8,542 research outputs found

    A MODEL OF FUZZY TOPOLOGICAL RELATIONS FOR SIMPLE SPATIAL OBJECTS IN GIS

    Get PDF
    The goal of this paper is to present a new model of fuzzy topological relations for simple spatial objects in Geographic Information Sciences (GIS). The concept of computational fuzzy topological space is applied to simple fuzzy objects to efficiently and more accurately solve fuzzy topological relations, extending and improving upon previous research in this area. Firstly, we propose a new definition for simple fuzzy line segments and simple fuzzy regions based on computational fuzzy topology. And then, we also propose a new model to compute fuzzy topological relations between simple spatial objects, an analysis of the new model exposes:(1) the topological relations of two simple crisp objects; (2) the topological relations between one simple crisp object and one simple fuzzy object; (3) the topological relations between two simple fuzzy objects. In the end, we have discussed some examples to demonstrate the validity of the new model, through an experiment and comparisons of existing models, we showed that the proposed method can make finer distinctions, as it is more expressive than the existing fuzzy models

    Spatial database implementation of fuzzy region connection calculus for analysing the relationship of diseases

    Full text link
    Analyzing huge amounts of spatial data plays an important role in many emerging analysis and decision-making domains such as healthcare, urban planning, agriculture and so on. For extracting meaningful knowledge from geographical data, the relationships between spatial data objects need to be analyzed. An important class of such relationships are topological relations like the connectedness or overlap between regions. While real-world geographical regions such as lakes or forests do not have exact boundaries and are fuzzy, most of the existing analysis methods neglect this inherent feature of topological relations. In this paper, we propose a method for handling the topological relations in spatial databases based on fuzzy region connection calculus (RCC). The proposed method is implemented in PostGIS spatial database and evaluated in analyzing the relationship of diseases as an important application domain. We also used our fuzzy RCC implementation for fuzzification of the skyline operator in spatial databases. The results of the evaluation show that our method provides a more realistic view of spatial relationships and gives more flexibility to the data analyst to extract meaningful and accurate results in comparison with the existing methods.Comment: ICEE201

    Mining topological relations from the web

    Get PDF
    Topological relations between geographic regions are of interest in many applications. When the exact boundaries of regions are not available, such relations can be established by analysing natural language information from web documents. In particular we demonstrate how redundancy-based techniques can be used to acquire containment and adjacency relations, and how fuzzy spatial reasoning can be employed to maintain the consistency of the resulting knowledge base

    Dual Logic Concepts based on Mathematical Morphology in Stratified Institutions: Applications to Spatial Reasoning

    Full text link
    Several logical operators are defined as dual pairs, in different types of logics. Such dual pairs of operators also occur in other algebraic theories, such as mathematical morphology. Based on this observation, this paper proposes to define, at the abstract level of institutions, a pair of abstract dual and logical operators as morphological erosion and dilation. Standard quantifiers and modalities are then derived from these two abstract logical operators. These operators are studied both on sets of states and sets of models. To cope with the lack of explicit set of states in institutions, the proposed abstract logical dual operators are defined in an extension of institutions, the stratified institutions, which take into account the notion of open sentences, the satisfaction of which is parametrized by sets of states. A hint on the potential interest of the proposed framework for spatial reasoning is also provided.Comment: 36 page

    Domain walls between gauge theories

    Full text link
    Noncommutative U(N) gauge theories at different N may be often thought of as different sectors of a single theory: the U(1) theory possesses a sequence of vacua labeled by an integer parameter N, and the theory in the vicinity of the N-th vacuum coincides with the U(N) noncommutative gauge theory. We construct noncommutative domain walls on fuzzy cylinder, separating vacua with different gauge theories. These domain walls are solutions of BPS equations in gauge theory with an extra term stabilizing the radius of the cylinder. We study properties of the domain walls using adjoint scalar and fundamental fermion fields as probes. We show that the regions on different sides of the wall are not disjoint even in the low energy regime -- there are modes penetrating from one region to the other. We find that the wall supports a chiral fermion zero mode. Also, we study non-BPS solution representing a wall and an antiwall, and show that this solution is unstable. We suggest that the domain walls emerge as solutions of matrix model in large class of pp-wave backgrounds with inhomogeneous field strength. In the M-theory language, the domain walls have an interpretation of a stack of branes of fingerstall shape inserted into a stack of cylindrical branes.Comment: Final version; minor corrections; to appear in Nucl.Phys.

    Disentangling agglomeration and network externalities : a conceptual typology

    Get PDF
    Agglomeration and network externalities are fuzzy concepts. When different meanings are (un)intentionally juxtaposed in analyses of the agglomeration/network externalities-menagerie, researchers may reach inaccurate conclusions about how they interlock. Both externality types can be analytically combined, but only when one adopts a coherent approach to their conceptualization and operationalization, to which end we provide a combinatorial typology. We illustrate the typology by applying a state-of-the-art bipartite network projection detailing the presence of globalized producer services firms in cities in 2012. This leads to two one-mode graphs that can be validly interpreted as topological renderings of agglomeration and network externalities

    Voronoi-Based Region Approximation for Geographical Information Retrieval with Gazetteers

    No full text
    Gazetteers and geographical thesauri can be regarded as parsimonious spatial models that associate geographical location with place names and encode some semantic relations between the names. They are of particular value in processing information retrieval requests in which the user employs place names to specify geographical context. Typically the geometric locational data in a gazetteer are confined to a simple footprint in the form of a centroid or a minimum bounding rectangle, both of which can be used to link to a map but are of limited value in determining spatial relationships. Here we describe a Voronoi diagram method for generating approximate regional extents from sets of centroids that are respectively inside and external to a region. The resulting approximations provide measures of areal extent and can be used to assist in answering geographical queries by evaluating spatial relationships such as distance, direction and common boundary length. Preliminary experimental evaluations of the method have been performed in the context of a semantic modelling system that combines the centroid data with hierarchical and adjacency relations between the associated place names
    corecore