

TESIS DOCTORAL
•

MULTILAYER REPRESENTATION FOR
GEOLOGICAL INFORMATION SYSTEMS

PRESENTADA POR:
ALEJANDRO GRACIANO SEGURA

DIRIGIDA POR:

DR. D. ANTONIO JESÚS RUEDA RUIZ
DR. D. FRANCISCO RAMÓN FEITO HIGUERUELA

JAÉN, 8 DE JULIO DE 2019

ISBN

alejandro graciano

M U L T I L AY E R R E P R E S E N TAT I O N F O R G E O L O G I C A L
I N F O R M AT I O N S Y S T E M S

M U L T I L AY E R R E P R E S E N TAT I O N F O R G E O L O G I C A L
I N F O R M AT I O N S Y S T E M S

alejandro graciano

A dissertation submitted in partial ful�llment of the
requirements for the degree of Doctor of Philosophy

supervisors:
Dr. Antonio J. Rueda
Dr. Francisco R. Feito

Departamento de Informática
Escuela Politécnica Superior de Jáen

Universidad de Jaén

July 2019

Alejandro Graciano: Multilayer representation for geological information
systems, © July 2019

El Dr. Antonio J. Rueda Ruiz, Profesor Titular de Universidad y el Dr.
Francisco R. Feito Higueruela Catedrático de Universidad del Departa-
mento de Informática de la Universidad de Jaén, España,

CERTIFICAN:

Que la presente memoria, titulada Multilayer representation for
geological information systems, ha sido realizada bajo su dirección. Y
considerando que representa trabajo de Tesis, autorizan su presentación y

defensa para optar al grado de Doctor por la Universidad de Jaén con
mención de Doctor Internacional.

Dr. Antonio J. Rueda Ruiz
Dpto. de Informática
Universidad de Jaén

Dr. Francisco R. Feito Higueruela
Dpto. de Informática
Universidad de Jaén.

Alejandro Graciano Segura
Ingeniero en Informática

Jaén, Julio de 2019

v

A B S T R A C T

Many geological applications require detailed and accurate models that
represent the complexity of the geological reality. Computer representa-
tions for these models have to be e�cient in terms of storage requirements,
but at the same time �exible to allow the implementation of analysis meth-
ods, simulations of natural processes and fast advanced visualization. In
this thesis, we propose the use of the Stack-Based Representation of Ter-
rains (SBRT) for volumetric geological data. This data structure encodes
geological structures represented as stacks using a compact data repre-
sentation. In contrast with previous work where SBRT was used only for
simulation of natural processes or as intermediate representation for ren-
dering complex terrains, we suggest its use as main data structure for both
processing and visualization of surface and subsurface information. The
SBRT is further formalized with a framework based on the geo-atom theory
to provide a precise de�nition and determine its properties. In addition,
we have de�ned a set of common spatial primitives on this representation
using the tools provided by map algebra.

Stacks can be organized hierarchically, introducing QuadStack, a novel
data structure that improves the compression results provided by the SBRT.
QuadStack exploits in its data arrangement the redundancy often found
in layered dataset that are common, not only in geological models, but
also in science and engineering �elds such as geology, biology, mechanical
engineering, medicine, etc. The associated data (color, material, etc.) and
shape of these layer structures are decoupled and encoded independently,
leading to high compression rates.

Visualization of geological models is one of the most useful applications
for geoscientists. This is of great importance for the inspection of the data
and interpretation of its structure and complexity, as well as in decision-
making processes. This thesis also provides direct visualization methods
for the SBR and QuadStack based on the well-known raycasting algorithm.
By keeping the whole datasets in the GPU memory in a compact way,
the proposed methods are fast enough to provide real-time frame rates.
Furthermore, the implementation of some visual operations common in
geoscienti�c applications such as borehole visualization, attenuation of
material layers or cross sections has been carried out for the SBRT.

vii

R E S U M E N

Muchas aplicaciones geológicas requieren modelos detallados y precisos
que representen la complejidad del mundo geológico. Las representaciones
de estos modelos usadas en sistemas informáticos tienen que ser e�cientes
en términos de requisitos de memoria, pero al mismo tiempo �exibles
para permitir la implementación de métodos de análisis, simulaciones de
procesos naturales y una rápida y avanzada visualización. En esta tesis
proponemos el uso de la Representación de Terrenos Basada en Stacks
(SBRT, por sus siglas en inglés) para datos geológicos volumétricos. Esta
estructura de datos codi�ca estructuras geológicas representadas como
stacks utilizando una compacta representación de datos. A diferencia de
trabajos anteriores en los que la SBRT se ha utilizado sólo para la simu-
lación de procesos naturales o como representación intermedia para la
visualización de terrenos complejos, sugerimos su uso como estructura
de datos principal tanto para el procesamiento como para la visualización
de la información de la super�cie y del subsuelo. A continuación, hemos
formalizado la SBRT con un esquema basado en la teoría de geo-átomos
para proporcionar una de�nición precisa y determinar sus propiedades.
Además, hemos de�nido un conjunto de primitivas espaciales sobre esta
representación utilizando las herramientas proporcionadas por el álgebra
de mapas.

Los stacks pueden organizarse jerárquicamente en una nueva estructura
de datos llamada QuadStack, mejorando los resultados de compresión pro-
porcionados por la SBRT. La organización de datos dentro un QuadStack se
realiza en base al aprovechamiento de la redundancia de información que a
menudo se encuentra en los datos distribuidos por capas. Esta redundancia
es común no solo en modelos geológicos, sino también en otros campos de
la ciencia y la ingeniería como la biología, la ingeniería mecánica, la medi-
cina, etc. En un QuadStack los atributos tales como el color o el material
son desacoplados de su información geométrica y comprimidos de forma
separada, dando lugar a altos índices de compresión.

La visualización de modelos geológicos es una de las aplicaciones más
útiles para los geocientí�cos. Esta aplicación tiene una gran importancia
para interpretar la estructura y complejidad de los datos geológicos, así
como en la toma de decisiones. En esta tesis hemos proporcionado mé-

viii

todos de visualización directa para la representación basada en stacks y
para QuadStacks basándonos en el conocido algoritmo de visualización
raycasting. Al mantener los datos en todo momento y de forma compacta
en la memoria de la GPU, los métodos propuestos son lo su�cientemente
rápidos como para proporcionar una visualización con tiempos de respues-
ta interactivos. Además, se han implementado para la SBRT una serie de
operaciones visuales comunes en aplicaciones geocientí�cas como la vi-
sualización de catas geológicas o secciones transversales, o el ocultamiento
de capas de material.

ix

P U B L I C AT I O N S

A large part of the work presented in this thesis has already been pub-
lished or is being peer-reviewed to be published in scienti�c conferences
and journals:

JCR-indexed journals

• Graciano, A., Rueda, A.J. & Feito, F.R., 2018. A formal frame-
work for the representation of stack-based terrains. Interna-
tional Journal of Geographical Information Science, 32(10),
pp.1999–2022.

Journal impact factor: 3.545. Q1 (34/155) in Computer Science,
Information Systems category.

• Graciano, A., Rueda, A.J. & Feito, F.R., 2018. Real-time visu-
alization of 3D terrains and subsurface geological structures.
Advances in Engineering Software, 115, pp.314–326.

Journal impact factor: 4.194. Q1 (17/106) in Computer Sci-
ence, Interdisciplinary Applications and Q1 (9/107) in Computer
Science, Software Engineering categories.

Peer-reviewed conferences

• Graciano, A., Rueda, A.J., Bittner, J., Pospíšil, A. & Benes,
B., 2019. QuadStack: An e�cient representation and direct
rendering of layered datasets. SIGGRAPH Asia. (Under review).

In case of acceptance, this paper will also be published in a
special issue of the ACM Transactions on Graphics journal.
Journal impact factor: 6.495. Q1 (1/107) in Computer Science,
Software Engineering category.

• Graciano, A., Rueda, A.J., Ortega, L. & Feito, F.R. 2017. To-
wards a hybrid framework for the visualization and analysis of
3D spatial data. In Proceedings of the 3rd ACM SIGSPATIAL
Workshop on Smart Cities and Urban Analytics - UrbanGIS’17.
November 7–10, Redondo Beach, CA (USA), pp. 1–8.

• Graciano, A., Rueda, A.J. & Feito, F.R., 2017. Direct volume
rendering of stack-based terrains. In proceedings of the XXVII

xi

Spanish Computer Graphics Conference (CEIG). June 28-30,
Sevilla (Spain), pp.41–50.

xii

Impossible to map the world -
we select and make graphics
so that we can understand it.

— Roger Tomlinson

A C K N O W L E D G M E N T S

El trabajo que hoy culmino ha necesitado de cuatro duros años de trabajo.
Cuatro años de retos, alegrías, frustraciones y aprendizaje compartidos
con personas a las que quiero agradecer su aportación tanto en esta tesis
doctoral como a nivel personal.

En primer lugar, me gustaría expresar mi más sincero agradecimiento
a mis directores de tesis Antonio Rueda y Francisco Feito por darme la
oportunidad de trabajar con ellos todo este tiempo. Gracias por con�ar
en mí y guiarme tan fantásticamente durante estos años. Quiero también
agradecer a todos los miembros del Grupo de Grá�cos y Geomática de
Jaén (GGGJ) por haberme hecho sentir como en casa desde el primer día.
En especial, a Lidia Ortega por dejarme colaborar con ella en todas las
asignaturas que he impartido durante mi doctorado, a Juan Ruiz y Juanjo
Jiménez con los que he trabajado en distintas etapas antes del comienzo de
esta tesis, y �nalmente a Ángel Luis García por sus revisiones �nales de
este texto.

De igual manera quiero transmitir mi gratitud a todos y cada uno de
los compañeros con los que he compartido los laboratorios A3-102 y A3-
103. Especialmente, quiero dar las gracias a Félix Paulano por darme la
bienvenida al grupo y a José Negrillo por hacer amenos tantos días de
trabajo.

Por otro lado, quiero agradecer a mi familia y amigos por estar a mi lado
durante el transcurso de mi doctorado. A mis padres por la educación y
las oportunidades que me han dado y por su apoyo a pesar de no saber
qué he estado haciendo exactamente estos cuatro años. Tampoco quiero
olvidarme de los pesados de mis amigos con los que he pasado tantas horas
entre cafés y almuerzos en la universidad y fuera de ella.

De forma muy especial quisiera agradecer a Isa el apoyo, comprensión
y amor que me ha dado todos estos años. Muchas gracias por hacerme ver
el mundo de otra manera y por dejarme crecer como persona estos años a
tu lado.

xiii

Finalmente, transmitir mi agradecimiento a la Universidad de Jaén por
�nanciar la realización de esta tesis doctoral así como a Bedrich Benes
y al grupo de investigación High Performance Computer Graphics de la
Universidad de Purdue por aceptar mi solicitud para realizar mi estancia
de investigación con ellos.

xiv

C O N T E N T S

i introduction and overview
1 introduction 3

1.1 Aims and objectives . 6
1.2 Organization of this document 6

2 fundamentals of geological modeling 9
2.1 Continuous �eld models 10

2.1.1 Grid-based models and data structures in geologi-
cal modeling . 11

2.1.2 Grids for numerical modeling 13
2.1.3 Hierarchical grids for geomodeling 14

2.2 Discrete object models . 15
2.2.1 Geological modeling with simplicial complexes . . 16
2.2.2 Geological modeling with cell complexes 17
2.2.3 Ordered topological geomodeling 18

2.3 Generalized strategies for geomodeling 19
2.4 Comparison of data structures for geomodeling 21

2.4.1 Topology . 21
2.4.2 Memory consumption 23
2.4.3 Querying and updating 23
2.4.4 Ease of construction 23

2.5 Visualization in GSIS . 24

ii data structures for geological layered data
3 the stack-based representation of terrains 31

3.1 E�ciency in modeling geological �elds 31
3.2 Related work . 32
3.3 De�ning the stack-based representation of terrains 33

3.3.1 Mathematical de�nition 33
3.4 Memory storage comparative 35

4 formal framework for the stack-based represen-
tation of terrains 37
4.1 Introduction . 37
4.2 Geo-atom theory background 38
4.3 3D Terrains as geo-�elds 40

xv

xvi contents

4.4 Stack-based terrains as geo-�elds 41
4.5 Operations with 3D terrains 42

4.5.1 Map algebra background 43
4.5.2 De�nition of operations 44

4.6 An implementation model 51
4.6.1 Extending the model with SBRT domain classes . 54

4.7 Conclusion and future work 55
5 efficient representation of stack-based informa-

tion 59
5.1 Introduction . 59
5.2 The QuadStack data structure 61

5.2.1 Group of stacks . 61
5.2.2 Group of stacks hierarchies 63
5.2.3 QuadStack construction 65
5.2.4 Height�eld compression 67
5.2.5 Optimizations . 68

5.3 QuadStack sampling . 69
5.4 Conclusion . 71

iii visualization of geological data
6 fundamentals of direct volume rendering 75

6.1 Introduction . 75
6.2 Overview of direct volume rendering techniques 75

6.2.1 The volume-rendering equation 75
6.2.2 Transfer functions 77
6.2.3 Direct volume rendering approaches 77

6.3 Raycasting . 79
7 real-time rendering of stack-based data 81

7.1 Introduction . 81
7.2 Raycasting the stack-based representation 82

7.2.1 Surface normal vectors calculation 84
7.2.2 Stack-based representation of terrains encoding

in the GPU memory 87
7.2.3 Visual operations 91
7.2.4 GIS-based layer display 92
7.2.5 Performance analysis 96

7.3 Raycasting the QuadStack 104
7.3.1 QuadStack encoding in the GPU memory 105
7.3.2 Performance analysis 107

contents xvii

7.4 Conclusion . 111

iv concluding remarks
8 conclusions 115

8.1 Summary of contributions 115
8.2 Future work . 117

v appendices
a programming custom visualization algorithms on

gpu 121
a.1 Introduction to GPU programming 121
a.2 OpenGL API . 124

a.2.1 Data model . 124
a.3 Raycasting implementation in GLSL 125

b documentación en castellano 131

bibliography 151

L I S T O F F I G U R E S

Figure 1.1 Examples of geological observations in Renais-
sance. 4

Figure 1.2 Pipeline of the geological modeling process. Adapted
from (Bobrowsky and Marker, 2018) and (Turner,
2006). The stages covered in this dissertation are
denoted by red-dashed boxes. 5

Figure 2.1 A polygon represented by means of a) a simplicial
complex, b) Nef representation and c) a G-map. . 19

Figure 2.2 Classi�cation of the geological data models ac-
cording to the data model they represent. 21

Figure 2.3 Geological models visualized by the two di�erent
aproaches: a) volume rendering of subsurface
seismic data (Hollt et al., 2012) and b) a triangular
mesh representing a strata model (Song et al., 2019). 26

Figure 3.1 A real example of borehole log extracted from a
geotechnical survey performed at the University
of Jaén (Spain). 33

Figure 3.2 Stack-Based Representation: A voxel dataset of
resolutionw×h×d composed of layers is orga-
nized into vertical stacks consisting of intervals.
Each interval ik = 〈ak,hk〉 with the attribute
value ak and height hk. 34

Figure 4.1 Relation between a 3D regular grid and a repre-
sentative geo-atom. 41

Figure 4.2 Example of a 3D terrain model using a voxel rep-
resentation (b). A DEM of the terrain is showed
(a), a sample stack is generated from column of
voxels (c) and an interval (d) are also represented. 42

Figure 4.3 Stack-based representation of terrains in the con-
text of geo-atom theory. 43

Figure 4.4 Computation of the water transfer to a stack from
its neighborhood in a �ooding algorithm. 51

xviii

list of figures xix

Figure 4.5 Examples of operations with a SBRT. A pipeline
of operations is applied to an original SBRT geo-
�eld. 52

Figure 4.6 A simpli�ed UML diagram depicting the main
classes of an implementation of our framework
and an extract of the ADE XML schema. 54

Figure 4.7 Use of GML for encoding a SBRT. 56
Figure 5.1 Vertical and horizontal spatial coherence in a

same geomodel. Screenshot taken from Subsur-
faceViewer software (Terrington et al., 2009). The
geological data have been obtained from (Gun-
nink et al., 2013). 60

Figure 5.2 Overview: The input volumetric data is con-
verted to stacks and similar stacks are then grouped
into groups of stacks (gstacks) that are organized
in a quadtree. When using the QuadStack the
quadtree is traversed �rst and the topology of the
given part of the volume is reconstructed. Then
the corresponding layer boundaries encoded as
height�elds are sampled to determine the result. 62

Figure 5.3 Details of the QuadStack construction: initial
construction as a quadtree encoding groups of
stacks with the same sequence of attributes (a),
merging gstacks in nodesn1 andn2 into a gstack
with common intervals and ∗-intervals (b), prop-
agation of the new gstack to the parent node n0,
restructuring height�elds (c) and optimization,
deleting ∗-intervals in nodes n1 and n2 asso-
ciated to the intervals propagated to the parent
node (d). 64

Figure 5.4 The QuadStack construction: The initial Quad-
Stack is a quadtree that is optimized in the sec-
ond step by merging intervals of equal or similar
attributes. 65

Figure 5.5 Finding a common mapping for two gstacks that
maximizes the number of terminal intervals. . . . 67

Figure 6.1 DVR approaches. Raycasting, shear-warp vol-
ume rendering, splatting, texture slicing and cell
projection are conceptualized. 78

xx list of figures

Figure 7.1 Deferred shading strategy used. The dotted lines
indicate an usage relationship. 83

Figure 7.2 Estimation of a normal vector in an object space.
~N (b) is the resulting from the sum of the vectors
contained in empty space voxels by using a 3× 3
kernel (a). 84

Figure 7.3 Visual results when applying di�erent kernel
sizes to a SBRT with a grid dimension of 800
× 1000. Each sub�gure shows a region with a
dimension of 200 × 300. 85

Figure 7.4 Estimation of a normal vector in image space.
The ray ri provides two depth values, an actual
(d) and an estimated (d ′) with which the binary
value of the kernel (occupied or empty space) is
calculated. 86

Figure 7.5 Memory storage patterns (b, c, d, e, f) for a stack-
based geomodel (a). 90

Figure 7.6 Example of layer attenuation (bottom) of an orig-
inal dataset (top). 92

Figure 7.7 Cross-section (bottom) and original model (top). 93
Figure 7.8 Example of borehole visualization. They are

shown as cylinder of two materials (blue and
yellow color). 93

Figure 7.9 Example of orthophoto application. Original
model (a) and model with an orthophoto applied
on its surface (b). 94

Figure 7.10 An original model (e) and di�erent examples of
visual operations applied: hiding of many layers
(a), application of an orthophoto on the surface
(b), borehole visualization combined with layer
hiding (c) and visualization of cross-section (d). . 95

Figure 7.11 Internal description of the heterogeneous data
layers using a camera enclosing bounding volume. 96

Figure 7.12 Example of attenuation of a �eld layer. A sub-
surface vector layer can be depicted. 97

list of figures xxi

Figure 7.13 A close-up viewing of three di�erent layers. Two
subsurface vector layers are combined with a
SBRT layer. The vector layers represent a sewage
network (segment layer) and a set of manholes
(point layer). 97

Figure 7.14 Cross section of a �eld layer. The cut allows
the visualization of a subsurface vector layer. In
addition, an orthophoto is applied on the �eld
layer surface. 98

Figure 7.15 Overview of the datasets used in the experi-
ments. Dataset A is shown in the left-upper
corner, Dataset B is in the right-upper corner,
Dataset C is in the left-lower corner and Dataset
D is in the right-lower corner. 99

Figure 7.16 Minimum MRPS reached. 101
Figure 7.17 Maximum MRPS reached. 101
Figure 7.18 Raycasting a QuadStack, �rst resolved at the

QuadStack level, then at the interval level and �-
nally, at the height�eld level. When an ∗-interval
is found, a recursive call to traverse the gstacks
in children nodes is required. After processing a
gstack, the traverse continues with the next one,
until the ray exits the volumetric model. 104

Figure 7.19 Memory layout of a given QuadStack after per-
forming its height�eld arrangement. 106

Figure 7.20 Height�eld compression scheme. 107
Figure 7.21 Datasets used in the experiments. 108
Figure A.1 Programmable pipeline organization. The data

�ow between the �xed pipeline stages and the
programmable shaders are shown. 123

Figure A.2 Deferred shading strategy using GLSL subroutines. 126
Figura B0.1 Ejemplos de observaciones geológicas en el Re-

nacimiento. 140
Figura B0.2 Arquitectura del proceso de modelado geológico

adaptado de (Bobrowsky y Marker, 2018) y (Tur-
ner, 2006). Las etapas que se tratan en esta tesis
se indican con recuadros de color rojo. 141

L I S T O F TA B L E S

Table 2.1 Summary of the characteristics studied for the
data structures reviewed. 25

Table 3.1 Memory consumption comparison. The octree
measurements have been taken with six depth
levels. 35

Table 4.1 Common discretizations for geo-�elds. 39
Table 4.2 Examples of SBRT operations. 45
Table 4.3 A conceptual view of the operations of the SBRT. 46
Table 5.1 Comparison between the optimized and non op-

timized versions of the gstack matching. 69
Table 7.1 Relative drop in performance when using di�er-

ent kernel sizes over rendering without lighting . 86
Table 7.2 Storage requirements of memory layouts. 102
Table 7.3 Comparison of results for Dataset A. FPS means

frames per seconds and MRPS, millions of rays
per second. 102

Table 7.4 Comparison of results for Dataset B. FPS means
frames per seconds and MRPS, millions of rays
per second. 103

Table 7.5 Comparison of results for Dataset C. FPS means
frames per seconds and MRPS, millions of rays
per second. 103

Table 7.6 Comparison of results for Dataset D. FPS means
frames per seconds and MRPS, millions of rays
per second. 103

Table 7.7 Breakdown of the QuadStack memory require-
ments. The columns represent memory needed
for representing the quadtree and attributes, com-
pressed height�elds, and min-max mipmaps. . . 108

xxii

list of tables xxiii

Table 7.8 Results measured on �ve test datasets. The ta-
ble shows basic dataset properties, construction
times and memory requirements for evaluated
representations (Voxel grid, SBR, QuadStack).
The bottom part of the table compares rendering
performance for di�erent methods (VTK, OS-
PRay, QuadStack). The results for the method
with the lowest memory consumption and best
rendering performance are highlighted in bold. . 110

L I S T I N G S

Listing A.1 A simpli�ed version of a raycasting function in
GLSL . 127

Listing A.2 Sampling method of a SBRT encoded using SS-
BOs in GLSL . 128

Listing A.3 Implementation of the deferred shading approach
in GLSL . 129

xxiv

A C R O N Y M S

AABB Axis-Aligned Bounding Box

ADE Application Domain Extension

CAD Computer-Aided Design

CIS Coverage Implementation Schema

DEM Digital Elevation Model

DVR Direct Volume Rendering

GIS Geographical Information System

GML Geography Markup Language

GSIS Geoscienti�c Information System

GTP Generalized Tri-Prism

MC Marching Cubes

SBR Stack-Based Representation

SBRT Stack-Based Representation of Terrains

S&IBF Sampling and Interpolation-Based Field

TBF Tessellation-Based Field

TF Transfer Function

TEN Tetrahedral Network

TIN Triangular Irregular Network

VD Voronoi Diagram

xxv

N O TAT I O N

Element Representation

Point p

Point coordinates px,y,z

Voxel vx,y,z

Voxel column Vx,y

Attribute value ai

Height value hi

Interval ik

Stack Sx,y

Height�eld Hi

Height value hx,y

Group of stacks Gi

Tuple < t0, t1, . . . , tn−1 >

Set B = {b0,b1, . . . ,bn−1}

Interval sequence i0, i1, . . . , in−1

Vector ~n

Plane X

xxvi

Part I

I N T R O D U C T I O N A N D O V E R V I E W

This part introduces the general concepts that will be dis-
cussed during this document, as well as the main aims and
objectives of this doctoral dissertation. Then, a review of the
state-of-the-art of geological modeling is given.

1
I N T R O D U C T I O N

Having a general knowledge of the geological structures, their organi-
zation, their properties and how they have evolved over time is of special
interest to scientists in order to provide accurate resource evaluations or
proper predictions of geological hazards. This understanding has largely
increased thanks to the advances in data acquisition technologies, which
have led to a vast amount of spatial data valuable for geoscienti�c and
geo-information related �elds. The science aimed at integrating all this
heterogeneous data and generating computer-aided representations of
geological structures, both at subsurface and above ground levels is Geo-
logical modeling or Geomodeling.

As many other disciplines, geological modeling has its roots during the
Scienti�c Revolution in the 15th century. Arabic and Greek ideas were
taken and renewed by scientists not only from a pure scienti�c point of view.
Geomodeling attracted many Renaissance polymaths such as Leonardo Da
Vinci, who carried out studies concerning geological formations. These
studies were later used to increase the accuracy in their artistic creations.
Figure 1.1.a shows a sketch dated back to 1473 in which precise geological
layers in the landscape can be seen. Other artists like Albrecht Dürer,
improved their results by adding further realism and increasing the details
(Figure 1.1.b). These observations and principles were the foundations of
geomodeling as we know it and inspired current geological mapping.

The reliability with which a geomodel is represented in a computer is
crucial for its e�cient management, processing and visualization. There-
fore, the study of spatial data representations has been a key point in
geoscienti�c research in the last decades. However, the study of new tools
and e�cient data structures that ful�ll the so-called �ve Ms of Geographic
Information Systems (GIS) continues to be of great importance. These
data structures should be able to Manage spatial data in such a way that
enable an e�cient arrangement, keeping them up to date. Such possible
updates should be Monitored so that spatial and temporal changes can be
queried quickly and simply. The data organization is crucial not only for an
appropriate management, but for an e�ciently computing operations and
Measurements on them. It is also desirable that the data structures Model

3

4 introduction

(a) Leonardo Da Vinci - Landscape (1473) (b) Albrecht Dürer - Quarry (1506)

Figure 1.1: Examples of geological observations in Renaissance.

accurately the complexity of the data and integrate them in a compact
manner, for example, by combining surface and subsurface information.
In addition, �nally yet importantly, extracting information to create Maps
and graphical models in order to make decisions at a glance. This is a
worthwhile feature for all tools and data structures that handle spatial
data.

Despite the above points are de�ned for GIS systems, they should be met
by any geospatial application. Geological modeling deals essentially with
volumetric representations, rarely supported by traditional GIS. Therefore,
at the end of 1980s, the concept of Geoscienti�c Information Systems (GSIS)
emerged to de�ne those systems devoted to managing, visualizing and
operating with 3D geodata. Typically, GSIS systems follow the architecture
depicted in Figure 1.2. The pipeline is split into three distinct parts or
modules: the one concerning the data acquisition (1) where the input
information is collected from �eld work or monitoring procedures. The
core geological model (2) sets the related data structures representing the
geological features. This model can be separated into two submodules. On
one hand, interpolation methods are used in the geometry model part to
generate the geometric and boundary information, and the discretization
of the framework. On the other hand, the numerical model part uses
mathematical and predictive models to extrapolate and simulate physical
properties and phenomena. Often, both submodules are closely connected.
The mathematical model can use the discretization or even take part in the
generation of the data structure included in the geological model. Finally,
as the ultimate goal of the pipeline (3), geoscientists can apply analysis

introduction 5

and visualization methods in order to extract new knowledge as well as in
decision-making support.

Figure 1.2: Pipeline of the geological modeling process. Adapted from (Bobrowsky
and Marker, 2018) and (Turner, 2006). The stages covered in this
dissertation are denoted by red-dashed boxes.

The visualization of geodata is intrinsically a powerful tool for GSIS
professionals. Just as in other scienti�c �elds like medical imaging or
computational �uid dynamics, having a global and real-time view of the
data could provide a �rst insight in a rapid and e�ective manner. From the
point of view of computer graphics, three-dimensional objects are rendered
by using mainly surface or volumetric techniques. So, as mentioned earlier,
the latter approach will �t perfectly to visualize geodata, being a frequently
used strategy by GSIS applications. There exist two principal alternatives
to render volumetric data: indirect and direct volume rendering. The �rst
method uses algorithms to obtain and render surface information from
the volumetric data, yet neglecting inner information. In contrast, the
second one de�nes techniques to visualize the data without applying any
procedure to extract its surface, just by simulating the interaction between
light transport models and a 3D scalar �eld.

The aforementioned real-time feature in the generation of images is also
an aspect very appreciated when carrying out operations on the geodata. In
addition, for transient operations or simulations it would be very bene�cial
that both operation and visualization procedures could be synchronized,
smoothly displaying the operation gradually. For instance, it may be quite
interesting to see how a natural phenomenon like lava �ow or sediment

6 introduction

deposition is progressing in a simulation. The ongoing development of
hardware capabilities and the emergence of technologies such as GPU
computing help to make this possible. GPU computing sets a framework
to use graphics hardware to execute non-related rendering operations
on it. These operations can bene�t from parallel processing to speed up
their execution. This technology has prompted the complete integration
between visualization and computation as a reality.

1.1 aims and objectives

Considering the GSIS pipeline depicted in the previous section and the
outlined requirements, the overall aim of this dissertation is to contribute
to the improvement of some stages by researching and developing data
structures and methods of interest for geoscientists. As can be seen in
Figure 1.2, this dissertation will cover the geometric representation and
discretization procedures within the Geometry Model submodule and its
visualization at interactive response times. The objectives of this work are
listed below:

The study and development of representations and data structures
to be used in the geological modeling process. The data structures
proposed should meet a set of speci�cations, in particular a simple
de�nition and easy implementation in a computer system, reason-
able space and time requirements, and ability to manage complex
3D geological information.

The de�nition of a formal framework to validate the proposed rep-
resentations and de�ne properties and algorithms precisely. This
formalization must be founded on standard methods and theories
from the geospatial literature.

The description of a real-time rendering method for the visualization
of volumetric terrains and geological structures, using the data
structures de�ned previously. Additionally, the implementation of
useful visual features for geoscienti�c applications to validate the
use of the representation will be discussed.

1.2 organization of this document

This dissertation comprises four parts organized in a set of chapters:

1.2 organization of this document 7

part i This part includes the current chapter and introduces the subject
to the reader. Furthermore, a review of the state of the art of geological
modeling and visualization in geosciences is given in Section 2.

part ii Here, the core representation in which this thesis is sustained is
presented: the stack-based representation of terrains, proposing its use as
an all-around representation for both surface and subsurface information.
Section 3 deals with the description of the data structure and highlights
its advantages and drawbacks compared with other representations. In
Section 4, a formal framework for the representation of 3D terrains based
on stacks is presented. The framework has been derived from the geo-
atom theory, a spatial representation that generalizes vector and raster data
types. The proposed formalization is completed with a set of operations
inspired by the well-known map algebra. In addition, an exchange data
model is suggested as an example of implementation using a standard
similar to the Geography Markup Language. Finally, Section 5 describes
a novel data structure that improves the advantages of the stack-based
representation in terms of storage requirements and data organization: the
QuadStack.

part iii This part explains how the data structures introduced in Part
II can be used to render 3D information in an e�cient way, making use of
direct volume rendering techniques. Section 6 introduces some concepts
and techniques used in direct volume rendering. Section 7 describes the
visualization methods for the representations introduced in this thesis,
including visual operations such as the visualization of cross-sections or
the inspection of internal structures, as well as vector data layers. This
section ends with a description of the method used to display volumetric
data encoded in a QuadStack.

part iv Section 8 concludes this dissertation by highlighting the main
achievements and pointing out possible improvements to be done as future
work.

2
F U N D A M E N TA L S O F G E O L O G I C A L M O D E L I N G

One of the main goals of geoscientists in conjunction with mathemati-
cians is to represent in a computational model the complexity of the subsur-
face of the Earth. These models tend to unify the physical reality, geometry,
topology and any kind of data related to geological objects (Mallet, 2002).
Seismic data (Leeuwenburgh, Brouwer, and Trani, 2011), gravity and mag-
netic data (Guillen et al., 2008) or resistivity models (Foged et al., 2014) are
examples of typical physical properties that should be modeled with relia-
bility. Physical properties are described by the numerical model explained
in the previous chapter, and supported by any discretization method that
allows measuring. For its part, geometric and topological structures store
knowledge about the representation model of the faults or horizons created
from the stratigraphy and their connectivity. Focusing on every aspect
of the geological modeling is out of scope of this doctoral dissertation;
therefore, this section will review and discuss geological modeling from a
geometric and topological point of view emphasizing the data structures
used and how the geological data can be visualized by means of computer
graphics rendering techniques.

With regard to data modeling and representation, most of the research
carried out in the GSIS �eld comes from GIS development. As in GIS
systems, two main data models are used: discrete objects and continuous
�elds. These models, often categorized within a conceptual level of abstrac-
tion, are characterized by a more concrete representation of the problem
(the logical model), which, in turn, is implemented in a computer using
di�erent data structures (Longley et al., 2015). However, the boundaries of
the terms data model, representation and data structure are usually fuzzy
in GIScience and, in particular, in geological modeling (Arroyo Ohori,
Ledoux, and Stoter, 2015). Examples are the ambiguity or lack of di�er-
ence between data structures and data models (Le et al., 2013; Penninga
and Van Oosterom, 2008), or the use of the conceptual model term in a
very uneven way. Traditionally, in areas belonging to computer sciences,
such as database modeling, conceptual models have been used to organize
and de�ne the concepts and their relations of an actual problem with the
use of schematic diagrams. In GSIS, some works insisted on this idea by

9

10 fundamentals of geological modeling

suggesting conceptual models by means of ER or UML diagrams, either
conceptualizing high level data models (Kjenstad, 2013; Wang et al., 2018),
or depicting more speci�c geological and environmental features (Pinet,
2012; Tegtmeier et al., 2014). In contrast, the term of conceptual model
has also been suggested when any sketch or equation has become neces-
sary to clarify an idea (Agterberg, 2018; Florian Wellmann, Croucher, and
Regenauer-Lieb, 2012). Because of this, the delimitation of these concepts
as well as the generalization of the data structures and algorithms is seen
as a necessity in the geological modeling literature (Wang et al., 2016;
Wycisk et al., 2009). Accordingly, this section introduces a taxonomy in
which a GSIS abstraction model and a classi�cation of the data structures
used to implement the di�erent data models are explained.

Shen et al. (2013) classify the existing approaches for spatial modeling in-
tro three categories: surface-based, volume-based and hybrid models. This
classi�cation, while intuitive, is not very formal, since it includes within
the same category data structures like octrees and data models such as
3D raster or geocelullar models. Other surveys like the ones presented by
Natali, Lidal, and Parulek (2012) or Galin et al. (2019) aim attention at the
classi�cation of terrain and geological models but for computer graphics
applications. In order to follow a top-down approach, and inspired by the
widespread geospatial research, the taxonomy presented here classi�es
any geological representation into three high-level models: to the common
continuous �elds and discrete objects models, general models are included
as a di�erent attempts to unify every kind of spatial information into the
same representation.

