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ABSTRACT 

In the current day and age, search engines are the most relied on and critical 

ways to find out information on the World Wide Web (W3). With the ushering in 

of Big Data, traditional search engines are becoming inept and inadequate at 

dishing out relevant pages. It has become increasingly difficult to locate 

meaningful results from the mind boggling list of returns typical of returned 

search queries. Keywords, often times, alone cannot capture the intended 

concept with high precision. These and associated issues with the current search 

engines call for a more powerful and holistic search engine capability. The 

current project presents a new approach to resolving this widely relevant 

problem - a concept based search engine. It is known that a collection of 

concepts naturally forms a polyhedron. Combinatorial topology is, thus, used to 

manipulate the polyhedron of concepts that are mined from W3. Based on this 

triangulated polyhedron, the concepts are clustered together based on primitive 

concepts that are geometrically, simplexes of maximal dimensions. Such 

clustering is different from conventional clustering since the proposed model 

may have overlapping. Based on such clustering, the search results can then be 

categorized and users allowed to select a category more apt to their needs. The 

results displayed are based on aforementioned categorization thereby leading to 

more sharply gathered and, thus, semantically related relevant information. 
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1. INTRODUCTION 

Concept based search:  Search engines are assumed to get a user the required 

information he is looking for from a stupendously huge collection of web pages 

and documents on the World Wide Web (W3). Research conducted by Cyveillance 

- a Washington D.C.-based market research firm - has revealed that more than 

6,000,000 public pages are getting added to the W3 every single day. A search 

engine should be equipped to retrieve correct and meaningful results from this 

huge ever growing database which evidently doubles in volume every year. 

However, current search engines often return a list of documents based on 

individual keywords provided by users. Actually a user often want to retrieve 

author’s concept and idea, in order to do so he supplies a list of keywords in the 

search query. The primary goal of this project is to develop a system that will 

capture the user’s idea through his list of key words. Our first task is to identify 

the possible concepts that are in user’s mind, then extract all articles containing 

these concepts. For instance the program should be able to relate “Zookeeper” to 

big data or Hadoop, not to a person who works as zookeeper, “Sound Investment” 

to finance not to music, “Holy Grail” to mythology not to the song “holy grail” etc. 

We believe that documents are carrier of ideas expressed by an author. According 

to this work the ideas are highly structured “concepts”.  We consider a common 

idea (highly repeated key words) as knowledge. So the main task of our project is 

to index an organized set of knowledge that are buried in “Big Data” of web.  Our 

project consists of (1) Mining concepts, (2) storing the structured concepts, 

termed as KnowledgeBase in a persistent storage, (3) any required concepts and 

ideas of a user can be retrieved with high precision.  

The scope of this project is to prove the credibility of algorithm proposed and 

creation of KnowledgeBase using sample documents and proposing a new 

approach to show the search results to the user.  
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2. RELATED WORK 

W3 is the largest library of documents that are translated by machines and 

presented to the users. This has evolved from hypertext systems, the problem is 

that anyone can add documents to it. Therefore the quality of the documents 

cannot be guaranteed.  Current W3 contains huge information and knowledge but 

machines only work well for delivery of the contents and are not responsible for 

extracting knowledge. People have to do that manually. 

Semantic web is effort led by World Wide Web Consortium which is evolved in 

order to enhance current system of web in order to make sure that computers will 

have the capability to process the information and knowledge presented on W3. 

Semantic web is intended to create a huge knowledgbase and to share data 

instead of documents. 

Semantic web architecture consists of XML, RDF, OWL and RIF. 

2.1 XML: Extensible Markup Language layer along with XML-namespace and 

XML-schema definition imposes a common syntax usage in semantic web. 

It is a markup language which is generally used for creating documents 

containing structured information. XML documents have elements which 

can be nested and elements may contain attributes and contents. It allows 

to create many different markup vocabularies in one document. XML 

schema allows to express schema for a particular type of XML documents. 

2.2 RDF: Resource Description Framework is the core data representation 

format made for semantic web. RDF presents the information about 

resources in graphs. It is intended to represent metadata about the 

resources like author, title. RDF can also be used for storing other data as 

well. It works on triplets subject-predicate-object that creates data graph. 

Semantic web data uses RDF as a representation language. 
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RDF works to describe the description of the graph formed by the above 

triplets. Anyone can describe and define the vocabulary of terms used. To 

allow standardized description of taxonomies and other ontological 

constructs, a RDF Schema (RDFS) was created together with its formal 

semantics within RDF. RDFS can be used to describe taxonomies of classes 

and properties and use them to create lightweight ontologies[11]. 

2.3 OWL: Web Ontology Language extends RDF & RDFS. OWL adds semantics 

to the schema. The primary goal of OWL is to bring the reasoning and 

expressive power of description logic (DL) to the semantic web. We cannot 

express everything from RDF to DL. For example, the classes of classes are 

not permitted in the (chosen) DL, and some of the triple expressions would 

have no sense in DL[11]. OWL is syntactic extension of RDF. To overcome 

the above problem, and in order to allow layering in OWL there are 3 

species of OWL are present. 

OWL lite is used to express simple constraints and taxonomy e.g. 0 & 1 

cardinality. OWL lite is the simplest language a maps to description logic.  

OWL DL supports maximum expressiveness along with computational 

completeness & decidability. 

OWL Full has no constraints for expressiveness but it also not guaranteed 

to have any computational properties. It is created with full OWL 

vocabulary but it doesn’t force nay syntactic constraints so it can use full 

syntactic freedom of RDF. 

These three languages are layered in a sense that every legal OWL Lite 

ontology is a legal OWL DL ontology, every legal OWL DL ontology is a legal 

OWL Full ontology, every valid OWL Lite conclusion is a valid OWL DL 

conclusion, and every valid OWL DL conclusion a valid OWL Full 
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conclusion[11].Inverse of these above relations is generally true. Every 

OWL ontology is a valid RDF document but here also the inverse is not true. 

