sample xi is defined by: 

2 2

1

1
k

i ij

j

D d
k



                                                  (3) 

where 2

iD is the sum of the squared distance of the sample sensing data xi to its k- nearest neighbors and dij denotes 

squared Euclidean distance from the sample sensing data xi to its j
th

 nearest neighbor. The mobile fault detector 

determines the corresponding control limit of 2

iD for fault detection of the sensor node in each diagnosis hub point. 

The threshold 2D
 with a significant level  can be determined for a single diagnostic hub point and assumption that 

2

iD follows a non-central x
2
 distribution.  

5. Shortest Fault Diagnosis Tour Planning Scheme 

This section considers the problem of finding the shortest fault diagnosis tour for the mobile fault detector. 

In this proposed fault diagnosis strategy, each static sensor node belongs to a single hop diagnosis hub point. 

For simplicity, consider that the mobile fault detector moves at a fixed speed throughout the fault diagnosis tour and 

if a mobile fault detector moves through the shortest tour then the mobile fault detector can diagnose the maximum 

number of nodes in the shortest time since the BS or network administrator will have the most up-to-date network 

status.  

After all the diagnosis hub points are obtained within the network, the shortest fault detection tour problem can 

be formalized as follows. Let  
1 2 3
,  , , .,

n
S s s s s   be the deployed node set and a set of diagnostic hub point as 

 
1 2 3
,  , , .,

n
H h h h h   and the neighbor set nb(hi) of each candidate hub point 1,  2, ,( )

i
h i n  . Then the main 

objective is to find a set of diagnosis hub points and determine the sequence to visit them, such that every sensor in S 



belongs to the neighbor set of at least one diagnostic hub point, with the total length of the line segments connecting 

all diagnosis hub points is minimized. Define a complete directed graph G=(V, A) and a non-negative cost cij with 

each arc  ija A , where cij is equal to the cost of the distance between the diagnosis hub points hi and hj. The shortest 

detection tour problem can be formulated as: 

1 1 1

Minimize

n n n

ij ijt

i j t

c x

  

                                                              (4) 

subject to constraints: 

1 for all 
ijt

i j

x t                                                    (5) 

1 for all   
ijt

j t

x i                                                 (6) 

1 for all 
ijt

i t

x j                                             (7) 

1
 for all   and 

ijt jkt

i k

x x j t


                                                 (8) 

0 1
ijt

x 
                                                     

 

 

where 

1  if tour contains arc 

0 otherwise

ij

ij

a
x 





                                              (9) 

 

In this formulation, the objective function (4) minimizes the total cost of the fault detection tour. Variable xij 

denotes whether arc aij of the diagnosis hub points hi to hj belongs to the optimal tour. Constraints (5) and (6) ensure 

all values of t, exactly one arc must be traversed by the mobile fault detector and there is just one other diagnosis 

hub which is being reached from it, at some time. Constraints (7) and (8) exclude other diagnosis hubs from being 

reached, at a time when a diagnosis hub is reached at time t, it must be left at time t+1, in order to exclude 

disconnected sub-tours that would otherwise meet all of the above constraints.   

The proposed greedy algorithm selects an optimal subset of diagnosis hub points from the candidate diagnosis 

hub point set, each of which corresponds to a neighbor set of sensors. At each stage of the algorithm, a neighbor set 

of sensor nodes can be selected when its corresponding candidate diagnosis hub point is selected in the fault 

diagnosis tour. The algorithm will terminate after all sensor nodes are diagnosed by the mobile detector. Initially all 

the sensor nodes form a triangle with its single hop neighbor nodes and selects candidate diagnostic hub points at the 

mid-point of each triangle (Fig. 3.a). If the distance between the neighbor candidates’ diagnostic hub points is less 

than the transmission distance, r, of a sensor node, neighbor candidate diagnostic hub points form another triangle 



between them and choose an optimal diagnostic hub point set (Fig. 3.b). Hence, an optimal path is computed 

between the optimal diagnosis points set (Fig. 4). A detailed description of the proposed greedy algorithm is 

described in algorithm 2. 