2.1 continuous field models

In continuous �eld-based models, a property is distributed in a continu-
ous manner along a spatio-temporal domain. This property can be height
measurements (Li, Zhu, and Gold, 2004), the variation of pollution in the
air (Jjumba and Dragićević, 2015) or the distribution of geological materials
or physical parameters (Pryet et al., 2011). More formally, a �eld model is
de�ned by an injective function (Worboys and Duckham, 2004):

f : Rn → S (2.1)

2.1 continuous field models 11

where the domain is a space of any dimension, usually the 2D or 3D
Euclidean space, and the range S is the set of sampleable values.

This distribution can be categorized into two discretization approaches:
Tessellation-Based Fields (TBF) and Sampling and Interpolation-Based Fields
(S&IBF) (Liu et al., 2008). In TBF the whole space is discretized into tesserae
of regular/structured or irregular/unstructured shapes. Examples are regu-
lar grids, triangular networks or spatial models based on Voronoi diagrams.
S&IBF models de�ne a set of geometric objects to be sampled, such as
points or lines. For any n-dimensional position p, f(p) is calculated as an
interpolation of the values for the geometric elements in the neighborhood
of p (Li and Heap, 2014). Regular and irregular point clouds or isoline maps
are included in this category. Geological models are essentially de�ned
by a 2D/3D tessellation of a geographical space, thus the models and data
structures de�ned below are considered TBF approaches.

2.1.1 Grid-based models and data structures in geological modeling

Grid partition is the typical representation when modeling �eld-based
features. Depending on the application, this approach has di�erent denom-
inations. In terrain modeling, where 2D regular grids are mainly used, they
are called height�elds, heightmaps or Digital Elevation Models (DEM) (Wil-
son and Fotheringham, 2008). In the GIS �eld, the most widespread term
is 2D raster. However, this refers not only to height values, but also to any
scalar value (Longley et al., 2015). In other areas with three-dimensional
scope such as computer graphics, the term voxel model is the most used
(Hadwiger et al., 2006). In geological modeling, it is named in a di�erent
way depending on the purpose of the representation. For a discrete repre-
sentation of a 3D �eld of a given physical or chemical property, the terms
voxel model and 3D grid/raster are normally used. On the other hand, in
numerical modeling, the so-called hexahedral meshes are frequently used
in the calculation of �nite di�erence simulations (Owen et al., 2017).

2.1.1.1 Structured grids for surface modeling

A geological surface is usually described by means of the descriptions
of its geometry (height values) and its geological features (material, soil
resistivity, etc.). The space is partitioned into a w × h grid in which
each individual element can take values within a scalar range (e.g., height,
physical properties) or a nominal one if the grid encodes discrete categories

12 fundamentals of geological modeling

(e.g., materials). Due to their simplicity, the amount of work devoted to the
study of 2D grids, their properties and applications is huge. We can �nd
notorious examples of the use of this data structure in applications such
as surface geometry modeling (Li, Zhu, and Gold, 2004), the monitoring
of the soil evolution (McBratney, Mendonça Santos, and Minasny, 2003),
modeling of rockfall and hazard assessment (Lan, Derek Martin, and Lim,
2007) or representation of geological maps (Carré and Girard, 2002; Mateo
Lázaro et al., 2014) among many others.

However, it is not possible to represent complex geological structures
with two-dimensional grids, since more than one height value for a 2D po-
sition (px,y) may be required. Voxel models are the most direct extension
to 2D grids that allows this possibility. In a voxel model, the 3D space is
tessellated into a w× h× d grid, though the set of possible voxel values
is usually categorical: either a binary value (ground, air) or a geological
material. Regarding the state of the art, Jones et al. (2010) presented a
method for the simulation of directable weathering of exposed concave
rock using this data structure. Koca and Güdükbay (2014) used voxel mod-
els in combination with levels of detail and heightmaps to create a hybrid
model for representing these volumetric features. Jjumba and Dragićević
(2015) suggested voxel-based automata for simulating natural processes
such as the prediction of snow avalanches or the landscape evolution. The
same authors computed the fractal dimension over voxel models to as-
sess environmental three-dimensional objects like vegetation or geological
formations in the landscape (Jjumba and Dragićević, 2016). Recently, an
approach to generate arches, caves and other complex structures in the
terrain surface from user input data has been proposed (Becher et al., 2019).

2.1.1.2 Structured grids for subsurface modeling

At the end of the 1980s, voxel models began to replace CAD techniques
for the representation of volumetric features at the subsurface level like
Bezier surfaces or NURBS (Turner, 1992). Since then, voxel models have
been the traditional representation in geomodeling. Many works man-
age geomodeling like a pipeline in which each stage receives new input
data like borehole logs, cross-sections or surveys captured with Airborne
Electromagnetic Methods (AEM), improving the quality of the model. In
addition to the data model, interpolation methods such as Kriging, Inverse
Distance Weighting or regression models are indispensable to achieve a re-
liable grid (Li and Heap, 2014). Mallet (1997) was one of the �rst researchers

2.1 continuous field models 13

who represented geological models using grids. He �lled a 3D structured
grid with seismic velocity data in which discontinuities corresponding to
the intersections with horizons and faults were taken into account. In fact,
one the main modelers for geological applications, GOCAD, was designed
by him and his team (Mallet, 1992); although, ad-hoc geomodelers have
been also introduced (Hollt et al., 2012). Over time, GOCAD included
three-dimensional grids, from which many other geoscientists bene�ted.
For example, Smirno�, Boisvert, and Paradis (2008) used a support vec-
tor machine method in combination with GOCAD to reconstruct a 3D
model in a 3D grid from well data in an automatic manner. In addition,
this software package has been used to measure the gravel percentage
in a groundwater �ow model (Bonomi, 2009), or to gather geological in-
formation from di�erent inputs in a single voxel model (Kaufmann and
Martin, 2009). Other example of a methodology developed to discretize
a geological model in a 3D grid using di�erent sources was presented by
Kessler, Mathers, and Sobisch (2009). One of the most common sources
to compute 3D grids are AEM surveys (Jørgensen et al., 2013, 2015). Clay
fraction is also a valuable parameter used in geomodeling (Foged et al.,
2014; S. Høyer et al., 2015). Lastly, voxel models have been recently used
for rock tunneling applications (Cacciari and Futai, 2017).

2.1.2 Grids for numerical modeling

Simulations of geological processes using numerical methods usually
require either a 2D or a 3D regular discretization of the space. There exist
works that simulate water �ow and compute drainage networks using a
2D grid (Moore, Grayson, and Ladson, 1991; Ortega and Rueda, 2010). Also
in the hydrological �eld a 3D model for simulating sediment transport,
erosion and deposition was described by Karssenberg and Bridge (2008).
Ho�mann et al. (2017) presented a work that simulates the heterogeneity in
subsurface models by means of image quilting techniques. Finite di�erence
simulations usually cannot be run on triangular meshes or other data
structures representing the boundaries of the geological model; therefore,
methods for generating �nite element volume meshes have been presented
(Spear et al., 2016; Zehner et al., 2016).

Numerical models often make use of deformable voxel models known as
geocellular models (Denver and Phillips, 1990). A geocellular model is a 3D
structured grid in which a voxel does not have a cubic shape, but a more
general hexahedral structure. By using this geocellular model, among other

14 fundamentals of geological modeling

representations, a geological model of the Italian Alps was constructed
from a set of stratigraphic surfaces (Zanchi et al., 2009). Physical properties
like the resistivity of geological layers were also modeled with hexahedral
meshes (Pryet et al., 2011).

Nevertheless, Lie et al. (2012) claimed that reliable geological models
require grids wich are not forced to follow a strict arrangement and there-
fore, �t with the complex geometry of faults, fractures or eroded zones.
On this matter, they released an open-source MATLAB toolkit that eases
the creation of unstructured complex grids. Other open-source packages
have been developed trying to provide a more accurate discretization tool
for numerical simulations. For example, Berry et al. (2014) proposed inte-
grating a set of structured/unstructured grids in a GIS system in order to
improve the reliability and accuracy in numerical modeling.

Nevertheless, not only patterns based on hexahedral meshes exist. Ledoux
and Gold (2008) presented an approach for modeling 3D geological �elds
through unstructured Voronoi grids and their dual in 3D, the Delaunay
tetrahedralization. Sentís and Gable (2017) also introduced a work in which
the LaGrit toolbox (Los Alamos National Laboratory, 2016) was enhanced
with the inclusion of Voronoi meshes. Recently, unstructured prism grids
have been introduced for the simulation of reservoirs with complex forms
(Li, Li, and Zhang, 2018).

2.1.3 Hierarchical grids for geomodeling

Regular grids have a major memory overhead that has led to design-
ing data structures which apply adaptive resolution depending on the
heterogeneity of the data. In 3D modeling, octrees are the best-known hier-
archical data structure and have been successfully adopted in geomodeling.
In one of the �rst research works in geomodeling, Dunstan and Mill (1989)
suggested the use of octrees for modeling geological structures. Later, Jør-
gensen et al. (2013) used octrees to model AEM data in an e�cient manner.
Another example is the implementation of an octree re�nement algorithm
for hexahedral meshes suggested by Jansen, Sohrabi, and Miller (2017).
Combinations of coarse/�ne grids are also common, such as the works
presented by Lie et al. (2017) or Arnone et al. (2016) who used di�erent
spatial resolutions to describe terrain morphologic properties. In surface
modeling, solutions which make use of mipmap pyramids have also been
proposed (De Cola and Montagne, 1993; Losasso and Hoppe, 2004).

2.2 discrete object models 15

To conclude this section and, as mentioned above, the traditional ap-
proach for advanced representation of surface features and/or subsurface
structures is based on heightmaps or voxel models. An integral and e�-
cient solution for both cases consists of using a hybrid strategy: instead of
storing a single value for each cell in a regular grid, a list of intervals is
stored in what is called a material stack. Each stack compacts a vertical
sequence of voxels with a common material or physical property. This
representation, called the Stack-Based Representation of Terrains (SBRT),
was originally introduced by Benes and Forsbach (2001) for the simulation
of erosion processes in 3D terrains, and has since proven its usefulness in
several subsequent papers (Lö�er, Müller, and Schumann, 2011; Natali,
Klausen, and Patel, 2014; Peytavie et al., 2009). This dissertation shows its
suitability for geomodeling through a formalization of its de�nition, prop-
erties and basic algorithms including e�cient visualization. Moreover, we
will later describe an extension called QuadStack that delivers an excellent
compression ratio for big datasets.

2.2 discrete object models

Geological formations can also be represented by means of their bound-
aries. For example, a lithological layer could be de�ned by a set of polygons
assembled in a polyhedra, being these polygons the representation of its
di�erent surrounding horizons. This approach is �exible enough to model
the complexity of the morphological features commonly found in geolog-
ical data. However, in turn, the methods proposed within this approach
are notably more convoluted than �eld-based approaches. This di�culty
in the de�nition of the related data structures, as well as the necessity
of studying the resulting properties has led to an outstanding research
activity in this area.

The formalization of geological models has played a major role in the
geographic information sciences and geoscienti�c evolution. One of the
�rst geospatial issues addressed by the de�nition of formal models was the
representation of spatial relations among discrete objects (implemented by
vector data models in GIS terminology) such as topological, order or metric
relations (Egenhofer and Franzosa, 1991). Many were the theoretical mod-
els and data structures proposed for this purpose. For example, Molenaar
(1992) suggested one of the �rst data structures that validated this type of
relations for three-dimensional data: the 3D Formal Data Structure (3D
FDS). 3D FDS de�nes nodes, edges and arcs as basic elements, which can be

16 fundamentals of geological modeling

combined into surfaces and bodies as higher level objects. This work was
continued by Zlatanova (2000), who presented a formal model focused on
the improvement of spatial queries, and by Coors (2003) who introduced a
urban model from 3D FDS among others.

This background conceived for GIS was rapidly adopted by geomodeling
scientists (Mallet, 1997). Due to the high number of speci�c applications,
many di�erent goals have led to diverse data structures. Thus, a classi�-
cation seems necessary to catalogue every emerged solution. In this part
of the chapter, this dissertation will embrace the categories suggested by
Arroyo Ohori, Ledoux, and Stoter (2015).

2.2.1 Geological modeling with simplicial complexes

Several approaches are based on the mathematical formulation of the
cell and simplicial complexes theory. A simplex or n-simplex is the convex
hull of n+ 1 points in a Euclidean space of dimension less than n. Hence,
a 0-simplex is a node, a 1-simplex is an edge or arc, a 2-simplex is a triangle
and a 3-simplex is a tetrahedron.

This kind of representation encompasses data structures such as the
Triangular Irregular Network (TIN), composed uniquely by triangles, and
the TEtrahedral Network (TEN), which comprises tetrahedrons. In the
literature, TINs have been treated both as a �eld-based data structure,
mainly in GIS-related works (Goodchild and Kyriakidis, 2005), and as a
discrete object data structure in geological approaches (Zehner et al., 2016).
This is explained by its di�erent uses. When TINs are used as a pure surface
terrain model, they fall under the de�nition of �eld, since a property, in
this case the height values, can be computed as a function of a 2D spatial
position and, consequently, it can be tessellated in a piecewise model. In
geomodeling, TINs are mostly used to represent the boundaries of the
geological bodies or to represent geological horizons, which may not map
unequivocally a 2D position into a single height value (Galera et al., 2003).
Since for this dissertation only the applications in the geomodeling �eld are
of relevance, TINs will be considered as simplicial complex data structures,
even if they are embedded in a dimension higher than two (Arroyo Ohori,
2016).

Lemon and Jones (2003) were among the earliest to avoid the use of CAD
methods in order to build a reliable 3D geological model. They de�ned
a set of primary and secondary TINs to de�ne clear horizons between
the geologic structures. TINs have also been used for modeling free-form

2.2 discrete object models 17

stratigraphic layers (Caumon et al., 2009). A software that implements
a methodology to process geological information using di�erent sources
was released by Kessler, Mathers, and Sobisch (2009): GSI3D. In their work,
TINs were used to delimit what they de�ne as lithoframes. Similar ideas
have been presented in the works of Maxelon et al. (2009), Ming et al.
(2010) or Guo et al. (2016), among others. Other software libraries provide
speci�c meshing methods for the generation of consistent geological mod-
els (Pellerin et al., 2017). Moreover, as mentioned above, TINs have also
been used for representing the boundaries of geological structures through
triangular meshes (De Oliveira Miranda et al., 2014).

Tetrahedral meshes are analogous to triangular meshes, but they have
the advantage of being able to model volumetric features. TEN was in-
troduced as a 3D geological/topographic data structure by Pilouk (1996).
Penninga (2008) introduced a new data structure that modeled both sur-
face and subsurface spatial datasets, partitioning the 3D space into a set of
connected 3-simplexes. Caumon et al. (2012) used tetrahedral meshes for
gathering data from di�erent sources such as remote sensing images and
DEMs, and resolving the generated discontinuities. Additionally, hierar-
chical data structures have been introduced in order to perform e�cient
topological queries on tetrahedral meshes (Weiss et al., 2011). Finally, a
simplex-based approach to implementing dimension-independent opera-
tions in geoscienti�c applications was presented by Karimipour, Delavar,
and Frank (2010).

Figure 2.1.a illustrates an example of a polygon represented by means
of simplicial complexes.

2.2.2 Geological modeling with cell complexes

The elements used to de�ne cell complexes are somewhat similar to the
primitives associated to simplicial complexes. However, the mathematical
background of the former is stronger. A d-dimensional cell complex in a
Euclidean space En is a homeomorphic image of a d-dimensional open
ball, i.e., an i-cell with 0 6 i 6 d is homeomorphic to an i-ball (0-ball is a
point, 1-ball is an open arc, 2-ball is an open disk, etc.). Each pair of i-cells
are pairwise disjoint and they are adjacent if they share a k-face (k < i).
Given two cells, an i-cell is incident to a j-cell if the former is a face (that
could have any dimension d > 0) of the latter (Čomić et al., 2014).

Cell complexes are mainly modeled by their (d-1)-cell boundaries, while
a d-simplicial complex is usually modeled by d-dimensional primitives

18 fundamentals of geological modeling

(for example, a volume is partitioned into a set of tetrahedrons). The most
common representations of cell complexes are the incidence graph data
structure (Sobhanpanah, 1989) and the Nef polyhedra (Bieri, 1995) (see
Figure 2.1.b). Although there are some papers focused on geospatial mod-
eling that use this kind of data structures (Ledoux, 2013), single-handedly
cell complexes have not emerged as an interesting approach in geological
modeling research. However, it is remarkable that CGAL, one of the main
software libraries for programming geospatial applications, implements
Nef polyhedra representation (The CGAL Project, 2019).

2.2.3 Ordered topological geomodeling

In GIScience, the usual manner of de�ning topological relationships
is by means of the 9-intersection model (Egenhofer, 1989). This model
describes these relationships with a matrix that is capable of representing
the eight possible spatial relations between two objects: disjoint, meet,
contain, inside, cover, coverby, equal and overlap. Further to this model,
the point-set topological theory is introduced in order to generalize the
topology of simplicial complexes (Egenhofer and Franzosa, 1991). Taking
the 9-intersection model and the point-set theory as inspiration, formal
frameworks for geomodeling have been proposed (Wang et al., 2016).

Ordered topological models are the result of the combination of both
simplicial complexes and cell complexes methods, together with some
notions of the point-set model. Each cell has a set of simplices as primitives,
called vertices despite having a dimensionality higher than 0. The vertices
are connected in combinatorial maps creating an incidence graph in which
strong topological relations are modeled. This graph can be seen as an
adaptation of the meet relation de�ned in the 9-intersection model (Thiele
et al., 2016).

Two leading representations have been proposed for using ordered
topological models: cell-tuples introduced originally by Brisson (1993) and
Generalized-Maps or G-Maps presented by Lienhardt (1994).

Given a cellular partition, for each n-cell a set of cell-tuples can be
built. A cell-tuple < c0, c1, . . . , cn > represents the topological path
from an n-cell to a 0-cell. In other words, an n-cell is i-incident to the ci
elements of their cell-tuples. Each of these tuples can be resumed into an
incidence graph, which is the topological representation of the cellular
partition. This graph can result in two possible orientations. For example,
given a 1-cell segment, it is connected (or its cell-tuple is 0-incident) to

2.3 generalized strategies for geomodeling 19

two di�erent 0-cell points, therefore the 1-cell would have two cell-tuples
with a di�erent orientation. G-Maps are similar to cell-tuples but with
di�erent notation terms. Likewise, vertices are the most basic elements
in the structure, but they take the name of darts instead of 0-cell and the
incidence relations are called involutions (see Figure 2.1.c).

Le et al. (2013) presented an object-relational data model for geosciences
in which the G-map is featured as a topological data structure. Then, a
system for erosion and sedimentation simulation using three-dimensional
G-Maps was presented (Crespin et al., 2014). This work proved the com-
pactness of this data structure when modeling very simple layered geolog-
ical objects. Breunig et al. (2016) introduced a web-service geo-database
that supports a wide variety of geomodeling data structures, including
cell-tuples.

To conclude, these topological models are no totally suitable for geo-
modeling since the elements represented lack a speci�c location in space,
and only their association relationships are de�ned. Also, in order to
compose the whole model, it would be necessary to traverse the graph
iteratively. Consequently, this approach is not the most feasible to perform
fast geometric queries (Poupeau and Bonin, 2006).

v0

v1

v2

v3

v4

v5v6

S0

S1

S2 S3

S4

C =< S0, S1, S2, S3, S4 >=
∑m

i=0 Si

S0 =< v0, v1 > − < v1, v6 > + < v6, v0 >

S4 =< v4, v5 > + < v5, v6 > − < v6, v4 >

S1

S0

v0

v1

v2

v3

v4

v5

S0 S1 v0 v1

v3 v4 v5

v6

v6

v2
darts

involutions

a) b) c)

Figure 2.1: A polygon represented by means of a) a simplicial complex, b) Nef
representation and c) a G-map.

2.3 generalized strategies for geomodeling

Although the solutions described in the previous sections can deal with
many problems, there are situations in which both discrete objects and
continuous �elds are used (Brooks and Whalley, 2008; Wang, Wan, and
Palmer, 2010). Di�erent proposals that deal with these situations have been

20 fundamentals of geological modeling

presented, on the one hand, performing conversions between the di�erent
data (Shen et al., 2013) or, on the other hand, de�ning a more general
framework that integrates both approaches in a hybrid one. Regarding
the latter strategy, it has been a productive research �eld in GIScience
(Gold and Mostafavi, 2000). A recurrent approach is to take the �eld data
model as the most general one and formalize it to be able to represent
discrete objects. Camara et al. (2014) proposed �elds as a generic type to
represent spatio-temporal data. Using a similar approach, Liu et al. (2008)
introduced the concept of G-Field (from General Field). In addition, they
classi�ed di�erent common geospatial operations and de�ned them in
their framework. Kjenstad (2013) proposed a more general framework in
which the concept of hyper�elds or �eld-of-�eld structure was introduced.

The works presented by Goodchild, Yuan, and Cova (2007) and Good-
child et al. (1999) suggest the generalization of every kind of geographical
information within the same framework: the geo-atom theory. This scheme
reduces a spatial feature in an nD position to an atomic form. More com-
plex elements are formed by aggregations of geo-atoms. A more thorough
description of this theory will be carried out in Chapter 4, since an impor-
tant part of this dissertation is based on a formalization of the previously
seen SBR (Section 2.1.1) for geological modeling based on this framework.

The previous works generalize objects and �elds in a broad GIS scope.
Speci�cally, with regard to geomodeling, Wu (2004) suggested a general
3D data model: the Generalized Tri-Prism (GTP), as an improvement of
a prior data model, the Tri-Prism (Gong et al., 2002). The GTP model
comprises six primitives: node, TIN-edge, side-edge, TIN-face, side-face
and GTP component. This model �ts nicely with those data pipelines where
borehole samples are the main data acquisition method, since adding a
new sample is a trivial operation in the data structure. Di�erent extensions
to this model have been proposed such as one designed especially for
irregular geological objects, the QTPV (from Quasi Tri-Prism Volume)
(Gong, Cheng, and Wang, 2004). Even though this method seems to fall in
the category of pure discrete objects, a partition of the whole space can be
handled with this structure and hence, interpolation procedures may be
de�ned over this 3D tessellation (Cui et al., 2017). Finally, an isosurface
extraction method inspired by the Marching Cubes algorithm has been
presented for visualization purposes (Li et al., 2018).

Figure 2.2 depicts the classi�cation considered in this section.

2.4 comparison of data structures for geomodeling 21

Figure 2.2: Classi�cation of the geological data models according to the data model
they represent.

2.4 comparison of data structures for geomodeling

The aim of this section is to compare some of the di�erent data structures
given above. A representative data structure has been chosen for each
data model, and they are studied in terms of topology, ease of construction
and query, and storage e�ciency. Voxel models, Voronoi Diagrams (VD),
unstructured grids and octrees are the data structures representing the �eld-
based data models. Regarding discrete object models, TEN data structure
(simplicial complexes), Nef polyhedra (cell complexes) and G-maps (ordered
topological models) will be compared. Finally, we will study the data
structure proposed for the GTP model by Wu (2004) as a representative of
the generalized models.

2.4.1 Topology

Having a topology-friendly data structure that provides direct access
to connected components is a key factor when simulating geological pro-
cesses. Thiele et al. (2016) described three types of topology: a basic cellular
topology, which relates primitives of the data model, and other two higher
level models: structural and lithological topology. Structural topology re-
duces the complexity of the cellular topology by creating connections
among the di�erent features of the geomodel, such as faults, reservoirs or

22 fundamentals of geological modeling

drill holes; while lithological topology stores the adjacency among litho-
logical formations in a matrix form. Structural topology is useful only in
certain problems and it is very dependent on the context, therefore the data
models are designed ad-hoc to solve each particular issue (Pellerin et al.,
2015). Lithological topology, by de�nition, neglects the spatial information;
hence, it is not very interesting for this analysis. Therefore, the comparison
will be done with respect to cellular or primitives’ topology.

Some �eld-based data structures establish their topology implicitly by
means of a spatial discretization. For instance, given a voxel with index
(i, j,k) from a voxel grid of w× h× d dimension, accessing to its neigh-
borhood is trivial. However, this topology does not provide information
about connections of more generic geobodies. In order to include this in-
formation, an additional supporting data structure has to be used (Mücke,
Saias, and Zhu, 1999). Nevertheless, hierarchical data structures bring a
partial topological structure based on resumed zones. Neighboring zones
can be reached by traversing the tree hierarchy. This implicit topology is
not available when working with unstructured grids. For example, as pre-
viously stated, Ledoux and Gold (2008) endowed their data model based on
VD with a tetrahedral mesh, which in conjunction with the VD structure
produces topological information.

For TEN data structures, meeting or touching relationships are de�ned
for simplices with the same dimension i.e., relations between two nodes,
two edges, or two triangles. A Nef polyhedron consists of a point set formed
by the combination of a �nite number of open half-spaces. These half-
spaces have in-out orientation, and they are gathered from set complement
and set intersection operations. From these combinations, set of local
pyramids that de�ne the i-faces (a 0-face is a vertex, a 1-face is an edge, a
2-face is a surface and a 3-face is a volume) of the polyhedra is obtained.
The local pyramids represent the neighborhood of a face and they are stored
in a sphere map data structure (Bieri, 1995). Finally, the last discrete object-
based data structure, the G-Map, bases their topology in a combinatorial
map between two intrinsic objects: the set of darts and their involutions
(the connection paths from an n-cell to a 0-cell). To sum up, only the
G-Map, since it is a topological data structure, includes within its own
de�nition topological information, the rest require auxiliary data structures
in order to de�ne it.

Finally, in GTP, the topological relationships are embodied in the data
structure. This data structure can represent every potential connection
among GTP primitives through indexing tables.

2.4 comparison of data structures for geomodeling 23

2.4.2 Memory consumption

Voxel models are clearly the most memory-consuming data structures,
even for moderate discretization resolutions. However, the number of
primitives that discrete-object data structures require to model complex
geodata, and their auxiliary topological structures, can also lead to high
storage consumption. Likewise, the VD and the GTP data structure also
demand auxiliary indices or tables to refer to the topological relationships.
Lastly, octrees, like other hierarchical data structures, are intended to
compress zones with high isotropy; therefore, they are expected to consume
less memory than the rest.

2.4.3 Querying and updating

It is well-known that, queries and updates can be performed in O(1)

in voxel models and in logarithmic time in hierarchical data structures
due to their structured form. Mücke, Saias, and Zhu (1999) suggested a
walking through algorithm to sample VD with an e�ciency close to the
theoretical optimal O(logn) from the dual Delaunay structure. In addition,
updates can be carried out without reconstructing the entire VD. Instead,
object-based data structures would need a spatial index in order to perform
a random point sampling, such as a k-d tree (Hachenberger, Kettner, and
Mehlhorn, 2007); otherwise, queries can be solved in O(n), n being the
number of connected primitives. In the case of Nef polyhedra, updating
and carrying out operations like translations, scalings or rotations can be
done in O(n logn). GTP has an easy update mechanism when adding a
new drill hole to the data, needing just local updates. If an e�cient random
sampling is required, an indexing data structure is mandatory.

2.4.4 Ease of construction

In order to make this comparison, three levels have been established
based on the construction di�culty: easy, medium and hard. Voxel models
can be tagged as the easiest data structure to be built, since this repre-
sentation is the input of many other construction methods. Also, octrees
can be considered straightforward to compute. The VD and its dual, and
the TEN data structure are included in the intermediate category. The
construction of the VD and the Delaunay tetrahedralization can be done

24 fundamentals of geological modeling

simultaneously thanks to their duality. The procedure of populating the
TEN data structure is similar to the latter. Finally, the remaining data
structures are catalogued as hard, in comparison with the previous ones,
because of the amount of additional index structures that have to be built.

Table 2.1 shows a summary of the features reviewed in this section.

2.5 visualization in gsis

Geodata visualization is fundamental for most GSIS applications. It
helps geoscientists to discover information and take decisions at a glance.
From the early adoption of CAD procedures based on the representation
of curves and surfaces (De Kemp, 1999; Fisher and Q., 1992), to modern
solutions based on virtual or augmented reality (Lee, Suh, and Park, 2015;
Maciejewski, Pomianek, and Piszczek, 2018) or by using tangible user in-
terfaces (Petrasova et al., 2015), GIScience has bene�ted from the advances
in computer graphics research, specially from sophisticated and e�cient
methods that allow the visualization (in real-time in many cases) of the
large amount of data that GSIS generates.

Roughly speaking, there exist two main techniques to visualize three-
dimensional models: Surface-based and volume-based techniques. The
former involve the extraction and rendering of isosurfaces. An isosurface
is a surface de�ned by the implicit function φ(x,y, z) = f, where f is a
constant scalar value, usually 0. Using this approach, 3D objects are sim-
ply represented by their boundaries. In geomodeling, these surfaces can
represent horizons, faults or the Earth surface. Once the set of isosurfaces
has been extracted, a set of polygonal meshes is constructed, usually trian-
gular meshes (Lorensen and Cline, 1987). Volume rendering techniques
manage volumetric data as a 3D scalar �eld. Mathematically, this �eld
can be seen as a mapping function φ : R3 → R, which is discretized in
order to be represented and visualized by a computer. Chapter 6 gives a
comprehensive description of this �eld of computer graphics, since the
visualization methods presented in this dissertation are mainly based on
which is known as Direct Volume Rendering (DVR).

The di�erences between these techniques remind somehow of the dis-
crete object/�eld models dichotomy discussed earlier in this chapter. There-
fore, it is not coincidence that most of the works devoted to model discrete
objects visualize them by means of surface-based methods and that �eld
data models are visualized with DVR algorithms.

2.5
visualization

in
gsis

25

Data model Data structure Geological Topology Ease of construction Queries and update Memory

Field-based Voxel model Not present Easy O(1) High

Voronoi diagram By means of Delaunay
tetrahedralization

Medium O(logn)
with its dual

Medium

Octree Tree hierarchy Easy O(logn) Low

Object-based TEN Tetrahedra connected
by their boundaries

Medium O(logn)
with an index data structure

Medium

Nef polyhedra Local pyramids Hard
O(logn)
with and index data structure.
Updates in O(n logn)

Medium

G-Map By means of an
i-involutions structure

Hard O(logn)
with an index data structure

Medium

Generalized GTP By means of indexing
tables

Hard O(logn)
with an index data structure

Medium

Table 2.1: Summary of the characteristics studied for the data structures reviewed.

26 fundamentals of geological modeling

Some geological features are modeled directly with polygonal meshes;
therefore, its visualization is straightforward. An example of this is the
work presented by Losasso and Hoppe (2004), who used traditional rasteri-
zation methods to visualize structured/unstructured grids. A mathematical
framework to interpolate and extract 3D geological surfaces from mul-
tivariate data using radial basis functions was presented by Hillier et al.
(2014). Surface rendering can also be enhanced by overlaying new infor-
mation (She et al., 2017). Brooks and Whalley (2008) extend the typical
2D GIS layer visualization to support three-dimensional layers. That layer
arrangement is depicted in the same general 3D model and visualized by
means of rasterization. Song et al. (2019) proposed a work in which a
combination of diverse methodologies to model and visualize geological
bodies was performed. The visualization was made by rasterizing trian-
gular meshes as well. Isosurfaces have also been extracted from gridded
scalar data with uncertainty (Zehner, Watanabe, and Kolditz, 2010). Finally,
many of the previous works examined in previous sections use this type of
visualization technique (Breunig et al., 2016; Kessler, Mathers, and Sobisch,
2009; Koca and Güdükbay, 2014; Li et al., 2018; Zehner et al., 2016).

Figure 2.3: Geological models visualized by the two di�erent aproaches: a) vol-
ume rendering of subsurface seismic data (Hollt et al., 2012) and b) a
triangular mesh representing a strata model (Song et al., 2019).

Regarding volume rendering methods, they can be applied to visualize
in conjunction 3D and 4D environmental data. By using a multi-CPU and
GPU approach, Li et al. (2013) distributed the cost of volumetric rendering
of dust concentration and evolution into several processors. Hollt et al.
(2012) proposed a system that generates subsurface information from seis-
mic data. After a horizon extraction method, the generated surfaces are
converted into a deformable voxel model that can be visualized with a

2.5 visualization in gsis 27

volumetric exploded view approach. Patel et al. (2009) combined di�erent
rendering techniques such as volume-based and texture-based algorithms
to visualize subsurface seismic data. With an illustrative purpose, a geo-
logical modeling system in which a set of surfaces are organized into a
3D irregular grid was proposed. These surfaces depict several geological
attributes like oil saturation, rock type, porosity or permeability (Rocha
et al., 2018). There are also works focusing on the surface of the terrain
that use GPU raycasting without rendering volumetric features (Ammann,
Génevaux, and Dischler, 2010; De Toledo, Wang, and Levy, 2008; Mantler
and Jeschke, 2006; Treib et al., 2012).

Hybrid visualization methods in which the model is rendered part by
part using both approaches have gained attention in the literature. Ex-
amples are the works presented by Caumon et al. (2005) who proposed
an incremental slicing algorithm and a generic data structure to render
unstructured grids by means of their isosurface and applying DVR in a
combined manner. Seeking a non-realistic visualization, Lidal, Hauser, and
Viola (2012), presented a cutaway visualization solution for 3D subsurface
models in which both polygon and volume rendering are used.

A couple of rendering examples extracted from the literature is shown
in Figure 2.3.

Part II

D ATA S T R U C T U R E S F O R G E O L O G I C A L
L AY E R E D D ATA

This part is splitted into three chapters. The �rst one draws
the conclusions from the previous chapter and introduces an
e�cient data structure for geological models: the stack-based
representation of terrains. The second chapter formalizes this
representation in the GIScience context. This formalization
de�nes the operations allowed with this representation as
well as an implementation model for data exchange. The
main contribution of the last chapter is an extension of this
representation, which provides an extra level of compression
by means of a hierarchical scheme: the QuadStack.

3
T H E S TA C K- B A S E D R E P R E S E N TAT I O N O F T E R R A I N S

about this chapter

This chapter describes the data structure on which this doctoral dis-
sertation is articulated, and serves as introduction of this part. First, a
general overview both in an intuitive and mathematical manner is pro-
vided. Afterwards, its current use in the state-of-art is presented. Then,
we address its bene�ts and propose the use of this representation for ge-
ological surface-subsurface structures. Finally, in order to demonstrate
its e�ciency in terms of memory usage, a comparative assessment with
traditional data structures is done. This chapter also lays the foundation
for the research work carried out by our research group in the last four
years and in collaboration with other international teams, with regard to
terrain and geological modeling.

3.1 efficiency in modeling geological fields

Chapter 2 discussed how geological structures, both at the surface and
subsurface levels, are typically represented by means of DEMs when just a
2.5D is required, or voxel data when modeling actual three-dimensional
�eld data. Therefore, if we need to model complex surface features like
natural overhangs or caves, or the model includes stratigraphic informa-
tion or the subsurface location of groundwaters, cavities or fractures, a
volumetric representation must be used. However, as noted earlier, this
representation raises the problem of large memory requirements, which
can be a relevant factor during the processing and visualization of high
resolution models.