3. PROPOSED APPROACH AND WORK 

The work described in the report provides a fresh approach to develop a clustering 

technology which discovers the semantics of the documents present on W3 by 

applying text analysis. Through crawling the web and process the documents 

which finally creates a KnowledgeBase after processing. The KnowledgeBse will 

contain the keywords which represents the concept contained by the documents 

processed. It will help in creating a semantically aware concept based search 

engine. The approach described here doesn’t require any special tags in web pages 

to extract the knowledge and also can work on existing web pages. This new 

approach to semantic learning is the main advantage over the previous described 

methodologies which require the authors to tag their pages with special 

constructs using RDF or the other methodologies defined by semantic web, which 

are labor intense. The work uses method derived by Dr. TY Lin’s research paper on 

Concept Analysis in 2006(Tsau Young Lin, Albert Sutojo and Jean-David Hsu).This 

work focuses on applying the idea presented and create a concept based semantic 

search engine along with providing a new approach to present search results to 

user in which user can see the main concepts contained by the papers so he 

doesn’t need to go through the documents to see if that is a correct result of his 

search query. The search engine works on asking user for the intended concept he 

is looking for rather than guessing. 

Dr. Lin (2006) showcases mapping the knowledge contained in sequence of 

keywords (not necessary to be consecutive in text) into a mathematical model. He 

has suggested that semantics of keywords together can be mapped to Simplicial 

complex (a triangulated polyhedral Complex) [1]. 
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Once all the keywords contained a document are transformed into this model, it 

can be treated as a knowledge base for semantic search. 

3.1 Important Terms 

Let’s take top-down approach to understand the important terms used in this 

work. 

3.1.1 KnowledgeBase: We are here referring to this term as an organized large 

collection of concepts. According to our proposal, after crawling and 

processing of all the pages on W3 we will be able to successfully extract all 

of the possible concepts or knowledge available in the web universe. After 

which, there will be a negligible possibility of new knowledge coming in to 

the KnowledgeBase. This assumption helps in computation of concepts for 

successive iterations. A KnowledgeBase will be formed by processing many 

documents through the program. 

3.1.2 Document: A document here in this work can be defined as a dataset of 

meaningful text which contains one or many “concepts”. 

3.1.3 Concept: If we look at dictionary meaning of concept, then a concept is an 

abstract idea; a general notion. Here in this work a “concept” is the term 

used to represent the way humans express their thoughts, idea, or an 

abstract form of knowledge. Concept is the underlying meaning provided by 

the collection of keywords which is almost different from the individual 

words. If those words repeat for many times then they together represents 

a “concept”. A point worth noting here is that a concept can also be 

expressed by single keyword. For example:  

I. Computer Virus (A computer virus is a type of malware that, when 

executed, replicates by inserting copies of itself (possibly modified) 
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into other computer programs, data files, or the boot sector of the 

hard drive). 

II. Biological Virus (A virus is a small infectious agent that replicates only 

inside the living cells of other organisms.) 

III. Wall Street (Wall Street is the financial district of New York City) etc. 

IV. White House 

V. Pig Latin 

The words which are together and doesn’t represent any concepts are called 

as keywords set. 

3.1.4 Keywords set: These sets are group of words which are close to each other 

in a defined proximity like a paragraph. The program has a limit to consider 

upto 6 tokens in a keywords set. This limit can be changed to lower value at 

run-time. 

3.1.5 Keyword or Token: It is representing any English word with a definite 

meaning. E.g Virus, Biology, Computer, Disease, Wall, Street, Zookeeper, Pig, 

Latin etc. Once all the stop words are removed from tokens, tokens together 

form keywords set which further can qualify as concept if it has some 

properties contained. 

3.1.6 Stop words: Some extremely common words which would appear to be of 

little value in helping select documents matching a user need and are 

excluded from the search vocabulary entirely. 

Stop words are a crucial part of data mining and text processing endeavors. 

They are generally determined by collective frequency (the number of times 

each term appears in documents) and then taken out as the most frequent 

words. Generally, stop words should be picked in terms of their semantics 

and context. A list is prepared using the most frequent words called as ‘stop 

list’. Removing of stop list from the documents being processed gives us two 
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advantages: a) it reduces computation for non-desired and senseless words 

and b) it helps in better extraction of concepts and knowledge from 

documents[4]. 

Generally, stop words are parts of speech which are used to link the words 

together in order to express the desired meaning E.g. Adjective, helping 

verb, conjunction, the prepositions, articles, modifiers etc. 

Let’s take an example here: The phrase “The big data technology is growing” 

contains two stop words “The” and “is”. In typical IR scenarios, it has been 

observed that using a long stop list is better in getting better results. Web 

search engines generally do not use stop lists. In this work, a thorough stop 

list of 500 words has been compiled by merging different stop lists found 

over the internet. 

3.2 Algorithm 

The following algorithms feature in this work in order to get accurate results from 

data mining: 

3.2.1 Apriori 

The Apriori Algorithm helps in mining frequent keywords sets  

Key Points 

● Frequent Keywords: The keywords set which is repeated for at least 

threshold number of times 

● Apriori Property: It is described as any subset of frequent keywords set 

will be frequent keyword(s) set.  

 

The Algorithm in nutshell 



8 

 

First, find the frequent keywords sets that are the sets of keywords which possess 

minimum support. 

● According to Apriori principle it is necessary that given a subset of a 

frequent key words must also be a frequent key words set. We have used 

negation of Apriori principle in our project in order to eliminate keywords 

set which are not going to be frequent during the candidate generation. 

This theory helps in removing possible concepts which are not frequent. 

Application of Apriori helps in reducing computation in early stage of token 

processing and concept generation. 

● i.e., if {A, B, C} is a frequent keywords set, then all {A, B}, {B, C} and {A, C} 

will be a frequent keyword set. The negation would be if keyword {A} is not 

frequent set then any keyword set containing {A} would never be frequent 

meaning keywords sets {A, B}, {A, C} and {A, B, C} will never be frequent. 

