
Mining Frequent Itemsets

A Perspective from Operations Research

Wim Pijls∗ Walter A. Kosters†

Econometric Institute Report EI 2008-24

October 20, 2008

Abstract

Many papers on frequent itemsets have been published. Besides some contests in this
field were held. In the majority of the papers the focus is on speed. Ad hoc algorithms
and datastructures were introduced. In this paper we put most of the algorithms in one
framework, using classical Operations Research paradigms such as backtracking, depth-
first and breadth-first search, and branch-and-bound. Moreover we present experimental
results where the different algorithms are implemented under similar designs.
Keywords: Data mining, Operations Research, Frequent itemsets, Search

1 Introduction

Frequent itemset mining as a research area came into being in the nineties. The seminal paper
appeared in 1994 [Agrawal and Srikant, 1994]. In the subsequent decade numerous papers
were published. The basic problem in frequent itemset mining is, given a series of sets, to
find all subsets that are contained in at least minsup of them; here minsup is a user-specified
threshold. The problem of frequent itemset mining plays an important role in several data
mining fields [Tan et al., 2006], such as association rules [Agrawal and Srikant, 1994], ware-
housing [Wu, 2006], correlations [Brin et al., 1998] and classification [Hu et al., 1999, Kosters
et al., 1999, Pijls and Potharst, 2000]. The subject is also related to rough sets [Pawlak,
2000] and logical analysis of data [Boros et al., 2000]. Moreover, frequent itemsets have many
application areas, amongst others customer relationship management, fraud detection, prod-
uct assortment decisions [Brijs et al., 1999], episode mining [Mannila et al., 1995], functional
dependency discovery [Huhtala et al., 1999], etc.
In the literature on frequent itemsets the algorithms are usually studied from a practical
viewpoint. Almost any paper focuses on speed. To achieve an optimal running time, spe-
cific implementation tricks are applied. In the current paper, the theory of frequent itemsets
is discussed from an algorithmic viewpoint. The algorithms in the majority of the papers

∗Econometric Institute, Erasmus University Rotterdam, P.O.Box 1738, 3000 DR Rotterdam, The Nether-
lands, e-mail: pijls@few.eur.nl

†Leiden Institute of Advanced Computer Science, Universiteit Leiden, P.O. Box 9512, 2300 RA Leiden,
The Netherlands, e-mail kosters@liacs.nl

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/19118994?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

use paradigms that are common in Operations Research, such as backtracking, branch-and-
bound, depth-first search and breadth-first search. Nevertheless, the theory on frequent item-
sets is usually not treated in terms of those paradigms. Complex dedicated datastructures are
utilized. Consequently, the distinction between the algorithm and the datastructure under
consideration is hardly ever made. Our goal is to achieve greater transparency, using the well-
known concepts from Operations Research. Therefore, this paper makes a clear distinction
between algorithms and datastructures. After a decade with an extensive variety of methods
a theoretical survey is needed. In this paper, the well-known algorithms are put into one
framework. Other surveys, however without a unifying view, can be found in [Bodon, 2006,
Goethals, 2003]. Given the vast literature, mining frequent itemsets has become a topic as
classical as sorting arrays or finding shortest paths in a network. It should take a prominent
place in textbooks on “Algorithms and Datastructures”.
For a present-day computer time and memory constraints are no significant issues anymore,
with respect to many frequent itemset mining problems. Memory sizes exceeding 1 GB are
standard nowadays. Running our algorithms on benchmark sets shows that even for sets with
hundreds of megabytes, it takes only a few seconds to obtain the full collection of frequent
item sets. Many papers introduced dedicated datastructures in order to obtain an optimal
running time. Almost any paper claims a high performance in running time. We refrain from
speed optimizations. Only for comparison, we present a small set of figures.

The algorithms most frequently discussed in textbooks on Datamining are Apriori [Agrawal
and Srikant, 1994, Agrawal et al., 1996], FP-growth [Han et al., 2000, 2004] and Eclat
[Zaki, 2000]. From FP-growth the methods of OpportuneProject [Liu et al., 2002] and
Topdown-FP [Wang et al., 2002] are derived. Next to Eclat a variant called dEclat [Zaki
and Gouda, 2003] is known. All these algorithms are discussed here along with their deriva-
tives. As said before, we do not strive for a minimal running time. Only a rough comparison
between the best-known algorithms is made, in order to get a better understanding.

Outline This paper is organized as follows. Section 2 gives the preliminaries, including the
datastructures used and some issues concerning complexity. Section 3 discusses a general
depth-first framework for mining frequent itemsets. Multiple instances of this algorithm are
presented in Section 4 and 5, utilizing tries and tid-lists (tid stands for “transaction identi-
fier”), respectively. The depth-first instances are compared with respect to running time in
Section 6. Section 7 treats the breadth-first algorithm, which appears to be much slower than
its depth-first counterparts. In Section 8 maximal frequent itemsets are studied. Finally some
concluding remarks are made.

2 Preliminaries

A transaction database B is an ordered series of transactions (or records), where each trans-
action is a set consisting of a finite number of items. The items will be denoted by small
letters a, b, c, d, Note, however, that i and s will always be used as variables. We say
that a transaction T supports an itemset I, if all items of I are included in T . The support of
an itemset I is defined as the number of transactions that support I. Similarly the support
of a single item is defined, by looking at the corresponding singleton set. For a single item,
we use the term frequency rather than support.
An itemset is frequent if its support is larger than or equal to the minimum support minsup,

2

a threshold value given beforehand. If an itemset I is frequent, it is also called a pattern.
Consider the transaction database of Figure 1 (left), our running example in this paper. This

tid transaction
1 be
2 acde
3 acde
4 bcde
5 abcde
6 abd

a b c d e

PPPPPP

PPPPPP

©©©

ab ac ad ae bc bd be cd ce de

abc abd aabe acd ace ade abcd abce abde cde

abcd abce abde acde bcde

abcde

Figure 1: Example database together with its lattice, with frequent sets and border sets (in
boxes), and one example path.