Let Hcurr contain all the diagnosis hub points, Hoptimal be the set of optimal candidate hub points, and Tcurr 

contain the set of remaining uncovered non faulty sensor nodes at each stage of the algorithm. For each non faulty 

sensor node t in Tcurr, nb(t) denote the neighbor set of t. Let cost, nb(t), be the total communication cost of a 

neighbor node set nb(t). Let     /
cost

h cost nb t k , which denotes the average cost to cover all node in nb(t). Choose a 

diagnostic hub point h with the costh  value, add this diagnostic hub h of nb(t) into Hcurr. Finally Hcurr then contains all 

the diagnostic hub points. After obtaining all the diagnostic hub points, the proposed greedy algorithm chooses a 

subset of diagnostic hub points from the Hcurr point set. For each candidate diagnosis hub point h in Hcurr, let nb(h) 

denote the neighbor diagnosis hub point set of h. Let cost {nb(h)} be the cost of an uncovered neighbor hub point set 

h, which is equal to the shortest distance between nb(h) any covered neighbor diagnosis hub point set. Let cost{r} be 

the transmission distance of a sensor node. If      cost nb h cost r , then choose an optimal hub point, insert the 

corresponding optimal hub point of nb(h) into Hoptimal and remove corresponding nb(h) from Hcurr. The algorithm 

terminates when all Hcurr are covered. Finally, Hoptimal contains diagnostic hub points in the fault diagnosis tour. After 

identification of the optimal diagnosis hub point set, the fault detection tour can be easily obtained by running any 

approximate algorithm for the traditional Travelling Salesman Problem (TSP). 

 
 

 

 

Fig. 3. Optimal number of diagnostic hub points. (a) Triangle formation between the deployed sensor nodes to find 

diagnostic hub points between them, (b) Triangle formation between the diagnostic hub points to select optimal hub 

points. 
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Fig. 4. Sink mobility path between the diagnosis hub points. 

 

 

Algorithm 2: Optimal number of diagnosis hub point’s selection  

Input:  
1 2
, ,  .., ,

n
S s s s  Acurr 

Output: Diagnostic hub point set Hoptimal 

/*Initialization Phase*/ 

1: Create an empty set Hcurr   

2: Create an empty set  Hoptimal   

3: Create a set Tcurr containing all non-faulty sensor 

4: while  
curr

T   

5:  Each node identifies nb (t). 

6: Select diagnostic hub point h at 
   

cost

cost nb t
h

k
 . 

7: Add the corresponding diagnostic hub point of nb(t) into Hcurr. 

8: end while 

9: while  
remain

HR    

10:  Each h finds it neighbour set. 

11: if  ( )    { }cost nb h cost r  then 

12:         Merge to a single point and select optimal diagnostic hub point at mid-point. 

13:        Add the corresponding optimal diagnostic hub point into Hoptimal.   

14:      Remove the corresponding diagnostic hub point of nb(h) from Hcurr. 

15:  end if 

16: end while 

17: Find an approximate shortest fault diagnosis tour on optimal diagnosis hub points in Hoptimal. 

 

6. Performance Evaluation 

6.1 Simulation Scenario Experiments 

The performance of the proposed scheme was obtained through extensive simulations using MATLAB (version 

7.5) (Niu et al., 2013 & Boudries et al., 2014). The sensor nodes are scattered in 2-D space and a mobile fault 

detector was used to diagnose the status of the deployed sensor nodes. Different artificial faults were injected into 

the network under various simulation settings. We used 2.246s as the fault diagnosis waiting time ( timer ) threshold 

where the processing time of a microcontroller was 0.403s and ZigBee communication delay was within 0.72s. 
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Therefore, after reaching a diagnostic hub point, the mobile fault detector required 2.246s to diagnose the failure 

status of all sensors under a given hub point. The proposed mobile sink based fault diagnosis scheme was evaluated 

and compared with the existing well-known FDWSN (Lee and Choi, 2008), and DSFD (Panda and Khilar, 2012) 

distributed fault detection schemes in the literature in terms of Detection Accuracy (DA), False Alarm Rate (FAR), 

False Positive Alarm Rate (FPAR) and other important network parameters such as energy consumption and network 

lifetime. The common feature among them is the use of single hop neighbor information to diagnose the fault status 

of deployed sensor nodes. On the other hand, we also compared our proposed scheme with the existing PFDWSN 

(Lau et al., 2014) centralized fault detection scheme to verify fault detection accuracy of the proposed scheme. A 

common feature among them is the use of data comparison result to diagnose the fault status of the network. The 

fault detection performance of the proposed algorithm was evaluated using the DA, FAR, and FPAR metrics; where 