A more e�cient representation is to extend DEMs to store in each cell a
sequence of vertical intervals of the same material or attribute instead of
a single elevation value. This is a straightforward way to pack stacks of
voxels with a common attribute at the same px,y coordinate. This is not a
novel idea; indeed Benes and Forsbach (2001) already introduced the Stack-
Based Representation of Terrains (SBRT) in the context of modeling terrain
erosion. A main strength of this representation is that it keeps the simplicity

31

32 the stack-based representation of terrains

of DEMs, making it possible to implement raster operations in an easy
way. Having a simple representation that serves both for implementing
raster operations on the terrain and for e�cient rendering is important
for many geoscienti�c applications.

3.2 related work

So far, the stack-based terrain representation and its variations have
been used in a few scienti�c works, mostly focusing on the visualization
at the ground level. Peytavie et al. (2009) got a realistic visualization by
proposing a hybrid model in which a stack-based representation (referred
to as material layer stacks representation) serves as support for generating
an implicit surface for rendering. Also, some sculpting and erosion ter-
rain tools were added. This work was extended by Lö�er, Müller, and
Schumann (2011) by creating a pipeline for the acceleration of this surface
generation. Their system achieves real-time frame rates in the rendering of
high resolution models. Natali, Klausen, and Patel (2014) were the �rst to
take advantage of this structure for modeling subsurface geological struc-
tures. In their work, they present a system for sketching and visualization
of geomodels to help geologists to teach geological concepts: an expert
sketches a series of material layers and geological elements (e.g., rivers,
lakes, etc.), which are converted into multiple height�elds for rendering.
Unfortunately, the use of height�elds only allows elements that can be
represented in 2.5D, excluding features like overhangs, caves, aquifers or
petroleum reservoirs. Similarly, Cordonnier et al. (2017) presented a system
for modeling subsurface geology in an interactive way. More recently, this
layered representation has been used for modeling dynamic, snow-covered
landscapes (Cordonnier et al., 2018).

In the previous approaches, the stack-based model plays a secondary
role, to visualize complex terrain structures or erosion processes at the
ground level or as an intermediate representation generated from a logical
model. In this chapter, we propose to use the stack-based model as a
primary representation for geological structures at both the surface and
subsurface levels.

3.3 defining the stack-based representation of terrains 33

3.3 defining the stack-based representation of terrains

Conceptually, this terrain representation can be considered as a general-
ization of common height�elds. As described above, whereas height�elds
contain a single value for each x,y coordinate position, stack-based repre-
sentation stores a stack of intervals. Each of these intervals is formed by a
start height and the attribute within it.

Phreatic
level

Depth
(m)

Geological
section

Sample N. Glows
S.P.T. Description of the material

3.80m
(24/05/06)

2.00

4.00

6.00

M-9
SPT-9

M-10
SPT-10

6-7-7-6
5-6-6-6

10-12-12-13

11-11-12-12

(0.00-0.90m) Anthropogenic material.

(0.9.-4.30m) High-plasticity clayey or muddy loam.
The material has a beige color.

(4.30-6.60) High-plasticity clayey or muddy loam.
The material has a blue color.

Figure 3.1: A real example of borehole log extracted from a geotechnical survey
performed at the University of Jaén (Spain).

The stack-based representation of terrains is a natural representation
for data generated by borehole logging. A borehole provides a top to
bottom sequence of materials at a given px,y position (Figure 3.1). A
common way to obtain a geomodel of the subsurface is by means of an
interpolation/extrapolation procedure of the boreholes samples, obtaining
a layer-cake model as a result (Turner, 2006). This generated model �ts
perfectly with the stack-based representation since each cell of the terrain
can store a single borehole record as a stack, including both materials and
height of the geological formations (e.g., water, petroleum, clay, rock, etc.)
and geological properties (e.g., density, permeability, resistivity, etc.).

3.3.1 Mathematical de�nition

Given a voxel grid V with resolution w× h× d, each voxel vx,y,z ∈ V
stores one or more attributes such as color, material or density, that depend
on the application. Layers are the maximal sets of connected voxels with a
constant value for a given attribute.

34 the stack-based representation of terrains

Stack s0,0

w

h

d
h2

h1

h0

a 0
=

a 1
=

a 2
=

In
te

rv
al

 i 0

In
te

rv
al

 i 1

In
te

rv
al

 i 2

Figure 3.2: Stack-Based Representation: A voxel dataset of resolution w× h×
d composed of layers is organized into vertical stacks consisting of
intervals. Each interval ik = 〈ak,hk〉 with the attribute value ak and
height hk.

The stack-based representation of V (see Figure 3.2) is its decomposition
into a set S of vertical stacks, where each stack Sx,y ∈ S comprises the
space de�ned by the column of voxels at position px,y:

Sx,y = Vx,y =

d⋃
i=1

vx,y,i

A stack is compacted as a run-length encoding of voxels with the same
value for the attribute. Therefore, we de�ne the stack Sx,y as a sequence of
intervals i1, i2,. . . , in along the ~z axis where ik is a tuple ik = 〈ak,hk〉
that represents the space comprised by the range of voxels of the column
Vx,y with identical attribute value ak:

hk =

⋃hk

i=1+hk−1
vx,y,i, if k > 0

0, if k = 0.

The intervals are sorted by height in ascending order: hk < hk+1 for
any given k such that 1 6 k 6 n. Figure 3.2 shows an input volumetric
structure encoded as a SBR.

The complexity of the SBR construction is O(n), where n = w× h× d
is the number of voxels, because each voxel needs to be visited exactly

3.4 memory storage comparative 35

once. The SBR construction can be done totally in parallel, because the
construction of a stack does not require information about neighboring
stacks.

Table 3.1: Memory consumption comparison. The octree measurements have
been taken with six depth levels.

Dataset Voxel dimension Memory usage (MB) Compression ratio (%)

Voxel model Octree SBR SBR -
Voxel model

SBR -
Octree

Dataset A 200× 250× 320 61.03 9.87 2.55 95.8 74.1
Dataset B 400× 500× 400 305.17 50.06 10.10 96.7 79.8
Dataset C 800× 1000× 800 2441.41 570.90 52.02 97.9 90.9

3.4 memory storage comparative

Although the stack-based representation is appropriate for 3D terrain
models and geological structures, it is not e�cient for other kinds of
volumetric data, such as medical datasets. The main problem is that such
datasets may not be clearly formed by a set of horizontal layers, thus
presenting quite complex and thin structures (e.g., blood vessels or nerves).
As a result, the proposed representation could use even more memory than
a voxel model. Moreover, volumetric medical datasets are usually acquired
from CT and MRI scanners as a stack of images in which every pixel stores
an intensity value coded by a 16 or 32-bit �oating point value. Therefore, in
order to encode then in a stack-based structure, a quantization procedure
must be performed �rst, by labeling each intensity range with a single
value. Of course, this introduces an error, and even if done carefully may
discard intensity values that are important for the analysis of the images.

Despite the fact that certain properties or blended materials could also be
considered continuous in natural geological formations, this representation
must be discrete for compression to be e�ective and to be able to carry
out analysis operations in an e�cient way. Nevertheless, an interpolation
procedure can be performed for visualization purposes.

A test to measure the memory usage of di�erent representations, namely
voxel model, octree and stack-based representation is summarized in Table
3.1. The datasets were obtained from the DINOloket database, which
provides subsurface data from several spots in Netherlands (Gunnink et
al., 2013). The results show a much smaller memory usage of the SBRT

36 the stack-based representation of terrains

compared to the rest. Our method requires 95% less space than a voxel
representation. Even the memory usage of a SBRT is much lower than that
of an octree, 74% less for Dataset A, 79% less for Dataset B and 90% less for
Dataset C.

Figure 7.15 in Chapter 7 shows a visual depiction of the datasets used in
this experiment.

4
F O R M A L F R A M E W O R K F O R T H E S TA C K- B A S E D
R E P R E S E N TAT I O N O F T E R R A I N S

about this chapter

This chapter presents a formal framework for the representation of
three-dimensional geospatial data and the de�nition of common GIS spa-
tial operations. The main contribution of this chapter is �tting the SBRT
into the geo-atom theory in a seamless way, providing it with a sound
formal geospatial foundation. In addition, a set of common spatial op-
erations on this representation are de�ned by using the tools provided
by map algebra. More complex geoprocessing operations or geophysical
simulations using the SBRT as representation can be implemented as a
composition of these fundamental operations. Finally, a data model and
an implementation extending the coverage concept provided by the GML
standard are suggested. The results of this work have been published in
International Journal of Geographical Information Science.

Graciano, A., Rueda, A.J. & Feito, F.R.
A Formal Framework for the Representation of Stack-based Terrains.

International Journal of Geographical Information Science, 32(10), 2018.

4.1 introduction

When we introduced the generalized strategies for geomodeling in
Chapter 2, it was observed that there are many scenarios that require a
general or hybrid representation that deals at the same time with �eld and
discrete data types. In the early 1990’s, Goodchild (1992) already noted
the necessity to unify both data models in a general spatial representation,
introducing for this purpose the geo-atom theory later (Goodchild, Yuan,
and Cova, 2007).

The formal framework for the stack-based representation of terrains here
presented is based on the geo-atom theory. This formalism is completed
by describing a set of relevant operations that provide value to the system
(Liu et al., 2008). Due to the abstraction provided by the geo-atom theory,

37

38 formal framework for the stack-based representation of terrains

the framework is able to deal not only with a 3D distribution of geological
materials or volumetric surface features, but also with any other physical
or environmental property useful for terrain analysis or simulation. This
aims to support geoscientists with a simple and well-de�ned model for 3D
terrain and subsurface modeling.

The geo-atom is still subject of further research: in the paper presented
by Jjumba and Dragićević (2015) voxel automata are used together with
geo-atoms for the simulation of geospatial processes. Extending this theory,
Wang, Duckham, and Worboys (2015) developed a formal framework for
the modeling of movement, and Voudouris (2010) a general framework of
�elds to deal with uncertainty. Recently, Zhu, Kyriakidis, and Janowicz
(2017) have underscored the limitations of geo-dipoles (explained below)
for covering spatial patterns for multiple locations, showing some examples
in which statistics operations require a more general approach.

4.2 geo-atom theory background

A geo-atom is a tuple< p,Z, z(p) >, which contains information about
the value (z(p)) of a property (Z) at a speci�c position (p). A property
and the set of possible values that can be obtained are sometimes referred
to as the domain and its range respectively. The dimensionality of p can
be arbitrary any space, therefore, a 3D space or 4D space-time are suitable
to be adopted.

Geo-atoms are assembled into geo-objects or geo-�elds depending on
the type of information provided. Geographic data like points, lines, poly-
gons or solids are represented as geo-objects, while geo-�elds are the
aggregations of geo-atoms over a space-discretized domain.

As explained in Chapter 2, the possible discretizations for a geo-�eld can
be categorized into two groups: Tessellation-Based Geo-Fields and Sampled
and Interpolated-Based Geo-Fields (Liu et al., 2008). In TBGF the sampling
value obtained from a position within a domain is the value associated
with the tile identi�ed at this position. In other words, all the geo-atoms
contained in a tile have the same property value. A remote sensing image
that characterizes coastal zones (discretized as a regular grid of pixels) is
an example of a TBGF. On the other hand, an S&IBGF uses some kind of
interpolation to sample a value from a speci�c position. For instance, in
order to retrieve the height from a 2D position in a digital elevation model
(using a regular 2D array of points as discretization as exposed in Table
4.1), an interpolation value is computed using the nearest sampling points.

4.2 geo-atom theory background 39

The most common approaches of discretization, identi�ed by Goodchild,
Yuan, and Cova (2007), are shown in Table 4.1. These approaches were
introduced for a 2D domain to the best of our knowledge; nevertheless,
they can be extended to any dimension.

Table 4.1: Common discretizations for geo-�elds.

Discretization Type Objects discretized Example

F1 TBGF Non-overlapping polygons Choropleth map
F2 TBGF Triangular elements Triangular Irregular Networks
F3 TBGF Regular grid of cell Digital Elevation Models
F4 S&IBGF Irregular spaced points LiDAR data
F5 S&IBGF Points in a regular array Air Pollution
F6 S&IBGF Isolines Topographic Maps

Geo-atoms can describe all the spatial phenomena for isolated locations
such as pollution level or river networks. However, many properties need
interaction among locations.

In contrast with a geo-atom which links a property to a location, a geo-
dipole links two locations (p1 and p2), a new property (Z) and the value of
applying the property to the pair of locations (z(p1,p2)). The interaction
is summed up by the tuple < p1,p2,Z, z(p1,p2) > (Zhu, Kyriakidis, and
Janowicz, 2017). Geo-dipoles are very useful for terrain modeling. There
are several properties very common in geoscienti�c applications which
require a connection between locations. Problems like viewshed analysis
(Zhao, Padmanabhan, and Wang, 2013), drainage network determination
(Ortega and Rueda, 2010) or the assessment of optimal �ood protection
levels in urban �ood risk management (Wang, Wan, and Palmer, 2010)
can be accomplished with the use of geo-dipoles. For example, given a
visibility property for a terrain surface that indicates whether a location
p1 is visible from another location p2, the geo-dipole for each point is <
p1,p2, is_visible, true >. Geo-dipoles provide a generalization to several
interaction models proposed in the literature, namely object �elds (Cova
and Goodchild, 2002), metamaps (Takeyama, 1997), object pairs (Goodchild,
1992) and association classes (Zeiler, 1999).

From these models, the concept provided by object �elds is especially
relevant for our framework. In an object �eld each point maps not to a

40 formal framework for the stack-based representation of terrains

value but to a geo-object with the set of locations which meet a property
given by a speci�c geo-dipole. This is interesting since many geoscienti�c
and GIS problems do the gathering or an analysis of a set of locations
that ful�ll a requirement. Taking the example of the visibility property
again, a geo-object O(p1) can be generated with all the locations that are
visible from p1. This concept is also valid for a neighborhood since we
can construct a geo-object with the locations of those geo-atoms that are
within an area of in�uence.

4.3 3d terrains as geo-fields

Most of the properties that can be measured in the subsurface are con-
tinuous (e.g., material distribution, terrain resistivity or erodibility) and
therefore, can be represented with a geo-�eld. Since a geo-�eld can aggre-
gate an in�nite set of geo-atoms, it is necessary to de�ne a discretization
scheme in order to simplify and make the representation manageable.

In terrain and geological modeling, one of the properties that can be
sampled in a geo-�eld is the material at a speci�c position. This property
can be mapped by a scalar TBGF that establishes the aggregation of a set
of geo-atoms characterized as:

< p,M, fm(p) > (4.1)

where M = {m0,m1,m2, . . . ,mn,u} is the set of materials sampled
(e.g., sand, clay, air, etc.), u the material classi�ed as unknown, px,y,z ∈ R3

is a space location and fm a surjective function de�ned as:

fm : R3 →M (4.2)

Among the many ways to discretize a geo-�eld for terrain and subsurface
modeling (Section 2.1.1), it is well-known that the most commonly used
discretization is a 3D regular grid or voxel model in a 3D extension of the
F3 type (Table 4.1). Then, given a grid with dimensions w× h× d and
resolution r = (rx, ry, rz), each point maps to a voxel unambiguously. For
each voxel, a representative geo-atom gr can be de�ned. This geo-atom
serves as input in several of the operations in our framework and may be

4.4 stack-based terrains as geo-fields 41

located at any point of the voxel. In this case, the centroid of the voxel is
set as gr (Figure 4.1).

gr

rx
ry

rz

Figure 4.1: Relation between a 3D regular grid and a representative geo-atom.

A space tessellation as a regular grid is a straightforward way to con-
ceptualize geo-�elds but it can lead to implementations with high memory
requirements. Therefore, the election of the stack-based representation of
terrains is a perfect solution to overcome this shortcoming.

4.4 stack-based terrains as geo-fields

In contrast with voxel models, a SBRT discretizes the XY plane in a
2D regular grid whereas the compressed voxels are represented as a non-
regular grid along the z coordinate. In this way, the minimal sampling
elements (the intervals or cuboids due to their geometric shape) are or-
ganized in stacks along the z direction. Given the set of voxels packed
by an interval, its gr =< p,M, fm(p) > is the representative geo-atom
of the upper voxel. Therefore, in the tuple < m,h > de�ned above, m
corresponds with fm(p), and the maximum height of the interval, h, is de-
termined by pz and the resolution of the 3D regular grid in the z direction,
i.e., h = pz + rz/2. As a result, in order to compute the function fm from
a 3D position, it is necessary to select a stack from the x,y coordinate to
�nally obtain the corresponding interval of the stack from the z coordi-
nate. More formally, given a 3D position px,y,z, we calculate fm(px,y,z)

as follows. First, a stack Sx,y must be selected from the x,y coordinates.
Sx,y has to verify |px − x| 6 rx/2 and |py − y| 6 ry/2, where px,y is
the location of any of the representative geo-atoms of its intervals. S is a
set of intervals S = {I1, I2, I3, . . . , In} sorted by the heights of their rep-

42 formal framework for the stack-based representation of terrains

resentative geo-atoms in ascending order. Therefore, fm(px,y,z) = mi,
being i the index of the interval that veri�es hi−1 < z 6 hi, with i > 1,
orm1 in the case of hmin < z < h1, where hmin is the z coordinate of
the bottom face of the cuboid I1. Otherwise, fm(px,y,z) = u.

Following this, a SBRT geo-�eld can be seen as an aggregation of two
geo-�elds at di�erent levels, forming a hyper�eld (Kjenstad, 2013). The
higher level geo-�eld, which represents the grid of the terrain, follows
a discretization of type F3. Regarding the lower level geo-�elds, namely
the set of stacks, they are de�ned, according with an F1 discretization,
as an irregular but geometrically shaped tessellation, i.e., a structured
tessellation whose elements follow a pattern in their form (all of them are
cuboids), but they have not the same size. Figure 4.2 shows an example
of a 3D terrain modeled by voxel data, the resulting DEM and a stack of
intervals. Moreover, in Figure 4.3 the contextualization of the SBRT within
the geo-atom framework is represented. In this scheme, the more general
data types and concepts are included in the conceptual level, while the
concrete implementations given a problem are part of the logical model.

I4 =< m4; h4 >

I3 =< m3; h3 >

I2 =< m2; h2 >

I1 =< m1; h1 >

(a) (b) (c)

gr

(d)

Figure 4.2: Example of a 3D terrain model using a voxel representation (b). A
DEM of the terrain is showed (a), a sample stack is generated from
column of voxels (c) and an interval (d) are also represented.

4.5 operations with 3d terrains

Once SBRT has been described, this section focuses on the characteriza-
tion of common operations for his representation, relying on map algebra
as formal framework.

4.5 operations with 3d terrains 43

Figure 4.3: Stack-based representation of terrains in the context of geo-atom the-
ory.

4.5.1 Map algebra background

GIS and many geoscienti�c applications commonly require operations
such as feature clipping or intersection, bu�ering, scale change, format
conversion, distance measurement and so on. One of the reasons why
researchers make e�orts to improve the way in which spatial data is repre-
sented is to implement these operations in an e�cient way. Traditionally,
many manipulation and spatial analysis operations for �elds have been
de�ned by means of map algebra (Tomlin, 1990). Inspired by the methods
of Image Processing (Ritter, Wilson, and Davidson, 1990), this de�ne raster
layers as inputs. Map algebra allows operations such as Boolean intersec-
tions, union; arithmetic operations like subtraction or addition; statistical
or relational operations.

Map algebra was originally introduced for the 2D domain. An evident
improvement is to extend this framework to a 3D space and, therefore, use
voxel models as operands. Mennis, Viger, and Tomlin (2005) bene�ted from
this additional dimension to handle spatio-temporal models. Likewise, in
order to obtain dynamic models, Takeyama and Couclelis (1997) merged
map algebra with cellular automata developing the geo-algebra generaliza-
tion. However, map algebra operations can be de�ned not only on regular
grids. Ledoux and Gold (2008) suggest that Voronoi diagrams can be used
in combination with map algebra for modeling 3D geoscienti�c �elds.

This framework classi�es spatial operations depending on their context.
Initially three kinds of operations were de�ned: local, focal and zonal. In
local operations (1) each cell of the new map layer is created from the
gathering of overlapping isolated cells of the input layers. Consequently,
regarding the number of operands, local operations can be unary as well

44 formal framework for the stack-based representation of terrains

as n-ary operations. In contrast, in a focal operation (2) on a position p,
the output cell is computed from the input cell at that position and its
neighborhood from the input layers. Usually the neighborhood is based
on pixel adjacency in a similar way to image convolution. Finally, in zonal
operations (3) each output cell is computed from a zone of a unary input
layer in a similar approach to focal operations. The zones of the input
layer must be non-overlapping; therefore a cell only belongs to a single
zone. Every output cell within an input zone is provided with the same
value, which is the result of the aggregation of the cells inside the zone.

In addition to these operations, some authors have included global
operations. These unary operations are performed on an entire layer.
For instance, algorithms based on distances, such as least cost path or
geometric conversions can be considered as belonging to this category
(DeMers, 2002).

Liu et al. (2008) for their general �eld conceptualization, extended the
map algebra operations by reformulating some of them and adding new
ones. For instance, local operations were separated, depending on the
number of input layers, into reclassi�cation operations and overlay opera-
tions for unary and n-ary operations respectively. Also, they de�ned the
subset (or slice) and object identi�cation operations which can be used for
extracting some part of a layer. In addition, an operation for the application
of a generalization or level of detail was described.

The previous operations are irreversible since an input layer cannot be
obtained from its output. The authors denoted this type of operations as
Order-Increasing Operations (OIOs); otherwise, they are Non-OIO (NOIO).
Operations such as geometrical transformations, exact interpolation and
Fourier transformations are examples of the latter.

4.5.2 De�nition of operations

Although map algebra was designed taking into account 2D raster layers,
its principles can be extended to the SBRT. However, not all operations
make sense. Subset and object identi�cation have the same meaning for a
SBRT and therefore can be combined into a single operation. Moreover,
an exact interpolation operation is obviously not appropriate because a
SBRT is de�ned by a TBGF model.

In map algebra and its subsequent developments (Cordeiro et al., 2009;
Schmitz et al., 2013), the operations receive as inputs a layer (unary oper-
ation) or a set of layers (n-ary operation) although the actual computed

4.5 operations with 3d terrains 45

Table 4.2: Examples of SBRT operations.

Operation type Example Output geo-�eld Order

Reclassi�cation Binarization Scalar TBGF OIO
Overlay Boolean Union Scalar TBGF OIO
Focal operation Normal surface calculation Vector S&IBGF OIO
Zonal operation Material percentage calculation Scalar TBGF OIO
Global operation Euclidean distance to a position Scalar/Vector S&IBGF OIO
Subset operation Cross section extraction Scalar TBGF OIO
Object identi�cation Material layer removal Scalar TBGF OIO
Generalization Level of detail Scalar TBGF OIO
Geometrical transformation Coordinate system conversion Scalar TBGF NOIO

elements are the individual map cells values. In 3D map algebra (Mennis,
Viger, and Tomlin, 2005), the computable elements are the voxels values.
Accordingly, in our framework the input elements of the operations are
the elements contained in the intervals, i.e., the geo-atoms / geo-dipoles /
geo-objects. For the sake of simplicity, we de�ne and give examples of just
unary and binary operations.

First of all, for a pair of intervals to be computed in a binary operation,
the input geo-�elds must be spatially congruent. This requirement is
divided into two constraints:

1. The SBRT geo-�elds must be congruent at grid cell level. This means
that the implied geo-�elds should have the same grid resolution.
If not, a generalization operation (see below) must be performed
to the geo-�eld with larger resolution to avoid loss of precision. If
required, a readjustment of the position of the grid can be carried
out to make them �t perfectly.

2. The SBRT geo-�elds must be congruent at interval level. Operations
between stacks have to be applied to pairs of intervals with the same
position and height. Two intervals can overlap in three di�erent
ways: (1) full match when both representative geo-atom position and
height match, (2) partial match when only a part of both intervals
overlap and (3) full inclusion when one of the intervals is entirely
included in the other. Therefore, it is necessary to split the intervals
in the cases 2 and 3, in order to have the required full match before
applying the operations.

46 formal framework for the stack-based representation of terrains

Table 4.3: A conceptual view of the operations of the SBRT.

Input(s) Output Function

Reclassi�cation

f :M1 →M2

M1 = {m1,m2,m3,u} M2 = {m4,u}

Overlay

f :M1 ×M2 →M1

M1 = {m1,u}
M2 = {m2,u} M1 = {m1,u}

Focal operation

f :M1 × · · · ×M1 →M1

M1 = {m1,m2,m3,u}

Zonal operation
0%

100%

f :M1 × · · · ×M1 →M2

M1 = {m1,m2,m3,u} M2 = [0, 100]

Global operation
p 0

1

f :M1 →M2

M1 = R3 M2 = R

Subset operation
π

f :M1 →M2

M1 = R3 M2 = {m1,m2,m3,u}

4.5 operations with 3d terrains 47

Table 3 (continuation).

Input(s) Output Function

Object identi�cation

f :M1 →M2

M1 = {m1,m2,m3,u} M2 = {m2,u}

Generalization

f :M1 × · · · ×M1 →M1

M1 = {m1,m2,m3,u}

Geometrical transformation

f :M1 →M1

M1 = R3

48 formal framework for the stack-based representation of terrains

An operation is speci�ed by two components besides the input geo-�elds:
a function f that maps an input set into an output one and a position p.
The position is used for sampling the input set and also as output location.
Thus, the operation can be described in tuple notation as < f,p >.

The input set can be formed by a single property for most unary op-
erations or by the product set of several properties in the case of binary
operations. Some unary operations in which a single object �eld acts as
input, for instance in focal operations, also use a product set.

The nature of the geo-�elds can be very diverse depending on the type of
operation. The input and output sets are not limited to the SBRT encoded
attributes. For example, there are several operations that perform distance
measurements or geometrical transformations, which use as input the
set of locations. Hence, besides sampling materials or physical attributes
among other SBRT attributes, p can also be used to sample an input vector
geo-�eld, an object-�eld or a geo-�eld that aggregates relations between
geo-atoms in the form of geo-dipoles.

For the sake of illustration, several of the operations depicted in Tables
4.2 and 4.3 are described in detail below:

Binarization. A change of the property measured in a location
is referred as a reclassi�cation of a geo-�eld. Due to the unary
and local nature of the operation, it is performed independently
for each interval. Therefore, the location p of the operation is the
representative geo-atom of the interval and its function is de�ned
by f : Z1 → Z2 that takes the property of the input geo-�eld (Z1)
and map each interval to an output property (Z2).

A simple example for a geo-�eld representing a SBRT is the bina-
rization of the materials: given the set of materials M, a function
f can be de�ned as f :M → B where B = {solid, air}. The output
position p is the position of the representative geo-atom belonging
to the input interval. This example can be seen in Figure 4.5.a.

Boolean operations. In contrast with reclassi�cation operations,
overlay operations require a set of spatially congruent geo-�elds as
input in order to be performed. In this case, the function is de�ned
by f : Z1 ×Z2 → Z3.

Boolean operations are a typical example in map algebra. Let us
de�ne a terrain subsurface dataset and a groundwater dataset, both
geo-�elds represented by a SBRT. Assuming that both layers are

4.5 operations with 3d terrains 49

overlapped and congruent in space, they can be combined into a
single geo-�eld by using a Boolean operation. In this case, a splitting
operation has to be performed over pairs of stacks. Once the geo-
�elds are totally congruent, the operation can be computed. The
transition function f : M1 ×M2 → M3 with M3 = M1 ∪M2

where M1 = {air, ground, u} and M2 = {water, u}, can be de�ned
with the conditional rule:

f(m1,m2) =

m2, ifm2 = water

m1, otherwise
(4.3)

Withm1 ∈M1 andm2 ∈M2. Finally, the location of the operation
is the representative geo-atom of the interval once the splitting
operation is applied (Figure 4.5.c).

Convolution operations. During the computation of an opera-
tion of this type at a speci�c position, a sampling of the neighbor
locations is necessary in order to obtain the �nal value, i.e., a focal
operation must be applied at every location p. For each location a
geo-atom or a geo-dipole (if an interaction between the actual and
neighbor locations is required) is generated with the new sampled
value. Their locations can be gathered in a geo-object O(p) that
forms a geo-�eld in which a location maps to a geo-object. These geo-
objects are the input for the function f : Z1 ×Z1 × · · · ×Z1 → Z2.

The computation of the normal vector of an isosurface is an illustra-
tive example of this kind of operation. This is a common operation
for both terrain analysis (for instance, for slope or drainage network
calculation) and visualization purposes. In this context, we de�ne an
isosurface as the set of face portions of the cuboids associated with
the intervals, which are in contact with a given material (called iso-
material). A normal vector can therefore be computed at each point
of this isosurface. In many applications, it is common to use air or
water as isomaterials; in these cases, the vectors are perpendicular
to the plane tangent to the ground at each point. For this operation,
a 3D Moore neighborhood or kernel can be adopted, aligning the
point to be processed with the kernel center. Both the cell size of
the kernel and its dimension are setup values chosen depending

50 formal framework for the stack-based representation of terrains

on the desired accuracy of the method. For each neighbor loca-
tion pi,j,k, placed at the center of a kernel cell ki,j,k, a geo-dipole
< p,pi,j,k,Uv,uv(p,pi,j,k) > is calculated where Uv is the prop-
erty unit vector and uv(p,pi,j,k) the unit vector from p to pi,j,k. A
geo-objectO(p) is de�ned as the set of locations of those geo-dipoles
that point towards an interval with the isomaterial. This is the input
of the function f : Uv×Uv×· · ·×Uv→ Uv that calculates the nor-
mal vector to the surface as the sum of these geo-dipole values (unit
vectors). Formally, this function can be described by the equation
f(fm(p0,0,0), fm(p0,0,1), fm(p0,0,2) . . . fm(pn−1,n−1,n−1)) =∑

i

∑
j

∑
k u(p,pi,j,k)[fm(pi,j,k) = isomaterial], being n× n×

n the dimension of the 3D kernel. This example is shown in Figure
4.5.e and in Section 7.2.1 can be seen an implementation of this
operation.

Another example is the extraction of drainage networks (Rueda,
Noguera, and Martínez-Cruz, 2013). Given a SBRT geo-�eld con-
structed from a DEM (M = {ground, water, u}), a new interval
can be added to each stack representing a water layer. Then, a
�ooding simulation is performed until there is no water transfer be-
tween an interval and its neighbors. Formally, an Sx,y stack whose
upper interval contains water, �oods their neighbor stacks if its
total height is higher. This procedure is repeated until a state of
balance is reached. A �ooding algorithm can receive as input a
geo-object (O(p)) formed with a set of geo-dipoles indicating the
di�erence of height (H) between an interval �lled with water and
located in p and its neighbors. The function is therefore de�ned by
f : H×H× · · ·×H→ H. Figure 4.4 depicts a step of this operation.
Notice that in contrast with the original implementation described
in (Rueda, Noguera, and Martínez-Cruz, 2013), an adaptation of the
algorithm to SBRTs could also deal with underground water.

Level of detail. The application of a generalization, also called
Level of Detail (LoD), is a fundamental operation in GIS packages.
It is required as a previous step for an n-ary operation as we stated
before, but it also has applications as a compression method and for
visualization. The result of this operation is a geo-�eld representing
the same dataset but with a di�erent cell resolution (only rx and ry
are modi�ed). The cells of the new grid can overlay one or more cells
from the input grid. In the �rst case (the output cell overlays one

4.6 an implementation model 51

M = fground;water; ug

O(p)

(−1;−1)

(1; 1)

(−1; 1)

< p;p−1;−1; H; h(p;p−1;−1) >

< p;p0;−1; H; h(p;p0;−1) >

< p;p1;−1; H; h(p;p1;−1) >

< p;p1;1; H; h(p;p1;1) >

gr

< p; water; h >

f : H ×H × : : :×H ! H

Figure 4.4: Computation of the water transfer to a stack from its neighborhood in
a �ooding algorithm.

single cell), the new cell will take as value the input stack. Otherwise,
a splitting operation must be carried out with the overlapped cells
in order to combine their stacks using, for instance, a weighted
sum. To illustrate this, in Figure 4.5.d a geo-�eld is subjected to a
generalization operation.

4.6 an implementation model

Section 4.5 gives a conceptual overview of the proposed representation
for 3D terrains. In this section, we discuss an implementation model
based on the de facto standard Geography Markup Language (GML) (OGC,
2007a).

The development of an independent information model that provides an
adequate exchange format and eases the reuse of the spatial information
is a current trend in GIScience. Studies concerning the management and
integration of geoinformation in civil engineering projects have revealed
this: the exchange of the information and its monitoring are troublesome
because of the use of non-standard data models �le formats and tools
(Tegtmeier et al., 2009). To overcome this issue, there are e�orts to release
application-independent open standards to manage geospatial information,
such as those led by the International Organization for Standardization
(ISO) and the Open Geospatial Consortium (OGC). For this reason, the �rst
step to de�ne our implementation model is choosing one of the published
standards as a starting schema to be augmented with our conceptual
proposal.

The ISO and the OGC have collaborated in the creation of several geospa-
tial standards such as the ISO 19107:2003 "Geographic Information - Spatial
Schema" (OGC, 2003), which provides the conceptual foundations previous
to GML (ISO 19136:2007) or the ISO 19123:2005 "Geographic Information -

52
form

al
fram

ew
ork

for
the

stack-based
representation

of
terrains

M = {m0,m1,m2,m3, ...,mn−1, u}
m1 = clay

m2 = dolomite
m3 = sand

m4 = air
m5 = silt

m6 = bedrock
f : M → B

B = {solid, air, u}

∪
M2 = {water, u}

M3 = {water, solid, air, u}
isovalue = air
V = {v ∈ IR3; ||v|| = 1}

f : V × V × V → V

f : B ×M2 →M3

(0, 1, 0)

(1,0,0)

(0, 0, 1)

(a) (b) (c)

(d) (e) (f)

Figure 4.5: Examples of operations with a SBRT. A pipeline of operations is applied to an original SBRT geo-�eld.

4.6 an implementation model 53

Schema for Coverage Geometry and Functions" (OGC, 2007b). The latter
document de�nes the conceptual architecture for �elds, referred to as
coverages, and the implementation of this abstract speci�cation by means
of GML. We use the more recent proposal of coverage implementation
(OGC, 2015) rather than the original document because it �ts better with
the hyper�eld concept (coverage partitioning). In addition, this Coverage
Implementation Schema (CIS) adds some features to previous coverage
speci�cations. For instance, it is not only XML-compliant, but it also con-
siders an extension for a JSON encoding, which is planned to be included
in future releases. Moreover, it provides new modeling capabilities, such
as the addition of point cloud �elds or a distinction between topological
and geometric dimension of a grid.

Although this schema is appropriate for modeling the proposed repre-
sentation, it needs to be extended with some concepts such as stacks or
materials. GML does not supply a formal mechanism for the inclusion of
new semantic features; nevertheless, CityGML (Gröger and Plümer, 2012)
provides the inclusion of domain-speci�c information by two procedures.
In the �rst approach, new classes and attributes can be represented by
using its generic module. This mechanism does not augment the model in
a formal manner, limiting the semantic and syntactic interoperability. The
second approach, called Application Domain Extension (ADE), consists of
the de�nition of an additional schema including in it the new classes that
are not yet modeled in CityGML. We have taken this second approach in
order to enlarge the GML schema with the SBRT classes.