database consists of 6 transactions with transaction identifiers (tid’s) from 1 through 6. There
are 5 items involved: a, b, c, d and e. Throughout this paper we assume that the alphabet-
ical order of the items conforms to a non-decreasing frequency order. So the frequencies of
a, b, c, d, e form a non-decreasing series. An itemset can be denoted by just concatenating its
members, in some order. So, instead of the more formal {a, d, e} we often put ade. Suppose
we have minsup = 3. The collection of all itemsets can be represented by a lattice, see Figure
1 (right). The empty set ∅ could have been added on top. If one adds edges between sets in
subsequent rows that are included in one another, one arrives at the so-called Hasse diagram
of this partial order. The bold-faced sets are frequent, i.e., their support has a value ≥ 3. A
full listing of the frequent sets is shown in the following table:

support 5: d, e
support 4: a, ad, b, c, cd, cde, ce, de
support 3: ac, acd, acde, ace, ade, ae, bd, be

Table 1: The frequent itemsets of the database

A frequent itemset S is called maximal, if any superset of S is infrequent. Analogously, an
infrequent itemset T is called minimal if any subset is frequent. In our example data set with
minsup = 3 the sets acde, bd and be are maximal and ab and bc are minimal. The collection
of maximal frequent and minimal infrequent sets is called the border of the lattice. In Figure
1 (right) the elements of the border are framed in a rectangular box. The elements of the
border have the property that any subset is frequent and any superset is infrequent. Consider
a path from a 1-itemset at the top to the full itemset abcde at the bottom, such that each
itemset in this path is a subset of its successor. Such a path includes at most one itemset
from the border. See Figure 1 (right) for an example.
The complements of the three maximal frequent sets are b, ace and acd respectively, defining
a collection D. In the theory on hypergraphs a transversal is a well-known concept. Given a
collection C of sets, a transversal is defined as a set with at least one element in each set of C.
For the collection D of complements of the maximal frequent sets, the transversals of D are

3

a(4) b(2)

¡
¡

¡¡

@
@

@@
b(2) c(2)

¡
¡

¡¡

c(1) e(1)

c(1) d(1) d(2) d(1)

d(1) e(2) e(1)

e(1)

e(5) d(1)

¡
¡

¡¡

@
@

@@
d(4) b(1) b(1)

c(4) a(1)

b(2) a(2)

a(1)

Figure 2: Two tries representing the example database.

the sets that are not contained in any frequent set. This implies that the transversals of D are
exactly the infrequent sets. Consequently, frequent sets may also be found using algorithms
from hypergraph theory, see [Gunopulos et al., 1997, Uno and Satoh, 2003].

Datastructures

An appropriate and compact datastructure for the database is the trie [Goodrich and Tamas-
sia, 2005]. The trie was initially introduced to count the frequency of words in a text
[Briandais, 1959, Fredkin, 1960]. Words or strings with a common prefix share a common
path (starting from the root) in a trie. Such a trie can be easily constructed from an ini-
tially empty trie, by adding the strings under consideration one by one, following the path
determined by their prefixes; counts indicating how often the corresponding prefix occurs,
are updated during this traversal, and, if necessary, new nodes are created on the fly. As
already mentioned above, transactions can be written as strings, e.g., the string abd denotes
the transaction containing the items a, b and d. Those strings can be put into a trie. Figure 2
(left) displays the trie corresponding to the transaction database of Figure 1. The trie is made
up of cells including an item denotation. The number between brackets indicates the count
of the prefix under consideration. For instance, the count of prefix abd equals 2, meaning that
2 transactions start with abd. A set of adjacent cells is called a block. Any information in a
data set necessary to find frequent item sets, is preserved in the trie.
When a transaction is written as a string, it is not necessary to place the items in alpha-
betical order. It is also possible to apply, e.g., the anti-alphabetical order, so dba instead of
abd. Figure 2 (right) shows the trie corresponding to transactions written in anti-alphabetical
order. For some algorithms this anti-alphabetical representation is preferable, as we will see
in Section 4.1.
Although memories are large nowadays, the trie may not fit into the internal memory. In that

4

a(4) b(4) c(4) d(5) e(5)
©©©©©©©

HHHHHHH

PPPPPPPPPP
c(3) d(4) e(3) d(3) e(3) d(4) e(4) e(4)

@
@

@@
d(3) e(3) e(3) e(4)

e(3)

Figure 3: The trie representing the frequent itemsets of Table 1.

case the following approach is of use, as proposed in [Savarese et al., 1995]. The database is
partitioned into k parts. Let n and ni denote the number of transactions in the entire database
and its i-th part, 1 ≤ i ≤ k, respectively. Likewise, let supp and suppi denote the global and
local support, the latter being the support for the i-th part. An itemset I can only be frequent
globally if I is frequent locally in at least one part. More formally, supp(I) ≥ minsup implies
suppi(I) ≥ minsup × ni/n for at least one i. Combining the locally frequent sets gives the
candidates for the globally frequent itemsets. A new pass through the database determines
which of these candidates are globally frequent.

The collection of frequent itemsets consists of a huge number of strings. We also put this
collection of strings into a trie. In our implementations the output of the algorithm is the
trie of frequent itemsets. For the frequent sets of Table 1 this trie is shown in Figure 3. The
number in each cell indicates the support of the itemset corresponding to the path from the
root up to that cell.

Complexity issues

An important class of problems, introduced in [Valiant, 1979], is class #P. Like the class NP,
class #P has a subclass of #P-complete problems. For many NP-complete decision problems,
the associated counting problem has been proved to be #P-complete [Papadimitriou, 1994].
Enumerating the solutions of a #P-complete problem, is NP-hard, i.e., intractable in worst
case [Garey and Johnson, 1979, Papadimitriou, 1994]. Consequently, this task requires an
exhausting method such as backtracking, branch-and bound or dynamic programming.
In [Gunopulos et al., 2003] it was shown that counting the number of frequent items for a
given minimal support is #P-complete. This implies that we need an exhausting method to
enumerate the frequent itemsets. In Sections 3 and 7 we discuss two algorithms. In Sections
4 and 5 we elaborate on particular datastructures useful for the algorithm of Section 3.