This helps in reducing computation of token/keywords sets which will 

never qualify as concepts. 

 

3.2.2 Term Frequency Inverse Document Frequency (TF-IDF) 

Term Frequency Inverse Document Frequency (TF-IDF) is a value which is often 

used in IR keywords extraction. This work focuses on both these areas and, so, TF-

IDF is used in our algorithm for extracting better and related concepts. The TF-IDF 

value is a statistical measure used to find out how important a token is to a 

document in a collection of documents. The importance of token increases in 

proportion to the number of times it appears in the document but it is also 

inversely proportional if a token repeats in large frequency in almost all the 

documents and it is a stop word. 

Changing TF-IDF values are used as a primary tool in scoring the relevance of a 

document to the searched query by several search engines. 
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The simplest TF-IDF function is computed by summing it for each token. Several 

TF-IDF functions are available but we have used the following one. 

As previously mentioned, TF-IDF can successfully filter stop words from all 

extracted tokens. Here is an example to understand this: 

TF-IDF Computation 

Typically, the TF-IDF values are calculated by two terms:  

a. Term Frequency (TF): It is the frequency which represents the no. of times a 

token repeats in the document in process, to the total no. of words in the 

document. Term Frequency, which calculates the frequency of any token in a 

document. As every document is different in size it is highly likely that a token 

repeats more in longer documents than the smaller documents. That is the 

reason why term frequency is divided by document length i.e total no. of 

tokens in document in order to normalize the value.  

For a keywords set K = {k1,k2,k3,k4….kn} let d is the document containing K. 

For a document set of all documents D, d is subset of D 

F(K,d) is the frequency which represents the number of times K is repeated in 

d. 

TF(k,d) = F(K,d)/max(F{K,d}) 

 

b. Inverse Document Frequency (IDF): It is the natural logarithmic value of the 

no. of documents to the no. of documents in which the token in consideration 

is repeated. IDF measures the importance of a token.  

During the TF calculation all tokens are equally important. However it is known 

that stop words e.g "the", "for", and "have" etc. may appear alot but are of 

very less importance. In order to scale up the rare and important tokens we 

need to weigh down the very frequent tokens by computing IDF:  
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IDF(K,D) = ln(no. of documents D/ no. of documents containing K) 

TF-IDF (K,D) = TF(K,d)*IDF(K,D) 

 

E.g. 

Let’s consider a document having 500 words and token “hadoop” repeats for 10 

times in it. 

TF (hadoop) = (10/500) = 0.02 

Now if we have 1 million documents to process and token “hadoop” appears in 

1000 of the documents then IDF would be  

IDF = ln(1000000/1000) = 6.907755279 

 

Thus TF-IDF for “hadoop” is the product of TF*IDF 

TF-IDF(hadoop) = 0.02* 6.907755279 = 0.138  

 

3.2.3 Simplicial Complexes and polyhedra  in search 

This project proposes the method of capturing human concepts or simply 

concepts using simplicial or polyhedral complexes. According to Dr. TY Lin, 

A simplicial complex C consists of a set {v} of vertices and a set {s} of finite 

nonempty subsets of {v} called simplexes such that  

· Any set consisting of one vertex is a simplex.  

· Closed condition: Any nonempty subset of a simplex is a simplex.  

Any simplex s containing exactly q + 1 vertices is called a q-simplex. We also say 

that the dimension of s is q and write dim s=q. We will refer to C as a non-closed 

simplicial complex, if the closed condition is not fulfilled for all its constituting 

simplexes[1]. 

Simplicial Complex in Our Project 

The method used in the project to extract concepts from documents is textual 

processing. The program looks for high frequency keywords which are either co-
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occurring or may be little distant but not as much as a paragraph. We choose 

paragraph size to be 25-30 keywords. 

The keywords captured by the program here are called as keywords set. As 

mention earlier, it is not necessary for keywords to be close to each other but they 

must satisfy the precondition for closeness. When a keywordset repeats itself 

more times than a threshold frequency in a document, it is stored by the program 

for further processing else it is discarded and the next keyword set is picked up 

and can be treated as human concept. 

In the simplicial complex model of human concepts, all the vertices are taken by a 

keyword/token and an edge joining two keywords together representing a human 

concept. Each keyword set thus here forms an n-simplex (granule). Here n 

represents the number of distinct keywords in the keyword sets. The geometry 

represented by many keywords or keyword sets together is called as simplicial 

complex of human concept or knowledge complex. The point to be noted here is 

that even a single disjoint keyword can also represent a concept. We are mainly 

interested in maximal simplex. The figure below represents a keyword simplicial 

complex. 

disease

d
at

a

DNA

virus
genetics

biotechnology

social

user

network

research

 

Figure-1-Simplicial Complex for Keywords set 
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The document contained in the simplex is representing a knowledge regarding 

biotechnology research paper. 

Following simplicials can be found out of the above diagram. 

1. Tetrahedron - 2 Maximal 3 Simplices  

a) DNA genetics virus disease 

b) Biotechnology user social data 

2. Triangle – 3 maximal 2 simplices 

a) User virus biotechnology 

3. 3 Maximal 1 simplices 

a) User research 

b) User network 

c) User genetics 

4 PROJECT ARCHITECTURE AND COMPONENTS 

4.1 High Level Architecture 

The following high level architecture diagram explains the flow of data contained 

in the documents from crawling W3 through to storage in KnowledgeBase. 

The components include WebCrawler, Parser, Concept Extractor, RawTokens 

database, and KnowledgeBase. The graphical user interface used to represent 

user search results is not a part of this work but is definitely an exploratory 

avenue; the main objective of this project is to successfully extract the concepts 

from documents and to create a KnowledgeBase. Here SQL queries are used to 

return results to the user. 

