137 research outputs found

    Identification of Malicious Node for Effective Top-k Query Processing in MANETS

    Get PDF
    In Mobile Ad-hoc networks, query processing is optimized using Top-k query processing. The accuracy of the results can be lowered if there exists malicious node. In our proposed system, we assume that malicious node perform Data Replacement Attack, in which the malicious node replaces necessary data sets with the false data sets. In our system malicious node identification method, the query issuing node receives the reply messages from the nodes; if a query-issuing node detects a DRA then it performs subsequent inquiries with the nodes which receive the information from the malicious node. In this way the query issuing node identifies the malicious node, and shares the information with the neighbouring nodes. Then the nodes share the information regarding the malicious node with the other nodes which are far away. Each node tends to identify the malicious node in the network, and then floods the information. Query issuing node performs grouping of the nodes based on the similarity of the information on malicious node detected by the nodes. Identification of malicious node is performed based on the results of malicious node identifications by these groups

    Evaluation of on-demand routing in mobile ad hoc networks and proposal for a secure routing protocol

    Get PDF
    Secure routing Mobile Ad hoc Networks (MANETs) has emerged as an important MANET research area. Initial work in MANET focused mainly on the problem of providing efficient mechanisms for finding paths in very dynamic networks, without considering the security of the routing process. Because of this, a number of attacks exploit these routing vulnerabilities to manipulate MANETs. In this thesis, we performed an in-depth evaluation and performance analysis of existing MANET Routing protocols, identifying Dynamic Source Routing (DSR) as the most robust (based on throughput, latency and routing overhead) which can be secured with negligible routing efficiency trade-off. We describe security threats, specifically showing their effects on DSR. We proposed a new routing protocol, named Authenticated Source Routing for Ad hoc Networks (ASRAN) which is an out-of-band certification-based, authenticated source routing protocol with modifications to the route acquisition process of DSR to defeat all identified attacks. Simulation studies confirm that ASRAN has a good trade-off balance in reference to the addition of security and routing efficiency

    Trust correlation of mobile agent nodes with a regular node in a Adhoc network using decision-making strategy

    Get PDF
    A mobile agent offers discrete advantage both in facilitating better transmission as well as controlling the traffic load in Mobile Adhoc Network (MANET). Hence, such forms of network offers maximized dependencies on mobile agents in terms of its trust worthiness. At present, there are various work being carried out towards resisting security breach in MANET; however approaches using mobile agent based mechanism is few to found. Therefore, the proposed system introduces a novel mathematical model where an extensive decision making system has been constructed for identifying the malicious intention of mobile agents in case they go rogues. By adopting multi-tier communication policy and fairness concept, the proposed system offers the capability to resist any form of malicious activity of mobile agent without even presence of any apriori information of adversary. The outcome shows proposed system outshines existing security scheme in MANET

    Location based services in wireless ad hoc networks

    Get PDF
    In this dissertation, we investigate location based services in wireless ad hoc networks from four different aspects - i) location privacy in wireless sensor networks (privacy), ii) end-to-end secure communication in randomly deployed wireless sensor networks (security), iii) quality versus latency trade-off in content retrieval under ad hoc node mobility (performance) and iv) location clustering based Sybil attack detection in vehicular ad hoc networks (trust). The first contribution of this dissertation is in addressing location privacy in wireless sensor networks. We propose a non-cooperative sensor localization algorithm showing how an external entity can stealthily invade into the location privacy of sensors in a network. We then design a location privacy preserving tracking algorithm for defending against such adversarial localization attacks. Next we investigate secure end-to-end communication in randomly deployed wireless sensor networks. Here, due to lack of control on sensors\u27 locations post deployment, pre-fixing pairwise keys between sensors is not feasible especially under larger scale random deployments. Towards this premise, we propose differentiated key pre-distribution for secure end-to-end secure communication, and show how it improves existing routing algorithms. Our next contribution is in addressing quality versus latency trade-off in content retrieval under ad hoc node mobility. We propose a two-tiered architecture for efficient content retrieval in such environment. Finally we investigate Sybil attack detection in vehicular ad hoc networks. A Sybil attacker can create and use multiple counterfeit identities risking trust of a vehicular ad hoc network, and then easily escape the location of the attack avoiding detection. We propose a location based clustering of nodes leveraging vehicle platoon dispersion for detection of Sybil attacks in vehicular ad hoc networks --Abstract, page iii

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Wireless Sensor Networks (WSNs): Security and Privacy Issues and Solutions

    Get PDF
    Wireless sensor networks (WSNs) have become one of the current research areas, and it proves to be a very supportive technology for various applications such as environmental-, military-, health-, home-, and office-based applications. WSN can either be mobile wireless sensor network (MWSN) or static wireless sensor network (SWSN). MWSN is a specialized wireless network consisting of considerable number of mobile sensors, however the instability of its topology introduces several performance issues during data routing. SWSNs consisting of static nodes with static topology also share some of the security challenges of MWSNs due to some constraints associated with the sensor nodes. Security, privacy, computation and energy constraints, and reliability issues are the major challenges facing WSNs, especially during routing. To solve these challenges, WSN routing protocols must ensure confidentiality, integrity, privacy preservation, and reliability in the network. Thus, efficient and energy-aware countermeasures have to be designed to prevent intrusion in the network. In this chapter, we describe different forms of WSNs, challenges, solutions, and a point-to-point multi-hop-based secure solution for effective routing in WSNs
    corecore