Brink, Stoter, and Zlatanova (2013) proposed several alternatives for
modeling ADEs using UML. They suggested that the set of new subclasses
should be added to the ADE package, inheriting them from the actual GML
classes, but excluding them from the generated XML schema. In our case,
the omission of the new classes in the XML schema is irrelevant since that
choice was made in order to allow the extension with other ADEs, keeping
the same semantic schema. We follow this approach by creating a package
with the inherited SBRT classes.

Tegtmeier et al. (2014) proposed the use of CityGML rather than GML
for including surface as well subsurface geological objects in an integrated
3D geomodel as an ADE. However, the proposed model does not take into
account the concept of coverage partitioning and misses the interpolation
procedures, thus only TBGF can be represented. Finally, the XML schema
can be automatically generated using a tool that implements conversion
rules from UML classes and relations to GML (Portele, 2018).

54 formal framework for the stack-based representation of terrains

In the following subsection we introduce the implementation model for
the SBRT proposed, by using and ADE.

Figure 4.6: A simpli�ed UML diagram depicting the main classes of an implemen-
tation of our framework is shown above. Below, an extract of the ADE
XML schema with the de�nition of the SBRT::StackBasedTerrain and
SBRT::RegularGrid classes is shown.

4.6.1 Extending the model with SBRT domain classes

In contrast with the previous ISO/OGC coverage de�nition, CIS makes
no distinction between discrete (TBGF) and continuous geo-�elds (S&IBGF).
They are modeled from the same data types; essentially with n-dimensional
grids, set of points, curves or solids. A continuous coverage simply adds
an interpolation method to its de�nition. The CIS::AbstractCoverage
class is the core of CIS. This class models a geo-atom g by means of
its coverageFunction. Actual instances of coverages such as regular or
irregular grids, surfaces, solids or point clouds must be inherited from this

4.7 conclusion and future work 55

abstract class. Moreover, this class can include a set of metadata including
descriptive information about the coverage.

In order to model the higher level geo-�eld of a SBRT (the 2D grid in the
XY plane), we use the coverage partitioning feature in combination with a
regular grid coverage (class CIS::Grid) which acts as domain set. In the
grid feature a Spatial Reference System (SRS) must be de�ned as well as
the number of axes or dimensions, two in this case, and other axis-related
data. Coverage partitioning has a set of sub-coverages, which represent
each stack of the terrain. Every partition must have the same or lower
dimension than the main coverage. Our representation complies with
this requirement since the stacks are one-dimensional. An irregular grid
through the CIS::GeneralGridCoverage class models the actual lower
level geo-�eld. In order to represent the intervals of the stacks, we use the
CIS::Displacement class. This class models a partition in the grid axes
by storing a sequence of the valid positions in this domain. Therefore, the
relative positions of the intervals can be encoded in this class. Similarly to
the previous �eld, the data regarding axes and dimension must be set for
these �elds.

Figure 4.6 shows a simpli�ed UML diagram of a possible implementation
of our framework using CIS and GML. Nodes in gray belong to GML/CIS
framework, while yellow nodes are custom classes of our framework and
Figure 4.7 shows a small encoding example of a naive SBRT in GML. The
SBRT contains a 2× 1 support grid with two intervals for each stack.

4.7 conclusion and future work

In this chapter, we have presented a formal framework for the repre-
sentation of 3D terrains based on stacks. We have built our framework
around the geo-atom theory, making use of many concepts like geo-dipoles,
geo-�elds, geo-objects and object-�elds. Also, we have de�ned a set of
operations for our system inspired by the well-known map algebra. Due
to these sound foundations, many other high level operations such as the
removal of layers of materials or the calculation of a line-of-sight graph
can be added to the framework in a straightforward way. In addition, we
have suggested an example of how our representation can be implemented
using a standard as GML.

In this chapter, we have solely focused on �eld data type, and more
speci�cally in 3D terrains. However, several geospatial problems require
processing �eld and discrete data in a combined way. For example, sur-

56 formal framework for the stack-based representation of terrains

Figure 4.7: Use of GML for encoding a SBRT.

veying engineers may require terrain data modeled as a �eld as well as
discrete objects representing pipelines or tunnels in order to perform a
cost analysis. This cannot be considered either a �eld-related operation
or an object-related operation, but a hybrid operation. The inclusion of
discrete objects in our system can be easily accomplished since they are
also supported by the geo-atom theory. Thus, as future work we plan to
develop a whole 3D GIS for the management, analysis and visualization
of not only volumetric terrains but also discrete objects, extending the
theoretical model presented for terrains in this dissertation, to deal with
problems involving hybrid data. In addition, since our formal framework
allows its use in an nD dimension, dynamical phenomenon (or 4D) can be
represented. For this reason, we are also working on the implementation
of several physical-based simulation operations, such as erosion caused by
water or air or in sedimentary evolution models. These algorithms can be

4.7 conclusion and future work 57

designed as an extension and combination of the operations shown in this
chapter, being their e�ciency similar to the operations implemented by
map algebra. For example, the e�ciency of updating a stack in a dynamic
local operation such as the evolution of drainage networks is O(n ∗ k);
where n is the neighborhood size and k the number of intervals in one
stack. Eventually, the system will be released as open-source in order to
bene�t GIS professionals and geoscientists.

Furthermore, we can enhance our framework by allowing the repre-
sentation of heterogeneous materials. Material distributions are in fact
heterogeneous by its very nature since a material is usually mixed with
those around it. For instance, in the transition between water and clay
materials, there are points that present di�erent proportions of them. The
representation of this type of materials is a complex task since the propor-
tions of the di�erent mixes of materials must be managed in a proper way.
This feature would provide a more accurate representation and modeling
of the strata at surface and subsurface levels.

Finally, the exchange model can be implemented also in well-known
formats in other �elds than GIScience. For example, NetCDF (Network
Common Data Form) is a set of interfaces to store and exchange array-
oriented scienti�c data, making it suitable for geoscienti�c �eld data struc-
tures. This is widely used in engineering applications, due to its �exibility
and interoperability with other formats and because it is an OGC standard.

5
E F F I C I E N T R E P R E S E N TAT I O N O F S TA C K- B A S E D
I N F O R M AT I O N

about this chapter

The work here presented has been done in collaboration with the High
Performance Computer Graphics Laboratory of the Purdue University
(USA) and the Czech Technical University in Prague. This collaboration
was established during my PhD stay in the Purdue University. The idea be-
hind this work emerged after the observation that many scienti�c datasets
present a layered structure, not just the geological information. The data
structure introduced in this chapter, together with a direct rendering al-
gorithm (presented in Chapter 7, discussed later in this dissertation) has
been submitted for its publication in SIGGRAPH Asia 2019 conference.

Graciano, A., Rueda, A.J., Bittner, J., Pospíšil, A. & Benes, B.
QuadStack: An E�cient Representation and Direct Rendering of Layered

Datasets.
SIGGRAPH Asia, 2019. (Under review).

5.1 introduction

Three-dimensional geological models not only present a strati�ed struc-
ture prone to a vertical compaction. We can also bene�t from their
anisotropy and high coherency in the XY plane. Figure 5.1 shows this
stated coherency in larges zones in which the same geological material
is distributed. This continuity in the material distribution is given at sub-
surface level as well, since even though certain volumetric materials are
not composed of clearly visible layers; they include organized stacks of
uniform material. Nevertheless, the use of a stand-alone 3D hierarchical
data structure such as an octree performs worse than a simple stack-based
representation as shown in Chapter 3. Therefore, based on this pair of
observations, we can extend a two-dimensional hierarchical data structure
in order to identify and represent layered structures at the internal nodes,
and try to bene�t from both vertical and horizontal coherence. In this

59

60 efficient representation of stack-based information

Figure 5.1: Vertical and horizontal spatial coherence in a same geomodel. Screen-
shot taken from SubsurfaceViewer software (Terrington et al., 2009).
The geological data have been obtained from (Gunnink et al., 2013).

way, we can obtain a data structure more compact than the stack-based
representation.

In this chapter, we introduced the e�cient QuadStack, a novel data
structure for volumetric data based on the stack-based representation.
QuadStack uses a quadtree for data representation while e�ciently encod-
ing the layers in the tree.

Once a geomodel is encoded with this data structure, the data structure
decouples its property values from their height values. We also introduce
an algorithm for value retrieving from the QuadStack representation and
we show that the access requires O(log(n) +m) time, where n = w× h
for stack-based representation support grid andm is the maximum stack
size. In practice, m is small compared to n in a layered model so the
method can be assumed to run in logarithmic time.

5.2 the qadstack data structure 61

In Chapter 3, we discussed why the stack-based representation is not
an e�cient solution for some scienti�c volumetric data. However, this
does not imply that only geomodels are arranged in a layered fashion; for
example, many biological materials such as skin or leaves are also layered,
but on a much smaller scale.

5.2 the qadstack data structure

A simple approach to compressing a SBR data would be to use a hier-
archical data structure such as a quadtree that would e�ciently encode
the neighboring stacks with the same sequence of intervals, i.e., stacks
that have identical attribute values and heights. However, variations in
the interval heights are common and they lead to low compression rates
due to the high number of tree subdivisions.

Our observation is that while stacks di�er signi�cantly in their heights
values, their attribute values do not change very often between neighboring
stacks. This change happens only when a layer disappears or a new layer
appears as can be seen in the top-left image in Figure 5.2. Therefore,
our approach is to pack groups of neighboring stacks with an identical
sequence of attribute values into a single structure denoted as group of
stacks or gstack.

5.2.1 Group of stacks

Having the decomposition of the input volume V into stacks S, a gstack
G represents a rectangular region of Swith the same number of intervals n
and identical sequence of attributes values a1, a2, . . . , an. More speci�-
cally, G represents the stacks Sx,y of a rectangle [xminymin, xmaxymax] of
S, where 1 6 xmin 6 x 6 xmax 6 w and 1 6 ymin 6 y 6 ymax 6 h.
Since the attribute information of the stacks Sx,y is identical, G can
be encoded in a compact way as a sequence of intervals i1, i2, . . . , in.
Each interval ik = 〈ak,Hk〉 contains the attribute value ak, common
to all the intervals ik of Sx,y, and a height�eld Hk with dimensions
(xmax − xmin + 1)× (ymax − ymin + 1) that stores the heights of these
intervals. More speci�cally, the height hk of Sx,y is mapped to the height
hx−xmin,y−ymin of Hk. A consequence of the fact that the number of in-
tervals and attribute values are consistently ordered for all stacks Sx,y

is that the height�elds Hk never intersect i.e., given hi,j,k ∈ Hk and

62 efficient representation of stack-based information

Volumetric Data

Conversion
to Stacks

Stacks

Grouping
GStacks

QuadStack

Construction Usage

Quadtree Traversal
GStack Reconsruction

Reconstructed GStack

Heightfield Sampling

Value

Figure 5.2: Overview: The input volumetric data is converted to stacks and sim-
ilar stacks are then grouped into groups of stacks (gstacks) that are
organized in a quadtree. When using the QuadStack the quadtree is
traversed �rst and the topology of the given part of the volume is
reconstructed. Then the corresponding layer boundaries encoded as
height�elds are sampled to determine the result.

5.2 the qadstack data structure 63

hi,j,k+1 ∈ Hk+1, where 1 6 k 6 n, the condition hi,j,k < hi,j,k+1 is
always met.

A gstack is a simple and space-e�cient encoding for a group of stacks
with identical attribute information. Although only attribute information is
compressed, the geometry information is stored as a set of non-intersecting
height�elds that can also be compressed by using any existing height�eld
encoding method.

Gstacks are built during the construction of a QuadStack that combines
the spatial decomposition of a quadtree with the compact representation
for groups of similar stacks given by gstacks.

5.2.2 Group of stacks hierarchies

A QuadStack represents the stacks as a hierarchy of gstacks. It divides
the volume in the direction of ~xy recursively until a quadrant can be
represented by a gstack. These quadrants are not guaranteed to be squared
or a power of two, since there are no restrictions in the dimensions of the
volumetric space.

Moreover, a QuadStack stores information not only in leaf nodes, but
also in internal nodes that further improves the compression. An internal
node can contain a gstack grouping intervals common to all its descendants.
Since these intervals are not necessarily consecutive, the gaps between
them, corresponding to one or more intervals that are stored elsewhere
(i.e., in a descendant or ancestor node) are represented with a new type
of interval called wildcard interval or ∗-interval. This enables a �exible
form of gstack that combines intervals (hereinafter referred to as terminal
intervals) with areas without information at this level of the QuadStack, in
many cases corresponding to intervals with di�erent attribute information
that could not be directly represented by the gstack.

Figure 5.3.a shows a 2D depiction of a SBR and its corresponding Quad-
Stack, represented as a binary tree. The gstacks in nodes n1 and n2 encode
the stacks as intervals of di�erent attributes with their associated height-
�elds. Figure 5.3.c shows an equivalent QuadStack where the blue intervals,
common to nodes n1 and n2, has been stored in the gstack at n0, together
with a ∗-interval that represents the rest of intervals of the block of stacks
(intervals orange and yellow). On the other hand in the gstacks of the leaf
nodes the blue interval is replaced by ∗-intervals, since it is already stored
in an ancestor.

64 efficient representation of stack-based information

(a) (b)

n0

n1 n2

n0

n1 n2

*

n0

n1 n2
* *

*

* *

(c)

n0

n1 n2

*

(d)

SBR

Heightfields

Gstacks

Merged
gstack

Propagated
gstack

Optimized
gstacks

Merged
heightfields

(associated to
gstack in n0)

Figure 5.3: Details of the QuadStack construction: initial construction as a
quadtree encoding groups of stacks with the same sequence of at-
tributes (a), merging gstacks in nodes n1 and n2 into a gstack with
common intervals and ∗-intervals (b), propagation of the new gstack
to the parent node n0, restructuring height�elds (c) and optimization,
deleting ∗-intervals in nodes n1 and n2 associated to the intervals
propagated to the parent node (d).

5.2 the qadstack data structure 65

*
* *

*

*
*

*

* *

*
* * Merge 1 Merge 2

Merge 3 Final Quadstack Stacks

*

*

*

*
* *

*

*

* *

* *

*
*

* *

* *

*
*

* *

Phase 1: initial Quadstack Phase 2: interval propagation

* *

Figure 5.4: The QuadStack construction: The initial QuadStack is a quadtree that
is optimized in the second step by merging intervals of equal or similar
attributes.

Just like a terminal interval, an ∗-interval has an associated height�eld.
LetG be a gstack stored in noden, and let iw ∈ G be an ∗-interval, de�ned
as iw = 〈∗,Hw〉. If iw represents the intervals ik, ik+1, . . . ,ik+j of gstack
Gd in an descendant nd of node n, then the height�eld Hk+j of the top
interval ik+j corresponds to a quadrant ofHw. In this way, Hw combines
the height�elds of the top intervals of all the sets of intervals existing in
descendant nodes which are grouped by iw. This is depicted in Figure 5.3.c
as the height�eld associated to the ∗-interval in n0. If the ∗-interval in G
refers to a group of intervals in a gstackGa from an ancestor na of n,Hw

corresponds to a quadrant of the height�eldHk+j, sinceGa covers a larger
part of the XY plane than G. This case corresponds to the height�elds of
the ∗-intervals in nodes n1 and n2.

5.2.3 QuadStack construction

The QuadStack is constructed in two steps: a top-down subdivision
and a bottom-up merging. The subdivision step is a standard quadtree
construction for the stacks by using the criterion of same attribute sequence.
This criterion ensures that the blocks of stacks at each leaf node can be
encoded as a gstack, and the resulting data structure is already a QuadStack.
Figure 5.4 illustrates the resulting QuadStack.

66 efficient representation of stack-based information

Although the �rst step already generates a more compact representation
for the volumetric model than a SBR, layers of common attributes lead
to duplicate intervals in many leaf nodes, as the blue, yellow, or green
attributes shown on the left part of Figure 5.4. The second step extracts
and merges these duplicate intervals in ancestor nodes. It proceeds from
bottom to top by propagating to a node every interval common to all its
children (i.e., having the same attribute value). We map the attribute values
of the intervals of the four gstacks in the children to a common sequence
of attribute values, using ∗ to group non-matching attributes (Figure 5.5).

We are interested in mapping with the highest number of terminal
intervals. The search space can be very large and our problem is related to
�nding common motifs with gaps, with applications in text mining and the
analysis of DNA sequences. Many solutions have been proposed (Antoniou
et al., 2006, 2007; Iliopoulos et al., 2005) that assume certain restrictions
(e.g., motif size, maximum gap size, etc.) and require an exact match of the
motifs or accepting certain degree of similarity.

We propose a fast brute-force solution for this problem. The input are
two gstacks and the output are two gstacks with a matching sequence
of interval attribute values. The algorithm takes every possible pair of
intervals from the �rst and second gstack and tests if their attribute values
match; if a matching pair i1,s, i2,t is found, the intervals are added to
their corresponding result gstack and the function calls itself with the
remaining intervals i1,s+1, . . . , i1,n and i2,t, . . . , i2,m. If i1,s and i2,t

are not in the �rst positions of their gstacks (i.e., s > 0 and t > 0), the
predecessors intervals i1,1, . . . , i1,s−1 and i2,1, . . . , i2,t are grouped into
two ∗-intervals associated to the height�elds of the top intervals i1,1 and
i2,1. The number of terminal intervals of the solution obtained is computed,
and �nally the best solution is returned. Generalizing this solution to the
four children of a QuadStack node is straightforward. The theoretical
complexity of this algorithm is O((m!)4) for four stacks with m intervals,
but it performs much better in practice with the heuristics described in
Section 5.2.5.

If the derived gstacks have at least one terminal interval, they are merged
into a single gstack at the parent node (Figure 5.3.b-c). The height�elds of
the newly created gstack are generated by packing the four height�elds of
the intervals of the derived gstacks. Finally the derived gstacks are deleted,
and every propagated interval is converted to an ∗-interval at the children
gstacks, grouping adjacent intervals if necessary (Figure 5.3.c). During this

5.2 the qadstack data structure 67

*

*

Gstack 1 Gstack 2 Merged
gstack

Figure 5.5: Finding a common mapping for two gstacks that maximizes the number
of terminal intervals.

process, if a gstack ends up as a single ∗-interval, it can be safely deleted
from the node since it does not provide any information.

The time complexity is O(n logn) for the initial quadtree construction
and O(n × (m!)4) for the interval propagation phase, where n is the
number of stacks in the SBR (n = w× h) andm the maximum number of
intervals in a gstack.

5.2.4 Height�eld compression

QuadStack implements a compact encoding of the ordered sequence of
attributes, but does not deal with the compression of the interval heights.
In our approach attribute and height�eld representation are decoupled,
therefore height�elds can be stored in a raw form, or compressed by any
existing method such as the algorithm of Franklin (1995).

A simple delta encoding provides good results, since height values
usually vary progressively. However, the main problem is that the access to
any data requires decompressing the whole dataset that limits the practical
use in applications where e�cient queries or traversal are required (e.g.,
real-time visualization). Other approaches are based on image compression
techniques, but again, most of them do not allow a random access (Hussain,
Al-Fayadh, and Radi, 2018). In the �eld of texture compression, most of the
solutions are based on a hardware block encoding. This approach features
selective zone decompression without the need to decompress the entire
texture (Munkberg et al., 2006; Nystad et al., 2012). We based on this idea
to design our height�eld compression algorithm.

We propose a method that provides a trade-o� between compression and
access time and it is inspired by the work of Andújar (2010). This method
partitions the height�eld into equal-sized blocks and compresses the values

68 efficient representation of stack-based information

in each block independently. Consider a height�eld H partitioned into
w× h blocks with the same dimensionsm×n. For each block Bi,j ∈ H
the lower height value is taken as the base value, encoding the m× n
elements in the block as di�erences from this base value. Using blocks of
a relatively small size makes these di�erences close to zero, allowing them
to be encoded with a reduced number of �xed bits. This enables random
access to a particular location with only two reads (di�erence stored at
the location and base value of the block). Other predictors for a value in a
block are possible: for instance it can be encoded as the di�erence with
respect to the bilinear interpolation of the height values at the four corners
of the block.

5.2.5 Optimizations

The QuadStack construction algorithm described in Section 5.2.3 gen-
erates a compact representation of the attributes of the model that can
be improved if certain ∗-intervals that do not provide useful information
for sampling operations are removed. Good candidates are the ∗-intervals
representing information that can be found elsewhere in an ancestor node,
such as, the top ∗-intervals in the gstacks of nodes n1 and n2 in Figure
5.3.c. The information represented by these intervals is included in the blue
interval in the gstack of the node n0. These intervals are never reached
during sampling (Section 5.3), and can be discarded during the bottom-up
phase of the QuadStack construction algorithm. When an interval is prop-
agated to an ancestor (Figure 5.3.b-c), it is completely removed from the
initial gstack, instead of converted to an ∗-interval. Note that the result is
no longer a gstack since it represents only a subset of intervals instead of
the full range of the stacks. We refer to this as partial gstack. Under the
described conditions, gstacks can be converted into partial gstacks reduc-
ing the QuadStack space requirements without a�ecting its performance
in sampling or rendering operations. Figure 5.3.d shows the resulting
QuadStack after this optimization.

An optimal match of the gstacks during the bottom-up phase is the key
for a good attribute compression. The algorithmmatchGS (Algorithm 1)
�nds the optimal matching, although its time complexity is high. We use
two e�cient heuristics to reduce its computation time:

1. The exploration of a new solution can be avoided if the minimum
of the lengths of the two lists of intervals to explore is less than the

5.3 qadstack sampling 69

best score so far, since a better score cannot be found. Notice that
the score of a solution is the number of terminal intervals, so at least
two lists with a higher number of intervals are required to be able
to �nd a better solution.

2. A cache for precomputed values accelerates the function dramati-
cally, since during the search for the optimal solution certain sub-
lists are explored repeatedly. We use a simple map for this purpose,
with a key computed from the length of the two sub-lists of intervals.

Table 5.1 shows the matching computation time before and after includ-
ing these two improvements.

Stack size Optimized
matching (s)

Non optimized
matching (s)

30 0.026 0.764
40 0.317 173.640
50 3.085 >1 hour
60 8.799 -
70 51.320 -

Table 5.1: Comparison between the optimized and non optimized versions of the
gstack matching.

5.3 qadstack sampling

The QuadStack decompression can be performed selectively by using
point sampling of the QuadStack representation. Algorithm 2 shows the
regular structure of a point sampling procedure in a hierarchical data
structure, adapted to a QuadStack. Querying a point p is carried out by
recursive traversing the quadtree data structure. First, an inclusion test
between p and the bounding box of the data must be computed. If the
test is successful, the query can start by sampling the root node. In order
to sample a node, the height�eld Hk of each interval in the gstack must
be sampled at the px,y, comparing its height with the z coordinate. The
iteration stops when the lowest interval which height is above z is found.
If it is a terminal interval, regardless whether a leaf node is reached or
not, the attribute is returned. When an ∗-interval is found, the traversal
continues in the successive nodes.

70 efficient representation of stack-based information

Algorithm 1: AlgorithmmatchGS.
Input: gstacks Gi

1 = {i1,1, . . . ,i1,n} and Gi
2 = {i2,1, . . . ,i2,m}.

Interval ii,k =
〈
ai,k,Hi,k

〉
where ai,k and Hi,k are its

attribute value and height�eld respectively.
Output: gstacks Go

1 and Go
2 with the same sequence of attribute

values.
if Gi

1 6= ∅ and G
i
2 6= ∅ then

Go
1 ← {

〈
∗,H1,1

〉
}

Go
2 ← {

〈
∗,H2,1

〉
}

else
Go

1 ← ∅
Go

2 ← ∅

scbest ← 0
foreach interval i1,s from Gi

1 do
foreach interval i2,t from Gi

2 do
if a1,s = a2,t and a1,s 6= ∗ and
(s > 1 xor t > 1) and
(s < n xor t < m) then
Gr

1,Gr
2 ← matchGS({i1,s+1, . . . , i1,n},

{i2,t+1, . . . , i2,m})

sc← numTerminalIntervals(Gr
1)

if sc > scbest then
scbest ← sc

if s > 0 then
Go

1 ← {< ∗,H1,1 >}∪ {i1,s}∪Gr
1

Go
2 ← {< ∗,H2,1 >}∪ {i2,t}∪Gr

2

else
Go

1 ← {i1,s}∪Gr
1

Go
2 ← {i2,t}∪Gr

2

end
end
return Go

1 ,Go
2

5.4 conclusion 71

The overall time complexity is O(logn+m) since in the worst case it
is necessary to reach a leaf of the tree to retrieve the interval, checking at
most m intervals during the traverse. Point sampling can also be easily
generalized to decompress an arbitrary rectangular region or box of the
model into stacks or further, into voxel data.

Algorithm 2: Function sampleQS.
Input: node n to be sampled; sampling point p.
Output: �nal node and attribute value sampled at p.

ar ← null

nr ← null

if pz > 0 then
foreach interval ik = 〈ak,Hk〉 from gstack G in n do

if hpx,py > pz then
ar ← ak
nr ← n

break
end
if r = ∗ then

C← getChildren(n)

if C 6= ∅ then
Given C = {c0, c1, c2, c3}
if insideQuadrant(c0,p) then

ar,nr ← sampleQS(c0,p)
else if insideQuadrant(c1,p) then

ar,nr ← sampleQS(c1,p)
else if insideQuadrant(c2,p) then

ar,nr ← sampleQS(c2,p)
else if insideQuadrant(c3,p) then

ar,nr ← sampleQS(c3,p)
return ar,nr

5.4 conclusion

This chapter introduced QuadStack, a novel and e�cient data structure
to represent layered datasets such as geological models. The key inspiration
for our work is the common output of many science and engineering
applications and measurements that produce data with strong directional
anisotropy in form of layers. QuadStack compresses the layers into stacks

72 efficient representation of stack-based information

and then compresses the stacks into a quadtree while considering the
representing patterns among neighboring layers.

The third part of this dissertation provides a GPU implementation for
real-time rendering of this data structure. For a performance evaluation in
terms of both compression and sampling speed, the reader is referred to
Chapter 7.

While the �eld of data compression and rendering has been active
for many years, there are still many open where QuadStack could be
used. Our data structure could be applied to di�erent �elds, such as BRDF
compression, or time-varying datasets. Also, many datasets are cylindrical
and it would be an interesting extension to apply QuadStack to a non-
linear domain. We have not fully explored the internal structure of the
layers and its relation to the compression factor. It would be possible to
�rst sample and rotate the input data to detect a direction that would
provide good compression factor. The construction algorithm uses rather
simple matching and a possible extension would improve its e�ciency for
scenes with many layers. A possible solution is to accelerate the matching
algorithm by using any kind of heuristics to help its convergence to a
nearly optimal solution, or by using specialized data structures for this
type of operations such as su�x-trees.

Part III

V I S UA L I Z AT I O N O F G E O L O G I C A L D ATA

This third part of the dissertation is devoted to rendering
methods and how they can be applied to visualize geological
information. The �rst chapter gives an introduction of some
terms used in direct volume rendering. The second chapter
presents the contributions of this dissertation in the �eld.

6
F U N D A M E N TA L S O F D I R E C T V O L U M E R E N D E R I N G

6.1 introduction

Visualizing a high volume of geological information is a challenging
task. In the �eld of computer science, there has always been a con�ict
between the space requirements and the execution speed of an algorithm,
since the improvement of one is only at the expenses of the other one.
Therefore, designing methods with a good space-time trade-o� is one of
the yearnings of computer scientists. We have already demonstrated the
e�cient use of memory of stack-based representation and QuadStack. Thus,
our next objective is the implementation of e�cient algorithms capable
of visualizing the data stored in these data structures in a direct manner,
without sacri�cing its compact representation for geological data. Because
we deal with volumetric �eld data, the most straightforward solution is
through the use of DVR techniques as stated in Chapter 2.

6.2 overview of direct volume rendering techniqes

The basic idea behind DVR techniques is to model the light propagation
when it interacts with a 3D scalar volume. DVR algorithms must evaluate
the light model at each visible position of the volume, which results in a
computational intensive task. Traditionally, this fact has been considered as
an important drawback of this kind of methods. However, recent hardware
advances have overcome this limitation, enabling fast implementations of
this method. Taking as a reference the book published by Hadwiger et al.
(2006), this section provides a brief theoretical background of the volume
rendering topic.

6.2.1 The volume-rendering equation

Depending on the kind of data encoded in the 3D volume, the light
can interact taking into account three di�erent phenomena. If the ma-
terial is mostly gas (1), an emission of light increasing its radiance can

75

76 fundamentals of direct volume rendering

occur. Conversely, the material can absorb the light (2) incident over the
data, reducing its energy. Finally, the light can be scattered (3) by partic-
ipating media. These light sources can come from inside or outside the
volume. Usually, in DVR this complex interaction is simpli�ed using a
mixed absorption-emission approach. In scienti�c visualization, where
photorealistic rendering is not a priority, only a single light source is con-
sidered. These features are modeled by the so-called volume-rendering
equation, whose integral form is shown in Equation 6.1.

I(D) = I0 e
−

∫D
s0

k(t)dt
+

∫D
s0

q(s) e−
∫D
s k(t)dt ds (6.1)

I0 is the light radiance entering the volume at position s0, while I(D)

represents the radiance leaving the volume at position D. The terms k
and q represent the optical material properties. These terms simulate the
absorption and emission part respectively. The emission coe�cient is
associated with the transparency of the material (T), thus the equation can
be reformulated as follows:

I(D) = I0 T(s0,D) +

∫D
s0

q(s) T(s,D) ds (6.2)

The volume-rendering equation cannot be solved analytically in a com-
puter; therefore, a numerical approximation is necessary. Setting sn = D,
we can set an interval s0, s1, s2, . . . , sn in which a number of partitions
of the integral domain is split. Each of the intervals represents a location
where the model will be evaluated or sampled. As a result, the discrete
form of the volume-rendering equation can be written as:

I(D) =

n∑
i=0

ci

n∏
j=i+1

Tj with c0 = I(s0) (6.3)

The number of partitions must be chosen carefully. A subsampled recon-
struction will result in artifacts such as Moiré patterns while supersampling
may considerably a�ect the performance. Usually, the Nyquist-Shannon
theorem is applied to sample a signal accurately. This theorem states that,
given a signal to be reconstructed, the sampling rate must be at least twice
as high as the maximum frequency of the signal. In a DVR context, the

6.2 overview of direct volume rendering techniqes 77

maximum frequency (fm) is a 3D vector in which each component cor-
responds to the minimum resolution in each dimension: the resolution
of the grid cell for x and y components and the minimum relative height
from among all the stacks for z component. Therefore, in sampling mode
the step frequency (fs) will be fs >= 2fm.

6.2.2 Transfer functions

A transfer function (TF) is a scalar function that maps the encoded
volumetric data to its optical properties. The TF can be seen as a lookup
table in which k, q (combined as RGBA tuples) coe�cients or Phong
parameters are stored for each possible material. The TFs can be classi�ed
on the basis of its dimensionality, style of rendering or the amount and
complexity of the parameters encoded. In the algorithms presented in this
chapter, we simplify this function by means of a color lookup table since
we encode the data as discrete values (i.e., materials). The color palette
of the TF has been chosen in order to provide a good contrast among the
materials and provide a visual clue to the kind of material (e.g., sand in
yellow or water in blue tones). The work of (Ljung et al., 2016) provides a
great revision of the TF research.

6.2.3 Direct volume rendering approaches

Equation 6.3 can be computed by using di�erent DVR methods that can
be grouped into image-space or object-space approaches. In the former, the
volume is sampled by taking the image pixel as the origin of the traversal
method and in the latter the 3D object is projected directly into the �nal
image following di�erent strategies. The most important methods are
outlined below.

texture slicing This object-space method intersects a set of parallel
2D slices with the 3D volume and apply a compositing order to obtain the
�nal rendered image. This is a considerably e�cient method, however, it
presents the drawback that it can only be used with regular grids.

shear-warp volume rendering Likewise the previous method,
a set of 2D slices are placed in the scene but the samples are not taken
orthogonally to the image plane if the object is rotated. In this case, the

78 fundamentals of direct volume rendering

Image plane

(a)

Image slices

shear project

warp

(b)

(c) (d) (e)

Figure 6.1: DVR approaches. Raycasting (a), shear-warp volume rendering (b),
splatting (c), texture slicing (d) and cell projection (e) are conceptual-
ized.

volume is sheared, then sampled and �nally the viewed points are warped
to the �nal image plane.

splatting Here, each volumetric element of the grid is projected or
splattered into the image plane. In this object-space algorithm, a Gaus-
sian kernel is usually projected with every splat to supply surrounding
information.

cell projection This algorithm is used to traverse more complex
grids than voxel models like tetrahedral grids. By using this method, a
set of triangles is projected onto the �nal image blending it in an ordered
manner.

raycasting This image-space method is the most popular of the DVR
algorithms. The visualization methods introduced in this thesis are based
on this strategy; hence, this method will be explained in more detail in the
next section.

Figure 6.1 sketches the di�erences between these algorithms.

6.3 raycasting 79

6.3 raycasting

The key idea of this well-known algorithm is to cast rays iteratively
from the virtual camera through every pixel in the framebu�er, combining
the color values sampled along the ray. Raycasting can be implemented
in both CPU and GPU, however the GPU-based solution is more e�cient,
enabling real-time rendering of large datasets. For this reason, we decided
to implement our visualization algorithms using the graphics processor.

The main steps of this rendering method are explained below.

geometry setup Rendering starts by sending a simple geometry
to the GPU, which serves as start and exit points of the rays. Often, as
in our case, the geometry sent to the GPU is the bounding box of the
volumetric dataset. This approach can lead to the problem of empty space
skipping: A signi�cant number of rays may pass across empty space (i.e.,
air, transparent material, etc.), penalizing the performance without any
e�ective contribution to the �nal result. Because of this, several alternative
approaches replace the bounding box with a tighter bounding geometry
(Hadwiger et al., 2006; Knoll et al., 2011). We decided to use the bounding
box in order to keep the simplicity of the model, and also because it �ts the
shape of a volumetric terrain fairly closely. In next chapter, we propose
partial solutions for each data structure that minimize the e�ects of the
empty space.

data access This step is directly in�uenced by the data storage layout
and the memory structures chosen. The particularities of each proposed
method are discussed in Chapter 7. Once the data value has been retrieved,
we need to compute the pixel color by means of the TF.

compositing The color computed at each iteration of the loop has to
be combined with those calculated in previous iterations. Essentially, the
composition (also called alpha blending) in DVR can be accomplished in a
front-to-back or in a back-to-front order. In the algorithms described in
this chapter, the former was used since it is more suitable to optimizations
such as early ray termination

Equations 6.4 and 6.5 correspond with the front-to-back and back-to-
front approaches, respectively. Ĉi and T̂i are the values of color and
transparency to be calculated for the next iteration. Ci−1 and Ti−1 are
the values accumulated so far and Ci and Ti the new values obtained from

80 fundamentals of direct volume rendering

the TF. These equations are easily derived from Equation 6.3 by renaming
Ti as (1−αi).