All components and their associated roles are explained in the following section: 
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KnowledgeBase

WebCrawler

W3DataW3Data

Parser
Concept Extractor 

Core Engine

Text/Html/PDF document Store

(Raw Documents)

PDF 

Documents

Text/HTML 

Documents

Concepts Store

User Search Results

Figure-2-High level Architecture 

4.2 Pseudo code 

Load from RawTokens database 

For each k, from k=1 

{ 

 For each of the document in repository 

 { 

  parse and tokenise document d; 

  tokens <= remove stop words; 

  tokens <= lowercase and perform stemming; 

  tokens <= remove newly formed stop words; 

  keywords sets <= permute paragraph; 

  keywords sets <= prune using TF-IDF; 

  keywords sets <= prune non maximal simplices; 

  store concepts in KnowledgeBase; 

  if no more new concepts 

   exit the loop; 

 } 

}  



14 

 

4.3 Components and System Architecture 

4.3.1 WebCrawler 

A Web crawler is program which automatically browses the W3 by following a 

defined system. Its objective is to index World Wide Web data. Crawlers have 

the capability to copy all data from the pages visited for processing by a search 

engine which then indexes all of the downloaded documents so that a user 

can search them very quickly. Crawlers can validate hyperlinks and HTML code. 

This work also includes creation of an intelligent crawler for better retrieval of 

pages from W3 and analysis and clustering of data according to the concepts 

contained in the documents. This crawler can identify specific URLs to visit and 

crawl on and leave out non-desired URLs as needed. It copies all the page data 

into simple text files along with the information of the urls from which data is 

collected. The crawler is provided with a list of URLs that it should visit, which 

are referred to as seeds. As the crawler goes through the seed URLs, it 

identifies all hyperlinks present on the page and append them to list of URLs 

to visit already being maintained by it. For instance, if we wish to create a 

concept cluster containing data from only educational websites, it’s always 

better to provide ‘.edu’ websites data to the core engine to process rather 

than all of WebSphere data. This can be incorporated in the designed crawler. 

One can also specify crawling only PDF files which mostly contain solid 

concepts regarding the text in them. As the core can process only text and html 

files (which are also a type of text files), the crawler can also be configured to 

leave out other data formats like PNG, JPEG, JPG, AVI, etc. The crawler created 

also has a capability to leave a URL if it is has already been crawled on before. 

This again helps in maintaining the quality of data and prevents repetition in 

the index and wrong calculation of TF-IDF.  

4.3.2 Parser 

The core engine of the project or concept extractor expects the data to be 
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stored in either text or html files but a web crawler can crawl many types 

like .doc, .pdf, jpeg, .png etc. of files from W3 and the data for which a user is 

looking for can be in any format. In order to use that content as well, we have 

to first pass the files through different parsers which will convert them to text 

files before feeding to the concept extractor. A PDF parser has been developed 

as a component to this project as our test data is mainly obtained from IEEE 

papers (PDF files). We have architecture in place that can be extended in order 

to add different parsers in the future without affecting present components.  

4.3.2.1 PDF Parser 

To prove that the algorithm is working properly and we are successfully 

able to capture the concepts from documents, the program core is fed with 

IEEE papers in PDF format but using IEEE papers in testing is very crucial as 

we already know the content of the papers and we can easily verify the 

results by looking at the knowledge base created by concepts extracted 

from those papers. We tested the results on different domain papers e.g. 

big data, social network, biotechnology, software defined networking to 

name a few (findings in the Results section). In order to process PDF files 

and cluster the concepts they contain, the relevant text needs to be 

extracted out of the PDF without losing the text format and sequence of 

sentences a PDF parser is also created as a part of the project. The Pdf 

parser is capable of keeping the text sequence intact even after converting 

the PDF file to a text file which is essential, because if the text sequence 

changes from the original PDF content, the concept or knowledge 

interpreted by the core will not be correct. Many commercial pdf 

converters doesn't have this capability and, therefore, the need for 

creating a parser increases. Pdf parser takes a directory containing the 

relevant PDF files as input and stores the content in a central directory 

provided from where the core engine can pick the files to process. 
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4.3.3  Tokenizer and Core Engine (Concept Extractor) 

The tokenizer is the core of the algorithm which analyzes each document 

provided. It only takes text/html document as input and starts scanning each 

tokens contained within. It checks if the fetched token is a stop word or not 

and discards the token if that is the case and not processed again during 

subsequent scans. This helps in reducing computation time/effort and 

provides better concepts. 

As explained earlier stop words are auxiliary words and don’t contribute to the 

core knowledge of tokens. Once a token is qualified to process it is first 

stemmed to its root word. Doing so helps in recognizing one word in different 

forms as one. For stemming, we use the porter stemmer algorithm. After 

stemming, the word is checked for being a stop word because there can be 

instances where a word isn’t considered a stop word owing to being in a 

different form. If a token survives the second stop word test iteration, it is de-

capitalized to lower case in order to identify same tokens written in different 

cases. E.g. “Hadoop”, “hadoop”, “HADOOP” should map to single token. After 

the document is tokenized then the term frequency of each token is recorded 

and the document frequency is also stored. While processing next and 

successive documents the token fetched are first checked into the list of 

tokens created by previous documents, if the token is already present in the 

list then its token frequency is incremented along with document frequency. 

All the tokens qualifying the least minimum threshold are kept, considered 

Raw Concepts and stored.  

The same process is repeated for finding two or more same tokens as well. But 

it should be noted that while finding two tokens all the possible combinations 

to form two tokens within a paragraph are considered in order to extract 

context of the words. 
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4.3.3.1 Pruning of tokens 

The actual stage of the core algorithm starts here. The idea proposed in the 

project is mainly focused on finding co-occurring tokens or keywords that are 

closer to each other and as described earlier not necessarily back to back. By 

close we mean to capture the tokens which are close in the paragraph range 

defined. We also record the corresponding TF and DF for the tokens. This stage 

is a iterative process which says that we make the tokens to pass through 

multiple passes till we capture the concepts and no new concepts are found. 