DA is the ratio of the number of detected faulty nodes as originally faulty and the total number of faulty nodes 

existing in the network, FAR is the ratio of the number of fault free nodes detected as faulty to the total number of 

fault free nodes present in the network, and FPAR is the ratio of the number of faulty nodes detected as fault free to 

the total number of faulty nodes existing in the network. Furthermore, the energy saving performance of the 

proposed algorithm and the network lifetime was evaluated where the initial energy of the each static sensor node is 

0 0.5E  [Joules] (Banerjee et al., 2014 & Chanak et al., 2014). Other simulation parameters are listed in Table 4. 

We assumed that each deployed sensor node in the network has a unique ID. Initial condition of the simulations, 

we assumed no collisions or retransmissions occur during wireless communications. In addition, we assumed that 

deployed sensor nodes can predict the length of the communication links using received signal strength. As sensor 

nodes, we used the TelosB motes which have an adjustable transmission range of Rmax=100m. These modes are 

Zigbee/802.15.4 compliant so sensor nodes can both communicate with each other and also with MS. In this work, 

we used a simplified power model of radio communication as it is used in (Banerjee et al., 2014;  Chanak et al. 2014; 

Lau et al., 2014). The energy consumption by si sensor node for single message transmission is represented as: 

( ) ( )T i elec ampE s E d B   

where Eelec is the basic energy consumption of sensor board to run the transmitter or receiver circuitry, amp is the 

energy consumption of the amplifier, d is the distance between source and destination nodes, is the channel path-



loss exponent of the antenna which is affected by the radio frequency environment and satisfies 2 4  . B is the 

message size. On the other hand, the energy consumption at the receiver end is represented by: 

( )R j elecE s E B  

In our energy model, the noise and environmental factor are constant, only source node (si) can adjust its 

transmission power to make ( )T iE s reach a minimum value.   

 

Table 4 

Simulation parameters 

 

Parameter Value 

Deployment area 100×100 m
2
 

Number of nodes 50 to 200
 

Data packet size 500 bits 

Initial energy of each node (E0) 0.5 Joules 

Transmission power (etx) 50 nJ/bit 

Receiving power (erx)  50 nJ/bit 

Sensing range 5m 

Control message size 100 bits 

Sink mobility 16 m/s 
 

 

6.2 Fault Diagnosis Accuracy  

Fig. 5 shows the simulated DA of the proposed scheme in the presence of hardware-based faulty nodes. 

According to the fault probability previously presented (Lau et al., 2014 & Panda and Khilar, 2012), we also 

randomly introduced hardware faults in 5% of the deployed sensor nodes. When considering DA, the proposed 

scheme outperformed PFDWSN by a further 27%, likewise 20% for FDWSN and 16% for DSFD. Due to this 

proposed mobile fault detector based diagnosis strategy, the hardware of the deployed sensor nodes are interrogated 

by single hop communication thus causing a decrease in FPAR and an increase in DA. 

We then randomly set 5% of the sensor nodes to have hardware faults and a further 5% of the sensor nodes to 

have software functions disabled. Among the 10% faulty nodes, we also set both hardware and software faults in 4% 

of the sensor nodes. In Fig. 6, it can be seen that the proposed scheme DA has improved by a further 35% compared 

to PFDWSN, with 21% for FDWSN and 18% for DSFD in the presence of the hardware and software faulty nodes 

over the network. The significant improvements seen are due to the proposed scheme diagnosing both hardware and 

software components separately. 
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Fig. 5. Hardware failure detection accuracy. 
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Fig. 6. Hardware and software failure detection accuracy. 
 

6.3 False Alarm Rate Comparison  

Fig. 7 compares the FAR metric between the PFDWSN, FDWSN, and DSFD algorithms and the proposed fault 

diagnosis scheme. The results show that the FAR of our proposed scheme is 54% less than PFDWSN, 48% less than 

FDWSN, and 42% of the DSFD algorithm in the presence of 5% of the deployed nodes having hardware faults. 

Similarly, Fig. 8 shows the FAR in the presence of 5% hardware faults and a further 5% software faulty nodes 

where we set both hardware and software failures in 4% of the deployed sensor nodes. The results show that our 

proposed scheme also has an improved FAR compared to PFDWSN, FDWSN, and DSFD algorithms respectively. 