Ĉi = Ci−1(1−αi) +Ci T̂i = Ti−1(1−αi) (6.4)

Ĉi = Ci(1−αi−1) +Ci−1 (6.5)

advance ray position As explained in Section 6.2.1, the sample
rate must be carefully selected. By means of adaptive samplings (Section
7.2) or the use of hierarchical data structures (Section 7.3) we implemented
this step in an accurate and e�cient way.

ray termination In the methods here presented, the criterion used
for an early ray termination is based on the composed opacity. If the opacity
is above some threshold (1− ε) we can assume that new contributions
to the alpha blending will be irrelevant, and therefore the traverse is
interrupted.

7
R E A L - T I M E R E N D E R I N G O F S TA C K- B A S E D D ATA

about this chapter

This chapter brings together our research in rendering geospatial in-
formation. This work has been carried out in di�erent phases, covering
the four years of my thesis project. The �rst part of this chapter is de-
voted to the development of a visualization algorithm for the stack-based
representation, introduced in Chapter 3. Likewise, the second part is the
complement of Chapter 5 and presents a method to visualize layered data
encoded by a QuadStack. The results of this chapter have been published
in di�erent papers.

Graciano, A., Rueda, A.J. & Feito, F.R.
Real-time Visualization of 3D Terrains and Subsurface Geological

Structures.
Advances in Engineering Software, 115, 2018.

Graciano, A., Rueda, A.J., Ortega, L. & Feito, F.R.
Towards a Hybrid Framework for the Visualization and Analysis of 3D

Spatial Data.
In Proc. 3rd ACM SIGSPATIAL UrbanGIS’17 Workshop 2017.

Graciano, A., Rueda, A.J. & Feito, F.R.
Direct Volume Rendering of Stack-based Terrains.

In Proc. of CEIG 2017.

7.1 introduction

As already mentioned in Chapter 2, several geoscienti�c visualization
research works carry out a visualization based on triangle meshes. The
most usual technique for generating a triangle mesh from a volumetric
dataset is Marching Cubes (MC) (Lorensen and Cline, 1987). This algorithm
and all its variants generate a set of triangles which represents an isosurface
from a given isovalue. Real-time visualization of cross-sections or a speci�c
stratum/material would require generating multiple meshes by applying

81

82 real-time rendering of stack-based data

MC on each isosurface as preprocessing. This may result in redundant
geometry and in a model that would take up much more space than a SBRT.
For instance, Figure 7.10, later in this chapter, illustrates how complex a
surface/subsurface model can be, and the amount of triangles which would
be required to render each feature. Therefore, the use of DVR is more
suited for the visualization of geological models.

In the previous works that previously used the SBRT, the stack-based
model serves as an auxiliary structure, mainly as an intermediate data
structure for visualization purposes. One of the main contributions in this
chapter is the direct visualization of surface and subsurface information
encoded using a stack-based representation. The proposed solution pro-
vides real-time rendering of volumetric terrains and subsurface geological
structures using a compact data representation for the stacks in the GPU
(Section 7.2). A further variation is suggested then by extending this al-
gorithm to handle a direct rendering of datasets stored in a QuadStack
(Section 7.3).

7.2 raycasting the stack-based representation

In raycasting a ray sample is traduced to a data texture/bu�er access. In
our method, �rst the position (px,y) is obtained by projecting the ray to the
terrain grid. Therefore, a single stack is obtained from this position. Then,
the �nal value is sampled by iterating on the stack attributes. Depending
on the sampling ray position, the stack is iterated starting at the top, if the
ray is above the bounding box equator, or at the bottom, if it is below. This
trivial optimization improves the performance by 15% on average. DVR
methods usually store volume data in a 3D texture (or in a 2D array texture).
However, there are multiple possible strategies to encode a stack-based
representation of a model in GPU memory, as we discuss in Section 7.2.2.

Once the value is sampled, we need to obtain a mapping between it and
a color by using the TF. An illumination model can also contribute to the
�nal color in order to simulate the light interaction and increase realism.
Our method uses a deferred strategy: In a �rst pass only the value of the
TF is retrieved. Then, in a second pass a normal vector is estimated from
the depth bu�er information, and the �nal pixel color is calculated (Figure
7.1). We use a Lambertian di�use model for the illumination according to
Equation 7.1. Components ia and id control the intensity of ambient and
di�use lighting respectively, kd is the di�use Lambertian re�ectance, ~L is

7.2 raycasting the stack-based representation 83

Figure 7.1: Deferred shading strategy used. The dotted lines indicate an usage
relationship.

a direction vector from the object to the light source and ~N is the normal
vector to the surface in a point p.

Ip = ia + kd(~L · ~N)id (7.1)

84 real-time rendering of stack-based data

V0,0

Volumetric terrain

Empty space

~N

(a) (b)

Figure 7.2: Estimation of a normal vector in an object space. ~N (b) is the resulting
from the sum of the vectors contained in empty space voxels by using
a 3× 3 kernel (a).

7.2.1 Surface normal vectors calculation

Normal vectors are usually computed by simulating a density gradient,
but this solution requires volume data representing intensity values, as
for instance in medical imaging. Much of the literature focused on the
calculation of surface normals for discrete volume data takes an image
space approach (Yagel, Cohen, and Kaufman, 1992) (Kadosh, Cohen-Or,
and Yagel, 2003). Surface normals are typically obtained by calculating
the horizontal and vertical gradients for each pixel locally from the depth
bu�er data. The resulting shaded models using this approach might not
present a smooth surface, since a voxel may cover many pixels if the model
is near to the virtual camera. In contrast, an object space approach provides
a better approximation of the surface since it takes into account the actual
geometry of the model. For this purpose, a discrete voxel model can be
represented as a binary voxel model simply by labeling each voxel as
occupied or empty space. A straightforward method to obtain the normal
is to convolve a k× k× k kernel at the current position where the ray is
located (v0,0). A voxel vi,j of the kernel contains the unit vector direction
from v0,0 to vi,j. The �nal normal vector ~N is calculated by adding the
vectors associated to each voxel whose center is in an empty space (see
Figure 7.2). The time consumed by this method as well as the smoothness
of the surface is strongly determined by the kernel size chosen. The larger
the kernel size, the smoother the surface, but more computation time is
required due to the increase in the number of data accesses.

The approach we propose is hybrid: we calculate the normal vector with
the convolution method described above but in image space rather than
in object space. Instead of calculating the normal vector in the raycasting

7.2 raycasting the stack-based representation 85

3× 3× 3 5× 5× 5 7× 7× 7

9× 9× 9 11× 11× 11

(a) (b) (c)

(d) (e)

Figure 7.3: Visual results when applying di�erent kernel sizes to a SBRT with a
grid dimension of 800 × 1000. Each sub�gure shows a region with a
dimension of 200 × 300.

pass we store the color retrieved by the transfer function in a framebu�er
object (without any illumination applied). In the next pass, the resulting
world position (p) of every ray casted through each pixel (r) is unprojected
from the depth bu�er. This 3D position is the central point of an axis-
oriented grid which, represents a convolution kernel. Then, we calculate
the depth value (d ′) for the center of each cell of the grid. Following this,
we project the center of the cells (p ′) to image space and retrieve the
actual depth value from the pixels obtained (d). With these values, we can
assume that if d ′ > d the cell that contains p ′ is labeled as occupied or
as empty space otherwise. Once we calculate the occupation value for all
the cells, the convolution can be performed. The time consumed by this
approach is less dependent on the size of the grid than in a strategy based
on the object geometry. Table 7.1 and Figure 7.3 show a comparison of the
computational cost and visual quality achieved using di�erent kernel sizes.
For a kernel size 56 k6 9, the drop in performance is a�ordable, therefore,
in our framework, the kernel size is an adaptive parameter depending on
the SBRT dimensions within this range.

Figure 7.4 depicts our hybrid strategy. Note that this method only can
compute a reduced number of di�erent normal vectors in comparison with
gradient estimation techniques, but in practice they are enough for a good
visual quality in scienti�c visualization.

Several authors suggest that the normal vectors can be calculated in a
previous step, stored in a bu�er and passed in a bu�er to the raycasting

86 real-time rendering of stack-based data

di

d′i
r

ri

eye

depth bu�er

Figure 7.4: Estimation of a normal vector in image space. The ray ri provides
two depth values, an actual (d) and an estimated (d ′) with which the
binary value of the kernel (occupied or empty space) is calculated.

pipeline (Baert, Lagae, and Dutré, 2012; Sigg et al., 2006). However, this out-
of-core approach requires signi�cant extra memory in comparison with
the techniques explained previously. This out-of-core approach would
require an extension of the original SBRT including solely the normal
vectors of the visible intervals. Assuming each component is encoded with
a single precision �oating-point number (32 bits), a typical small dataset
with a voxel dimension of 200 × 250 × 320 would need an extra amount
of memory of approximately 16 MB; A medium dataset with 400 × 500 ×
400 voxels would need 64 MB, while a large dataset (800 × 1000 × 800)

Table 7.1: Relative drop in performance when using di�erent kernel sizes over
rendering without lighting

Kernel size Drop in performance
Dataset A Dataset B Dataset C

3 × 3 × 3 3% 4% 3%
5 × 5 × 5 18% 21% 16%
7 × 7 × 7 43% 48% 41%
9 × 9 × 9 62% 66% 59%

11 × 11 × 11 75% 78% 72%

7.2 raycasting the stack-based representation 87

would need more than 256 MB. This memory footprint remains very large
in comparison with the memory usage required by a SBRT. Applying a
method for normal vector compression (Dado et al., 2016) would only save
a 16% of its memory requirements on average. Moreover, it should be
noted that this precomputation procedure must be carried out each time
a di�erent visual operation is requested which would have a signi�cant
impact on the overall system performance.

In a similar way, the color bu�er resulting from the �rst rendering pass is
subjected to a �ltering process, using a Gaussian smoothing as convolution
kernel.

7.2.2 Stack-based representation of terrains encoding in the GPU memory

In the following, we show di�erent memory layouts for the storage of
a stack-based representation on GPU memory. The procedure to sample
a particular attribute by the raycaster is divided into two steps: the stack
identi�cation and its iteration. These two steps are common to every
proposed layout; the only di�erences are the number of textures (or bu�ers)
used and how they are traversed. The use of textures to send any type of
information to the GPU can be considered a standard, therefore most of
the approaches provided make use of them to store the stack information.

An issue that produces a major impact on the performance of any ren-
dering method is the texture access. Fetching a texel is one of the most
time-consuming operations on the GPU, but fortunately texture access
exhibit spatial and temporal coherence that can be exploited to improve
performance. Modern GPU architectures use caches where recent texture
reads are stored following an LRU strategy (Akenine-Möller, Haines, and
Ho�man, 2009). A further re�nement is the use of texture swizzling strate-
gies (Wang, Yang, and Cao, 2014). To improve cache coherency, texture
swizzling uses space-�lling curves such as Peanno-Hilbert or Morton se-
quence for data organization in the texture. Also, approaches based on the
view direction in raycasting have been proposed (Jönsson et al., 2012). In
our case, we focus on cache-friendly strategies at the stack representation
level.

In a �rst approach (namely 1-Textures, Figure 7.5.b) we maintain a couple
of 2D textures: an indices texture and an intervals texture. The aim of the
former is to serve as a spatial index for the stacks descriptions stored in the
intervals texture. Indices texture has the same dimensions than the support
grid of the stack-based representation (gridwidth × gridheight); hence, the

88 real-time rendering of stack-based data

related stack is obtained by projecting the x,y components of the ray
position on this grid. This projection is used as 2D coordinate to access the
indices texture. For each texel of this texture, we use the components R
and G from the originals RGBA. In R component we encode a pointer (i.e.,
a 1D index) to the intervals texture while the number of intervals in this
stack is encoded in G component. The intervals texture stores each stack
in a row-major order. Here, we also use two components to encode an
interval: the RG components store its attribute and the accumulated height
respectively. The pointer (i0) and the number (n) of intervals stored in
the indices texture marks the beginning and the end of the stack in the
intervals texture, so that the required interval is obtained by iteration
between the i0 and in−1 positions.

In the second approach (2-R-Supertexels, Figure 7.5.c), a single 2D texture
is used. In this texture we encode two levels, one for indices and one for
intervals. We construct the texture by �rst obtaining the maximum number
of intervals among all the stacks, m. Then, in order to store each stack,
we create regions of d

√
me × d

√
me dimensions, where dxe is the ceiling

operator. These regions serve as "supertexels" to provide a pseudoindices
scheme. Therefore, the actual dimensions of the texture are calculated by:

texturewidth = gridwidth ∗ d
√
me

textureheight = gridheight ∗ d
√
me

(7.2)

This strategy allows a straightforward way to get the related stack since
all the regions are squares. Similarly, to the previous approach, the ray
position must be projected in the support grid, but, in contrast, an o�set
has to be added to the cell obtained. Once the region has been identi�ed,
we only have to iterate through it to locate the interval. Also, this texture
encodes the attribute and the height of an interval in their RG components.
Alternatively, the stacks can be saved in non-squared regions by �nding
the rectangle with the minimum perimeter. This can be formulated as a
simple optimization problem:

argmin
width,height

width + height

subject to width ∗ height >= m
width > 0
height > 0

(7.3)

7.2 raycasting the stack-based representation 89

This is the preferred layout in this approach when m is not prime.
Otherwise, the former layout (square regions) should be chosen.

Another possible approach is that proposed by Natali, Klausen, and
Patel (2014). They used a 3D texture of width× height×m dimensions
in which the intervals are stored along the z axis (approach 4-3D-Texture,
Figure 7.5.e). In contrast, we use a 2D texture of (width ∗m)× height
dimensions (approach 3-L-Supertexels, Figure 7.5.d). The stack identi�-
cation is accomplished in a similar way as explained above, but with the
di�erence that we only have to add an o�set to the x index. Then, the
stack iteration will be done in a linear manner.

Despite in DVR the prevailing memory schemes use textures to store
volumetric data; current graphics visualization APIs provide other ways
to send data to the GPU such as Uniform Bu�er Objects (UBO). Recently
OpenGL in its 4.3 version has included a new method for storing large
amount of data in the GPU, the Shader Storage Bu�er Objects (SSBO).
Actually, a SSBO is an enhanced and more �exible version of UBO: OpenGL
implementations must support UBOs of at least 16KB whilst the guaranteed
minimum for a SSBO is 128 MB. Furthermore, the speci�cation of SSBO
allows the de�nition of a non-�xed size array. A SBRT can be represented
in a straightforward way as an array of intervals, being this scheme well
suited for its storage in a SSBO due to its internal memory layout: In
conjunction with SSBOs, OpenGL introduced the std430 layout which
packs scalar arrays more e�ciently than the old std140 (Sellers, Wright
Jr, and Haemel, 2016). An approach based on SSBOs is also proposed
(approach 5-SSBO). Similarly to approach 1-Textures, we populate two
SSBOs, one for indices and another for intervals (Figure 7.5.f).

In order to clarify these approaches, an illustrative example is depicted
in Figure 7.5. Given a SBRT with a grid of width × height cells and a
maximum stack size of 5 intervals (Figure 7.5.a), the memory storage
patterns are described next: in approach 1-Textures (Figure 7.5.b), the
indices texture has the same dimension that the grid of the stack-based
representation (width× height), being the interval data sequentially added
through the interval texture. To set the size of the interval texture, we
�rst need to know the total number of intervals of the stack-based terrain.
Then, with Equation 7.3 we can determine the texture dimension assigning
tom the total number of intervals. If this value is prime, the Equation 7.2
can be used. Also, this value can be increased in order to use Equation 7.3.
Approach 1-Textures can waste some memory since the last cells of last
row usually are not used in this latter case. For approach 2-R-Supertexels

90
real-tim

e
rendering

of
stack-based

data

1-Textures

Indices texture

Intervals texture

2-R-Supertexels

3-L-Supertexels 4-3D-Texture

width− 1, 00, 0

0, height− 1 width− 1, height− 1

Attribute
Height

Attribute
Height

Attribute
Height

Attribute
Height

(a) (b)

(d) (e) (f)

(c)

Stack
Stack

(3 × 2 size)

Stack

Stack

SSBO binding points

n

1 Indices SSBO

Intervals SSBO

Stack

5-SSBO

0

Figure 7.5: Memory storage patterns (b, c, d, e, f) for a stack-based geomodel (a).

7.2 raycasting the stack-based representation 91

(Figure 7.5.c) it is necessary to set the size of the supertexels. The largest
stack determines this value (5 intervals, in the example). The texture
contains supertexels of 3 × 2 texels. The approaches 3-L-Supertexels
(Figure 7.5.d) and 4-3D-Texture (Figure 7.5.e) are similar. Finally, for the
approach 5-SSBO (Figure 7.5.f) two arrays containing the indices and the
intervals are stored in two separate SSBOs.

7.2.3 Visual operations

In this subsection, we describe a set of operations common in geoscien-
ti�c applications and their implementation in our system. These operations,
such as the selective visualization of boreholes or the hiding of strata of
materials, provides geoscientists with visual tools to take decisions at a
glance.

7.2.3.1 Strata visualization

With the aim of showing hidden elements of the subsurface, each stratum
can be attenuated or directly excluded from visualization. This is achieved
by simply modifying the opacity of the material color in the color lookup
table. By using raycasting for rendering, it is not necessary to construct a
new geometry when hiding certain layer. Figure 7.6 shows some examples
of layers attenuation.

7.2.3.2 Cross section visualization

Another way to visualize internal structures is via geological cross sec-
tions. These are 2-dimensional slices of the subsurface, usually vertical,
used to study the distribution of rock types, including their ages, rela-
tionships and structural features. Our system not only allows to perform
sections by vertical cutting planes, but also by any freely-oriented plane in
3D space. In this case, the rendering algorithm will start at the intersection
of the casted ray with the cutting plane. Figure 7.7 illustrates this feature.

7.2.3.3 Borehole log visualization

Borehole records are obtained by drilling the rock core and they contain
relevant information on lithology, stratum thickness or physical properties
of the geological formations. The samples brought to the surface or the
measurements made by the instruments lowered into the hole are mostly

92 real-time rendering of stack-based data

Figure 7.6: Example of layer attenuation (bottom) of an original dataset (top).

the input data for the construction of subsurface models. We can simply
label a stack as corresponding to a borehole by using a Boolean �ag in the
indices texture. When borehole log visualization is selected, only the stacks
with this �ag set are shown. Figure 7.8 shows an example of borehole log
visualization.

7.2.3.4 Applying textures to terrain

We also provide an operation for adding an image texture to the surface
of the terrain such as orthophotos or topographic maps. In a direct way,
the pixel color can be obtained from the image and optionally combined
with the material color, provided that the ray intersects with the terrain
surface. In Figure 7.9 an example of this feature is shown.

7.2.4 GIS-based layer display

The mechanism that GIS applications use to display heterogeneous
geographical data is by means of layer overlay. The layers are visualized in

7.2 raycasting the stack-based representation 93

Figure 7.7: Cross-section (bottom) and original model (top).

Figure 7.8: Example of borehole visualization. They are shown as cylinder of two
materials (blue and yellow color).

94 real-time rendering of stack-based data

Figure 7.9: Example of orthophoto application. Original model (a) and model
with an orthophoto applied on its surface (b).

7.2 raycasting the stack-based representation 95

(a) (b)

(c) (d)

(e)

Figure 7.10: An original model (e) and di�erent examples of visual operations
applied: hiding of many layers (a), application of an orthophoto on
the surface (b), borehole visualization combined with layer hiding (c)
and visualization of cross-section (d).

96 real-time rendering of stack-based data

Figure 7.11: Internal description of the heterogeneous data layers using a camera
enclosing bounding volume.

a speci�c order, so they can be hidden by others placed above of them. In a
two-dimensional context, these issues can be trivially solved by raising the
particular layer at the top of the stack layer. However, this solution cannot
be applied to 3D GIS or GSIS applications, since the order of visualization is
given by a depth bu�er. For example, a layer representing subsoil structures
such as sewage or subway networks may be hidden if a �eld layer that
represent the terrain surface and subsurface is loaded into the system. To
solve this situation, we can make use of some of the visual operations
de�ned in the previous section such as layer attenuation or cross-sections.

In addition, we de�ne a simple solution based on the camera position.
For this purpose, the camera is enclosed in a bounding volume, namely an
Axis-Aligned Bounding Box (AABB), locating the camera at its center. Then,
the portion of the layer that collides with the AABB is excluded from the
visualization. This feature allows moving the camera into the volumetric
dataset in a very natural way, showing hidden layers of materials and
internal structures of the vector layers. Figure 7.11 illustrates this feature.

Figures 7.12, 7.13 and 7.14 show some visualization examples.

7.2.5 Performance analysis

7.2.5.1 Hardware setup

The hardware con�guration for the experiments carried out in this thesis
consisted of a PC equipped with an Intel Core i7-4790 CPU running at 3.60
GHz with 16 GB of RAM and an NVIDIA GeForce GTX 970 graphics card.

7.2 raycasting the stack-based representation 97

Figure 7.12: Example of attenuation of a �eld layer. A subsurface vector layer can
be depicted.

Figure 7.13: A close-up viewing of three di�erent layers. Two subsurface vector
layers are combined with a SBRT layer. The vector layers represent a
sewage network (segment layer) and a set of manholes (point layer).

98 real-time rendering of stack-based data

Figure 7.14: Cross section of a �eld layer. The cut allows the visualization of a
subsurface vector layer. In addition, an orthophoto is applied on the
�eld layer surface.

The framework proposed has been implemented in C++ and OpenGL 4.5
as 3D graphic library.

7.2.5.2 Comparison of memory layouts

To test the approaches described in Section 7.2.2), we performed a set
of experiments. We measure and compare the millions of rays per second
(MRPS) by rendering the di�erent layouts and their memory usage. We
therefore tested four datasets with di�erent grid dimension and stack
sizes; 200 × 250 with a maximum number of 10 intervals per stack, which
corresponds to a model of 200 × 250 × 320 voxels (Dataset A); 400 × 500
with 15 intervals, which corresponds to a model of 400× 500× 400 voxels
(Dataset B) and 800 × 1000 with 16 intervals, which corresponds to a
model of 800× 1000× 800 (Dataset C). Finally, Dataset D is a modi�cation
of Dataset C by deleting several layers and visualizing some stacks (see
Figure 7.15). These datasets were obtained from the DINOloket database
(Gunnink et al., 2013). To measure the impact of raycasting direction we
rendered the dataset from di�erent virtual camera positions.

Regarding the implementation of the textures and bu�ers involved in
the experiments in Figure 7.5, we declared a 2D texture of indices with

7.2 raycasting the stack-based representation 99

(a) (b)

(c) (d)

Figure 7.15: Overview of the datasets used in the experiments. Dataset A is shown
in the left-upper corner (a), Dataset B is in the right-upper corner
(b), Dataset C is in the left-lower corner (c) and Dataset D is in the
right-lower corner (d).

GL_RG32UI internal format and a 2D texture of intervals with GL_RG16F

internal format for approach 1-Textures. The approaches 2-R-Supertexels
and 3-L-Supertexels used a single 2D texture with GL_RG16F as the inter-
nal format. Also, we compared the layouts proposed with the 3D texture
strategy presented in (Natali, Klausen, and Patel, 2014) (approach 4-3D-
Texture). Likewise, the internal format of the 3D texture was GL_RG16F.
For approach 5-SSBO, the indices SSBO is �lled by an array of structures
formed by two 32-bits unsigned integers, whilst the Intervals SSBO by two
16-bits �oating-point numbers. The rendering has been performed on a
1056 × 884 viewport.

Figure 7.16 reports the minimum value of MRPS reached in the experi-
ments for each dataset and approach (worst case). This case usually occurs
when the ray has to traverse more empty space. On the other hand, Figure
7.17 shows the maximum value of MRPS reached (best case).

100 real-time rendering of stack-based data

The plot showing the worst case follows a similar pattern for each
dataset. Approaches 1-Textures and 5-SSBO perform better than others.
Due to the fact that these approaches are linear, the prefetching and the
cache work better at stack level. Furthermore, the layout provided by
OpenGL for the SSBO seems better than approach 1-Textures. In Figure
7.17, results are less conclusive, obtaining in all datasets more than 200
MRPS for the chosen viewport dimensions.

The layout of approach 3-L-Supertexels presents some restrictions. The
approach cannot be used for very large models. The graphics cards support
textures up to a maximum size. For the card used in our experiments, this
maximum size is 16,384 × 16,384 for 2D textures. Therefore, in order to
encode a dataset with a dimension of 1,024 × 1,024 and more than 16
maximum intervals per stack, this layout needs at least a 17,408 × 1,024
2D texture, exceeding the GPU limits.

The memory requirements of each layout as well as the wasted memory
have also been summarized in Table 7.2, being approaches 1-Textures and 5-
SSBO the most e�cient packing the data. In these approaches, the intervals
structure (in texture or SSBO) does not need a �xed interval size in order
to identify a stack due to the indices. However, as can be noted, approach
1-Textures requires some extra memory for Dataset A that can be neglected.
This is because the total number of intervals, 309,433 in this case, is a prime
value. In order to decompose the set of intervals in a rectangular texture,
we summed one to this value to be able to use Equation 7.3 (obtaining a
479 × 646 texture). The outcomes for the remaining approaches show a
noticeable wasting of memory storage.

In general, the approach 5-SSBO can be considered the best one in
terms of performance since it reached the higher MRPS values on average.
Moreover, the approaches 5-SSBO and 1-Textures provide the best results
in memory usage and in the ratio consumed/wasted. SSBOs can use all the
available GPU memory, which is considerably higher than the maximum
size allowed for textures (as stated above, 16,384 × 16,384 dimensions).
Therefore, the approach 5-SSBO is able to manage datasets larger than
those who can be holded in 1-Textures, without the use of an out-of-core
strategy. However, SSBOs are only available in modern GPUs supporting
OpenGL 4.3 or higher. Consequently, approach 1-Texture provides a more
general solution for older hardware.

7.2 raycasting the stack-based representation 101

 0

 20

 40

 60

 80

 100

 120

 140

Dataset A Dataset B Dataset C Dataset D

M
ill

io
ns

 o
f r

ay
s

pe
r

se
co

nd

Two textures
R. Supertexels
L. Supertexels

3D texture
SSBO

Figure 7.16: Minimum MRPS reached.

 0

 200

 400

 600

 800

 1000

 1200

 1400

Dataset A Dataset B Dataset C Dataset D

M
ill

io
ns

 o
f r

ay
s

pe
r

se
co

nd

Two textures
R. Supertexels
L. Supertexels

3D texture
SSBO

Figure 7.17: Maximum MRPS reached.

102
real-tim

e
rendering

of
stack-based

data

Table 7.2: Storage requirements of memory layouts.

Dataset A Dataset B Dataset C

Wasted
memory (MB)

Consumed
memory (MB)

Percentage of
wasting (%)

Wasted
memory (MB)

Consumed
memory (MB)

Percentage of
wasting (%)

Wasted
memory (MB)

Consumed
memory (MB)

Percentage of
wasting (%)

1-Textures 3.81× 10−6 1.56 2.4× 10−4 0.00 6.20 0.00 0.00 29.06 0.00
2-R-Supertexels 0.73 1.91 38.10 6.77 11.44 59.20 25.87 48.83 53.00
3-L-Supertexels 0.73 1.91 38.10 6.77 11.44 59.20 25.87 48.83 53.00
4-3D-Texture 0.73 1.91 38.10 6.77 11.44 59.20 25.87 48.83 53.00
5-SSBO 0.00 1.56 0.00 0.00 6.20 0.00 0.00 29.06 0.00

Table 7.3: Comparison of results for Dataset A. FPS means frames per seconds and MRPS, millions of rays per second.

Approach FPS (worst) FPS (best) MRPS (worst) MRPS (best) Preprocessing time (s) GPU memory usage (MB) Main memory usage (MB)

SBRT 137 1259 128 1175 0 1.56 0.00
Gigavoxels 158 560 174 589 115 459.33 286.86

7.2
raycasting

the
stack-based

representation
103

Table 7.4: Comparison of results for Dataset B. FPS means frames per seconds and MRPS, millions of rays per second.

Approach FPS (worst) FPS (best) MRPS (worst) MRPS (best) Preprocessing time (s) GPU memory usage (MB) Main memory usage (MB)

SBRT 144 664 134 620 0 6.19 0.00
Gigavoxels 194 654 181 611 115 459.33 286.86

Table 7.5: Comparison of results for Dataset C. FPS means frames per seconds and MRPS, millions of rays per second.

Approach FPS (worst) FPS (best) MRPS (worst) MRPS (best) Preprocessing time (s) GPU memory usage (MB) Main memory usage (MB)

SBRT 50 1208 47 1128 0 29.06 0.00
Gigavoxels 241 690 225 644 920 459.33 286.86

Table 7.6: Comparison of results for Dataset D. FPS means frames per seconds and MRPS, millions of rays per second.

Approach FPS (worst) FPS (best) MRPS (worst) MRPS (best) Preprocessing time (s) GPU memory usage (MB) Main memory usage (MB)

SBRT 27 265 25 247 0 29.06 0.00
Gigavoxels 24 46 22 43 920 459.33 286.86

104 real-time rendering of stack-based data

7.3 raycasting the qadstack

Models represented by QuadStack can be rendered by ray casting with-
out using an intermediate representation (e.g., a SBR or a 3D grid of voxels).
Similar to other hierarchical data structures QuadStack allows an e�cient
implementation of ray casting, which is solved at the gstack level �rst,
then at the interval level, and �nally at the height�eld level, as depicted in
Figure 7.18.

 *

 *

(a)

(b)

(c)

Figure 7.18: Raycasting a QuadStack, �rst resolved at the QuadStack level, then
at the interval level and �nally, at the height�eld level (a). When an
∗-interval is found, a recursive call to traverse the gstacks in children
nodes is required (b). After processing a gstack, the traverse continues
with the next one, until the ray exits the volumetric model.

The rendering procedure starts by computing the intersection between
the ray casted into the scene and the gstack at the root node. This can
be computed e�ciently, since a gstack de�nes a cuboid that spans the
entire ~z dimension of the volumetric space. Then, the �rst intersection
with an interval ik of the gstack is calculated. This involves computing
the intersection of the ray with its four lateral faces and two bounding
height�elds: Hk (top) and Hk−1 (bottom). If the interval ik is terminal,
its contribution to the accumulated color and opacity is computed as the
integral of the transfer function for the attribute ak between the entry and
exit points of the ray, together with an opacity correction due to adaptive
sampling (Hadwiger et al., 2006). The ray processing �nishes immediately
if the opacity of the color is close to one. If ik is a ∗-interval, a recursive
call is made to compute the contribution by the ray traversal of the gstacks
in the four descendant nodes. After ik has been processed, the traversal
continues with a new interval until the ray exits the gstack. For the gstack

7.3 raycasting the qadstack 105

at the root node this �nishes the sampling of the QuadStack, but in the
general case, it implies the return of a recursive call and further processing
in the gstack at the parent node.

The most time-consuming step in the QuadStack raycasting is the ray-
height�eld intersection computation. In order to accelerate this step, each
height�eld is mipmapped storing the min-max instead of averaging values
(Tevs, Ihrke, and Seidel, 2008). Each mipmap level de�nes a bounding
geometry for the height�eld with the shape of a set of cuboids with the
same dimensions in the XY plane. The highest mipmap level represents the
coarsest approximation (i.e., a bounding box) and the level zero represents
the �nest (i.e., the height�eld itself). To test if a ray intersects the height-
�eld associated to a given interval of a gstack, �rst the intersection with
the bounding cuboid de�ned by the highest mipmap level is computed.
If the cuboid is hit, the intersection computation continues with the four
cuboids contained in it in the preceding mipmap level, until the ray passes
by or hits the height�eld at level zero. The extra memory required (66%
for each height�eld) can be reduced by using the height�eld compression
explained in Chapter 5, resulting in a good trade-o� between rendering
time and memory footprint.

7.3.1 QuadStack encoding in the GPU memory

The key for an e�cient raycasting implementation is a careful encoding
of the model representation in the GPU memory. Our memory layout
for QuadStack consists of three bu�ers: a tree bu�er that encodes the
QuadStack structure, a lookup table (LUT) for the set of gstacks, and a
height�eld bu�er that packs the height�elds associated to each gstack
(Figure 7.19).

The structure of the tree bu�er is inspired by the proposal of Lefebvre,
Hornus, and Neyret (2005), where each tree node keeps either the data
itself (leaf), or an index to its descendants (otherwise). Contrary to the
cited work, in our structure an inner node also contains the corresponding
gstack. Therefore, a node in the tree bu�er holds indices of its children,
and an extra pointer to the gstack LUT indicating the beginning of the
sequence of intervals and its size.

The gstack LUT comprises every gstack in a consecutive manner. Each
element of this bu�er de�nes a gstack interval formed by its attribute and a
pointer to the beginning of its corresponding height�eld in the height�elds
bu�er.

106 real-time rendering of stack-based data

Gstack LUT

Tree buffer

Quadstack

3 2 2 2 1 1 1 1

n0

n1 n2 n4

n5 n6 n7 n8

n3

n0 n1 n2 n3 n4 n5 n6 n7 n8

*

*

Heightfield representation

Memory layout

Heightfield buffer

Hf0

Hf1

Hf2

Hf3

Hf0 Hf1 Hf2 Hf3

Hf0 Hf1 Hf3 Hf1 Hf2 Hf1 Hf2 Hf1 Hf2 Hf1 Hf2 Hf2 Hf2 Hf2

0 0 1 0

Figure 7.19: Memory layout of a given QuadStack after performing its height�eld
arrangement.

Height�elds are compressed by using the approach described in Chap-
ter 5. The detailed structure of the height�eld bu�er is shown in Figure 7.20.
A header contains a �eld with the number of blocks into which the height-
�eld is divided, followed by a sequence of block descriptors that comprises
the base value, the number of bits required for encoding the height di�er-
ences, and the address of the height data. Next, the encoded height data for
each block is stored consecutively. A Morton encoding layout provides the
required spatial coherence when accessing data both for block metadata
and height di�erences. As shown in Figure 7.19, an index indicating the
level of the QuadStack to which the height�eld is associated (base level)
has been added. When a gstack in a descendant node references a speci�c
quadrant of this height�eld, the use of this index avoids adding extra infor-
mation at the LUT bu�er: the actual quadrant can be quickly determined
from the base level of the height�eld and the level queried.

7.3 raycasting the qadstack 107

231 231 232

230 233 229

229 230 228

0112 0112 1002

0102 1012 0012

0012 0102 0002

differences

Header Height data

𝐵𝐵0

h

w

Base value

𝐵𝐵1 𝐵𝐵2 𝐵𝐵3

Base
value

Num. bits
encoding

Height data
address

Figure 7.20: Height�eld compression scheme.

7.3.2 Performance analysis

We used �ve datasets for evaluation that exhibit strong to medium
layered structure: two terrain models with several layers of di�erent geo-
logical content (Terrain 1, Terrain 2) from DINOloket database (Gunnink
et al., 2013), microstructure of Li-Pol battery (Battery) (Ebner et al., 2013),
a part of an industrial model of a wing of a plane (Wing) (Aage et al., 2017),
and a magnetic reconnection simulation (Magnetic) (Guo et al., 2014). We
wanted to cover a wide spectrum of applications and wide variety of layers
and structures. Figure 7.21 shows these datasets.