3 Finding patterns by depth-first search

As mentioned before, we need an enumeration method for finding frequent sets. The most
rudimentary enumeration method is backtracking [Golomb and Baumert, 1965], actually an

5

implementation of depth-first search. In this section we discuss a general backtracking algo-
rithm, which will act as a framework for the algorithms in the subsequent two sections, where
some practical instances are discussed.
Let a transaction database B be given. The patterns in a database B can be found by back-
tracking using the following recursive procedure, being a first naive version:

(1) naive-find-patterns(itemset P, itemset I) ::
(2) for every i ∈ I (in a randomly chosen order) do
(3) s ← support(i,B); // the support of i in B
(4) if s ≥ minsup then
(5) P ′ ← P ∪ {i} and place P ′ in the output ;
(6) I ′ ← { i′ | i′ ∈ I and i ≺ i′ };
(7) naive-find-patterns(P ′, I ′);

the NaiveFindPatterns algorithm

The main call of this procedure is naive-find-patterns(∅, I), where I denotes the set of frequent
single items occurring in B. Notice that line (6) assumes an order ≺ for the items in I, which
may differ from the one used in line (2). The algorithm NaiveFindPatterns may also
be viewed as an instance of Rymon’s set enumeration [Rymon, 1992]. Indeed, if B consists
of one transaction made up by the itemset I = {i1, i2, . . . , in} and minsup = 1, this main
call generates all 2n − 1 (non-empty) subsets of I. This is the straightforward method for
generating all subsets of a given set.
In general, a recursive procedure applied to an input instance generates a so-called recursion
tree, which displays the subsequent nested calls. When the main call of naive-find-patterns is
applied to our example database of Section 2, the recursion tree looks like Figure 3, provided
that the ≺ order conforms to the alphabetical order. Each block B of adjacent cells containing
the items i1, i2, . . . , in corresponds to a call naive-find-patterns(P, I) with I = {i1, i2, . . . , in}
and P consisting of the ancestor items of block B.
The above code allows an obvious improvement. In each next nested call a smaller part of the
database is relevant to establish the support of i in B in line (3). We introduce the notion of a
conditional database, also called a projected database. Given a database B, we can define the
conditional database for an itemset P and itemset I with P ∩I = ∅, in short cond-db(B, P, I).
This object is defined as the collection B′ of transactions that include P ; furthermore, each
transaction t of B′ is restricted to the items from I, so t contains only items from I. We
call P the conditional itemset. The following extended procedure exploits the concept of a
conditional database:

6

(1) find-patterns(database B, itemset P, itemset I) ::
(2) for every i ∈ I (in a randomly chosen order) do
(3) s ← support(i,B);
(4) P ′ ← P ∪ {i} and place(P ′, s) in the output ;
(5) I ′ ← { i′ | i′ ∈ I and i ≺ i′ };
(6) B′ ← cond-db(B, {i}, I ′);
(7) determine support(i′,B′) for each i′ ∈ I ′;
(8) remove infrequent items i′ from I ′ and modify B′ accordingly ;
(9) if I ′ 6= ∅ then
(10) establish an order ≺ in I ′;
(11) find-patterns(B′, P ′, I ′);

the FindPatterns algorithm

The values support(i,B), which are invoked in line (3), are supposed to be included in the
representaton of B. Line (7) computes these values for the new conditional database B′. Our
experiments have shown that the size of the conditional database reduces drastically in each
nested call.
The main call is: find-patterns(B0, ∅, I0), where B0 denotes the original database and I0 the
set of frequent single items in B0. With this main call the pre- and postcondition of each
nested call find-patterns(B, P, I) are the following.

pre: B is equal to cond-db(B0, P, I) with P a frequent itemset in the original database B0;
every item i ∈ I is frequent in B.

post: the output is enhanced with pairs (Q, s) for every frequent pattern Q in B0 such that
P (Q (notice the strict inclusion).

The precondition clearly holds for the main call, if infrequent items are removed. To show
that the precondition holds for any nested call, one must show that, assuming the precon-
dition for the call in line (1), the precondition also holds for the recursive call in line (11).
This is easily derived using the following property: the set of transactions in cond-db(B0, P, I)
supporting {i′} is equal to the set of transactions in B0 supporting P ∪ {i′}. Likewise, one
must show that, assuming the postcondition for the recursive call in line (11), this condition
also holds for the call in line (1).

For each recursive call an order ≺ has to be chosen in line (10). Making I ′ inherit the order
of I is an obvious heuristic choice, which is also simple to implement. With this heuristic
choice the order ≺ between the items is fixed in every nested call. The experiments to be
discussed in Section 6 were conducted with the order ≺ always alphabetical, conforming to
a non-decreasing initial frequency, as settled in Section 2. This implies that i is combined in
line (5) with items i′ that have an equal or higher initial frequency. Figure 3 is also based
upon this order. We found that this order performs much better than the reverse order, i.e.,
≺ corresponding to a non-increasing frequency.

7

4 Depth-first search using tries

When executing the backtracking algorithm of the previous section, we need a representa-
tion of the original and the conditional databases. In Section 2 the trie was presented as a
convenient datastructure. This datastructure with some enhancements will also be utilized
in this section. The creation of a conditional database B′ out of a given database B in line
(6) of the FindPatterns algorithm is a process that needs special attention. We elaborate
on that process in this section.
In order to construct the conditional database cond-db(B, {i}, I), the occurrences of i in the
trie representing B need to be traced. To facilitate this step, for each item i the cells includ-
ing i are put into a linked list. So we have for each item a linked list, see Figure 4 for an
illustration. The links are drawn as dashed lines. Each linked list belonging to one item has
a head; its tail is visualized by a black bullet. These linked lists are referred to as chains.

4.1 Bottom-up traversal in the trie: FP-growth

In this subsection the conditional database is traversed in a bottom-up manner. Since we
prefer to combine i with items i′ of higher alphabetical order, it is assumed that the bottom-
up order in the trie is also alphabetical. So the items i′ with i ≺ i′ are the items occurring in
the ancestors of i. This is the case in the trie of Figure 4, an extension of Figure 2 (right).
To construct the conditional database for item i, we walk from every occurrence of i to the
root. For this traversal each cell needs to have a pointer to its father. We now describe the

e(5) d(1)

¡
¡

¡¡

@
@

@@

e

d(4) b(1)d b(1)

c(4)c a(1)

b(2) a(2)b

a(1)a

p p- p p p p- sp p p p p p*
s

p p p p p p p- p p p p p p
p p p p p p

p p p p p p
p p*

p p p p p p p p p p p p p p- p p p p- s

p p p p p p p- p p p p- s p p p p- s

p p- p p p p p p p p
p p p p p p p p

p p p p p p p
ppp
ppp
pppp

pppp
ppppI

p p- p p p p
p p p p

p p p p
pµ

p p p p p p p p
p p p p p p p p

p p p p p p p p
p1

Figure 4: The right trie of Figure 2 enhanced with chains.

construction of the conditional database B′ from B in line (6) in more detail:

1) Find in B, using the chain for i, the cells including item i.
2) Consider from each cell found in 1) the path to the root. The count in that cell is also

the count of the path.
3) Count the total frequency of each individual item using the counts of the paths in 2);

remove infrequent items from the paths.