It is a breadth first search which we are adapting to; it finds all one keywords 

token first followed by two keywords and so on. Each pass will result into a 

new K-keywords list starting at K=1. The algorithm exits the loop till the 

maximum of K is reached or no new keywords are found. We have put a limit 

of keeping maximum keywords length to 6 (experimental conclusion). 

In order to save computation time it is necessary to complete the pruning of K 

keywords sets before starting K+1th iteration.  

Breadth First 

A legitimate question arises here: why is breadth considered first and not 

depth when we can simultaneously produce multiple K-length candidate 

concepts. The answer to the question is that we get a chance to migrate the 

K-length keywords out of the memory before starting K+1, which makes the 

computation less expensive otherwise we will end up keeping all of the K+n 

{n; 0 to 6} until the end of computation and will be using memory which is not 

an efficient way of handling the case. 

To understand the problem let’s take an example where we will see the 

exponential growth in data to process. To find all the co-occurring tokens of 

length K within a paragraph, we need to consider all of the possible K 

permutations for the token in paragraph length. “Permutation” used is not in 

its pure definition. Here we are not permuting the words, but we are 
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considering the permutations which retain the relative order of the words in a 

paragraph. 

Doing so helps in making the data growth to a limited size and serves our 

purpose well. 

Still, the growth of possible concepts is exponential.  

For a 30-words paragraph, the possible 2-keyword concepts are: 

2 Keywords possible concepts 

= (30*29) + (29*28) + (27*26) +…………. + (3*2) + (2*1)  

3-keyword possible concepts 

 = (30*29*28) + (29*28*27) +…………+ (4*3*2) + (3*2*1)  

The above example is sufficient to prove that higher the value of K the data 

size quickly becomes unmanageable. 

Apriori and TF-DIF, as mentioned before, are two tools from data mining 

techniques to reduce the candidate space. 

According to Apriori algorithm a k-keyword set can be frequent iff all of its sub 

sets of keywords are frequent. Using the negotiation here we can say if a 

keywords set K is not frequent its supersets containing K keywords sets can 

never qualify as frequent. Using this fact, we can quickly determine the 

keyword sets which can never become frequent and drop them from possible 

concepts list. The breadth first search uses this principle in each of the 

iteration to produce a list of retained candidates. This is another reason of 

applying the breadth first strategy. The Apriori algorithm is helpful in reducing 

the computation and memory expensive operations. 

As for TF-IDF, we have modified its original formula to suit our requirements. 

Once all available documents from the internet have been processed and 

stored in the knowledge base, the value of document frequency will no longer 

be necessary since all concepts will be there in the KnowledgeBase. But for 

creating a KnowledgeBase we first use both TF as well as DF. 
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TF-IDF is more important and relevant to our requirement because it helps in 

discovering frequent keyword sets or tokens and as well as it helps in 

eliminating keyword sets that are too frequent, too commonplace or are stop 

words. Instead of using the actual IDF formula we only use a simple document 

frequency (DF) percentage calculation for each keyword set, and then set a 

minimum and maximum threshold points to determine if a keyword set is to 

be discarded. 

 By using these two tools to reduce the candidate set, we have effectively 

turned around an insurmountable problem into a manageable one. The actual 

pruning threshold (user configurable) determines how much of the candidate 

space has been reduced. Using an aggressive pruning threshold would give us 

smaller candidate space but can risk discarding the important candidates (false 

negatives). On the other hand, using a relaxed pruning threshold might bring 

back the cardinality problem if almost all of the candidates are kept that will 

give us many false positives. 

Another strategy we employ is the maximal simplex property, which helps in 

purifying the captured concepts or knowledge. According to maximal simplex 

property, if a K-length human concept is determined as frequent and kept as 

concept then any concept formed by subsets should be discarded as we have 

already captured and kept a more solid human concept. 

Let’s take an example from our analysis to better understand the usage of 

maximal simplex. 

ID Tokens TokenCount Frequency Discard 

1 

big data analysi 

process 4 100  

2 big data analysi 3 210 Yes 

3 Big data 2 300 Yes 

4 data 1 410 Yes 

5 big  1 380 Yes 

Table-1-Simplicial complex maximal keywords sets 



20 

 

 

In above example as per maximal simplex property we should discard all 

subsets simplices “big”, “data”, “big data” and “big data analysi” as we have 

captured “big data analysi process” which is the maximal simplex. While the 

maximal simplex property is clear in mathematics it is very difficult and 

inappropriate to apply the same version in text processing. We have slightly 

modified this property in order to capture all possible human concepts. We 

are allowing the subsets of maximal simplex to qualify as human concept if 

satisfy in the following equation. Rather than blindly discarding the subsets, 

we take into account their frequency before deciding whether to discard them 

from human concepts. In this fashion, we determine if the subset is another 

concept altogether or not. Here is the formula: 

 

Let MK is maximal simplex of size K 

MK-1 is subset of MK of size K-1. 

 

In order to keep MK-1 as a human concept it should have the following 

property. If Frequency FK-1 is equal or more than double the frequency FK then 

keep both MK and MK-1 else discard MK-1. 

Again consider above example and see which concepts can be retained. 

ID Tokens TokenCount Frequency Discard 

1 big data analysi process 4 100 No 

2 big data analysi 3 210 No 

3 Big data 2 300 Yes 

4 data 1 410 Yes 

5 big  1 380 Yes 

Table-2-Simplicial complex maximal keywords sets our version 

Here we are keeping both “big data analysi process” and “big data analysi” 

even though “big data analysi” is subset keywords. But as the frequency (210) 

of “big data analysi” is more than double of that (100) of “big data analysi 

process”; so we keep both. But we are discarding “Big data” because its 
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frequency (300) is less than double of frequency (210) of “big data analysi”. 