In our proposed scheme, the Fault Diagnosis Accuracy (FDA) is increased and the FAR decreased compared to the 

schemes in the literature because our approach uses the mobile fault detector to check each hardware circuit of the 

WSN nodes. 



60 80 100 120 140 160 180 200

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

 Proposed Scheme

 DSFD algorithm

 FDWSN

 PFDWSN

F
a
ls

e
 a

la
rm

 r
a
te

Network size
 

Fig. 7. Hardware failure false alarm rate. 
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Fig. 8. Hardware and software failure false alarm rate. 

 

6.4 False Positive Rate Comparison 

The False Positive Rate (FPR) is the ratio of the number of faulty nodes that are incorrectly identified as fault 

free to the total number of faulty nodes present in the network. Fig. 9 and Fig. 10 show the FPR of our proposed 

scheme. Compared to the existing static sink based fault detection schemes (PFDWSN, FDWSN, and DSFD), the 

results are improved due to the single hop communication nature between the static sensor nodes and the mobile 

fault detector. Also, in the proposed scheme, FPR is decreased due to detailed hardware and software analysis 

performed during the fault diagnosis process itself. 
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Fig. 9. Hardware failure false positive alarm rate. 
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Fig. 10. Hardware and software failure false positive alarm rate. 
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Fig. 11. Energy consumption rate during the fault diagnosis process. 

 



6.5 Total Energy Consumption over the Network  

The total energy consumption of the network depends on the total number of messages transmitted and received 

by the deployed static sensor nodes during the diagnosis process. Fig. 11 depicts the energy consumption of the 

schemes in the literature compared to our method as a function of the number of nodes. The total energy depletion of 

the proposed algorithm outperformed PFDWSN by a further 48%, likewise 42% for FDWSN and 40% for DSFD. 

The energy reduction is primarily due to the proposed scheme using single hop routing and having a reduced total 

number of messages within the network during the fault diagnosis process.  

6.6 Network Lifetime 

The network lifetime for all the approaches as a function of network size is shown in Fig. 12. The network lifetime 

of proposed fault diagnosis scheme has increased in our scheme by a further 37% compared to PFDWSN, 45% 

compared to FDWSN, and 70% compared DSFD algorithm respectively. The improvement in the network lifetime 

is due to the elimination of communication overhead because the mobile fault detector physically moves to each 

static sensor node and directly checks health status of the deployed sensor nodes by single hop communication, 

thereby reducing communication overhead within the proposed scheme.  
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Fig. 12. Network lifetime as a function of network size (node number). 

 

6.7 System Implementation and Testing  

This section describes the hardware and software implementation of the proposed MS based fault diagnosis 

scheme tested in an outdoor scenario. As shown in Fig. 13, a wireless network of 8 fixed nodes was deployed 

outdoors on a grassy field at the Indian Institute of Engineering Science and Technology, India, for a total 



deployment area of approximately 15×8m
2
. There was one coordinator which was connected with a laptop computer 

(acting as the BS). The proposed algorithm was implemented using the C language and deployed in mica2 motes 

running the TinyOS operating system. The detailed parameters and corresponding values used in real experiments 

are summarized in Table 5 and Table 6. 

In the DSFD approach, the transmission range was simply assumed to be a disk-shaped area around the 

transceiver. Based on this assumption, the neighbor set of a sensor node consists of all the sensor nodes within the 

disk-shaped area around this node. However, due to the uncertainties of a wireless environment, such as signal 

fading, reflection from walls and obstacles, and interference, it is difficult to estimate the boundary of the 

transmission range without real measurements. Therefore, in practice, it is infeasible to obtain the neighbor set of an 

unknown deployed sensor node. Hence, in the hardware experiments we have not implemented the DSFD approach. 

Initially, the mobile fault detector and BS discovered 8 diagnosis hub points. After optimization, the BS finally 

selects 5 optimal diagnosis hub points and selects a shortest path for fault status identification of the 8 deployed 

static sensor nodes. The mobile fault detector started its fault detection tour from the BS, traversed the network, and 

detected faulty sensor nodes while moving through the network. At the end of the fault diagnosis tour the mobile 

fault detector uploaded the health status of the 8 static sensor nodes to the BS with the help of the network 

coordinator. The detailed battery conditions of deployed sensor nodes with their initial charge condition are given in 

Table III. 