8

4) If desired, change the order in each path; the bottom-up order should comply with the
≺ order.

5) Compose a new trie from the paths.

In most practical situations step 4) is omitted, carrying over the order ≺ order from I to I ′.
The above steps are illustrated in Figure 5. In that case there are three cells including item a.
For the conditional database with pattern a we consider the three paths starting from those
cells. Each of the paths has a support which is given by the support of a in the bottom cell.
The three paths (above the cells containing a) are shown on the left in Figure 5. Note that b
is removed in step 3), since its frequency equals 2 < 3 = minsup.

e

d

c

b

1

d

e

c

2

b

d

1

paths:

counts:

=⇒

e(3) d(1)e p p p p- sp p p p p p p- p p p p p p*
s

d(3)d p p p p p p p- p p p p
p p p p

p p p p
pµ

c(3)c p p p p- sp p p p p p p-

Figure 5: Constructing the conditional database and its trie for the a-chain, bottom-up.

The FindPatterns algorithm which constructs the conditional database with the above
bottom-up method, is known in the literature as the FP-growth algorithm (FP stands for
Frequent Pattern), published in [Han et al., 2000, 2004]. The trie with linked chains inside
is called an FP-tree there. FP-growth enters a separate phase with separate code, when
the merge involves only one path with one count. Then every subset in the path is frequent.
We need no separate code, since this situation is already captured by the code of Section
3; however, some speedup is achievable. In [Kosters and Pijls, 2003] we already identified
FP-growth as a backtracking instance.

4.2 Top-down traversal in the trie

Another method is the top-down approach contrasting the bottom-up manner of the previous
subsection. Instead of visiting the ancestors of item i we visit the descendants. Two variants
are distinguished. The first variant is known as Topdown-FP [Wang et al., 2002] or Op-
portuneProject [Liu et al., 2002]. The second method is new and was not proposed in the
literature before.
Section 3 mentioned that a more beneficial running time is achieved, if i is combined with
items i′ of higher alphabetical order. Therefore, when i is combined with descendents i′, we
need a trie where any top-down path shows the items alphabetically. Hence, this subsection,
dealing with the top-down approach, is based upon Figure 2 (left).

The first variant is explained using Figure 6. In general, a conditional database is constructed
as follows:

1) Using the chains, find the cells including item i.

9

2) Visits all descendants from the cells found in 1). This can be done using depth-first
traversal starting from each cell in the chain.

3) Count the support for each item occurring in a descendant of i. Discard the infrequent
items.

4) Put the cells containing frequent items, as far as these cells are descendants of i, into a
linked list. So new chains are obtained.

Note that the new conditional database necessarily inherits the ≺ order from its generator.
In Figure 6 (left) a representation of the conditional database cond-db(B0, S, I) is displayed,
where B0 is the example database of Section 2, S = {a} and I = {c, d, e}. Since item b is
infrequent in this subtrie, there is no related chain. Figure 6 (right) shows the conditional
database with S = {a, c} and I = {d, e}. All conditional databases are represented within
one trie which is unaltered over time. Only the chains are changed in each nested call.

a(4) b(2)

¡
¡

¡¡

@
@

@@
b(2) c(2)

¡
¡

¡¡

c(1) e(1)

c(1) d(1) d(2) d(1)

d(1) e(2) e(1)

e(1)

c

d

e p p-

p p-

p p-

p p p p- s

p p p p- s

p p p p- s

p p-

p p p p
p p p p

p p p pµ

p p p p p p
p p p p p p

p p p p p p
p1

p p p p p p
p p p p p p

p p p p p p
p1

a(4) b(2)

¡
¡

¡¡

@
@

@@
b(2) c(2)

¡
¡

¡¡

c(1) e(1)

c(1) d(1) d(2) d(1)

d(1) e(2) e(1)

e(1)

d

e p p-

p p- p p p p- s

p p p p- s

p p p p p p
p p p p p p

p p p p p p
p1

p p p p p p
p p p p p p

p p p p p p
p1

Figure 6: The conditional database with {a} (left), resp. {a, c} (right), as conditional set.

For this algorithm, the order in line (2) of find-patterns is not arbitrary. Suppose a database
B is given as a trie with a set of chains. Let itemset I be given by {i1, i2, . . . , in}, in accor-
dance with the top-down order of the trie. If the conditional database B′ for item i = ik is
constructed, the chains belonging to the items ik+1, ik+2, . . . , in are changed. When the sub-
call for item ik has finished, the chains in B for the items ik+1, ik+2, . . . , in are out of kilter.
Therefore, in order to be correct, find-patterns has to follow the order {in, in−1, . . . , i1} in
line (2), or put another way, the chains need to be treated in a bottom-up order.

To explain the second variant, consider Figure 7. The conditional tree is constructed analo-
gously to the bottom-up method of the previous subsection. Suppose cond-db(B, {b}, {c, d, e})
with B = B0 is to be constructed. The subtries underneath the cells with item b are isolated,
see Figure 7 (left) showing two subtries. Item c with support equal to 2 is found infrequent.
Each cell including c is replaced with its child block. Due to this action we arrive at Figure

10

7 (middle). Merging these subtries gives Figure 7 (right). This resulting trie is provided with
chains.

c(1) d(1) c(1) e(1)

d(1) d(1)

e(1) e(1)

=⇒

d(1) d(1) d(1) e(1)

e(1) e(1) =⇒

d(3) e(1)

e(2)

d

e p p-

p p- p p p p- t

p p p p
p p p p

p p p pµ

p p p p p p*
t

Figure 7: Constructing the conditional tree, top-down.