7.3.2.1 Volume data compression

We have evaluated the ability of QuadStack to perform lossless compres-
sion of the input volumetric data. The amount of memory here examined
is the total memory needed for the rendering.

The measured results are shown in Table 7.8. The memory for the input
volume data ranges from 105 MB to 326 MB. The voxel representation uses
16 bits per voxel (bpv).

QuadStack requires from 3 MB to 16 MB of memory for our datasets,
demanding less than 2 bpv for all the scenarios. The achieved compression
ratio is between 9× and 108×.

A breakdown of the memory budget for QuadStack is show in Table 7.7.
We can see that most of the memory is used by the quadtree and attribute

108 real-time rendering of stack-based data

Terrain 1 Terrain 2

Battery Magnetic Wing

Figure 7.21: Datasets used in the experiments.

information. The great compression ratio provided by decoupling height-
�elds and attributes compensate the min-max mipmaps memory overhead.
In Table 7.8 can be seen that even though including this memory increment,
QuadStack requires least memory in almost every case. It should be noted
that the memory required to store the min-max mipmaps is optional since
it serves only as rendering acceleration data structure.

Dataset Attributes
[MB (%)]

Height�elds
[MB (%)]

Mipmaps
[MB (%)]

Total
[MB (%)]

Terrain 1 12.2 (52%) 3.2 (14%) 8.0 (34%) 23.5 (100%)
Terrain 2 3.3 (54%) 1.0 (16%) 1.8 (30%) 6.2 (100%)
Battery 7.3 (39%) 4.8 (26%) 6.5 (35%) 18.6 (100%)
Wing 1.5 (37%) 1.2 (30%) 1.3 (33%) 4.0 (100%)
Magnetic 3.9 (49%) 1.5 (19%) 2.5 (32%) 7.9 (100%)

Table 7.7: Breakdown of the QuadStack memory requirements. The columns
represent memory needed for representing the quadtree and attributes,
compressed height�elds, and min-max mipmaps.

7.3 raycasting the qadstack 109

7.3.2.2 Direct volume visualization

We evaluated the GPU-based direct visualization of QuadStack by using
the �ve datasets proposed above. As reference we used two visualization
backends implemented in the Paraview software: the GPU accelerated
rendering using VTK, and CPU based rendering using OSPRay. For all
scenes we used a set of representative views for which we measured the
rendering times that were converted to performance numbers expressed
in millions of rays per second (MRays/s). These measures were averaged
to report an overall performance for each scene and method at the bottom
of the Table 7.8.

VTK uses a highly optimized GPU ray caster of uncompressed volume
data and we can observe that it achieves the highest rendering performance
for most cases. The QuadStack rendering is between 1.38-17.63× slower,
with the exception of the Wing scene where clearly outperforms VTK
(2.25× faster). The OSPRay renderer is CPU based and it generally achieves
the lowest performance on the tested scenes. It is 1.3-4× slower than
the direct QuadStack visualization. The direct SBR rendering uses an
equidistan sampling to satisfy the Nyquist-Shannon sampling theorem.
The direct SBR rendering is slower than the QuadStack (between 1.13-7.9×)
for all datasets except for the Battery model (4.33× faster).

QuadStack performs better than the rest of renderers/techniques when a
ray has to skip a large amount of empty space encoded in high levels of the
tree structure (Terrain 1-2 and the Wing). However, the VTK renderer pro-
vided a better overall performance. This is primarily due to the height�eld
decompression overhead implicit in each sampling step of the QuadStack
traversal. As QuadStack uses just a fraction of memory required by the
VTK renderer, it provides a good tradeo� between memory usage and
rendering time.

110
real-tim

e
rendering

of
stack-based

data

Terrain 1 Terrain 2 Battery Wing Magnetic
Resolution 1,024 × 512 × 250 512 × 512 × 400 512 × 512 × 210 1,024 × 1,024 × 163 512 × 512 × 512

Max. Layers 14 12 34 19 32
Construction time [sec]

Voxel grid - - - - -
SBR 8.7 5.6 3.3 14.0 9.5

QuadStack 12.7 6.0 10.5 14.5 10.7
Memory size [MB / bpv (ratio)]

Voxel grid 250 / 16 (100%) 200 / 16 (100%) 105 / 16 (100%) 326 / 16 (100%) 256 / 16 (100%)
SBR 22 / 1.41 (8.8%) 9 / 0.73 (4.5%) 27 / 4.08 (25.6%) 22 / 1.07 (6.7%) 11 / 0.7 (4.3%)

QuadStack 24 / 16 (100%) 6 / 0.48 (3.0%) 19 / 2.90 (18.1%) 4 / 0.20 (1.2%) 8 / 0.50 (3.1%)
Rendering performance [MRays/sec (ratio)]

VTK (Voxel grid) 126 (100%) 72 (100%) 423 (100%) 8 (100%) 180 (100%)
OSPRay (Voxel grid) 18 (14.3%) 23 (31.2%) 18 (4.3%) 6 (75%) 28 (15.5%)

SBR 37 (29.3%) 46 (63.9%) 104 (24.6%) 13 (162%) 10 (5.5%)
QuadStack 72 (57.1%) 52 (72.2%) 24 (5.7%) 18 (225%) 79 (43.8%)

Table 7.8: Results measured on �ve test datasets. The table shows basic dataset properties, construction times and memory requirements for
evaluated representations (Voxel grid, SBR, QuadStack). The bottom part of the table compares rendering performance for di�erent
methods (VTK, OSPRay, QuadStack). The results for the method with the lowest memory consumption and best rendering performance
are highlighted in bold.

7.4 conclusion 111

7.4 conclusion

This chapter has brought together the research in terms of visualization
carried out in this thesis. In Section 7.2 we have suggested by �rst time the
use of the stack-based representation as the main rendering data structure.
Also, we have tested several approaches based on typical textures and
the new SSBOs, to store this representation on GPU reaching an outcome
quite acceptable for interactive applications. It should also be pointed out
that, as far as we know, the use of SSBOs to store volumetric data has
not been explored in the literature yet. Additionally, this section presents
an accurate, simple and e�cient method to calculate normal surface vec-
tors in image space. Finally, we have shown how several common visual
operations of interest in geoscienti�c applications can be implemented
in a straightforward way using the SBRT and the described visualization
method.

Finally, Section 7.3 introduces a novel algorithm for direct rendering of
the compressed data by a QuadStack. We show its GPU implementation
that performs comparable with the state-of-the art algorithms for direct
volume rendering, but instead of using full data it works directly with the
compressed volumes.

Part IV

C O N C L U D I N G R E M A R K S

8
C O N C L U S I O N S

In this dissertation, we have proposed the use of the stack-based rep-
resentation as both SBRT and QuadStack as a basis for geomodeling ap-
plications. Stack-based representation has proved to be a very compact
representation with a good trade-o� between memory requirement and ac-
cess speed. We have put in context this representation with those existing
in the literature, highlighting its advantages and drawbacks. Throughout
the chapters of this document, its di�erent aspects have been developed
such as a formal de�nition of the representation and its operations, con-
struction procedures, access methods and visualization techniques.

On a personal and non-technical level, these last four years have allowed
me to improve myself as researcher and person. The work carried out has
generated important results which have been published or are currently
under revision in top journals and conferences on di�erent �elds, proving
the multidisciplinary research made in this thesis.

8.1 summary of contributions

In the �rst part of this dissertation, we hightlighted that the stack-based
representation has been used only for a few papers focused on visualiza-
tion and just as an auxiliary data structure, despite its interesting features.
Therefore, we suggested the stack-based representation as a �rst-class rep-
resentation for managing geological data at surface and subsurface levels.
Here, we have highlighted its low memory requirements in comparison
with other commonly used structures such as voxel grids or octrees.

Even though we provide a clear and intuitive de�nition of the SBRT (see
Section 3), in Section 4 we present a formal framework to validate this
representation and de�ne properties and algorithms precisely. We based
this formalization on the geo-atom theory, a framework that uni�es �eld
and discrete object data models in a general spatial representation. We
began by developing a framework in which the geo-atom theory is used for
the representation of 3D voxel-based terrains that supports our description
of the �nal formalization of the SBRT representation. In addition, we have
de�ned a set of common spatial operations on this representation using the

115

116 conclusions

tools provided by map algebra. More complex geoprocessing operations or
geophysical simulations using the SBRT as underlying representation can
be implemented as a composition of these fundamental operations. Finally,
a data model and an implementation extending the coverage concept
provided by the Geography Markup Language standard are suggested.

Once this core representation is de�ned, we aimed to improve it to
reduce its space requirements (Chapter 5). QuadStack is a novel data
structure which not only exploits the layered structure of datasets such
as the SBR, but also the horizontal spatial coherence within the layers.
QuadStack �rst compresses the volumetric data into vertical stacks that
are further compressed into a quadtree that identi�es and represents the
layered structures at the internal nodes. The main contribution of this
chapter is the arrangement of apparently unstructured volumetric layered
datasets in a set of height�elds, isolating them from the attribute values,
and compressing them into a quadtree. This allows the compression of each
part separately, providing excellent compression results. We described a
construction algorithm in two phases, a fast access algorithm as well as a
lossless random-access compression method for the decoupled height�elds.

The second part of this dissertation is focused on the de�nition and im-
plementation of rendering algorithms using the data structures introduced
previously. After a review of the main concepts and methods used in direct
volume rendering, we proposed a real-time rendering method based on
GPU raycasting for the visualization of volumetric terrains and geological
structures, using again the stack-based representation of terrains as main
data structure. To achieve this, di�erent GPU memory layouts are proposed
comparing their performance. Also, a comparison with a hierarchical data
structure was made, showing similar results. In addition, we implemented
useful visual features for geoscienti�c applications, such as the visualiza-
tion of boreholes or geological cross sections, or the selective attenuation
of strata to visualize internal structures or hidden vector layers. The last
contribution regarding the stack-based representation visualization is an
e�cient and simple method to calculate normal surface vectors in image
space which is used in a deferred shading stage.

Because of its fast access, the QuadStack is also suitable for direct ren-
dering; therefore, we presented a compact GPU memory layout and a
raycasting-based algorithm for visualization. We compared its perfor-
mance in terms of storage requirements and rendering speed with datasets
from di�erent domains, besides the geological one. We showed that the
speed performance of our GPU implementation is similar to the one of

8.2 future work 117

state-of-the-art algorithms, while using only a portion of their memory
requirements.

8.2 future work

Geomodeling is a very active area of research. Advances made by re-
searchers are rapidly adopted by engineers and geoscience professionals,
which results in a constantly evolving industry.

Regarding the content of this dissertation, some aspects that deserve
further study are discussed below:

So far, the stack-based representation has been extensively used for
simulating natural processes like thermal or water erosion (Benes
and Forsbach, 2001; Št’Ava et al., 2008) and snow-covering of moun-
tains (Cordonnier et al., 2018). However, other applications such as
the computation of drainage networks (Ortega and Rueda, 2010), the
simulation of sediment transport, erosion and deposition (Karssen-
berg and Bridge, 2008), the groundwater modeling (Carlotto, Silva,
and Grzybowski, 2018) or the simulation of lava �ows (Hérault et al.,
2011) are worth exploring. The operations required for these appli-
cations can be fully implemented in GPU in an integrated pipeline
that involves a computation stage and a visualization stage, avoiding
expensive data transfers between GPU and CPU.

The data structures and visualization methods presented in this
dissertation can be implemented as a module for Open-Source GIS
packages such as GRASS (GRASS Development Team, 2016), since
these tools handle volumetric terrains and subsurface structures by
means of voxel models. Moreover, our rendering algorithm would
improve one of the main drawbacks of this kind of tools, i.e., their
3D visualization.

We can enhance our framework by allowing the representation of
heterogeneous materials (Conde-Rodríguez et al., 2015). Material
distributions are in fact heterogeneous by its very nature, since a
material is usually mixed with those around it. For instance, in the
transition between water and clay materials, there are points which
present di�erent proportions of them. The representation of this
type of materials is a complex task, since the proportions of the
di�erent material mixtures must be managed in a proper way. This

118 conclusions

feature would provide a more accurate representation and modeling
of the strata at surface and subsurface levels.

We introduced an exchange data model based on GML, a standard
�le format in geospatial applications. However, other professionals
working in �elds like engineering or physics could be interested
in developing our methods. Therefore, the use of other exchange
formats such as NetCDF could be appropriate.

QuadStack is a totally new data structure; hence, we are still far
from having studied all its properties. The study of a layerity factor
could be very interesting in order to analyze beforehand if a dataset
is suitable to be encoded with this data structure. Also, we have
not already studied the in�uence of dataset transformations, like
rotations, in the compression ratio.

QuadStack has been tested with datasets with an orthogonal spa-
tial coherence. However, many other scienti�c data present this
coherence in a cylindrical perspective (medical datasets, 3D CAD
models, etc.). Therefore, an extension of the data structure using
polar coordinates seems convenient.

Although it has proven to be fast enough for the tested data, the
QuadStack construction algorithm may be time-consuming if the
datasets contain many layers. The use of data structures designed for
this purpose such as su�x-trees or the use of heuristics to simplify
the problem would be good contributions.

In the same way as the SBRT, the QuadStack can be suitable for the
implementation of simulations of geological processes. As other
hierarchical data structures, it does not need a complete recalculation
when only local zones are a�ected, but the implementation of these
and other algorithms that modify the geodata represented by a
QuadStack is an open problem that requires an in-depth study.

Part V

A P P E N D I C E S

A
P R O G R A M M I N G C U S T O M V I S UA L I Z AT I O N
A L G O R I T H M S O N G P U

In this appendix, we show some of the concepts of the graphic GPU
programming used in this thesis, as well as the technical details of the visu-
alization algorithms presented. We will explain some features of OpenGL,
the graphics API used during this thesis, and why we decided to work with
it.

It should be noted that through this dissertation we have used the
term GPU implementation when we referred to algorithms designed to be
compiled and executed in graphics hardware.

a.1 introduction to gpu programming

In 1963, Sutherland (1963) presented in his doctoral thesis Sketchpad, A
Man-Machine Graphical Communication System, a pioneer display which
launched the research in the new �eld of computer graphics and the devel-
opment of graphics hardware. The �rst graphics workstations released in
1980s were able to overcome operations with 100,000 vertices per second,
while the current graphics cards have increased their capabilities to more
than 20 billion of vertices per second. Of course, these advances have been
the result of changes in the hardware architecture and the way in how
they are programmed. Over the years, these architectures have become
more �exible and their coding easier by abstracting the programmer from
the hardware details.

The evolution of graphics hardware usually has been historically divided
into �ve or six generations, depending on the author. With the arrival of
the �rst generation, some graphics APIs emerged. These APIs serve as an
abstraction layer between the actual application and the graphics system,
providing high-level interfaces to con�gure and program the graphics
pipeline. The GPUs of the �rst and second generations barely provide the
user with a programmable interface. Only a few con�gurable parameters
and the raster operations could be customized for the particular application.
Therefore, the graphics pipeline could be considered mostly �xed. In
the third generation, it was included a programmable pipeline in which

121

122 programming custom visualization algorithms on gpu

vertex shaders were introduced. A shader is a program that is executed
on the GPU instead on the CPU and modi�es a stage of the rendering
pipeline. A vertex shader performs operations on the input vertices, to
compute a lighting model or to update their geometry. By using this
shader it is not possible to remove or add new vertices to the pipeline.
Fragment/pixel shaders, introduced in the fourth generation, act on the
pixels of the �nal framebu�er and give more versatility than vertex shaders.
In these programs, the �nal pixel color is computed as the result of a
function that can be very complex, implementing advanced e�ects and
combining the contribution of several textures. Other types of shaders have
been added to the rendering pipeline such as the tessellation shaders or the
geometry shaders. Contrary to the previous shaders explained, these new
stages (introduced in the �fth generation) can create or delete geometry.
In the case of the tessellation shaders, new primitives can be added to
the input data by subdividing them into smallest ones. This operation
is very useful to create new geometry on-the-�y in order to reduce the
CPU-GPU data communication, considered as a bottleneck in real-time
rendering. Geometry shaders receive the vertices returned by the vertex or
tessellation stage as actual primitives (for example triangles), allowing the
evaluation and transformation of them. The functionality of a tessellation
shader can be implemented by a geometry shader, however, due to its
�exibility, geometry shaders are less e�cient. In modern programmable
APIs, the implementation of vertex and fragment shaders is mandatory,
while the geometry and tessellation stages are optional.

Further, it was introduced a new type of shader that is not related to
the rendering process: the compute shader. They arise as an alternative
to general GPU computing APIs such as CUDA or OpenCL in order to
directly manage the data used in the graphics pipeline. This is a very
e�cient solution when the processing of the data is totally integrated with
its visualization like in �uids or particle simulation applications. Since this
stage is not executed within the rendering pipeline, it needs to be explicitly
invoked for its execution.

Currently, there exist several APIs that provide access to the GPU
programming capabilities described above. The cross-platform OpenGL
launched by the Khronos Group Inc. and Direct 3D, included in the set of
Microsoft’s Direct X APIs, are the most widely used in computer graphics.
However, other modern APIs like Metal, released by Apple Inc. or Vulkan,
also owned by the Khronos Group are attracting programmers.

A.1 introduction to gpu programming 123

The visualization algorithms included in this dissertation have been im-
plemented using the OpenGL API. The reasons for this choice are outlined
below:

This is the most used API in a research context. Therefore, the
implementation of many algorithms of the state-of-the-art can be
directly compared with the methods presented.

It is cross-platform. The methods implemented in a platform can be
ported almost e�ortlessly to other systems.

It is open-source. In this dissertation, we have tried to use open-
source technologies as far as possible. In addition, this is a standard
created by many companies, so it is vendor-independent.

The community behind it. Since OpenGL is open-source, there exist
many support libraries with interesting functionalities.

This API can be called from di�erent programming languages. One
of them is C++, the standard language for real-time graphics appli-
cations as in our case.

Figure A.1 shows the data stream among the graphics application, API
and shaders.

Figure A.1: Programmable pipeline organization. The data �ow between the �xed
pipeline stages and the programmable shaders are shown.

124 programming custom visualization algorithms on gpu

a.2 opengl api

OpenGL (Open Graphics Library) was released in the beginning of
1990s by Silicon Graphics Inc. along with the OpenGL ARB (Architectural
Review Board), composed of members of companies such as Compaq, IBM,
Microsoft or Intel among others. This board is responsible for designing
and producing the OpenGL speci�cation that must be followed by the
concrete vendors.

The OpenGL version 1.0 was published in 1992, and at the time of writing
this dissertation the last available version is the 4.6, released in 2017. The
functionalities of this API have been adapting to the GPUs generations and
the rendering pipeline evolution. The 2.0 version brought the high level
shading language used since that time: the OpenGL Shading Language or
GLSL. At this point, just vertex and fragment shaders were supported. In
2008 in conjunction with the 3.0 version, the OpenGL ARB introduced the
core pro�le and compatibilitymodes, as mechanisms to simplify the addition
of new functionalities to OpenGL. The functionalities to be removed in
future versions are included in this compatibility mode, while the current
functions are kept in the core pro�le mode. The compatibility pro�le
included, for instance, deprecated �xed functions of vertex and fragment
stages.

a.2.1 Data model

OpenGL allows two ways to store and access data from the graphics
applications: by means of bu�ers and textures. The former are linear
blocks of memory than can be seen as generic memory allocations. The
latter are used to store multidimensional data like images.

Bu�ers were thought to provide to the API the greatest possible �exibility.
They can be used in many situations. For example, we can send vertex
coordinates and other attributes to a vertex shader by using the so-called
Vertex Bu�er Objects (VBOs) or by a set of unstructured elements to any
shader by means of Uniform Bu�er Objects (UBOs). Whether a bu�er is
going to be used as a VBO or a UBO, among others, it is determined by
the target or binding point. For a long time, these targets did not allow a
total freedom when using the bu�ers, since most of them only allow read-
only access or had a strong size limitation. OpenGL 4.3 version provided
a new type of bu�er object: the Shader Storage Bu�er Objects (SSBOs),
which were introduced in this thesis in Chapter 7. Their main advantages

A.3 raycasting implementation in glsl 125

are the use of almost all available memory in the graphics card and their
possibility to be directly updated from any arbitrary shader of the graphics
pipeline. However, this �exibility makes it di�cult for OpenGL to optimize
its access, making other options such as UBOs much more e�cient.

Textures are structured storage objects that can be used both for reading
and for writing. Likewise bu�er objects, textures need targets to declare
the type of structure to be used as well as a set of binding points; in this
case they are called texture units. The number of texture units are limited
depending on the speci�c hardware. There is a wide variety of available
targets. We can use 1D, 2D or 3D textures to store for example a transfer
function, an image to be applied as a normal map or a medical volumetric
image, respectively. Also, a set of textures can be accessed from the same
unit texture by means of the array texture target. Interestingly, the content
of a bu�er object can be accessible from a texture unit by using texture
bu�er objects (TBOs), therefore technically, TBOs are bu�ers rather than
textures. The main advantage of using bu�er textures is the same as
that of the previously described SSBOs, the amount of memory available.
However, the largest advantage of a SSBO compared with a TBO is that
the �rst can use interface blocks. A block is a kind of struct allowing the
combination of many data types like int’s, float’s or vec4’s, that can be
de�ned inside a shader. All of these features make SSBOs the most �exible
way for storing data that needs to be accessible from a shader in OpenGL.

a.3 raycasting implementation in glsl

In this section, we show a full GPU implementation of the DVR raycast-
ing algorithm (Hadwiger et al., 2006) taking as example the visualization
method implemented for the stack-based representation of terrains.

Probably, GPU-based raycasting is the most common algorithm for
rendering volumetric data. This technique �rst appeared in 2003 in two
di�erent papers (Kruger and Westermann, 2003; Roettger et al., 2003).
Previously, its CPU-based version was also extensively used since 1980s
(Levoy, 1988). The basic structure of this algorithm was explained in
Chapter 7 thereafter, we will see the implementation details, by using a
speci�c shading language, GLSL.

This method is mostly implemented in the fragment shader. Vertex
shader is used to receive and transform to view coordinates the proxy
geometry, i.e., the AABB used in our algorithms. This shader can also
compute the exit points of the ray marching, however, in our implementa-

126 programming custom visualization algorithms on gpu

Fragment shader

Raycasting subroutine

Shading subroutine

Rasterization

Color bu�er Depth bu�er

+

Framebu�er

Figure A.2: Deferred shading strategy using GLSL subroutines.

tion the ray termination condition is checked by an inclusion test with the
AABB or if the criterion of opacity threshold has been ful�lled.

In the fragment shader, the ray direction is calculated by subtracting the
input point interpolated from the vertex shader from the camera position.
Then, the ray traversal procedure is performed inside a loop compositing
the obtained samples values with a front-to-back scheme. The GLSL code
shown in Listing A.1 the details this implementation. This is a simpli�ed
code with respect to the actual one used. Some optimizations are not
included, for example the adaptive sampling when �nding empty space or
the support of the visual operations explained in Chapter 7. Furthermore,
a code snippet representing the access of a SBRT encoded in a couple of
SSBOs is shown in Listing A.2.

At the end of Listing A.1, the generation of the necessary depth and
color bu�ers for the deferred shading (see Section 7.2.1) is performed.
We implemented the deferred shading in OpenGL by means of shader
subroutines (see Figure A.2). In this way, the functionality of the shader
can be changed for a second pass without the need to link a new shader
that can be a time-consuming operation if it is executed on every frame.
The function responsible for providing the �nal pixel color is shown in
Listing A.3.

The raycasting method implemented for the QuadStack has the same
structure than the shown above. The most outstanding di�erence is the
data structure sampling. This step is more complicated as explained in Sec-
tion 7.3. The estimation of normal vectors does not penalize the algorithm
in a signi�cant way since it is solved using an image-space approach.

A.3 raycasting implementation in glsl 127

#version 430 core

// Fragment shader outputs
layout(location = 0) out vec4 fragColor;
layout(location = 1) out vec4 fragDepth;

// Vertex shader inputs
in vec3 entryPoint;

// Constant declaration
const int MAX_SAMPLES = 500;
const float OP_THRESHOLD = 0.9;

uniform vec3 minAABB;
uniform vec3 maxAABB;
uniform vec3 camera;
uniform int unknownIndex;
uniform float stepSize;

subroutine (renderPassType)
void raycastingPass(){
vec3 dirStep = normalize(camera - entryPoint);
vec3 position = entryPoint;
vec4 accumColor = vec4(0.0);
AABB bBox.min = minAABB;
AABB bBox.max = maxAABB;
int pass = 0;

while(pass++ < MAX_SAMPLES){
float height = position.y;
ivec2 texIndices = getIndices(position.xz, bBox, spacing);
int sample = sampleSbrt(texIndices, height);

if (isRenderable(sample)) {
vec4 color = evalTF(sample);
accumColor += compositing(accumColor, color);

}

if(accumColor.a > OP_THRESHOLD ||
!isInside(bBox, position))
break;

position += dirStep * stepSize;
}

128 programming custom visualization algorithms on gpu

// fill the depth and color buffers for shading
double depth = computeDephValue(position);

if (tempColor.a > 0.00)
fradDepth = vec4(vec3(depth), 1.0);

else
fragDepth = vec4(vec3(1.0,0.0,0.0), 0.5);

fragColor = tempColor;
}

Listing A.1: A simpli�ed version of a raycasting function in GLSL

uniform int dataCols;
uniform int dataRows;

// SSBOs declaration

layout(binding=2) buffer ssboIndices {
uvec2 indice[];

};

layout(binding=3) buffer ssboIntervals {
float interval[];

};

int sampleSbrt(ivec2 indices, float height) {
uint index1D = index2Dto1D(indices, dataCols, dataRows);
uvec2 indiceSampled = indices[index1D]; // Indices SSBO
uint intervalIndex = indiceSampled.x;
uint intervalSize = indiceSampled.y;

for (uint i = 0; i < intervalSize; ++i) {
float sample = interval[intervalIndex + i];
// Both elements are packed into a 32 bits float
vec2 unpackedInterval = unpackHalf2x16(sample);
float attribute = unpackedInterval.x;
float currentHeight = unpackedInterval.y;

if (height >= currentHeight)
return attribute;

}

A.3 raycasting implementation in glsl 129

return unknownIndex;
}

Listing A.2: Sampling method of a SBRT encoded using SSBOs in GLSL

// Texture samples
layout(binding=4) uniform sampler2D depthTex;
layout(binding=5) uniform sampler2D colorTex;

uniform uint kernelSize;

subroutine (renderPassType)
void shadingPass() {
vec3 dirStep = camera - entryPoint;
ivec2 pixel = ivec2(gl_FragCoord.xy);
vec4 color = texelFetch(colorTex, pixel, 0).rgba;
vec4 depth = texelFetch(depthTex, pixel, 0).rgba;

if (depthTexel.a < 0.9)
discard;

vec3 shadedColor = vec3(0.0);
vec3 point3D = getWorldPoint(gl_FragCoord.xy, depthTexel.r);
normal = surfaceNormal(point3D, kernelSize);

shadedColor += getDiffuseColor(color.rgb, normal, dirStep);
shadedColor += getAmbientColor(color.rgb);

fragColor = vec4(shadedColor, color.a);
}

Listing A.3: Implementation of the deferred shading approach in GLSL

B
D O C U M E N TA C I Ó N E N C A S T E L L A N O

La actual normativa de la Universidad de Jaén para la defensa de te-
sis doctorales, adaptada a las directrices del R.D. 99/2011, y aprobada en
Consejo de Gobierno el 6 de febrero de 2012 establece que todas las tesis
doctorales escritas en un idioma distinto al castellano deberán incluir los
siguientes apartados en dicho idioma: título, índice, introducción, resumen
y conclusiones. En base a esta normativa se ha incluido el siguiente anexo.

131

R E P R E S E N TA C I Ó N M U L T I C A PA PA R A S I S T E M A S D E
I N F O R M A C I Ó N G E O L Ó G I C A

alejandro graciano

Memoria de tesis presentada para optar
al grado de Doctor en Informática

directores:
Dr. Antonio J. Rueda
Dr. Francisco R. Feito

Departamento de Informática
Escuela Politécnica Superior de Jáen

Universidad de Jaén

Julio 2019

Alejandro Graciano: Representación multicapa para sistemas de informa-
ción geológica, © Julio 2019

CONTENIDOS

i introducción y perspectiva
1 introducción 3

1.1 Propósitos y objetivos . 6
1.2 Organización de esta tesis 6

2 fundamentos del modelado geológico 9
2.1 Modelos de campos continuos 10

2.1.1 Modelos y estructuras de datos basados en rejillas
en el modelado geológico 11

2.1.2 Modelos de rejillas para el modelado numérico . . 13
2.1.3 Modelos de rejillas jerárquicas para el modelado

geológico . 14
2.2 Modelos de objetos discretos 15

2.2.1 Modelado geológico con complejos simpliciales . . 16
2.2.2 Modelado geológico con complejos celulares . . . 17
2.2.3 Modelos geológicos ordenados topológicamente . 18

2.3 Estrategias generalizadas para el modelado geológico . . . 19
2.4 Comparación de estructuras de datos para el geomodelado 21

2.4.1 Topología . 21
2.4.2 Requisitos de memoria 23
2.4.3 Consultas y actualización 23
2.4.4 Facilidad de construcción 23

2.5 Visualización en GSIS . 24

ii estructuras de datos para para datos geológicos
por capas

3 la representación de terrenos basada en stacks 31
3.1 E�ciencia en el modelado geológico de campos 31
3.2 Trabajos relacionados . 32
3.3 De�niendo la representación de terrenos basada en stacks 33

3.3.1 De�nición matemática 33
3.4 Comparativa de requisitos de memoria 35

4 un esqema formal para la representación de ter-
renos basada en stacks 37
4.1 Introducción . 37

xv

xvi CONTENIDOS

4.2 Fundamentos de la teoría de geo-átomos 38
4.3 Terrenos 3D como geo-campos 40
4.4 Terrenos basados en stacks como geo-campos 41
4.5 Operaciones con terrenos 3D 42

4.5.1 Fundamentos del álgebra de mapas 43
4.5.2 De�nición de operaciones 44

4.6 Un modelo de implementación 51
4.6.1 Extendiendo el modelo con clases de SBRT 54

4.7 Conclusiones y trabajo futuro 55
5 representación eficiente de información basada

en stacks 59
5.1 Introducción . 59
5.2 La estructura de datos QuadStack 61

5.2.1 Grupos de stacks 61
5.2.2 Grupos de jerarquías de stacks 63
5.2.3 Construcción del QuadStack 65
5.2.4 Compresión de campos de altura 67
5.2.5 Optimizaciones . 68

5.3 Accediendo al QuadStack 69
5.4 Conclusiones . 71

iii visualización de datos geológicos
6 fundamentos de la visualización de volúmenes 75

6.1 Introducción . 75
6.2 Revisión de técnicas de visualización directa de volúmenes 75

6.2.1 La ecuación del renderizado de volúmenes 75
6.2.2 Funciones de transferencia 77
6.2.3 Enfoques para el renderizado directo de volúmenes 77

6.3 Raycasting . 79
7 visualización en tiempo real datos basados en stacks 81

7.1 Introducción . 81
7.2 Usando raycasting en la representación basada en stacks . 82

7.2.1 Cálculo de los vectores normales a la super�cie . . 84
7.2.2 Codi�cación de la SBRT en la memoria de la GPU 87
7.2.3 Operaciones visuales 91
7.2.4 Visualización de capas basadas en SIG 92
7.2.5 Análisis del rendimiento 96

7.3 Usando raycasting en un QuadStack 104

CONTENIDOS xvii

7.3.1 Codi�cación de un QuadStack en la memoria de
la GPU . 105

7.3.2 Análisis del rendimiento 107
7.4 Conclusiones . 111

iv consideraciones finales
8 conclusiones 115

8.1 Resumen de las contribuciones 115
8.2 Trabajo futuro . 117

v anexos
a programación de algoritmos de visualización en

la gpu 121
a.1 Introducción a la programación de la GPU 121
a.2 La API OpenGL . 124

a.2.1 Modelo de datos 124
a.3 Implementación del raycasting en la GPU 125

b documentación en castellano 131

BIBLIOGRAFÍA 151

I N T R O D U C C I Ó N

Tener un conocimiento general de las estructuras geológicas, su organi-
zación, sus propiedades y su evolución a lo largo del tiempo es de especial
interés para los geocientí�cos. Este conocimiento les habilita para poder
proporcionar evaluaciones precisas de los recursos o predicciones adecua-
das de las amenazas geológicas. El acceso a esta información ha aumentado
en gran medida gracias a los avances en las tecnologías de adquisición de
datos, que han dado lugar a un gran �ujo de valiosa información espacial
para los campos relacionados con las geociencias y la geoinformación. La
ciencia que busca la integración de estos datos heterogéneos y generar re-
presentaciones asistidas por ordenador de las estructuras geológicas, tanto
a nivel de la super�cie como a nivel subterráneo se denomina Modelado
geológico o Geomodelado.

Como muchas otras disciplinas, el modelado geológico tiene sus raíces
en la Revolución Cientí�ca del siglo XV que tomaron muchas ideas ára-
bes y griegas y las renovaron no sólo desde un punto de vista puramente
cientí�co. El geomodelado atrajo a muchos eruditos renacentistas, como
Leonardo Da Vinci, el cual realizó estudios sobre las formaciones geológi-
cas que fueron utilizados posteriormente para aumentar la precisión de
sus creaciones artísticas. La Figura B0.1.a muestra un boceto datado en
1473 en el que se pueden ver con precisión capas geológicas en el paisaje.
Otros artistas como Albrecht Dürer, mejoraron los resultados de Da Vinci
añadiendo un mayor realismo y aumentando los detalles (Figure B0.1.b).
Estas observaciones y principios son la base del modelado geológico tal
como lo conocemos e inspiraron la cartografía geológica actual.

La �abilidad con la que se represente un modelo geológico en un orde-
nador es crucial para su e�ciente gestión, procesamiento y visualización.
Por lo tanto, el estudio de representaciones de datos espaciales ha sido un
punto clave en la investigación geocientí�ca en las últimas décadas.

Sin embargo, sigue siendo de gran importancia el estudio de nuevas
herramientas y estructuras de datos e�cientes que cumplan con las lla-
madas cinco Ms de los Sistemas de Información Geográ�ca (SIG). Estas
estructuras de datos deben ser capaces de Manejar los datos espaciales de
tal manera que permitan una disposición e�ciente y la mantengan actuali-
zada. Estas posibles actualizaciones deben ser Monitorizadas para que se

139

140 documentación en castellano

(a) Leonardo Da Vinci - Paisaje (1473) (b) Albrecht Dürer - Cantera (1506)

Figura B0.1: Ejemplos de observaciones geológicas en el Renacimiento.

puedan consultar de forma rápida y sencilla. La organización de estos datos
es crucial no sólo para una gestión adecuada, sino también para realizar
cálculos y Medidas sobre éstos de forma e�ciente. También es deseable
que las estructuras de datos Modelen con precisión la complejidad de los
datos y que los integren de forma compacta, por ejemplo, combinando la
información de la super�cie y la del subsuelo en una misma representa-
ción. Y, por último, pero no por ello menos importante, estas estructuras
de datos deben facilitar la extracción de información para crear Mapas y
modelos visuales con el �n de tomar decisiones a simple vista. Esta es una
característica muy interesante para todas las herramientas y estructuras
de datos que manejan datos espaciales.

