9,010 research outputs found

    Mining frequent itemsets a perspective from operations research

    Get PDF
    Many papers on frequent itemsets have been published. Besides somecontests in this field were held. In the majority of the papers the focus ison speed. Ad hoc algorithms and datastructures were introduced. Inthis paper we put most of the algorithms in one framework, usingclassical Operations Research paradigms such as backtracking, depth-first andbreadth-first search, and branch-and-bound. Moreover we presentexperimental results where the different algorithms are implementedunder similar designs.data mining;operation research;Frequent itemsets

    Mining frequent itemsets a perspective from operations research

    Get PDF
    Many papers on frequent itemsets have been published. Besides some contests in this field were held. In the majority of the papers the focus is on speed. Ad hoc algorithms and datastructures were introduced. In this paper we put most of the algorithms in one framework, using classical Operations Research paradigms such as backtracking, depth-first and breadth-first search, and branch-and-bound. Moreover we present experimental results where the different algorithms are implemented under similar designs

    Constraining the Search Space in Temporal Pattern Mining

    Get PDF
    Agents in dynamic environments have to deal with complex situations including various temporal interrelations of actions and events. Discovering frequent patterns in such scenes can be useful in order to create prediction rules which can be used to predict future activities or situations. We present the algorithm MiTemP which learns frequent patterns based on a time intervalbased relational representation. Additionally the problem has also been transfered to a pure relational association rule mining task which can be handled by WARMR. The two approaches are compared in a number of experiments. The experiments show the advantage of avoiding the creation of impossible or redundant patterns with MiTemP. While less patterns have to be explored on average with MiTemP more frequent patterns are found at an earlier refinement level

    Frequent Pattern mining with closeness Considerations: Current State of the art

    Get PDF
    Due to rising importance in frequent pattern mining in the field of data mining research, tremendous progress has been observed in fields ranging from frequent itemset mining in transaction databases to numerous research frontiers. An elaborative note on current condition in frequent pattern mining and potential research directions is discussed in this article. It2019;s a strong belief that with considerably increasing research in frequent pattern mining in data analysis, it will provide a strong foundation for data mining methodologies and its applications which might prove a milestone in data mining applications in mere future

    A new technique for intelligent web personal recommendation

    Get PDF
    Personal recommendation systems nowadays are very important in web applications because of the available huge volume of information on the World Wide Web, and the necessity to save users’ time, and provide appropriate desired information, knowledge, items, etc. The most popular recommendation systems are collaborative filtering systems, which suffer from certain problems such as cold-start, privacy, user identification, and scalability. In this thesis, we suggest a new method to solve the cold start problem taking into consideration the privacy issue. The method is shown to perform very well in comparison with alternative methods, while having better properties regarding user privacy. The cold start problem covers the situation when recommendation systems have not sufficient information about a new user’s preferences (the user cold start problem), as well as the case of newly added items to the system (the item cold start problem), in which case the system will not be able to provide recommendations. Some systems use users’ demographical data as a basis for generating recommendations in such cases (e.g. the Triadic Aspect method), but this solves only the user cold start problem and enforces user’s privacy. Some systems use users’ ’stereotypes’ to generate recommendations, but stereotypes often do not reflect the actual preferences of individual users. While some other systems use user’s ’filterbots’ by injecting pseudo users or bots into the system and consider these as existing ones, but this leads to poor accuracy. We propose the active node method, that uses previous and recent users’ browsing targets and browsing patterns to infer preferences and generate recommendations (node recommendations, in which a single suggestion is given, and batch recommendations, in which a set of possible target nodes are shown to the user at once). We compare the active node method with three alternative methods (Triadic Aspect Method, Naïve Filterbots Method, and MediaScout Stereotype Method), and we used a dataset collected from online web news to generate recommendations based on our method and based on the three alternative methods. We calculated the levels of novelty, coverage, and precision in these experiments, and we found that our method achieves higher levels of novelty in batch recommendation while achieving higher levels of coverage and precision in node recommendations comparing to these alternative methods. Further, we develop a variant of the active node method that incorporates semantic structure elements. A further experimental evaluation with real data and users showed that semantic node recommendation with the active node method achieved higher levels of novelty than nonsemantic node recommendation, and semantic-batch recommendation achieved higher levels of coverage and precision than non-semantic batch recommendation

    Concept Based Semantic Search Engine

    Get PDF
    In the current day and age, search engines are the most relied on and critical ways to find out information on the World Wide Web (W3). With the ushering in of Big Data, traditional search engines are becoming inept and inadequate at dishing out relevant pages. It has become increasingly difficult to locate meaningful results from the mind boggling list of returns typical of returned search queries. Keywords, often times, alone cannot capture the intended concept with high precision. These and associated issues with the current search engines call for a more powerful and holistic search engine capability. The current project presents a new approach to resolving this widely relevant problem - a concept based search engine. It is known that a collection of concepts naturally forms a polyhedron. Combinatorial topology is, thus, used to manipulate the polyhedron of concepts that are mined from W3. Based on this triangulated polyhedron, the concepts are clustered together based on primitive concepts that are geometrically, simplexes of maximal dimensions. Such clustering is different from conventional clustering since the proposed model may have overlapping. Based on such clustering, the search results can then be categorized and users allowed to select a category more apt to their needs. The results displayed are based on aforementioned categorization thereby leading to more sharply gathered and, thus, semantically related relevant information
    corecore