An advantage of this method is that, given two paths with a common subpath, the common
part has to be traversed only once. This is different from FP-growth, where each bottom-
up path has to traversed fully, even if a subpath has been visited earlier as part of another
bottom-up walk.

An extra feature of the top-down approach is that we can switch dynamically between the
two variants. When the recursion depth is low, the second variant is applied, reducing the
size of the trie and hence the traversal time considerably. For larger depths, time is saved
when the construction of a new trie is left undone.

4.3 Other algorithms

Some other depth-first algorithms have been designed. H-mine [Pei et al., 2001] resembles
the above first top-down variant. Instead of projecting the data set into a trie, an array
of transactions is built, where each transaction is an ordered list of item id’s. This array
is kept throughout the entire execution. The first item in a linear structure representing a
transaction is called the head of the transaction. Similarly to the above first variant, building
a new conditional database means inserting new links. Transactions with identical heads are
linked. For so-called sparse databases (see Section 6) where the transactions have only few
prefixes in common, this structure may be profitable. Moreover, this algorithm is scalable as
it can easily be combined with the partitioning method discussed in Section 2.
Another algorithm related to the ones of this section is afopt [Liu et al., 2003]. This algorithm
changes the database B in each iteration of the for-loop in find-patterns. The items i are
treated according to their order in the root of the trie, from left to right. At the end of the
iteration, item i is removed from the database B. This amounts to removing the leftmost item
in the root of the trie. See [Liu et al., 2004] for details. In [Borgelt, 2005] a similar algorithm
is discussed.

5 Depth-first search using tid-lists: Eclat

In this section we discuss two other depth-first instances, viz. Eclat [Zaki, 2000] and dE-
clat [Zaki and Gouda, 2003], acronyms respectively for “Equivalence class transformation”
and “difference-Eclat”. The Eclat algorithm uses a simple datastructure, reducing the trans-

11

formation between B and B′ to a simple action. For each item i in a database B, a so-called
tid-list contains the id’s of the transactions that include item i. A database B is represented
by the set I along with the tid-lists tid(i) for every i ∈ I.
Let the tid-list in the conditional database B′ = cond-db(B, {i}, I ′) be denoted by tid ′. (One
must realize that tid ′ depends on i.) Then tid ′(i′) for an item i′ in the conditional database
B′ is determined by the relation:

tid ′(i′) = tid(i) ∩ tid(i′). (1)

The following table shows the tid-lists of database B in Section 2 with conditional set {a},
so B′ = cond-db(B, {a}, {b, c, d, e}):

tid(a) = {2, 3, 5, 6}
tid(b) = {1, 4, 5, 6} tid ′(b) = tid(a) ∩ tid(b) = {5, 6}
tid(c) = {2, 3, 4, 5} tid ′(c) = tid(a) ∩ tid(c) = {2, 3, 5}
tid(d) = {2, 3, 4, 5, 6} tid ′(d) = tid(a) ∩ tid(d) = {2, 3, 5, 6}
tid(e) = {1, 2, 3, 4, 5} tid ′(e) = tid(a) ∩ tid(e) = {2, 3, 5}

When computing (1), we maintain a variable feasible for either list in the right-hand side.
This variable is initialized to the size of the list. Whenever an element in a list turns out to
fall outside the intersection, the variable feasible of that list decreases. As soon as at least
one variable feasible is smaller than minsup, the resulting intersection is certainly infrequent
and the intersecting process can be aborted.

Another method to represent a conditional database B is applied in dEclat [Zaki and Gouda,
2003]. For each item i ∈ I, a list is available containing the id’s of transactions in the con-
ditional database B that do not include i. This list is called the complementary tid-list of
i, denoted by ctid(i). The new conditional database B′ is constructed in line (6) using the
following relation, holding for every i′ ∈ I ′:

ctid ′(i′) = ctid(i′)\ctid(i) , (2)

where ctid ′ denotes the complementary tid-list in B′. Applying (2) with i = a to our example
database of Section 2 gives:

ctid(a) = {1, 4}
ctid(b) = {2, 3} ctid ′(b) = {2, 3}\{1, 4} = {2, 3}
ctid(c) = {1, 6} ctid ′(c) = {1, 6}\{1, 4} = {6}
ctid(d) = {1} ctid ′(d) = {1}\{1, 4} = ∅
ctid(e) = {6} ctid ′(e) = {6}\{1, 4} = {6}

The size of the conditional database B′ for an item i is equal to |B′| = |B|− |ctid(i)|. In order
to compute the support of item i′ within B′ in line (6) of find-patterns, the values |B′| and
|ctid(i′)| suffice. This is due to the following relation:

|tid ′(i′)| = |B′| − |ctid ′(i′)| (3)

As a consequence of (3), the work needed to compute the sets ctid(i′) can be reduced. When
computing ctid’(i′) using (2), we again maintain a variable feasible which is initialized to
|B′|. Whenever an element in ctid ′(i′) is found, we decrease feasible. As soon as this variable

12

drops under minsup, it is certain that |tid(i′)| < minsup and hence, the computation can be
terminated.

In [Zaki and Gouda, 2003] dEclat was presented by means of relation (2), not regarding
ctid as a complementary tid-set in the conditional database. Using our description a program
can switch dynamically from Eclat to dEclat.

6 Evaluation

We have implemented the algorithms of the previous sections, in order to illustrate the
principles, and also to give some feeling for the relative performance. The Java language has
been chosen in order to obtain transparent program code. The programs are publicly available
from [Pijls]. We did not strive for an optimal performance in space or time. Our goal was
only to compare the algorithms under similar circumstances. The difficulties in benchmarking
frequent patterns algorithms are pointed out in [Rácz et al., 2005]. The experiments were
conducted on a 2.8 GHz Pentium IV machine running Windows XP.

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1 1.2 1.4

tim
e

in
 s

ec

T20I6D100

10

15

20

25

30

35

40

45

50

55

60

0.6 0.8 1 1.2 1.4 1.6

T40I10D100

bu
td-1
td-2

eclat
declat

0

2

4

6

8

10

12

30 35 40 45 50 55 60 65 70 75

tim
e

in
 s

ec

support in %

chess

0

10

20

30

40

50

60

10 15 20 25 30 35

support in %

accidents

Figure 8: Experimental results for four databases.

