21 research outputs found

    Highly efficient computer oriented octree data structure and neighbors search in 3D GIS spatial

    Get PDF
    Three Dimensional (3D) have given new perspective in various field such as urban planning, hydrology, infrastructure modeling, geology etc due to its capability of handling real world object in more realistic manners, rather than two-dimensional (2D) approach. However, implementation of 3D spatial analysis in the real world has proven difficult due to the complexity of algorithm, computational power and time consuming. Existing GIS system enables 2D and two-and-a-half dimensional (2.5D) spatial datasets, but less capable of supporting 3D data structures. Recent development in Octree see more effort to improve weakness of octree in finding neighbor node by using various address encoding scheme with specific rule to eliminate the need of tree traversal. This paper proposed a new method to speed up neighbor searching and eliminating the needs of complex operation to extract spatial information from octree by preserving 3D spatial information directly from Octree data structure. This new method able to achieve O(1) complexity and utilizing Bit Manipulation Instruction 2 (BMI2) to speedup address encoding, extraction and voxel search 700% compared with generic implementation

    Multilayer representation for geological information systems

    Get PDF
    En esta tesis se propone el uso de la Representación de Terrenos Basada en Stacks (SBRT, de sus siglas en inglés) para datos geológicos volumétricos. Esta estructura de datos codifica estructuras geológicas representadas como stacks utilizando una compacta representación de datos. A continuación, hemos formalizado la SBRT con un esquema basado en la teoría de geo-átomos para proporcionar una definición precisa y determinar sus propiedades. Esta tesis también introduce una nueva estructura de datos llamada QuadStack, mejorando los resultados de compresión proporcionados por la SBRT al aprovechar la redundancia de información que a menudo se encuentra en los datos distribuidos por capas. También se han proporcionado métodos de visualización para estas representaciones basados en el conocido algoritmo de visualización raycasting. Al mantener los datos en todo momento en la memoria de la GPU de forma compacta, los métodos propuestos son lo suficientemente rápidos como para proporcionar velocidades de visualización interactivas.In this thesis we propose the use of the Stack-Based Representation of Terrains (SBRT) for volumetric geological data. This data structure encodes geological structures represented as stacks using a compact data representation. The SBRT is further formalized with a framework based on the geo-atom theory to provide a precise definition and determine its properties. Also, we introduce QuadStacks, a novel data structure that improves the compression results provided by the SBRT, by exploiting in its data arrangement the redundancy often found in layered dataset. This thesis also provides direct visualization methods for the SBR and QuadStacks based on the well-known raycasting algorithm. By keeping the whole dataset in the GPU in a compact way, the methods are fast enough to provide real-time frame rates.Tesis Univ. Jaén. Departamento de Informática. Leída el 19 de septiembre de 2019

    Three-dimensional anatomical atlas of the human body

    Get PDF
    A thesis submitted in partial fulfillment of the requirements for the degree of Doctor in Information Management, specialization in Geographic Information SystemsAnatomical atlases allow mapping the anatomical structures of the human body. Early versions of these systems consisted of analogic representations with informative text and labelled images of the human body. With the advent of computer systems, digital versions emerged and the third dimension was introduced. Consequently, these systems increased their efficiency, allowing more realistic visualizations with improved interactivity. The development of anatomical atlases in geographic information systems (GIS) environments allows the development of platforms with a high degree of interactivity and with tools to explore and analyze the human body. In this thesis, a prototype for the human body representation is developed. The system includes a 3D GIS topological model, a graphical user interface and functions to explore and analyze the interior and the surface of the anatomical structures of the human body. The GIS approach relies essentially on the topological characteristics of the model and on the kind of available functions, which include measurement, identification, selection and analysis. With the incorporation of these functions, the final system has the ability to replicate the kind of information provided by the conventional anatomical atlases and also provides a higher level of functionality, since some of the atlases limitations are precisely features offered by GIS, namely, interactive capabilities, multilayer management, measurement tools, edition mode, allowing the expansion of the information contained in the system, and spatial analyzes

    Innovative Approaches to 3D GIS Modeling for Volumetric and Geoprocessing Applications in Subsurface Infrastructures in a Virtual Immersive Environment