A pesar de que los requisitos anteriores han sido de�nidos para he-
rramientas SIG, también deben ser cumplidos por cualquier aplicación
geoespacial. El modelado geológico trata fundamentalmente con represen-
taciones volumétricas que raramente son soportadas por los SIG tradicio-
nales. Por ello, a �nales de los años ochenta, surgió el concepto de Sistemas
de Información Geocientí�ca (GSIS, por sus siglas en inglés) que de�ne
aquellos sistemas dedicados a la gestión y visualización de geodatos 3D.
Típicamente, los sistemas GSIS siguen la arquitectura representada en la
Figura B0.2. La arquitectura se divide en tres partes o módulos distintos:
el relativo a la adquisición de datos (1), en el que se recoge la informa-
ción de entrada procedente del trabajo de campo o de los procedimientos
de monitorización. El modelo geológico (2) que actúa como núcleo de la
arquitectura, establece las estructuras de datos que representan las carac-
terísticas geológicas. Este modelo puede separarse en dos submódulos. Por
un lado, en el submódulo de modelado geométrico se utilizan métodos de

documentación en castellano 141

interpolación para generar la información geométrica. Por otro lado, el sub-
módulo de modelado numérico utiliza modelos matemáticos y predictivos
para extrapolar y simular propiedades físicas y fenómenos naturales. A me-
nudo, ambos submódulos están estrechamente conectados. Como último
�n (3), estos modelos son usados por los geocientí�cos para aplicar méto-
dos de análisis y visualización con la idea de extraer nuevo conocimiento
sobre los datos, así como para procesos de toma de decisiones.

Figura B0.2: Arquitectura del proceso de modelado geológico adaptado de (Bo-
browsky y Marker, 2018) y (Turner, 2006). Las etapas que se tratan
en esta tesis se indican con recuadros de color rojo.

La visualización de datos geológicos es una herramienta muy interesante
para los profesionales de GSIS. Al igual que en otros campos cientí�cos
como la radiología o la dinámica de �uidos computacional, disponer de una
visión global y en tiempo real de los datos puede proporcionar una primera
visión de forma rápida y e�caz. Desde el punto de vista de la informática
grá�ca, los objetos tridimensionales se obtienen principalmente mediante
técnicas de visualización de super�cies o volumétricas. Por lo tanto, este
último enfoque parece el apropiado para la visualización de datos geológi-
cos, siendo ésta una estrategia muy utilizada en aplicaciones GSIS. Existen
dos alternativas principales para visualizar datos volumétricos: la rende-
rización indirecta y la directa. El primer método utiliza algoritmos para
obtener y visualizar la información de la super�cie a partir de los datos
volumétricos, ignorando la información interna. En cambio, la segunda
de�ne técnicas para visualizar los datos sin aplicar ningún procedimiento

142 documentación en castellano

para extraer su super�cie. Esta estrategia se basa en la simulación de la
interacción entre modelos de transporte de luz y un campo escalar 3D.

Que la visualización se realice en tiempo real es también un aspecto muy
apreciado a la hora de realizar operaciones sobre los geodatos. Además,
para algunos tipos de operaciones como las simulaciones sería muy bene�-
cioso que tanto los procedimientos de cálculo como los de visualización
pudieran sincronizarse, mostrando la operación paso a paso y de forma
�uida. Por ejemplo, puede ser muy interesante ver cómo un fenómeno
natural como los �ujos de lava o la deposición de sedimentos evolucionan
en una simulación. El continuo desarrollo del hardware y la aparición de
tecnologías como la computación en GPU están contribuyendo a que esto
sea posible.

propósitos y objetivos

Teniendo en cuenta la arquitectura de los sistemas GSIS descrita en la
sección anterior y los requisitos expuestos, el objetivo general de esta tesis
es contribuir a la mejora de algunas etapas mediante la investigación y el
desarrollo de estructuras de datos y métodos de interés para los geocientí-
�cos. Como se puede ver en la �gura B0.2, esta tesis intentará cubrir los
procedimientos de representación geométrica y de discretización situados
dentro del submódulo modelado geométrico, y su visualización en tiempos
de respuesta interactivos. Los objetivos de este trabajo se enumeran a
continuación:

El estudio y desarrollo de representaciones y estructuras de datos
para ser utilizadas en el proceso de modelado geológico. Las estructu-
ras de datos propuestas deben cumplir una serie de especi�caciones,
en particular una de�nición simple y una fácil implementación, re-
quisitos razonables de espacio y tiempo de acceso y capacidad para
gestionar información geológica tridimensional compleja.

La de�nición de un marco formal para validar las representaciones
propuestas y de�nir propiedades y algoritmos con precisión. Esta
formalización debe basarse en métodos y teorías estándar de la
literatura geoespacial.

La descripción de un método de renderizado en tiempo real para
la visualización de terrenos volumétricos y estructuras geológicas,
utilizando para ello las estructuras de datos de�nidas previamente.

documentación en castellano 143

Además, se discutirá la implementación de operaciones visuales
útiles en aplicaciones geocientí�cas con el �n de validar el uso de
estas representaciones.

organización de esta tesis

Esta tesis consta de cuatro partes organizadas en un conjunto de capítu-
los:

parte i Esta parte incluye el capítulo actual e introduce al lector en
el tema de esta tesis. Además, en la Sección 2 se ofrece una revisión del
estado del arte del modelado y la visualización geológica.

parte ii En esta parte se presenta la representación central en la que
se sustenta esta tesis: la representación de terrenos basada en stacks, propo-
niendo su uso como una representación global tanto para la información de
super�cie como para la del subsuelo. La Sección 3 realiza una descripción
de la esta estructura de datos, destacando sus ventajas e inconvenientes
en comparación con otras representaciones. En la Sección 4 se presenta
un marco formal para la representación de terrenos en 3D basados en
stacks. Este esquema se ha derivado de la teoría de geo-átomos, una re-
presentación espacial que generaliza los tipos de datos vectoriales y raster.
La formalización propuesta se completa con un conjunto de operaciones
inspiradas en el conocido álgebra de mapas. Además, se sugiere un modelo
de intercambio de datos como ejemplo de implementación, utilizando un
estándar como Geography Markup Language. Finalmente, la Sección 5
describe una nueva estructura de datos que mejora las ventajas de la repre-
sentación basada en stacks en términos de requisitos de almacenamiento y
organización de datos: el QuadStack.

parte iii Esta parte explica cómo las estructuras de datos introducidas
en la Parte II pueden ser utilizadas para renderizar información 3D de una
manera e�ciente, haciendo uso de técnicas de visualización directa de volú-
menes. En la Sección 6 se realiza una introducción de algunos conceptos y
técnicas usados en la visualización de volúmenes. La Sección 7 describe los
métodos de visualización para las representaciones introducidas en esta
tesis, incluyendo operaciones visuales tales como la visualización de sec-
ciones transversales o la inspección de estructuras internas, así como capas
de datos vectoriales. Asimismo, esta sección �naliza con la descripción del

144 documentación en castellano

método usado para la visualización de datos volumétricos codi�cados en
QuadStacks.

parte iv La Sección 8 concluye este trabajo destacando los principales
logros y señalando las líneas abiertas que deja esta tesis como trabajo
futuro.

C O N C L U S I O N E S

En esta tesis, hemos propuesto el uso de la SBRT y de los QuadStacks
como base en aplicaciones de geomodelado. La representación basada en
stacks ha sido probada como una representación muy compacta, con un
buen compromiso entre sus requisitos de memoria y su velocidad de acceso.
Hemos puesto en contexto esta representación con las existentes en el
estado del arte, destacando sus ventajas e inconvenientes. A lo largo de
los capítulos de esta tesis se han desarrollado diferentes aspectos como
la de�nición formal de la representación y su funcionamiento, sus pro-
cedimientos de construcción, sus métodos de acceso y técnicas para su
visualización.

A nivel personal, estos últimos cuatro años me han permitido mejorar
como investigador y como persona. El trabajo realizado ha generado im-
portantes resultados que han sido publicados o están siendo revisados en
revistas y congresos de primera línea en diferentes campos, demostrando
la investigación multidisciplinar realizada en esta tesis.

resumen de las contribuciones

En la primera parte de esta tesis, se expone que la representación basada
en stacks ha sido utilizada sólo en unos pocos trabajos enfocados a la
visualización, usándose únicamente como una estructura de datos auxiliar,
a pesar de sus interesantes características. Por lo tanto, hemos sugerido
esta representación como la principal para la gestión de datos geológicos
tanto a nivel de super�cie como subterráneo. También hemos destacado sus
bajos requisitos de almacenamiento en comparación con otras estructuras
de datos usadas comúnmente como los modelos de vóxeles o los octrees.

A pesar de que se ha proporcionado una de�nición clara e intuitiva de
la SBRT (Capítulo 3), en el Capítulo 4 hemos presentado un marco formal
para validar esta representación y de�nir sus propiedades y operaciones
principales de forma precisa. Para esta formalización nos hemos basado
en la teoría de geo-átomos; un marco que uni�ca los modelos de datos
de campos y objetos discretos en una representación espacial general.
Para llevar a cabo esto, hemos comenzado por desarrollar un esquema
en el que se utiliza la teoría de geo-átomos para representar modelos de

145

146 documentación en castellano

vóxeles. Este paso previo sirve de apoyo para describir la formalización
�nal de la SBRT. Además, hemos de�nido un conjunto de operaciones
espaciales habituales para esta representación, utilizando el marco teórico
proporcionado por el álgebra de mapas. A partir de estas operaciones
fundamentales, se pueden construir otras operaciones geoespaciales o
simulaciones geofísicas más complejas. Para �nalizar, hemos sugerido un
modelo de datos y una implementación que amplía el concepto de cobertura
proporcionado por el estándar Geography Markup Language.

Tras de�nir esta representación, nos propusimos mejorarla para reducir
sus requisitos de almacenamiento (Capítulo 5). Un QuadStack es una nueva
estructura de datos que no sólo saca partido de la estructura de capas de los
datos como la SBR, sino también la coherencia espacial horizontal dentro
de las propias capas. Para ello se hace uso de un quadtree en el que se
representa la estructura de capas en sus nodos internos.

La principal contribución de este capítulo es la separación de la informa-
ción de altura de los valores categóricos como el material, incluso en datos
aparentemente no estructurados en una secuencia de capas. De esta forma
conseguimos la compresión de cada parte por separado, proporcionando
excelentes resultados de compresión. A continuación, se ha descrito un
algoritmo de construcción en dos fases, un algoritmo de acceso rápido y un
método de compresión de acceso aleatorio para la información de altura.

La segunda parte de esta tesis se centra en la de�nición e implemen-
tación de algoritmos de visualización utilizando las estructuras de datos
introducidas anteriormente. Tras realizar una revisión de los principales
términos y métodos utilizados en el campo de la visualización directa de
volúmenes, se ha propuesto un método de renderizado en tiempo real acele-
rado por GPU para la visualización de terrenos volumétricos y estructuras
geológicas, utilizando nuevamente la representación de terrenos basada en
stacks como estructura de datos principal. Para llevar a cabo esto, hemos
propuesto y comparado diferentes esquemas de memoria en la GPU para
su codi�cación. Además, también se ha realizado una comparación con
una estructura de datos jerárquica, obteniendo resultados similares en
velocidad de visualización. Complementariamente, hemos implementado
un conjunto de operaciones visuales útiles para aplicaciones geocientí�cas,
como la visualización de catas o secciones transversales geológicas, o la
atenuación selectiva de capas de materiales. La última contribución de esta
tesis en cuanto a la visualización de la representación basada en stacks,
es la implementación de un método simple y e�ciente para el cálculo de

documentación en castellano 147

vectores normales a la super�cie. Este método utiliza un enfoque basado
en el espacio de imagen y es usado en una etapa diferida de sombreado.

Debido a su e�ciente método de acceso, los QuadStacks también son ade-
cuados para su visualización directa, por lo que también se ha presentado
un algoritmo de visualización para esta estructura de datos. Tras evaluar su
rendimiento en términos de requisitos de memoria y velocidad de visualiza-
ción con datos procedentes de diferentes dominios, hemos demostrado que
nuestra implementación es comparable a la de otros algoritmos avanzados,
usando únicamente una porción de la memoria necesitada por éstos.

trabajo futuro

El modelado geológico es un área de investigación muy activa. Los
avances realizados por investigadores son adoptados rápidamente por
ingenieros y profesionales geoespaciales, lo que resulta en una industria
en constante evolución.

Una vez resumido el contenido de esta tesis, a continuación discutimos
los aspectos que merecen ser estudiados más a fondo:

Hasta ahora la representación basada en stacks se ha utilizado pa-
ra simular procesos como la erosión térmica o hidráulica (Benes
y Forsbach, 2001; Št’Ava y col., 2008) o la cobertura de nieve en las
montañas (Cordonnier y col., 2018). Sin embargo, vale la pena explo-
rar otras aplicaciones como el cálculo de redes de drenaje (Ortega
y Rueda, 2010), la simulación del transporte, erosión y deposición
de sedimentos (Karssenberg y Bridge, 2008), el modelado de aguas
subterráneas (Carlotto, Silva y Grzybowski, 2018) o la simulación
de �ujos de lava (Hérault y col., 2011). Estas operaciones pueden
implementarse completamente en la GPU en un sistema integrado
que incluya una fase de cálculo en la GPU y una fase de visualización,
lo que evitaría costosas transferencias de datos entre la CPU y la
GPU.

Las estructuras de datos y métodos de visualización que han sido
presentados en esta tesis se pueden añadir como un módulo a apli-
caciones informáticas GIS de código abierto como GRASS (GRASS
Development Team, 2016), ya que estas herramientas únicamen-
te manejan terrenos volumétricos y estructuras subterráneas por
medio de modelos de vóxeles. Además, nuestro algoritmo de visuali-

148 documentación en castellano

zación mejoraría uno de los principales inconvenientes de este tipo
de herramientas, es decir, su visualización en 3D.

También podemos mejorar la representación basada en stacks per-
mitiendo el modelado de materiales heterogéneos (Conde-Rodríguez
y col., 2015). De hecho, la distribución de materiales geológicos es
heterogénea por su propia naturaleza, ya que un material suele mez-
clarse con los que lo rodean. Por ejemplo, en la transición entre el
agua y materiales arcillosos, hay puntos que presentan diferentes
proporciones de ellos. La representación de este tipo de materiales
es una tarea compleja, ya que las proporciones de las diferentes
mezclas de materiales deben ser modeladas de forma adecuada. Esta
característica proporcionaría una representación más precisa de los
estratos tanto a nivel de super�cie como subterráneo.

En esta tesis hemos introducido un modelo de intercambio de datos
basado en GML, un formato estándar en aplicaciones geoespaciales.
Sin embargo, otros profesionales que trabajan en campos como la
ingeniería o la física podrían estar interesados en desarrollar nues-
tros métodos. Por lo tanto, puede ser apropiada su implementación
en otros formatos de intercambio como NetCDF.

El QuadStack es una estructura de datos totalmente nueva, por lo que
todavía estamos lejos de haber estudiado todas sus propiedades. El
estudio de un factor de estrati�cación puede ser muy interesante para
analizar de antemano si un dataset es adecuado para ser codi�cado
con esta estructura de datos. Otros aspectos como la in�uencia de
las rotaciones de los datos en la relación de compresión tampoco
han sido estudiados.

Los QuadStacks han sido probados con conjuntos de datos que pre-
sentan una coherencia espacial ortogonal, sin embargo muchos otros
datos cientí�cos presentan esta coherencia en una perspectiva ci-
líndrica (imágenes médicas, modelos CAD, etc.). Por lo tanto, sería
interesante ampliar la estructura de datos para que utilice coordena-
das polares en lugar de cartesianas.

Aunque se ha demostrado que es lo su�cientemente rápido para los
datos probados, el algoritmo de construcción de QuadStacks puede
consumir mucho tiempo si los datos contienen muchas capas. El uso
de estructuras de datos diseñadas para este �n, como los árboles de

documentación en castellano 149

su�jos o el uso de heurísticas para simpli�car el problema serían
contribuciones interesantes.

Al igual que la SBRT, un QuadStack puede ser adecuado para si-
mular procesos geológicos. Al igual que otras estructuras de datos
jerárquicas, no necesita un recálculo completo al realizar cambios
en zonas locales. Sin embargo, la implementación de este tipo de
operaciones usando QuadStacks es un problema abierto que requiere
de un estudio en profundidad.

B I B L I O G R A P H Y

Aage, N., E. Andreassen, B. S. Lazarov, and O. Sigmund (2017). «Giga-voxel
computational morphogenesis for structural design.» In: Nature 550,
pp. 84–86.

Agterberg, F. (2018). Handbook of Mathematical Geosciences. isbn: 978-3-
319-78998-9.

Akenine-Möller, T., E. Haines, and N. Ho�man (2009). Real-time rendering.
A. K. Peters, Ltd., p. 1045. isbn: 9871568814247.

Ammann, L., O. Génevaux, and J. J.-M. Dischler (2010). «Hybrid rendering
of dynamic height�elds using ray-casting and mesh rasterization.» In:
Proceedings of Graphics Interface 2010, pp. 161–168. issn: 07135424.

Andújar, C. (2010). «Topographic Map Visualization from Adaptively Com-
pressed Textures.» In: Computer Graphics Forum 29.3, pp. 1083–1092.

Antoniou, P., J. Holub, C. S. Iliopoulos, B. Melichar, and P. Peterlongo
(2006). «Finding Common Motifs with Gaps Using Finite Automata.»
In: Implementation and Application of Automata. Ed. by O. H. Ibarra and
H.-C. Yen. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 69–77.

Antoniou, P., M. Crochemore, C. S. Iliopoulos, and P. Peterlongo (2007).
«Application of su�x trees for the acquisition of common motifs with
gaps in a set of strings.» In: LATA 2007. Proceedings of the 1st Interna-
tional Conference on Language and Automata Theory and Applications.
Pp. 57–66.

Arnone, E., A. Francipane, A. Scarbaci, C. Puglisi, and L. V. Noto (2016).
«E�ect of raster resolution and polygon-conversion algorithm on land-
slide susceptibility mapping.» In: Environmental Modelling & Software
84, pp. 467–481. issn: 13648152.

Arroyo Ohori, K. (2016). «Higher-dimensional modelling of geographic
information.» PhD thesis. Delft University of Technology.

Arroyo Ohori, K., H. Ledoux, and J. Stoter (2015). «An evaluation and
classi�cation of n D topological data structures for the representation
of objects in a higher-dimensional GIS.» en. In: International Journal of
Geographical Information Science 29.5, pp. 825–849. issn: 1365-8816.

Baert, J., A. Lagae, and P. Dutré (2012). «Out-of-Core Construction of
Sparse Voxel Octrees.» In: Computer Graphics Forum. issn: 1467-8659.

151

152 bibliography

Becher, M., M. Krone, G. Reina, and T. Ertl (2019). «Feature-based volumet-
ric terrain generation and decoration.» In: IEEE Transactions on Visual-
ization and Computer Graphics 25.2, pp. 1283–1296. issn: 19410506.

Benes, B. and R. Forsbach (2001). «Layered data representation for vi-
sual simulation of terrain erosion.» In: Proceedings Spring Conference on
Computer Graphics. isbn: 0-7695-1215-1.

Berry, P., S. Bonduá, V. Bortolotti, C. Cormio, and E. Vasini (2014). «A GIS-
based open source pre-processor for georesources numerical modeling.»
In: Environmental Modelling & Software 62, pp. 52–64. issn: 13648152.

Bieri, H. (1995). «Nef Polyhedra: A Brief Introduction.» In: Geometric Mod-
elling. Ed. by H. Hagen, G. Farin, and H. Noltemeier. Vienna: Springer
Vienna, pp. 43–60. isbn: 978-3-7091-7584-2.

Bobrowsky, P. T. and B. Marker (2018). Encyclopedia of Engineering Geology.
Springer, p. 979. isbn: 978-3-319-73566-5.

Bonomi, T. (2009). «Database development and 3D modeling of textural
variations in heterogeneous, unconsolidated aquifer media: Application
to the Milan plain.» In: Computers & Geosciences 35.1, pp. 134–145. issn:
00983004.

Breunig, M., P. V. Kuper, E. Butwilowski, A. Thomsen, M. Jahn, A. Dit-
trich, M. Al-Doori, D. Golovko, and M. Menninghaus (2016). «The story
of DB4GeO – A service-based geo-database architecture to support
multi-dimensional data analysis and visualization.» In: ISPRS Journal of
Photogrammetry and Remote Sensing 117, pp. 187–205. issn: 09242716.

Brink, L. van den, J. Stoter, and S. Zlatanova (2013). «Establishing a national
standard for 3D topographic data compliant to CityGML.» en. In: In-
ternational Journal of Geographical Information Science 27.1, pp. 92–113.
issn: 1365-8816.

Brisson, E. (1993). «Representing geometric structures in d dimensions:
Topology and order.» In:Discrete &Computational Geometry 9.1, pp. 387–
426. issn: 01795376.

Brooks, S. and J. L. Whalley (2008). «Multilayer hybrid visualizations to
support 3D GIS.» In: Computers, Environment and Urban Systems 32.4,
pp. 278–292. issn: 01989715.

Cacciari, P. P. and M. M. Futai (2017). «Modeling a Shallow Rock Tunnel
Using Terrestrial Laser Scanning and Discrete Fracture Networks.» In:
Rock Mechanics and Rock Engineering. issn: 0723-2632.

Camara, G., M. J. Egenhofer, K. Ferreira, P. Andrade, G. Queiroz, A. Sanchez,
J. Jones, and L. Vinhas (2014). «Fields as a Generic Data Type for Big Spa-
tial Data.» In: Geographic Information Science, in press. issn: 16113349.

bibliography 153

Carlotto, T., R. da Silva, and J. Grzybowski (2018). «A GPGPU-accelerated
implementation of groundwater �ow model in uncon�ned aquifers for
heterogeneous and anisotropic media.» In: Environmental Modelling &
Software 101, pp. 64 –72. issn: 1364-8152.

Carré, F. and M. C. Girard (2002). «Quantitative mapping of soil types based
on regression kriging of taxonomic distances with landform and land
cover attributes.» In: Geoderma 110.3-4, pp. 241–263. issn: 00167061.

Caumon, G., P. Collon-Drouaillet, C. Le Carlier De Veslud, S. Viseur, and
J. Sausse (2009). «Surface-based 3D modeling of geological structures.»
In: Mathematical Geosciences 41.8, pp. 927–945. issn: 18748961.

Caumon, G., B. Lévy, L. Castanié, and J. C. Paul (2005). «Visualization of
grids conforming to geological structures: A topological approach.» In:
Computers and Geosciences 31.6, pp. 671–680. issn: 00983004.

Caumon, G., G. G. Gray, C. Antoine, and M.-O. Titeux (2012). «3D implicit
stratigraphic model building from remote sensing data on tetrahedral
meshes: theory and application to a regional model of La Popa Basin, NE
Mexico.» In: IEEE Transactions on Geoscience and Remote Sensing 51.3,
pp. 1613–1621. issn: 0196-2892.

Čomić, L., L. De Floriani, F. Iuricich, and U. Fugacci (2014). «Topological
modi�cations and hierarchical representation of cell complexes in ar-
bitrary dimensions.» In: Computer Vision and Image Understanding 121,
pp. 2–12. issn: 10773142.

Conde-Rodríguez, F., J. C. Torres-Cantero, A. L. García-Fernández, and F. R.
Feito-Higueruela (2015). «A comprehensive framework for modeling
heterogeneous objects.» In: The visual Computer. issn: 0178-2789.

Coors, V. (2003). «3D-GIS in networking environments.» In: Computers,
Environment and Urban Systems 27.4, pp. 345–357. issn: 01989715.

Cordeiro, J. P. C., G. Camara, U. Moura de Freitas, and F. Almeida (2009).
«Yet another map algebra.» In: GeoInformatica 13.2, pp. 183–202. issn:
13846175.

Cordonnier, G., M. P. Cani, B. Benes, J. Braun, and E. Galin (2017). «Sculpt-
ing Mountains: Interactive Terrain Modeling Based on Subsurface Ge-
ology.» In: IEEE Transactions on Visualization and Computer Graphics
PP.99, pp. 1–1. issn: 1077-2626.

Cordonnier, G., P. Ecormier, E. Gali, J. Gain, B. Benes, and M.-P. Cani (2018).
«Interactive Generation of Time-evolving, Snow-Covered Landscapes
with Avalanches.» In: Computer Graphics Forum (To appear). Wiley On-
line Library.

154 bibliography

Cova, T. J. and M. F. Goodchild (2002). «Extending geographical represen-
tation to include �elds of spatial objects.» In: International Journal of
Geographical Information Science 16.6, pp. 509–532. issn: 1365-8816.

Crespin, B., R. Bézin, X. Skapin, O. Terraz, and P. Meseure (2014). «Gener-
alized maps for erosion and sedimentation simulation.» In: Computers
& Graphics 45, pp. 1–16. issn: 00978493.

Cui, Y., Q. Li, Q. Li, J. Zhu, C. Wang, K. Ding, D. Wang, and B. Yang (2017). «A
Triangular Prism Spatial Interpolation Method for Mapping Geological
Property Fields.» In: ISPRS International Journal of Geo-Information 6.8,
p. 241.

Dado, B., T. R. Kol, P. Bauszat, J. M. Thiery, and E. Eisemann (2016). «Geom-
etry and attribute compression for voxel scenes.» In: Computer Graphics
Forum 35.2, pp. 397–407. issn: 14678659.

De Cola, L. and N. Montagne (1993). «The pyramid system for multiscale
raster analysis.» In: Computers and Geosciences 19.10, pp. 1393–1404.
issn: 00983004.

De Kemp, E. A. (1999). «Visualization of complex geological structures
using 3-D Bézier construction tools.» In: Computers and Geosciences
25.5, pp. 581–597. issn: 00983004.

De Oliveira Miranda, A. C., W. W. M. Lira, R. C. Marques, A. M. B. Pereira,
J. B. Cavalcante-Neto, and L. F. Martha (2014). «Finite element mesh gen-
eration for subsurface simulation models.» In: Engineering with Com-
puters, pp. 1–20. issn: 01770667.

De Toledo, R., B. Wang, and B. Levy (2008). «Geometry Textures and
Applications.» In: Computer Graphics Forum. issn: 1467-8659.

DeMers, M. (2002). GIS Modeling in Raster. Wiley. isbn: 9780471319658.
Denver, L. and D. Phillips (1990). «Stratigraphic geocellular modeling.» In:

Geobyte; (USA) 5.1. issn: 0885-6362.
Dunstan, S. P. and A. J. B. Mill (1989). «Spatial indexing of geological models

using linear octrees.» In: Computers and Geosciences 15.8, pp. 1291–1301.
issn: 00983004.

Ebner, M., F. Geldmacher, F. Marone, M. Stampanoni, and V. Wood (2013).
«X-Ray tomography of porous, transition metal oxide based lithium
ion battery electrodes.» In: Advanced Energy Materials 3.7, pp. 845–850.
issn: 614-6832.

Egenhofer, M. J. (1989). «A formal de�nition of binary topological rela-
tionships.» In: Foundations of Data Organization and Algorithms: 3rd
International Conference, FODO 1989 Paris, France, June 21–23, 1989 Pro-

bibliography 155

ceedings. Ed. by W. Litwin and H.-J. Schek. Springer Berlin Heidelberg,
pp. 457–472. isbn: 978-3-540-46186-9.

Egenhofer, M. J. and R. D. Franzosa (1991). «Point-set topological spa-
tial relations.» en. In: International journal of geographical information
systems 5.2, pp. 161–174. issn: 0269-3798.

Fisher, T. R. and W. R. Q. (1992). «Three-dimensional solid modeling
of geo-objects using Non-Unifrom Rational B-Splines (NURBS).» In:
Three-Dimensional Modeling with Geoscienti�c Information Systems. Ed.
by A. K. Turner. Dordrecht: Springer Netherlands, pp. 123–141. isbn:
978-94-011-2556-7.

Florian Wellmann, J., A. Croucher, and K. Regenauer-Lieb (2012). «Python
scripting libraries for subsurface �uid and heat �ow simulations with
TOUGH2 and SHEMAT.» In: Computers and Geosciences 43, pp. 197–206.
issn: 00983004.

Foged, N., P. a. Marker, a. V. Christansen, P. Bauer-Gottwein, F. Jørgensen,
a. S. Høyer, and E. Auken (2014). «Large-scale 3-D modeling by inte-
gration of resistivity models and borehole data through inversion.» In:
Hydrology and Earth System Sciences 18.11, pp. 4349–4362. issn: 1607-
7938.

Franklin, W. R. (1995). «Compressing Elevation Data.» In: Advances in
Spatial Databases. Ed. by M. J. Egenhofer and J. R. Herring. Berlin, Hei-
delberg: Springer Berlin Heidelberg, pp. 385–404.

GRASS Development Team (2016). Geographic Resources Analysis Support
System (GRASS GIS) Software, Version 7.0. Open Source Geospatial Foun-
dation.

Galera, C., C. Bennis, I. Moretti, and J. L. Mallet (2003). «Construction
of coherent 3D geological blocks.» In: Computers and Geosciences 29,
pp. 971–984. issn: 00983004.

Galin, E., E. Guérin, A. Peytavie, G. Cordonnier, M.-P. Cani, B. Benes, and
J. Gain (2019). «A Review of Digital Terrain Modeling.» In: Computer
Graphics Forum. issn: 1467-8659.

Gold, C. and M. A. Mostafavi (2000). «Towards the global GIS.» In: ISPRS
Journal of Photogrammetry and Remote Sensing 55.3, pp. 150–163. issn:
09242716.

Gong, J., P. Cheng, R. Liu, D. Li, and S. Liu (2002). «Study on 3D modeling
and visualization in geological exploration engineering.» In: Proceeding
ISPRS Commission II Symposium on Integrated Systems for Spatial Data
Production, Custodian and Decision Support, pp. 133–138.

156 bibliography

Gong, J., P. Cheng, and Y. Wang (2004). «Three-dimensional modeling and
application in geological exploration engineering.» In: Computers and
Geosciences 30.4, pp. 391–404. issn: 00983004.

Goodchild, M. and P. Kyriakidis (2005). «Uncertainty and interoperability:
the areal interpolation problem.» In: pp. 1–9.

Goodchild, M. F. (1992). «Geographical data modeling.» In: Computers and
Geosciences 18.4, pp. 401–408. issn: 00983004.

Goodchild, M. F., M. Yuan, and T. J. Cova (2007). «Towards a general
theory of geographic representation in GIS.» In: International Journal
of Geographical Information Science 21.3, pp. 239–260. issn: 1365-8816.

Goodchild, M. F., M. J. Egenhofer, K. K. Kemp, D. M. Mark, and E. Sheppard
(1999). «Introduction to the Varenius project.» In: International Journal
of Geographical Information Science 13.8, pp. 731–745. issn: 13623087.

Gröger, G. and L. Plümer (2012). «CityGML – Interoperable semantic 3D
city models.» In: ISPRS Journal of Photogrammetry and Remote Sensing
71, pp. 12–33. issn: 09242716.

Guillen, A., P. Calcagno, G. Courrioux, A. Joly, and P. Ledru (2008). «Ge-
ological modelling from �eld data and geological knowledge. Part II.
Modelling validation using gravity and magnetic data inversion.» In:
Physics of the Earth and Planetary Interiors 171.1-4, pp. 158–169. issn:
00319201.

Gunnink, J. L., D. Maljers, S. F. Van Gessel, A. Menkovic, and H. J. Hummel-
man (2013). «Digital Geological Model (DGM): A 3D raster model of the
subsurface of the Netherlands.» In: Geologie en Mijnbouw/Netherlands
Journal of Geosciences 92.1, pp. 33–46. issn: 00167746.

Guo, F., H. Li, W. Daughton, and Y.-H. Liu (2014). «Formation of Hard
Power Laws in the Energetic Particle Spectra Resulting from Relativistic
Magnetic Reconnection.» In: Phys. Rev. Lett. 113 (15), p. 155005.

Guo, J., L. Wu, W. Zhou, J. Jiang, and C. Li (2016). «Towards Automatic and
Topologically Consistent 3D Regional Geological Modeling from Bound-
aries and Attitudes.» In: ISPRS International Journal of Geo-Information
5.2, p. 17. issn: 2220-9964.

Hachenberger, P., L. Kettner, and K. Mehlhorn (2007). «Boolean operations
on 3D selective Nef complexes: Data structure, algorithms, optimized
implementation and experiments.» In: Computational Geometry: Theory
and Applications 38.1-2, pp. 64–99. issn: 09257721.

Hadwiger, M., J. M. Kniss, C. Rezk-salama, D. Weiskopf, and K. Engel (2006).
Real-time Volume Graphics. A. K. Peters, Ltd., p. 497. isbn: 1568812663.

bibliography 157

Hillier, M. J., E. M. Schetselaar, E. A. de Kemp, and G. Perron (2014). «Three-
Dimensional Modelling of Geological Surfaces Using Generalized In-
terpolation with Radial Basis Functions.» In: Mathematical Geosciences
46.8, pp. 931–953. issn: 18748953.

Ho�mann, J., C. Scheidt, A. Barfod, and J. Caers (2017). «Stochastic simu-
lation by image quilting of process-based geological models.» In: Com-
puters and Geosciences 106.May, pp. 18–32. issn: 00983004.

Hollt, T., W. Freiler, F. Gschwantner, H. Doleisch, G. Heinemann, and
M. Hadwiger (2012). «SeiVis: An Interactive Visual Subsurface Model-
ing Application.» In: IEEE Transactions on Visualization and Computer
Graphics 18.12, pp. 2226–2235. issn: 1077-2626.

Hérault, A., G. Bilotta, A. Vicari, E. Rustico, and C. D. Negro (2011). «Nu-
merical simulation of lava �ow using a GPU SPH model.» In: Annals of
Geophysics 54.5. issn: 2037-416X.

Hussain, A. J., A. Al-Fayadh, and N. Radi (2018). «Image compression tech-
niques: A survey in lossless and lossy algorithms.» In: Neurocomputing
300, pp. 44–69. issn: 18728286.

Iliopoulos, C. S., J. Mchugh, P. Peterlongo, N. Pisanti, W. Rytter, and M.-F.
Sagot (2005). «A �rst approach to �nding common motifs with gaps.» In:
International Journal of Foundations of Computer Science 16.06, pp. 1145–
1154.

Jansen, G., R. Sohrabi, and S. A. Miller (2017). «HULK – Simple and fast
generation of structured hexahedral meshes for improved subsurface
simulations.» In: Computers & Geosciences 99.July 2016, pp. 159–170.
issn: 00983004.