We tested five algorithms:
- three algorithms from Section 4: Bottom-up (bu) and the first and second variant of

Topdown (td-1 and td-2 respectively),
- two algorithms from Section 5: Eclat (eclat) and dEclat (declat).

13

The test sets are well-known among data mining researchers (see [UCI Machine Learning
Repository]):

- chess (335 kB, 3.196 transactions),
- accidents (34,6 MB, 340.183 transactions),
- T20I6D100K (7,6 MB, ≈ 100.000 transactions),
- T40I10D100K (15,1 MB, 100.000 transactions).

The output of our programs is a trie, which is transformed to a file. The results are shown in
Figure 6. One distinguishes between dense and sparse sets. One calls a data set dense if the
relative support of the 1-items is relatively high, for instance over 10% [Pei et al., 2001]. Oth-
erwise it is called sparse. The sets T20I6D100 and T40I10D100 have been generated by the
program for synthetic data sets taken from [Quest Synthetic Data Generation Code]. They
are sparse sets. The parameters in these sets are: D = number of transactions, T = average
size of transactions and I = average size of maximal potentially large itemsets. The set chess
was taken from [UCI Machine Learning Repository]. It has few but coherent records and is
typically dense. The set accidents is a very large one. It was described in [Geurts et al.,
2003, Geurts, 2003] and was made available for the purpose of FIMI’03 [Goethals and Zaki,
2003]. Notice that some sets lack some graphs: declat is absent in T20I6D100 and eclat is
absent for chess and accidents. Those graphs fall outside the range of the picture.

For any set Bottom-up is the winner, clear of its competitors, whereas Topdown-2 is
second in most cases. There is one surprising exception. The dEclat algorithm turns out
to be strong in dense data sets. Beside chess we tested dEclat also with similar sets from
[UCI Machine Learning Repository] and found similar results.
Many implementations are known for the algorithms of the Sections 4 and 5. An overview
of the available software is found in [Software for associations discovery]. The two contests
FIMI’03 [Goethals and Zaki, 2003] and FIMI’04 [Bayardo et al., 2004] were good opportu-
nities to present implementations. Most of the programs submitted were based upon FP-
growth, Eclat or Apriori. The deviations from the instances published in the current
paper mainly concern modifications to the datastructures. The winning program at FIMI’03
was described in [Grahne and Zhu, 2003], a program based upon FP-growth. The winner at
FIMI’04 was a highly optimized Eclat based program [Uno et al., 2004]. A strong competitor
was [Rácz, 2004], an FP-growth-like program which uses an array-based implementation
of the FP-tree.

7 Breadth-first search

Next to depth-first search discussed in Section 3 we have breadth-first search. In general,
breadth-first search requires that the search space is kept in memory. As aforementioned, the
output trie in Figure 3 is a convenient datastructure to store the full collection of frequent
item sets. Breadth-first search builds this trie layer by layer. First, the layer at depth 1 is
built, or put another way, the collection of 1-itemsets is composed. (A k-itemset is an itemset
with k elements.) Next, the 2-nd layer or the collection of 2-itemsets is constructed, etc.
In each iteration the following actions are performed. When n layers or the collection of n-
itemsets have been built, the candidates for the (n + 1)-th layer are constructed. From any
two frequent n-itemsets with the form S∪{i1} and S∪{i2} respectively, where S is a frequent
set of n− 1 items and i1 ≺ i2, a candidate of the form S ∪{i1, i2} is composed. When no pair

14

of this type can be found, the execution stops. After the candidates at layer n + 1 have been
composed, their frequency is determined. To that end, for each transaction T with at least
n + 1 items, it is checked, whether T supports the new candidates. Visiting a candidate C
amounts to traversing a path in the output trie from the root to depth n+1. The candidates
are traced using backtracking. Obviously, as soon as an item outside T is encountered on
a path to a candidate, the traversal through this path is aborted. To speed up visiting the
candidates, each cell has a boolean variable indicating whether any candidate is among its
descendants.
The algorithm is informally described as follows:

(1) construct the root block of the output trie,
(2) consisting of cells with the frequent 1-items;
(3) continuing ← true;
(4) while continuing = true do
(5) construct a new layer of candidates;
(6) if no new candidate can be composed then
(7) continuing ← false;
(8) else
(9) for each transaction T
(10) for each candidate C
(11) if T supports C then
(12) increase count of C by 1;

the Breadth-First algorithm

In the seminal paper on frequent item sets, this algorithm was presented under the name
Apriori [Agrawal and Srikant, 1994, Agrawal et al., 1996]. At that time, the database usually
did not fit into the main memory and was partitioned when executing line (9). A faster
version of Apriori was presented in [Brin et al., 1997]. Another variant was proposed in
[Kosters and Pijls, 2003]. Nowadays memories are large enough to contain the database in
the representation of Figure 2. The paths in the trie with length ≥ n + 1 must be traversed
instead of taking single transactions, as was the case in the original Apriori. For such paths
P the candidates in the output trie are visited. The above criterion to abort the walks to the
candidates can be extended. If an item i in P matches an item i in a cell L of the output trie,
the depth of i in P is compared with the number of remaining layers underneath L. Then it
may be concluded that P cannot support any candidates descending from L.
We also implemented Apriori with the database in a trie, see [Pijls]. Unfortunately this
breadth-first algorithm performs very poorly compared with its depth-first counterparts.