Same applies for “data” & “Big” concepts. By this modification in maximal 

simplex property, we are able to capture more solid human concepts. 

After passing through pruning, a Token set or token can be considered as 

human concept and is stored in KnowledgeBase. 
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Figure-3-Core Engine 
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Figure-4-Sequence Diagram  
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4.3.4 Rawtoken Database 

Until now we have created a knowledgeBase. However, if a new document is 

introduced, the existing system should be equipped to handle it. 

For this, the following two approaches have been experimented with: 

4.3.4.1 First Approach 

 In accordance with the existing approach used in this project, we already 

have a knowledge base setup, so why not just use that to cluster the 

concepts contained in the new document. 

The following scenarios are possible: 

I. The new document is entirely new and there is no previous 

knowledge stored about it in the already existing knowledge base. 

II. The document is similar to the previously processed data sets and 

contains same concepts which we have already stored in the 

knowledge base. 

III. The new document contains some old/previously captured 

concepts along with some new concepts. 

All of these have one thing is common: from the project perspective, it will 

first be tokenized and then after processing it will be stored in knowledge 

base. 

The overall approach in this situation of handling a new document can be 

illustrated by the steps explained below. 

Here the first step is to read the document and stored in buffer for 

processing. After reading the document in to the buffer, all non-

alphabetical characters are removed from it leaving behind only English 

words to process which saves processing time and memory. The first 

iteration of the processing is to remove STOP words from the raw text data 

- always read into lower case to remove ambiguity. After removing STOP 
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words the tokens are fed to the stemmer routine where the root/stem 

word of each token is identified. Once stemming is done, we again send 

the stemmed tokens for STOP words removal (to remove possible STOP 

words from popping up after stemming). Let’s take an example: 

Suppose we have tokens like, “User is working on big data and he is having 

a great time.” 

Step 1: Read tokens, lower case, and remove special characters if any. 

  user is working on big data and he is having a great time 

Step 2: Remove STOP words. 

  user working big data having great time 

Step 3: Stem the tokens and find out root words. 

  user work big data have great time 

Step 4: Again remove STOP words. 

  user work big data great time 

As we can see that removing STOP words helps in saving processing and 

memory in step 3 as the program has less tokens to process. But having 

step 4 for removing STOP words again helps in pure knowledge base 

creation as it removes the words which have become STOP words after 

stemming as here “having” was not a STOP word but “have” is a STOP word 

so it should be removed. 

After processing the raw data into parsed tokens, we start counting the 

frequency for the tokens and insert into tokens database without 

removing any tokens even if they repeat for very less frequency. As a small 

document will have fewer repeating tokens but it may contain concepts 

which are new to knowledge base. So we keep all the tokens obtained by 

the new document. Doing this way and not calculating TFIDF for new 

documents again makes the processing very fast.  

We repeat the same methodology for all new documents and we keep on 
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increasing the tokens database. Once any token or token set count in the 

table increases more than the threshold value for frequency it can be 

considered as human knowledge and will be inserted into knowledge base 

and will be removed from tokens table. 

In this way we have an efficient and fast method to handle new 

documents.  

4.3.4.2 Second Approach 

To handle the situation of new document, we made some changes in the 

architecture of the system and modified the way it handles any tokens 

extracted from the documents. Here we added a new RawTokens database 

for all the tokens which can be candidate concepts but are not qualified as 

a concept because of two main reasons: 

I. Either the documents set getting processed is not very large to pick 

those tokens as concept. 

II. Or the value of TF-IDF is set so large that the tokens don’t qualify 

for concepts. 

According to the previous architecture, when we finish processing the 

tokens out of the documents, the tokens which are not qualified as 

concept are thrown out and then load the selected concepts to concepts 

database. But what if we keep all the potential tokens along with the 

information of frequency and document frequency for that token. 

Doing so will help us in adding new documents or concepts in the table and 

results will improve significantly. 

Suppose we are processing new documents and we extract all the possible 

concepts out of the document. Now we consider the RawTokens database 

to calculate TF-IDF for the new tokens. This can be explained by following 

example: 
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Tokens from old documents  

Tokens Frequency IDF TF-IDF IsConcept 

Big data 10 0.04 0.4 YES 

Hadoop Analytics 20 0.03 0.6 YES 

Data 

Warehousing 

9 0.06 0.36 NO 

Business 

Movement 

8 0.01 0.08 NO 

Table-3- Tokens from old documents 

TF-IDF = 0.04 

Concepts in KnowledgeBase 

Tokens Frequency IDF TF-IDF IsConcept 

Big data 10 0.04 0.4 YES 

Hadoop 

Analytics 

20 0.03 0.6 YES 

Table-4- Concepts in KnowledgeBase 

Tokens from new Documents 

Tokens Frequency IDF TF-IDF IsConcept 

Social Network 8 0.02 0.16 NO 

Dataset 9 0.04 0.36 NO 

Data 

Warehousing 

3 0.04 0.12 NO 

Table-5- Tokens from new documents 
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Tokens Table after considering RawTokens 

Tokens Frequency IDF TF-IDF IsConcept 

Social Network 8+0=8 0.02 0.16 NO 

Dataset 9+0=9 0.04 0.36 NO 

Data 

Warehousing 

3+9=12 0.05 0.6 YES 

Table-6- Tokens Table after considering RawTokens 

Concept from new documents 

Tokens Frequency IDF TF-IDF IsConcept 

Data 

Warehousing 

3+9=12 0.05 0.6 YES 

Table-7- Concept from new documents 

Updated Concepts 

Tokens Frequency IDF TF-IDF IsConcept 

Big data 10 0.04 0.4 YES 

Hadoop 

Analytics 

20 0.03 0.6 YES 

Data 

Warehousing 

3+9=12 0.05 0.6 YES 

Table-8- Updated Concepts 

By applying this architecture of RawTokens we have successfully dealt with 

two problems: 

Firstly, we can handle large datasets of documents by processing small 

chunks from those documents. Consequent results will, thus, be accurate 

and the concept stored will be very strong as more data is used in the 

formation of the concepts and as the TF-IDF suggest larger the dataset is 

more correct the concepts are. 
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Second issue tackled is the better and accurate way of handling a new 

document. This contributes to dynamic growth of the KnowledgeBase. 