Jjumba, A. and S. Dragićević (2015). «Integrating GIS-Based Geo-Atom
Theory and Voxel Automata to Simulate the Dispersal of Airborne Pol-
lutants.» In: Transactions in GIS 19.4, pp. 582–603. issn: 14679671.

– (2016). «Spatial indices for measuring three-dimensional patterns in a
voxel-based space.» In: Journal of Geographical Systems. issn: 1435-5930.

Jones, M. D., M. Farley, J. Butler, and M. Beardall (2010). «Directable weath-
ering of concave rock using curvature estimation.» In: IEEE Transactions
on Visualization and Computer Graphics 16.1, pp. 81–94. issn: 10772626.

Jönsson, D., P. Ganestam, A. Ynnerman, M. Doggett, and T. Ropinski (2012).
«Explicit Cache Management for Volume Ray-Casting on Parallel Ar-
chitectures.» In: EG Symposium on Parallel Graphics and Visualization
(EGPGV). Eurographics, pp. 31–40.

Jørgensen, F., R. R. Møller, L. Nebel, N.-P. Jensen, A. V. Christiansen, and
P. B. E. Sandersen (2013). «A method for cognitive 3D geological voxel

158 bibliography

modelling of AEM data.» In: Bulletin of Engineering Geology and the
Environment 72.3-4, pp. 421–432. issn: 1435-9529.

Jørgensen, F., A. S. Høyer, P. B. Sandersen, X. He, and N. Foged (2015).
«Combining 3D geological modelling techniques to address variations in
geology, data type and density - An example from Southern Denmark.»
In: Computers and Geosciences 81, pp. 53–63. issn: 00983004.

Kadosh, A., D. Cohen-Or, and R. Yagel (2003). «Tricubic Interpolation of
Discrete Surfaces for Binary Volumes.» In: IEEE Transactions on Visual-
ization and Computer Graphics 9.4, pp. 580–586. issn: 10772626.

Karimipour, F., M. R. Delavar, and A. U. Frank (2010). «A simplex-based
approach to implement dimension independent spatial analyses.» In:
Computers & Geosciences 36.9, pp. 1123–1134. issn: 00983004.

Karssenberg, D. and J. S. Bridge (2008). «A three-dimensional numerical
model of sediment transport, erosion and deposition within a network of
channel belts, �oodplain and hill slope: Extrinsic and intrinsic controls
on �oodplain dynamics and alluvial architecture.» In: Sedimentology
55.6, pp. 1717–1745. issn: 13653091.

Kaufmann, O. and T. Martin (2009). «3D geological modelling from bore-
holes, cross-sections and geological maps, application over former nat-
ural gas storages in coal mines.» In: Computers and Geosciences 35.1,
pp. 70–82. issn: 00983004.

Kessler, H., S. Mathers, and H.-G. Sobisch (2009). «The capture and dissem-
ination of integrated 3D geospatial knowledge at the British Geological
Survey using GSI3D software and methodology.» In: Computers & Geo-
sciences 35.6, pp. 1311–1321. issn: 00983004.

Kjenstad, K. (2013). «On the hyper�eld or �eld-of-�eld concept.» In: Inter-
national Journal of Geographical Information Science 27.5, pp. 963–985.
issn: 1365-8816.

Knoll, A., S. Thelen, I. Wald, C. D. Hansen, H. Hagen, and M. E. Papka (2011).
«Full-resolution interactive CPU volume rendering with coherent BVH
traversal.» In: 2011 IEEE Paci�c Visualization Symposium, pp. 3–10.

Koca, Ç. and U. Güdükbay (2014). «A hybrid representation for modeling,
interactive editing, and real-time visualization of terrains with volumet-
ric features.» en. In: International Journal of Geographical Information
Science 28.9, pp. 1821–1847. issn: 1365-8816.

Kruger, J. and R. Westermann (2003). «Acceleration Techniques for GPU-
based Volume Rendering.» In: Proceedings of the 14th IEEE Visualization
2003 (VIS’03). VIS ’03. Washington, DC, USA: IEEE Computer Society,
pp. 38–. isbn: 0-7695-2030-8.

bibliography 159

Lan, H., C. Derek Martin, and C. Lim (2007). «RockFall analyst: A GIS
extension for three-dimensional and spatially distributed rockfall haz-
ard modeling.» In: Computers & Geosciences 33.2, pp. 262–279. issn:
00983004.

Le, H. H., P. Gabriel, J. Gietzel, and H. Schaeben (2013). «An object-relational
spatio-temporal geoscience data model.» In: Computers & Geosciences
57, pp. 104–115. issn: 00983004.

Ledoux, H. and C. M. Gold (2008). «Modelling three dimensional geosci-
enti�c �elds with the Voronoi diagram and its dual.» In: International
Journal of Geographical Information Science 22.5, pp. 547–574. issn: 1365-
8816.

Ledoux, H. (2013). «On the Validation of Solids Represented with the In-
ternational Standards for Geographic Information.» In: Computer-Aided
Civil and Infrastructure Engineering 28.9, pp. 693–706. issn: 10939687.

Lee, S., J. Suh, and H. D. Park (2015). «BoreholeAR: A mobile tablet appli-
cation for e�ective borehole database visualization using an augmented
reality technology.» In: Computers and Geosciences 76, pp. 41–49. issn:
00983004.

Leeuwenburgh, O., J. Brouwer, and M. Trani (2011). «Ensemble-based
conditioning of reservoir models to seismic data.» In: Computational
Geosciences 15.2, pp. 359–378. issn: 14200597.

Lefebvre, S., S. Hornus, and F. Neyret (2005). «Octree Textures on the
GPU.» In: Programming Techniques for High-performance Graphics and
General-Purpose Computation. Ed. by P. M. editors. Vol. GPU Gems 2.
Addison Wesley, pp. 595–613.

Lemon, A. M. and N. L. Jones (2003). «Building solid models from boreholes
and user-de�ned cross-sections.» In: Computers and Geosciences 29.5,
pp. 547–555. issn: 00983004.

Levoy, M. (1988). «Display of Surfaces from Volume Data.» In: IEEE Com-
put. Graph. Appl. 8.3, pp. 29–37. issn: 0272-1716.

Li, J. and A. D. Heap (2014). «Spatial interpolation methods applied in
the environmental sciences: A review.» In: Environmental Modelling &
Software 53, pp. 173–189. issn: 13648152.

Li, J., Y. Jiang, C. Yang, Q. Huang, and M. Rice (2013). «Visualizing 3D/4D
environmental data using many-core graphics processing units (GPUs)
and multi-core central processing units (CPUs).» In: Computers & Geo-
sciences 59, pp. 78–89. issn: 00983004.

Li, Q., Q. Li, X. Liu, Z. Wei, and Q. Dong (2018). «Isosurface Algorithm
Based on Generalized Three Prism Voxel.» In: Advances in Image and

160 bibliography

Graphics Technologies. Singapore: Springer Singapore, pp. 20–31. isbn:
978-981-10-7389-2.

Li, X., X. Li, and D. Zhang (2018). «Generalized prism grid: a pillar-based
unstructured grid for simulation of reservoirs with complicated geo-
logical geometries.» In: Computational Geosciences 22.6, pp. 1561–1581.
issn: 1573-1499.

Li, Z., C. Zhu, and C. Gold (2004). Digital terrain modeling: principles and
methodology. CRC press.

Lidal, E. M., H. Hauser, and I. Viola (2012). «Design Principles for Cut-
away Visualization of Geological Models.» In: Proc. Spring Conference
on Computer Graphics (SCCG 2012), pp. 53–60.

Lie, K. A., O. Møyner, J. R. Natvig, A. Kozlova, K. Bratvedt, S. Watanabe,
and Z. Li (2017). «Successful application of multiscale methods in a real
reservoir simulator environment.» In: Computational Geosciences 21.5-6,
pp. 981–998. issn: 15731499.

Lie, K. A., S. Krogstad, I. S. Ligaarden, J. R. Natvig, H. M. Nilsen, and B.
Ska�estad (2012). «Open-source MATLAB implementation of consistent
discretisations on complex grids.» In: Computational Geosciences 16.2,
pp. 297–322. issn: 14200597.

Lienhardt, P. (1994). «N-Dimensional generalized combinatorial maps and
cellular quasi-manifolds.» In: International Journal of Computational
Geometry & Applications 04.03, pp. 275–324.

Liu, Y., M. F. Goodchild, Q. Guo, Y. Tian, and L. Wu (2008). «Towards a
General Field model and its order in GIS.» In: International Journal of
Geographical Information Science 22.6, pp. 623–643. issn: 1365-8816.

Ljung, P., J. Krüger, E. Groller, M. Hadwiger, C. D. Hansen, and A. Yn-
nerman (2016). «State of the Art in Transfer Functions for Direct Vol-
ume Rendering.» In: Computer Graphics Forum 35.3, pp. 669–691. issn:
14678659.

Lö�er, F, A. Müller, and H. Schumann (2011). «Real-time Rendering of
Stack-based Terrains.» In: Vmv.

Longley, P. A., M. Goodchild, D. J. Maguire, and D. W. Rhind (2015). Ge-
ographic Information Systems and Science. 4th. Wiley Publishing. isbn:
9781118676950.

Lorensen, W. E. and H. E. Cline (1987). «Marching Cubes: A High Resolu-
tion 3D Surface Construction Algorithm.» In: Proceedings of the 14th An-
nual Conference on Computer Graphics and Interactive Techniques. SIG-
GRAPH ’87. New York, NY, USA: ACM, pp. 163–169. isbn: 0-89791-227-6.

Los Alamos National Laboratory (2016). Los Alamos Grid Toolbox.

bibliography 161

Losasso, F. and H. Hoppe (2004). «Geometry clipmaps: terrain rendering
using nested regular grids.» In: ACM Transaction on Graphics 1.212,
pp. 769–776. issn: 0730-0301.

Maciejewski, M., M. Pomianek, and M. Piszczek (2018). «Information po-
tential of the 3D GIS application with the use of virtual technologies.»
In: October 2018, p. 58.

Mallet, J. L. (1992). «GOCAD: A Computer Aided Design Program for
Geological Applications.» In: Three-Dimensional Modeling with Geosci-
enti�c Information Systems. Ed. by A. K. Turner. Dordrecht: Springer
Netherlands, pp. 123–141. isbn: 978-94-011-2556-7.

– (1997). «Discrete modeling for natural objects.» In: Mathematical Geol-
ogy 29.2, pp. 199–219. issn: 0882-8121.

Mallet, J.-L. (2002). Geomodeling. isbn: 0195144600.
Mantler, S. and S. Jeschke (2006). «Interactive landscape visualization using

GPU ray casting.» In: Proceedings of the 4th international conference on
Computer graphics and interactive techniques in Australasia and South-
east Asia - GRAPHITE ’06, p. 117.

Mateo Lázaro, J., J. Á. Sánchez Navarro, A. García Gil, and V. Edo Romero
(2014). «3D-geological structures with digital elevation models using
GPU programming.» In: Computers & Geosciences 70, pp. 138–146. issn:
00983004.

Maxelon, M., P. Renard, G. Courrioux, M. Brändli, and N. Mancktelow
(2009). «A work�ow to facilitate three-dimensional geometrical mod-
elling of complex poly-deformed geological units.» In: Computers &
Geosciences 35.3, pp. 644–658. issn: 00983004.

McBratney, A. B., M. L. Mendonça Santos, and B. Minasny (2003). On digital
soil mapping. Vol. 117. 1-2, pp. 3–52. isbn: 6129351321.

Mennis, J., R. Viger, and C. D. Tomlin (2005). «Cubic Map Algebra Func-
tions for Spatio-Temporal Analysis.» In: Cartography and Geographic
Information Science 32.1, pp. 17–32. issn: 15230406.

Ming, J., M. Pan, H. Qu, and Z. Ge (2010). «GSIS: A 3D geological multi-
body modeling system from netty cross-sections with topology.» In:
Computers and Geosciences 36.6, pp. 756–767. issn: 00983004.

Molenaar, M (1992). «A topology for 3D vector maps.» In: ITC Journal
1992-1, pp. 25–33. issn: 03032434.

Moore, I. D., R. B. Grayson, and A. R. Ladson (1991). «Digital terrain
modelling: A review of hydrological, geomorphological, and biological
applications.» In: Hydrological Processes 5.1, pp. 3–30.

162 bibliography

Mücke, E. P., I. Saias, and B. Zhu (1999). «Fast randomized point location
without preprocessing in two- and three-dimensional Delaunay triangu-
lations.» In: Computational Geometry: Theory and Applications 12.1-2,
pp. 63–83. issn: 09257721.

Munkberg, J., P. Clarberg, J. Hasselgren, and T. Akenine-Möller (2006).
«High Dynamic Range Texture Compression for Graphics Hardware.»
In: ACM Trans. Graph. 25.3, pp. 698–706. issn: 0730-0301.

Natali, T. G. Klausen, and D. Patel (2014). «Sketch-based modelling and
visualization of geological deposition.» In: Computers and Geosciences
67, pp. 40–48. issn: 00983004.

Natali, M, E. Lidal, and J Parulek (2012). «Modeling terrains and subsurface
geology.» In: Eurographics 2013-State of the Art Reports. c, pp. 155–173.

Nystad, J., A. Lassen, A. Pomianowski, S. Ellis, and T. Olson (2012). «Adap-
tive Scalable Texture Compression.» In: Eurographics/ ACM SIGGRAPH
Symposium on High Performance Graphics. Ed. by C. Dachsbacher, J.
Munkberg, and J. Pantaleoni. The Eurographics Association. isbn: 978-
3-905674-41-5.

OGC (2003). Geographic information — Spatial schema. Tech. rep. Interna-
tional Standard Organization.

– (2007a).OpenGIS®GeographyMarkup Language (GML) Encoding Stan-
dard. Tech. rep. Open Geospatial Consortium Inc.

– (2007b). The OpenGIS ® Abstract Speci�cation. Tech. rep. Open Geospa-
tial Consortium Inc.

– (2015). OGC ® Coverage Implementation Schema Contents. Tech. rep.
Open Geospatial Consortium Inc.

Ortega, L. and A. Rueda (2010). «Parallel drainage network computation on
CUDA.» In: Computers and Geosciences 36.2, pp. 171–178. issn: 00983004.

Owen, S. J., J. A. Brown, C. D. Ernst, H. Lim, and K. N. Long (2017). «Hex-
ahedral Mesh Generation for Computational Materials Modeling.» In:
Procedia Engineering 203, pp. 167–179. issn: 18777058.

Patel, D., Ø. Sture, H. Hauser, C. Giertsen, and M. Eduard Gröller (2009).
«Knowledge-assisted visualization of seismic data.» In: Computers and
Graphics (Pergamon) 33.5, pp. 585–596. issn: 00978493.

Pellerin, J., G. Caumon, C. Julio, P. Mejia-Herrera, and A. Botella (2015).
«Elements for measuring the complexity of 3D structural models: Con-
nectivity and geometry.» In: Computers & Geosciences 76, pp. 130–140.
issn: 00983004.

Pellerin, J., A. Botella, F. Bonneau, A. Mazuyer, B. Chauvin, B. Lévy, and
G. Caumon (2017). «RINGMesh: A programming library for developing

bibliography 163

mesh-based geomodeling applications.» In: Computers and Geosciences
104.October 2016, pp. 93–100. issn: 00983004.

Penninga, F. and P. J. M. Van Oosterom (2008). «A simplicial complex-based
DBMS approach to 3D topographic data modelling.» en. In: International
Journal of Geographical Information Science 22.7, pp. 751–779. issn: 1365-
8816.

Penninga, F. (2008). «A Simplicial Complex-based Solution in a Spatial
DBMS.» PhD thesis, p. 193.

Petrasova, A., B. Harmon, V. Petras, and H. Mitasova (2015). Tangible
Modeling with Open Source GIS. 1st. Springer Publishing Company, In-
corporated. isbn: 3319257730, 9783319257730.

Peytavie, A., E. Galin, J. Grosjean, and S. Merillou (2009). «Arches: A frame-
work for modeling complex terrains.» In: Computer Graphics Forum 28.2,
pp. 457–467. issn: 01677055.

Pilouk, M. (1996). «Integrated modelling for 3D GIS.» PhD thesis. ITC, The
Netherlands.

Pinet, F. (2012). «Entity-relationship and object-oriented formalisms for
modeling spatial environmental data.» In: Environmental Modelling &
Software 33, pp. 80–91. issn: 13648152.

Portele, C. (2018).Mapping UML toGMLApplication Schemas: ShapeChange
- Architecture and Description (version 2.5.0).

Poupeau, B. and O. Bonin (2006). «Cristage: A 3D GIS with A Logical
Crystallographic Layer To Enable Complex Analyses.» In: Innovations
in 3D Geo Information Systems. Ed. by A. Abdul-Rahman, S. Zlatanova,
and V. Coors. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 225–
234. isbn: 978-3-540-36998-1.

Pryet, A., J. Ramm, J. P. Chilès, E. Auken, B. De�ontaines, and S. Violette
(2011). «3D resistivity gridding of large AEM datasets: A step toward
enhanced geological interpretation.» In: Journal of Applied Geophysics
75.2, pp. 277–283. issn: 09269851.

Ritter, G. X., J. N. Wilson, and J. L. Davidson (1990). «Image algebra: An
overview.» In: Computer Vision, Graphics and Image Processing 49.3,
pp. 297–331. issn: 0734189X.

Rocha, A., R. C. Mota, H. Hamdi, U. R. Alim, and M. Costa Sousa (2018).
«Illustrative Multivariate Visualization for Geological Modelling.» In:
Computer Graphics Forum 37.3, pp. 465–477. issn: 14678659.

Roettger, S., S. Guthe, D. Weiskopf, T. Ertl, and W. Strasser (2003). «Smart
Hardware-accelerated Volume Rendering.» In: Proceedings of the Sym-

164 bibliography

posium on Data Visualisation 2003. VISSYM ’03. Grenoble, France: Euro-
graphics Association, pp. 231–238. isbn: 1-58113-698-6.

Rueda, A., J. M. Noguera, and C. Martínez-Cruz (2013). «A �ooding al-
gorithm for extracting drainage networks from unprocessed digital
elevation models.» In: Computers and Geosciences 59, pp. 116–123. issn:
00983004.

S. Høyer, a., F. Jørgensen, N. Foged, X. He, and a.V. Christiansen (2015).
«Three-dimensional geological modelling of AEM resistivity data — A
comparison of three methods.» In: Journal of Applied Geophysics 115,
pp. 65–78. issn: 09269851.

Schmitz, O., D. Karssenberg, K. de Jong, J. L. de Kok, and S. M. de Jong
(2013). «Map algebra and model algebra for integrated model building.»
In: Environmental Modelling & Software 48, pp. 113–128. issn: 13648152.

Sellers, G., R. Wright Jr, and N. Haemel (2016). OpenGL SuperBible. Com-
prehensive Tutorial and Reference. 7th ed. Addison Wesley.

Sentís, M. L. and C. W. Gable (2017). «Coupling LaGrit unstructured mesh
generation and model setup with TOUGH2 �ow and transport: A case
study.» In: Computers and Geosciences 108.June 2016, pp. 42–49. issn:
00983004.

She, J., Y. Zhou, X. Tan, X. Li, and X. Guo (2017). «A parallelized screen-
based method for rendering polylines and polygons on terrain surfaces.»
In: Computers and Geosciences 99.January 2016, pp. 19–27. issn: 0098-
3004.

Shen, D., D. W. Wong, F. Camelli, and Y. Liu (2013). «An ArcScene plug-
in for volumetric data conversion, modeling and spatial analysis.» In:
Computers & Geosciences 61, pp. 104–115. issn: 00983004.

Sigg, C., T. Weyrich, M. Botsch, and M. Gross (2006). «GPU-Based Ray-
Casting of Quadratic Surfaces.» In: Symposium on Point-Based Graphics,
pp. 59–65.

Smirno�, A., E. Boisvert, and S. J. Paradis (2008). «Support vector machine
for 3D modelling from sparse geological information of various origins.»
In: Computers & Geosciences 34, pp. 127–143.

Sobhanpanah, C. (1989). «Extension of a boundary representation tech-
nique for the description of N dimensional polytopes.» In: Computers
and Graphics 13.1, pp. 17–23. issn: 00978493.

Song, R., X. Qin, Y. Tao, X. Wang, B. Yin, Y. Wang, and W. Li (2019). «A semi-
automatic method for 3D modeling and visualizing complex geological
bodies.» In: Bulletin of Engineering Geology and the Environment 78.3,
pp. 1371–1383. issn: 14359529.

bibliography 165

Spear, A. D., J. D. Hochhalter, A. R. Cerrone, S. F. Li, J. F. Lind, R. M.
Suter, and A. R. Ingra�ea (2016). «A method to generate conformal
�nite-element meshes from 3D measurements of microstructurally small
fatigue-crack propagation.» In: Fatigue and Fracture of Engineering Ma-
terials and Structures 39.6, pp. 737–751. issn: 14602695.

Št’Ava, O., B. Beneš, M. Brisbin, and J. Křivánek (2008). «Interactive terrain
modeling using hydraulic erosion.» In: EuroGraphics Symposium on
Computer Animation, pp. 201–210.

Sutherland, I. E. (1963). «Sketchpad: A Man-Machine Graphical Commu-
nication System.» PhD thesis. Massachusetts Institute of Technology,
Lincoln Lab.

Takeyama, M. (1997). «Building spatial models within GIS through Geo-
Algebra.» In: Transactions in GIS 2.3, pp. 245–256. issn: 1361-1682.

Takeyama, M. and H. Couclelis (1997). «Map dynamics: integrating cellular
automata and GIS through Geo-Algebra.» In: International Journal of
Geographical Information Science 11.1, pp. 73–91. issn: 1365-8816.

Tegtmeier, W., S. Zlatanova, P. van Oosterom, and H. Hack (2014). «3D-
GEM: Geo-technical extension towards an integrated 3D information
model for infrastructural development.» In: Computers & Geosciences
64, pp. 126–135. issn: 00983004.

Tegtmeier, W., P. van Oosterom, S. Zlatanova, and R. Hack (2009). «Informa-
tion management in civil engineering infrastructural development: with
focus on geological and geotechnical information.» In: Proceedings of
the ISPRS workshop GeoWeb 2009 Academic Track Cityscapes XXXVIII-3-,
pp. 68–73.

Terrington, R. L., S. J. Mathers, H Kessler, V Hulland, and S. J. Price (2009).
Subsurface Viewer 2009: User Manual. Tech. rep. Geological Modelling
Systems Team. British Geological Survey.

Tevs, A., I. Ihrke, and H.-P. Seidel (2008). «Maximum Mipmaps for Fast,
Accurate, and Scalable Dynamic Height Field Rendering.» In: Symposium
on Interactive 3D Graphics and Games (i3D’08), pp. 183–190.

The CGAL Project (2019). CGAL User and Reference Manual. 4.14. CGAL
Editorial Board.

Thiele, S. T., M. W. Jessell, M. Lindsay, V. Ogarko, J. F. Wellmann, and
E. Pakyuz-Charrier (2016). «The topology of geology 1: Topological
analysis.» In: Journal of Structural Geology 91, pp. 27–38. issn: 01918141.

Tomlin, C. D. (1990). Geographic information systems and cartographic
modeling. Prentice Hall series in geographic information science. Pren-
tice Hall. isbn: 9780133509274.

166 bibliography

Treib, M., F. Reichl, S. Auer, and R. Westermann (2012). «Interactive edit-
ing of GigaSample terrain �elds.» In: Computer Graphics Forum 31.2,
pp. 383–392. issn: 01677055.

Turner, A. K. (1992). Three-Dimensional Modeling with Geoscienti�c In-
formation Systems. C]: [Nato ASI series. Springer Netherlands. isbn:
9780792315506.

– (2006). «Challenges and trends for geological modelling and visuali-
sation.» In: Bulletin of Engineering Geology and the Environment 65.2,
pp. 109–127. issn: 1435-9529.

Voudouris, V. (2010). «Towards a unifying formalisation of geographic
representation: the object–�eld model with uncertainty and seman-
tics.» In: International Journal of Geographical Information Science 24.12,
pp. 1811–1828. issn: 1365-8816.

Wang, C., T. R. Wan, and I. J. Palmer (2010). «Urban �ood risk analysis
for determining optimal �ood protection levels based on digital ter-
rain model and �ood spreading model.» In: The Visual Computer 26.11,
pp. 1369–1381. issn: 0178-2789.

Wang, J., M. Duckham, and M. Worboys (2015). «A framework for models
of movement in geographic space.» In: International Journal of Geo-
graphical Information Science 8816.May, pp. 1–23. issn: 1365-8816.

Wang, J., F. Yang, and Y. Cao (2014). «Cache-aware sampling strategies
for texture-based ray casting on GPU.» In: Large Data Analysis and
Visualization (LDAV), 2014 IEEE 4th Symposium on, pp. 19–26.

Wang, Z., H. Qu, Z. Wu, H. Yang, and Q. Du (2016). «Formal representation
of 3D structural geological models.» In: Computers & Geosciences 90,
pp. 10–23. issn: 00983004.

Wang, Z., H. Qu, Z. Wu, and X. Wang (2018). «Geo3DML: A standard-
based exchange format for 3D geological models.» In: Computers and
Geosciences 110.August 2017, pp. 54–64. issn: 00983004.

Weiss, K., L. De Floriani, R. Fellegara, and M. Velloso (2011). «The PR-
star octree: a spatio-topological data structure for tetrahedral meshes.»
In: Proceedings of the 19th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems - GIS ’11. New York, New
York, USA: ACM Press, p. 92. isbn: 9781450310314.

Wilson, J. and A. Fotheringham (2008). The handbook of geographic in-
formation science. Blackwell companions to geography. Blackwell Pub.
isbn: 9781405107952.

Worboys, M. and M. Duckham (2004). GIS: A Computing Perspective, Second
Edition. Taylor & Francis. isbn: 9780415283755.

bibliography 167

Wu, L. (2004). «Topological relations embodied in a generalized tri-prism
(GTP) model for a 3D geoscience modeling system.» In: Computers &
Geosciences 30.4, pp. 405–418. issn: 00983004.

Wycisk, P., T. Hubert, W. Gossel, and C. Neumann (2009). «High-resolution
3D spatial modelling of complex geological structures for an environ-
mental risk assessment of abundant mining and industrial megasites.»
In: Computers and Geosciences 35.1, pp. 165–182. issn: 00983004.

Yagel, R., D. Cohen, and A. Kaufman (1992). «Normal estimation in 3
D discrete space.» In: The Visual Computer 8.5-6, pp. 278–291. issn:
01782789.

Zanchi, A., S. Francesca, Z. Stefano, S. Simone, and G. Graziano (2009). «3D
reconstruction of complex geological bodies: Examples from the Alps.»
In: Computers & Geosciences 35.1, pp. 49–69. issn: 00983004.

Zehner, B., N. Watanabe, and O. Kolditz (2010). «Visualization of grid-
ded scalar data with uncertainty in geosciences.» In: Computers and
Geosciences 36.10, pp. 1268–1275. issn: 00983004.

Zehner, B., O. Hellwig, M. Linke, I. Görz, and S. Buske (2016). «Rasterizing
geological models for parallel �nite di�erence simulation using seismic
simulation as an example.» In: Computers and Geosciences 86, pp. 83–91.
issn: 00983004.

Zeiler, M. (1999). Modeling Our World: The ESRI Guide to Geodatabase De-
sign. ESRI Press. isbn: 9781879102620.

Zhao, Y., A. Padmanabhan, and S. Wang (2013). «A parallel computing
approach to viewshed analysis of large terrain data using graphics
processing units.» In: International Journal of Geographical Information
Science 27.2, pp. 363–384. issn: 1365-8816.

Zhu, R., P. C. Kyriakidis, and K. Janowicz (2017). «Beyond Pairs: Gener-
alizing the Geo-dipole for Quantifying Spatial Patterns in Geographic
Fields.» In: Societal Geo-innovation: Selected papers of the 20th AGILE
conference on Geographic Information Science. Ed. by A. Bregt, T. Sar-
jakoski, R. van Lammeren, and F. Rip. Springer International Publishing,
pp. 331–348. isbn: 978-3-319-56759-4.

Zlatanova, S. (2000). «3D GIS for urban development.» PhD thesis. ITC,
The Netherlands, p. 222.

This document was typeset using the typographical look-and-feel clas-
sicthesis developed by André Miede and Ivo Pletikosić. The style was
inspired by Robert Bringhurst’s seminal book on typography “The Ele-
ments of Typographic Style”. classicthesis is available for both LATEX and
LYX: https://bitbucket.org/amiede/classicthesis/

https://bitbucket.org/amiede/classicthesis/

	Abstract
	Resumen
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Notation
	 Introduction and overview
	1 Introduction
	1.1 Aims and objectives
	1.2 Organization of this document

	2 Fundamentals of geological modeling
	2.1 Continuous field models
	2.1.1 Grid-based models and data structures in geological modeling
	2.1.2 Grids for numerical modeling
	2.1.3 Hierarchical grids for geomodeling

	2.2 Discrete object models
	2.2.1 Geological modeling with simplicial complexes
	2.2.2 Geological modeling with cell complexes
	2.2.3 Ordered topological geomodeling

	2.3 Generalized strategies for geomodeling
	2.4 Comparison of data structures for geomodeling
	2.4.1 Topology
	2.4.2 Memory consumption
	2.4.3 Querying and updating
	2.4.4 Ease of construction

	2.5 Visualization in GSIS

	 Data structures for geological layered data
	3 The stack-based representation of terrains
	3.1 Efficiency in modeling geological fields
	3.2 Related work
	3.3 Defining the stack-based representation of terrains
	3.3.1 Mathematical definition

	3.4 Memory storage comparative

	4 Formal framework for the stack-based representation of terrains
	4.1 Introduction
	4.2 Geo-atom theory background
	4.3 3D Terrains as geo-fields
	4.4 Stack-based terrains as geo-fields
	4.5 Operations with 3D terrains
	4.5.1 Map algebra background
	4.5.2 Definition of operations

	4.6 An implementation model
	4.6.1 Extending the model with SBRT domain classes

	4.7 Conclusion and future work

	5 Efficient representation of stack-based information
	5.1 Introduction
	5.2 The QuadStack data structure
	5.2.1 Group of stacks
	5.2.2 Group of stacks hierarchies
	5.2.3 QuadStack construction
	5.2.4 Heightfield compression
	5.2.5 Optimizations

	5.3 QuadStack sampling
	5.4 Conclusion

	 Visualization of geological data
	6 Fundamentals of direct volume rendering
	6.1 Introduction
	6.2 Overview of direct volume rendering techniques
	6.2.1 The volume-rendering equation
	6.2.2 Transfer functions
	6.2.3 Direct volume rendering approaches

	6.3 Raycasting

	7 Real-time rendering of stack-based data
	7.1 Introduction
	7.2 Raycasting the stack-based representation
	7.2.1 Surface normal vectors calculation
	7.2.2 Stack-based representation of terrains encoding in the GPU memory
	7.2.3 Visual operations
	7.2.4 GIS-based layer display
	7.2.5 Performance analysis

	7.3 Raycasting the QuadStack
	7.3.1 QuadStack encoding in the GPU memory
	7.3.2 Performance analysis

	7.4 Conclusion

	 Concluding remarks
	8 Conclusions
	8.1 Summary of contributions
	8.2 Future work

	 Appendices
	A Programming custom visualization algorithms on GPU
	A.1 Introduction to GPU programming
	A.2 OpenGL API
	A.2.1 Data model

	A.3 Raycasting implementation in GLSL

	B Documentación en castellano
	 Bibliography
	Colophon

	content_es.pdf
	Abstract
	Resumen
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Notation
	 Introducción y perspectiva
	1 Introducción
	1.1 Propósitos y objetivos
	1.2 Organización de esta tesis

	2 Fundamentos del modelado geológico
	2.1 Modelos de campos continuos
	2.1.1 Modelos y estructuras de datos basados en rejillas en el modelado geológico
	2.1.2 Modelos de rejillas para el modelado numérico
	2.1.3 Modelos de rejillas jerárquicas para el modelado geológico

	2.2 Modelos de objetos discretos
	2.2.1 Modelado geológico con complejos simpliciales
	2.2.2 Modelado geológico con complejos celulares
	2.2.3 Modelos geológicos ordenados topológicamente

	2.3 Estrategias generalizadas para el modelado geológico
	2.4 Comparación de estructuras de datos para el geomodelado
	2.4.1 Topología
	2.4.2 Requisitos de memoria
	2.4.3 Consultas y actualización
	2.4.4 Facilidad de construcción

	2.5 Visualización en GSIS

	 Estructuras de datos para para datos geológicos por capas
	3 La representación de terrenos basada en stacks
	3.1 Eficiencia en el modelado geológico de campos
	3.2 Trabajos relacionados
	3.3 Definiendo la representación de terrenos basada en stacks
	3.3.1 Definición matemática

	3.4 Comparativa de requisitos de memoria

	4 Un esquema formal para la representación de terrenos basada en stacks
	4.1 Introducción
	4.2 Fundamentos de la teoría de geo-átomos
	4.3 Terrenos 3D como geo-campos
	4.4 Terrenos basados en stacks como geo-campos
	4.5 Operaciones con terrenos 3D
	4.5.1 Fundamentos del álgebra de mapas
	4.5.2 Definición de operaciones

	4.6 Un modelo de implementación
	4.6.1 Extendiendo el modelo con clases de SBRT

	4.7 Conclusiones y trabajo futuro

	5 Representación eficiente de información basada en stacks
	5.1 Introducción
	5.2 La estructura de datos QuadStack
	5.2.1 Grupos de stacks
	5.2.2 Grupos de jerarquías de stacks
	5.2.3 Construcción del QuadStack
	5.2.4 Compresión de campos de altura
	5.2.5 Optimizaciones

	5.3 Accediendo al QuadStack
	5.4 Conclusiones

	 Visualización de datos geológicos
	6 Fundamentos de la visualización de volúmenes
	6.1 Introducción
	6.2 Revisión de técnicas de visualización directa de volúmenes
	6.2.1 La ecuación del renderizado de volúmenes
	6.2.2 Funciones de transferencia
	6.2.3 Enfoques para el renderizado directo de volúmenes

	6.3 Raycasting

	7 Visualización en tiempo real datos basados en stacks
	7.1 Introducción
	7.2 Usando raycasting en la representación basada en stacks
	7.2.1 Cálculo de los vectores normales a la superficie
	7.2.2 Codificación de la SBRT en la memoria de la GPU
	7.2.3 Operaciones visuales
	7.2.4 Visualización de capas basadas en SIG
	7.2.5 Análisis del rendimiento

	7.3 Usando raycasting en un QuadStack
	7.3.1 Codificación de un QuadStack en la memoria de la GPU
	7.3.2 Análisis del rendimiento

	7.4 Conclusiones

	 Consideraciones finales
	8 Conclusiones
	8.1 Resumen de las contribuciones
	8.2 Trabajo futuro

	 Anexos
	A Programación de algoritmos de visualización en la GPU
	A.1 Introducción a la programación de la GPU
	A.2 La API OpenGL
	A.2.1 Modelo de datos

	A.3 Implementación del raycasting en la GPU

	B Documentación en castellano
	 Bibliography
	Colophon