8 Maximal frequent item sets

In Section 2 we defined maximal frequent itemsets. As the number of frequent itemsets may
be very large, sometimes only the maximal frequent itemsets are asked. The maximal sets
in the example database are acde, bd and be, as can be seen in Figure 1. Deciding if there is
maximal frequent item set with at least n items for a given minimal support s is NP-complete
[Yang, 2004]. Multiple algorithms for finding maximal sets have been designed, among others
[Bayardo, 1998, Gouda and Zaki, 2005] and several algorithms presented in [Bayardo et al.,

15

2004, Goethals and Zaki, 2003].
When looking for maximal sets, one has to check for any itemset whether it is subsumed by
others. This is the basic approach underlying almost any algorithm. Besides everyone has his
own method to add optimizations.
We designed a procedure based upon the code of find-patterns in Section 3. The following
observation is crucial for our procedure. Consider two subcalls in line (11) with pattern
parameters P ′

1 = P ∪ {i1} and P ′
2 = P ∪ {i2} where i1 ≺ i2. Any frequent itemset generated

in the subcall with parameter P ′
1 includes P ′

1 and hence i1. The subcall with parameter P ′
2

will not generate any frequent itemset including i1. Consequently, the itemsets generated
in the subcall with parameter P ′

1 cannot be subsumed by any set generated by the call
with parameter P ′

2. Suppose that the order in the execution of the for-loop is always in
accordance with the ≺ order. (This order needs not to be the same for each nested call.)
Then any frequent itemset can only be subsumed by an itemset that is generated before.
This observation is utilized in our following procedure, an enhancement of find-patterns in
Section 3.
We maintain a collection of maximal frequent itemsets generated. Since a trie is again a
suitable datastructure, we call this collection the max-trie. If I ′ = ∅ in line (10) and hence
no recursive call is executed in line (11), the itemset P ′ is a candidate for being maximal.
It is checked, if P ′ is subsumed by any member of the max-trie. If not, P ′ is added to the
max-trie. So the following piece of code is inserted after line (11):

(12) else if no superset of P ′ is in the max-trie then
(13) add P ′ to the max-trie;

For the check in line (12) we must compare P ′ with each string M in the max-trie. If a
consistent order ≺ (for instance the alphabetical order) is used in all nested calls, the orders
within P ′ and M are the same and the comparison is straightforward. The support of every
prefix string in P ′ as well as in M is also known. Taking this support into account during the
comparison process, we may sometimes decide soon that P ′ cannot be included in M . There
is yet another optimization. If a recursive call of find-patterns in line (11) has generated a
maximal set with size equal to |P ′|+ |I ′|, the for-loop may be aborted. This might be viewed
as an instance of the branch-and-bound paradigm.
It turns out that the above method for finding maximal sets is feasible and has a running
time comparable to the methods for finding all frequent sets. Apparently, the action in lines
(12) and (13) does not take much time.

From frequent itemsets one can derive association rules consisting of an antecedent and a
consequent, related by a confidence. Apart from maximal sets so called closed frequent item-
set are studied in the literature. These correspond to association rules with 100% confidence.

9 Concluding remarks

In this paper we studied the best-known methods for mining frequent itemsets. We considered
algorithms for finding all frequent itemsets as well as maximal frequent sets. Our unifying
framework allows a clear description of the many methods. Section 4.2 even introduced a
novel algorithm. In our comparison of Section 6 the Bottom-up method appeared to be the

16

fastest.
Mining frequent itemsets is indeed an interesting problem useful for illustrating the concepts
which are common in the combinatorial optimization and Operations Research (OR) com-
munity. In the introduction we mentioned several fields related to OR, in which frequent
itemsets play an important role. Therefore, the theory of frequent itemsets should be part of
the toolbox of any worker in the OR area.

References

R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proceedings 20th
International Conference on Very Large Data Bases (VLDB’94), pages 487–499. Morgan
Kaufmann, 1994.

R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.I. Verkamo. Fast discovery of
association rules. In Advances in Knowledge Discovery and Data Mining, pages 307–328.
AAAI/MIT Press, 1996.

R. Bayardo. Efficiently mining long patterns from databases. In Proceedings of the 1998
ACM SIGMOD International Conference on Management of Data (SIGMOD’98), pages
85–93, 1998.

R. Bayardo, B. Goethals, and M. J. Zaki, editors. Proceedings of the IEEE ICDM Workshop
on Frequent Itemset Mining Implementations (FIMI’04), 2004. CEUR Workshop Proceed-
ings [online].
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-126/; (ac-
cessed April 23, 2008).

F. Bodon. A survey on frequent itemset mining. Technical report, Budapest University of
Technology and Economics, 2006.

C. Borgelt. Keeping things simple: Finding frequent item sets by recursive elimination. In
Goethals et al. [2005], pages 66–70, 2005.

E. Boros, P.L. Hammer, T. Ibaraki, A. Kogan, E. Mayoraz, and I. Muchnik. An Implementa-
tion of Logical Analysis of Data. IEEE Transactions on Knowledge and Data Engineering,
12:292–306, 2000.

R. de la Briandais. File searching using variable length keys. In Proceedings Western Joint
Computer Conference, pages 295–298, 1959.

T. Brijs, G. Swinnen, K. Vanhoof, and G. Wets. Using association rules for product assort-
ment decisions: A case study. In Proceedings of the Fifth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD 1999), pages 254–260, 1999.

S. Brin, R. Motwani, J.D. Ullman, and S.Tsur. Dynamic itemset counting and implication
rules for market basket data. In Proceedings of the 1997 ACM SIGMOD International
Conference (SIGMOD’97), pages 255–264, 1997.

S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: Generalizing association
rules to correlations. Data Mining and Knowledge Discovery, 2:39–68, 1998.

17

E. Fredkin. Trie memory. Communications of the ACM, 3:490–499, 1960.

M.R. Garey and D.S. Johnson. Computers and Intractability, A Guide to the Theory of
NP-Completeness. Freeman, 1979.

K. Geurts. Traffic accidents data set. [online], 2003.
http://fimi.cs.helsinki.fi/data/accidents.pdf; accessed April 23, 2008.

K. Geurts, G. Wets, T. Brijs, and K. Vanhoof. Profiling high frequency accident locations
using association rules. In Proceedings of the 82nd Annual Transportation Research Board,
US, 2003.

B. Goethals. Survey on frequent pattern mining. [online], 2003.
http://www.cs.helsinki.fi/u/~goethals/publications/survey.ps; accessed April
23, 2008.

B. Goethals and M.J. Zaki, editors. Proceedings of the First IEEE ICDM Workshop on
Frequent Itemset Mining Implementations (FIMI’03), 2003. CEUR Workshop Proceedings
[online].
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-90/; (ac-
cessed April 23, 2008).

B. Goethals, S. Nijssen, and M.J. Zaki, editors. Proceedings of the First International Work-
shop on Open Source Data Mining: Frequent Pattern Mining Implementations, 2005. ACM.

S. W. Golomb and L. D. Baumert. Backtrack programming. Journal of the ACM, 12:516–524,
1965.

M.T. Goodrich and R. Tamassia. Data Structures and Algorithms in Java. John Wiley and
Sons, Fourth edition, 2005.