This approach also does away with the problem of re-tokenizing entire 

documents in order to find concepts as we are already considering old 

documents from RawTokens table. 
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Figure-5-RawTokens Database 

4.3.5 KnowledgeBase 

Once the last pruning is performed on the concepts extracted from the 

documents we have successfully extracted the human concepts which can be 

called the KnowledgeBase. The knowledge base will be used to return the 

correct and related results for the user search queries. It will offer suggestions 

to users in the form of concepts related to the query from which they can 

chose their intended concept post which the knowledge base will return the 

documents containing relevant information. The following table shows top 

150 concepts extracted from 600 IEEE papers on Big Data. We can clearly see 

that all the concepts captured are related to big data and say that program is 
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successfully able to capture the concepts.  The point worth noting here is the 

top 150 concepts are 3 words which is due to the rule we applied during 

pruning the concepts of keeping the maximal simplex. That is the reason why 

concept containing only big data is pruned. 

Top 150 concepts from “Big Data” KnowledgeBase 

ID Tokens TokenCount Frequency DocFrequency TokensOrigin 

2228 big data analyt 3 409 38 Big Data. analytics 

2308 big data process 3 349 48 big data processing 

2482 big data applic 3 265 33 big data application 

2271 big data comput 3 230 40 BIG DATA Computer 

2413 big data manag 3 218 34 Big Data Management 

2334 big data analysi 3 204 30 big data analysis 

2270 big data cloud 3 171 30 BIG DATA CLOUD 

2324 big data technolog 3 170 30 BIG DATA Technology, 

2415 big data model 3 155 23 big data model 

2322 big data storag 3 141 19 big data storage 

2461 big data inform 3 130 31 Big Data information. 

2737 big data servic 3 129 16 big data services 

2244 big data platform 3 127 25 Big Data platforms 

2234 big data challeng 3 124 34 Big Data. challenges 

2262 big data busi 3 116 16 big data business 

2418 big data new 3 115 25 big data new 

2424 big data provid 3 113 20 big data provides 

2302 big data need 3 108 22 big data need 

2335 big data architectur 3 96 15 big data architectural 

2246 big data research 3 94 25 Big Data research. 

2303 big data network 3 92 13 big data network. 

2404 big data gener 3 89 25 big data general 

2529 big data framework 3 88 20 big data framework 

2499 big data larg 3 84 21 big data large 

2409 

big data 

infrastructur 3 81 11 Big Data Infrastructure 

2347 big data paper 3 78 27 big data paper, 

2364 big data distribut 3 77 17 big data distributed 

2723 big data traffic 3 77 6 big data. Traffic 

2798 big data user 3 76 12 Big Data user 
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2530 big data hadoop 3 76 17 big data Hadoop 

2321 big data set 3 76 27 big data set 

2425 big data requir 3 75 20 big data requirements. 

2512 big data secur 3 73 8 big data security. 

2522 big data cluster 3 73 9 big data cluster, 

2393 big data collect 3 72 18 Big data collection 

2656 big data integr 3 72 13 big data integration 

2450 big data differ 3 71 16 Big Data different 

2372 big data http 3 70 15 Big Data http 

2941 big data center 3 70 7 Big Data center 

2764 big data sourc 3 69 14 big data. Sources 

2320 big data scienc 3 69 16 BIG DATA Science, 

2507 big data problem 3 67 18 big data problem 

2229 big data analyz 3 66 17 Big Data analyze 

2584 big data base 3 65 21 Big Data based 

2500 big data mapreduc 3 65 14 big data MapReduce 

2462 big data issu 3 63 12 Big Data Issues 

2486 big data complex 3 63 13 big data complex 

2479 big data volum 3 63 17 Big data volume, 

2250 big data store 3 62 17 Big Data store 

2408 big data includ 3 61 14 Big Data including 

2316 big data result 3 60 18 big data result 

2305 big data perform 3 60 22 big data performance 

2582 big data type 3 58 14 Big Data types 

2381 big data valu 3 57 10 big data value 

2357 big data approach 3 56 18 Big Data Approach 

2423 big data propos 3 55 18 big data proposes 

2769 big data access 3 54 11 Big Data accessing 

2558 big data relat 3 53 17 big data. related 

2430 big data section 3 53 14 Big Data Section 

2792 big data structur 3 52 10 Big Data. structured 

2274 big data creat 3 52 12 big data creates 

2488 big data cost 3 51 14 big data. cost 

2282 big data environ 3 51 14 big data environment, 

2414 big data method 3 50 13 BIG DATA methods 

2496 big data increas 3 49 13 Big Data increasing 

2699 big data develop 3 48 16 big data. Development 

2291 big data ieee 3 47 20 big data IEEE 

2607 big data high 3 47 12 Big Data, high 
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2635 big data govern 3 47 9 Big Data governance 

2705 big data introduct 3 47 17 Big Data, Introduction 

2373 big data industri 3 46 10 Big Data industry 

2505 big data present 3 46 15 big data present 

2580 big data tradit 3 45 12 BIG DATA traditional 

2516 big data work 3 45 16 big data work, 

2625 big data workload 3 45 7 Big Data workload 

2345 big data organ 3 44 13 big data organizations 

2732 big data make 3 44 13 big data makes 

2258 big data algorithm 3 44 15 big data algorithm 

2240 big data enterpris 3 42 6 Big Data enterprise 

2474 big data techniqu 3 42 13 big data, techniques 

2644 big data social 3 41 9 big data social 

2845 big data onlin 3 40 6 Big Data online 

2527 big data featur 3 40 10 Big Data feature 

2778 big data heterogen 3 40 7 Big Data heterogeneity, 

2608 big data import 3 39 12 Big Data, important 

2431 big data semant 3 38 9 Big Data semantic 

2540 big data time 3 37 13 Big data times. 