                                                      

Fig. 13. Network topology in the outdoor test. 

 

 

 



Table 5 

Parameters Values Used in the Outdoor 

Testbed Experiment 

 

Deployment area 20 m×40 m 

Deployment distribution Uniform
 

Distance between two adjacent nodes 10 m 

Number of nodes 8 

Mobile sink 1 

Speed of the mobile sink  1.7 mph 

Coordinator 1 

Transmission power 4.5 dBm 

Sending rate 1 packet/s 

Packet size 120 bit 

 

Table 6 

Parameters Used in the Discharge 

Experiment 

 

Initial discharge voltage of battery 1.603v 

Test resistance 4Ω
 

Internal resistance of battery 34.9 mΩ 

Discharge time 8h 
 

 

To test and verify the proposed MS based fault detection scheme, 4 sensor nodes at different positions in the 

implemented WSN were made faulty with differing hardware or software failures. A simple vehicle with a battery 

powered node was used as the mobile fault detector where it started the fault detection tour from the BS and reached 

the nearest diagnosis hub point with a relatively constant speed. Then, mobile fault detector polled each of the 

nearest nodes for their health information. Fig. 14.a and Fig.14.b show the FDA in the outdoor test. It can be seen 

that the FDA of the proposed scheme has been improved compared to the FDWSN and PFDWSN approaches. As 

described in the software simulation result, our proposed scheme shows an improved result because of the detailed 

hardware and software analysis stage. 
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Fig. 14. Fault detection accuracy in the outdoor test: a) hardware failure, b) hardware and software failure. 

 

Fig. 15.a and Fig.15.b illustrate the FAR found in the practical outdoor tests. As predicted by the simulation 

tests, it can be seen that the FAR of the proposed scheme was increased when the number of faulty sensor nodes 

were increased within the network. From these results, it can be observed that our proposed scheme shows improved 

performance compared to the existing static sink based FDWSN, PFDWSN fault diagnosis approaches in the real 

hardware experiments. 
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Fig. 15. False alarm rate: a) hardware failure, b) hardware and software failure. 

 

(a) (b) 

(a) (b) 



Fig. 16.a and Fig. 16.b show that our proposed scheme has a reduced FPR compared to FDWSN and PFDWSN 

schemes, verifying the simulation results. From these figures, it is clear that the proposed scheme demonstrates 

desirable performance for faulty node identification.  
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Fig. 16. False positive rate: a) hardware failure, b) hardware and software failure. 

 

 

Fig. 17 shows the average battery voltage on the deployed sensor nodes measured over time. As shown, the 

initial average voltage of each deployed sensor node was 3v and as expected the average battery voltage decreases 

over time. At the end of the outdoor experiments the measured energy efficiency of the proposed scheme was 

improved by a further 39% compared to FDWSN, and 43% compared to PFDWSN, which implies the more average 

residual energy is left. 
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Fig. 17. Average battery voltage over time in the outdoor test. 

 

7 Conclusions 

In this paper, we have proposed a novel distributed mobile sink based fault diagnosis scheme for wireless sensor 

networks that outperforms the existing schemes in the literature because it only uses single hop communication. In 

our scheme, a mobile fault detector starts the fault diagnosis tour periodically from the BS, traverses the entire 

network, diagnoses fault status of the deployed sensor nodes, and then ends the fault diagnosis tour by returning to 

the BS to upload the network status information. The proposed mobile fault detector has been extensively simulated 

and also tested in an outdoor testbed. Simulation results show that the proposed scheme outperforms existing fault 

diagnosis algorithms in both simulated and actual network scenarios. Hence, the proposed fault diagnosis scheme 

improves the scalability and intrinsic problem of detecting faults in distributed homogeneous networks. By 

introducing the mobile fault detector, fault detection and diagnosis has become more flexible and adaptable under 

dynamic environments where the network structure of the wireless sensor network frequently changes due to the 

inherent self-organization. The proposed scheme can successfully detect faulty sensor nodes under severe 

environments. Abundant simulation results and a real testbed show that the proposed mobile sink based fault 

diagnosis algorithm makes significant improvements in all areas compared to other algorithms in the literature for 

fault detection accuracy, false alarm rate, false positive alarm rate, and energy. This work has clear real life 

applications, for example home automation, home monitoring, home healthcare, livestock monitoring and security. 
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