K. Gouda and M.J. Zaki. Genmax: An efficient algorithm for mining maximal frequent
itemsets. Data Mining and Knowledge Discovery, 11:1–20, 2005.

G. Grahne and J. Zhu. Efficiently using prefix-trees in mining frequent itemsets. In Goethals
and Zaki [2003], 2003.

D. Gunopulos, R. Khardon, H. Mannila, and H. Toivonen. Data mining, hypergraph transver-
sals, and machine learning. In Proceedings of the Sixteenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS’97), pages 209–216, 1997.

D. Gunopulos, R. Khardon, H. Mannila, S. Sajula, H. Toivonen, and R.S. Sharm. Discovering
all most specific sentences. ACM Transactons on Database Systems, 28:140–174, 2003.

J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In
Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data
(SIGMOD’00), pages 1–12, 2000.

J. Han, J Pei, Y. Yin, and R. Mao. Mining frequent patterns without candidate generation:
A frequent-pattern tree approach. Data Mining and Knowledge Discovery, 8:53–87, 2004.

18

K. Hu, Y. Lu, L. Zhou, and C. Shi. Integrating classification and association rule mining:
A concept lattice framework. In Proceedings of the Seventh International Workshop on
New Directions in Rough Sets, Data Mining and Granular Soft Computing, pages 443–447.
Springer, 1999. ISBN 3-540-66645-1.

Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen. TANE: An efficient algorithm for
discovering functional and approximate dependencies. The Computer Journal, 42:100–111,
1999.

W. A. Kosters, E. Marchiori, and A. J. Oerlemans. Mining clusters with association rules. In
Proceedings of the Third International Symposium on Advances in Intelligent Data Analysis
(IDA’99), pages 39–50. Springer Lecture Notes in Computer Science 1642, 1999. ISBN 3-
540-66332-0.

W.A. Kosters and W. Pijls. Apriori: A depth-first implementation. In Goethals and Zaki
[2003], 2003.

G. Liu, H. Lu, J.X. Yu, W. Wei, and X. Xiao. AFOPT: An efficient implementation of pattern
growth approach. In Goethals and Zaki [2003], 2003.

G. Liu, H. Lu, W. Lou, Y. Xu, and J.X. Yu. Efficiently mining of frequent patterns using
ascending frequency ordered prefix-tree. Data Mining and Knowledge Discovery, 9:249–274,
2004.

J. Liu, Y. Pan, K. Wang, and J. Han. Mining frequent item sets by opportunistic projec-
tion. In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (SIGKDD’02), pages 229–238, 2002. ISBN 1-58113-567-X.

H. Mannila, H. Toivonen, and A.I. Verkamo. Discovering frequent episodes in sequences.
In Proceedings of the First International Conference on Knowledge Discovery and Data
Mining, pages 210–215, 1995.

C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.

Z. Pawlak. Rough Sets, Theoretical Aspects of Reasoning about Data. Morgan Kaufman,
2000.

J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang. H-mine: Hyper-structure mining
of frequent patterns in large databases. In Proceedings of the 2001 IEEE International
Conference on Data Mining (ICDM 2001), pages 441–448, 2001.

W. Pijls. Homepage. [online].
http://people.few.eur.nl/pijls/; accessed April 23, 2008.

W. Pijls and R. Potharst. Classification and target group selection based upon frequent
patterns. In Proceedings Twelfth Belgium-Netherlands Artificial Intelligence Conference
(BNAIC’00), pages 125–132, 2000.

Quest Synthetic Data Generation Code. IBM Almaden Research Center [online].
www.almaden.ibm.com/cs/projects/iis/hdb/Projects/data mining/datasets/
syndata.html; accessed April 23, 2008.

19

B. Rácz. nonordfp: An FP-growth variation without rebuilding the FP-tree. In Bayardo et al.
[2004], 2004.

B. Rácz, F. Bodon, and L. Schmidt-Thieme. On benchmarking frequent itemset mining
algorithms: From measurement to analysis. In Goethals et al. [2005], pages 36–45, 2005.

R Rymon. Search through systematic set enumeration. In Proceedings of the Third In-
ternational Conference on Principles of Knowledge Representation and Reasoning, pages
539–550, 1992.

A. Savarese, E. Omiecinsky, and S.B. Navathe. An efficient algorithm for mining association
rules in large databases. In Proceedings of the 21st International Conference on Very Large
Databases (VLDB’95), pages 432–443, 1995.

Software for associations discovery. [online].
http://www.kdnuggets.com/software/associations.html; accessed April 23, 2008.

P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to data mining. Addison Wesley, 2006.

UCI Machine Learning Repository. [online].
http://archive.ics.uci.edu/ml/datasets.html; accessed April 23, 2008.

T. Uno and K. Satoh. Detailed description of an algorithm for enumeration of maximal
frequent sets with irredundant dualization. In Goethals and Zaki [2003], 2003.

T. Uno, T. Asai, Y. Uchida, and H. Arimura. LCM ver. 2: Efficient mining algorithms for
frequent/closed/maximal itemsets. In Bayardo et al. [2004], 2004.

L.G. Valiant. The complexity of computing the permanent. Theoretical Computer Science,
8:189–201, 1979.

K. Wang, L. Tang, J. Han, and J. Liu. Top-down FP-growth for association rule mining. In
Advances in Knowledge Discovery and Data Mining, Proceedings of the Sixth Pacific-Asia
Conference (PAKDD 2002), pages 334–340. Springer Lecture Notes in Artificial Intelligence
2336, 2002. ISBN 978-3-540-43704-8.

C. Wu. Applying frequent itemset mining to identify a small itemset that satisfies a large
percentage of orders in a warehouse. Computers and Operations Research, 33:3161–3170,
2006.

G. Yang. The complexity of mining maximal frequent itemsets and maximal frequent pat-
terns. In Proceedings of the Tenth ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD 2004), pages 344–353, 2004.

M.J. Zaki. Scalable algorithms for association mining. IEEE Transactions on Knowledge and
Data Engineering, 12:372–390, 2000.

M.J. Zaki and K. Gouda. Fast vertical mining using diffsets. In Proceedings of the Ninth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD
2003), pages 326–335, 2003.

20