    Get PDF
    As subsurface features remain largely ‘out of sight, out of mind’, this has led to challenges when dealing with underground space and infrastructures and especially so for those working in GIS. Since subsurface infrastructure plays a major role in supporting the needs of modern society, groups such as city planners and utility companies and decision makers are looking for an ‘holistic’ approach where the sustainable use of underground space is as important as above ground space. For such planning and management, it is crucial to examine subsurface data in a form that is amenable to 3D mapping and that can be used for increasingly sophisticated 3D modeling. The subsurface referred to in this study focuses particularly on examples of both shallow and deep underground infrastructures. In the case of shallow underground infrastructures mostly two-dimensional maps are used in the management and planning of these features. Depth is a very critical component of underground infrastructures that is difficult to represent in a 2D map and for this reason these are best studied in three-dimensional space. In this research, the capability of 3D GIS technology and immersive geography are explored for the storage, management, analysis, and visualization of shallow and deep subsurface features

    Proceedings. 9th 3DGeoInfo Conference 2014, [11-13 November 2014, Dubai]

    Get PDF
    It is known that, scientific disciplines such as geology, geophysics, and reservoir exploration intrinsically use 3D geo-information in their models and simulations. However, 3D geo-information is also urgently needed in many traditional 2D planning areas such as civil engineering, city and infrastructure modeling, architecture, environmental planning etc. Altogether, 3DGeoInfo is an emerging technology that will greatly influence the market within the next few decades. The 9th International 3DGeoInfo Conference aims at bringing together international state-of-the-art researchers and practitioners facilitating the dialogue on emerging topics in the field of 3D geo-information. The conference in Dubai offers an interdisciplinary forum of sub- and above-surface 3D geo-information researchers and practitioners dealing with data acquisition, modeling, management, maintenance, visualization, and analysis of 3D geo-information

    EVOLUTION OF THE SUBCONTINENTAL LITHOSPHERE DURING MESOZOIC TETHYAN RIFTING: CONSTRAINTS FROM THE EXTERNAL LIGURIAN MANTLE SECTION (NORTHERN APENNINE, ITALY)

    Get PDF
    Our study is focussed on mantle bodies from the External Ligurian ophiolites, within the Monte Gavi and Monte Sant'Agostino areas. Here, two distinct pyroxenite-bearing mantle sections were recognized, mainly based on their plagioclase-facies evolution. The Monte Gavi mantle section is nearly undeformed and records reactive melt infiltration under plagioclase-facies conditions. This process involved both peridotites (clinopyroxene-poor lherzolites) and enclosed spinel pyroxenite layers, and occurred at 0.7–0.8 GPa. In the Monte Gavi peridotites and pyroxenites, the spinel-facies clinopyroxene was replaced by Ca-rich plagioclase and new orthopyroxene, typically associated with secondary clinopyroxene. The reactive melt migration caused increase of TiO2 contents in relict clinopyroxene and spinel, with the latter also recording a Cr2O3 increase. In the Monte Gavi peridotites and pyroxenites, geothermometers based on slowly diffusing elements (REE and Y) record high temperature conditions (1200-1250 °C) related to the melt infiltration event, followed by subsolidus cooling until ca. 900°C. The Monte Sant'Agostino mantle section is characterized by widespread ductile shearing with no evidence of melt infiltration. The deformation recorded by the Monte Sant'Agostino peridotites (clinopyroxene-rich lherzolites) occurred at 750–800 °C and 0.3–0.6 GPa, leading to protomylonitic to ultramylonitic textures with extreme grain size reduction (10–50 μm). Compared to the peridotites, the enclosed pyroxenite layers gave higher temperature-pressure estimates for the plagioclase-facies re-equilibration (870–930 °C and 0.8–0.9 GPa). We propose that the earlier plagioclase crystallization in the pyroxenites enhanced strain localization and formation of mylonite shear zones in the entire mantle section. We subdivide the subcontinental mantle section from the External Ligurian ophiolites into three distinct domains, developed in response to the rifting evolution that ultimately formed a Middle Jurassic ocean-continent transition: (1) a spinel tectonite domain, characterized by subsolidus static formation of plagioclase, i.e. the Suvero mantle section (Hidas et al., 2020), (2) a plagioclase mylonite domain experiencing melt-absent deformation and (3) a nearly undeformed domain that underwent reactive melt infiltration under plagioclase-facies conditions, exemplified by the the Monte Sant'Agostino and the Monte Gavi mantle sections, respectively. We relate mantle domains (1) and (2) to a rifting-driven uplift in the late Triassic accommodated by large-scale shear zones consisting of anhydrous plagioclase mylonites. Hidas K., Borghini G., Tommasi A., Zanetti A. & Rampone E. 2021. Interplay between melt infiltration and deformation in the deep lithospheric mantle (External Liguride ophiolite, North Italy). Lithos 380-381, 105855
    corecore