2508 big data public 3 37 6 big data publication 

2509 big data reduc 3 35 8 big data. reduced 

2610 big data job 3 35 6 Big Data jobs 

2503 big data parallel 3 34 8 big data parallel 

2403 big data follow 3 34 11 Big Data following 

3053 big data opportun 3 33 10 Big Data Opportunities 

2352 big data refer 3 33 12 Big Data refers 

2735 big data resourc 3 33 10 big data resource 

2720 big data stream 3 33 8 Big Data, Stream 

2476 big data varieti 3 33 10 Big data variety. 

2528 big data file 3 32 8 big data File 

2398 big data discuss 3 32 9 Big Data discussion. 

2748 big data effect 3 32 10 big data effectively 

2520 big data associ 3 32 5 Big data Associate 

2652 big data exampl 3 31 10 big data example, 

2538 big data softwar 3 31 9 big data software 

2427 big data scientif 3 31 7 Big Data Scientific 

2327 big data world 3 31 8 big data world 

2799 big data vol 3 31 6 Big Data VOL. 

2355 big data variou 3 30 12 big data various 
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2681 big data qualiti 3 30 7 Big Data quality, 

3319 big data intellig 3 30 5 Big Data intelligence 

2338 big data engin 3 30 7 Big Data Engineering 

2671 big data control 3 29 9 Big data control 

3034 big data studi 3 29 11 Big data study 

2797 big data unstructur 3 29 7 Big Data unstructured 

2561 big data wai 3 28 9 big data. ways 

2911 big data queri 3 28 6 big data query 

2611 big data knowledg 3 28 6 Big Data knowledge, 

2886 big data oper 3 28 6 Big Data operation 

2379 big data support 3 27 11 big data support, 

2491 big data databas 3 27 10 big data database 

3025 big data extract 3 27 4 BIG DATA extracting 

2452 big data dynam 3 26 5 big data, dynamic 

2879 big data futur 3 26 10 big data future 

2808 big data initi 3 26 4 big data initiatives 

2922 big data design 3 26 7 big data design 

2968 big data consum 3 26 5 big data, consumed 

2537 big data size 3 26 7 BIG DATA size 

2432 big data solut 3 25 11 big data solutions 

3101 big data real 3 25 7 big data real 

2834 big data repres 3 25 6 big data representing 

2822 big data context 3 25 5 big data context 

2237 big data current 3 25 6 Big Data current 

2292 big data improv 3 25 9 big data improve 

2729 big data enabl 3 25 8 big data enables 

2904 big data huge 3 24 6 big data huge 

2377 big data scale 3 24 8 big data scaling, 

2643 big data risk 3 24 4 Big Data Risk, 

2433 big data specif 3 24 7 big data specific 

2616 big data object 3 24 5 Big Data object 

2590 big data pattern 3 24 5 Big Data patterns, 

2618 big data predict 3 23 6 Big Data predictive 

3005 big data ef 3 23 5 big data ef 

2545 big data dataset 3 23 10 Big Data datasets 

2268 big data china 3 23 4 BIG DATA China 

2235 big data chang 3 23 6 Big Data changing. 

2669 big data case 3 22 6 BIG DATA cases, 

2272 big data confer 3 22 6 big data Conference. 



32 

 

3141 big data consid 3 22 6 big data Considering 

2362 big data decis 3 22 6 big data decision 

2673 big data econom 3 22 5 big data economics 

2245 big data possibl 3 22 8 Big Data possibly 

Table-09-Top 150 Concepts from KnowledgeBase 

5 ANALYSIS AND RESULTS 

5.1 Comparison with google search results 

In order to verify the concepts obtained by the project we have fed some 

search result pages from Google search to the program on different topics, like 

“Apache Zookeeper”, “Holy Grail”, “Sound Investment”, “Pig Latin” etc. The 

following tables show the concepts extracted from those pages obtained by 

Google search. If we can see the same concepts in the KnowledgeBase which 

we searched for, we can conclude that the program successfully captures 

concepts and extracts knowledge from unknown documents. 

All of the files which behaved as controlled input to the Concept Extractor are 

fed as obtained. 

5.1.1 Concept extracted from “Apache Zookeeper” Google search data 

Top 20 results obtained by Google search for “Apache Zookeeper” is used here 

as test data. These files are then fed to the program to extract human 

concepts. The expected result will include concepts related to Apache 

Zookeeper, Hadoop, Big data etc. 

As expected, the top concepts are related to these topics. We see that “big 

data”, “Cluster”, “Open Source” also feature in top concepts and thus the 

proposed methodology was successfully able to relate Zookeeper to Big data 

which is a clear indication that program is able to extract human concepts. 
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Table-10-Concepts for Apache Zookeeper 

5.1.2 Concept extracted from “Holy Grail” Google search data 

Top 30 results obtained by Google search for “Holy Grail” are used as test data 

for the program. We have chosen these keywords as search query as Google 

returned many pages related to a song “Holy Grail” which is not the correct 

concept contained by words. The expected result will include concepts related 

to the Holy Grail dish and concepts related to mythology. 

As expected the top concepts are related to the mythological Holy Grail. As we 

can see that “knight Arthur is also in top concepts. Still we can see some of the 

results related to video which is because of the pages  
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Table-11- Concepts for Holy Grail 

5.1.3 Concept extracted from “Pig Latin” Google search data 

Top 44 results obtained by Google search for “pig latin” are used as test data. 

Those files were then fed to the program. The expected result will include 

concepts related to Apache Pig, Hadoop or Big data and the language pig latin 

etc. We chose this phrase as most of the results returned from google are 

related to language pig latin and not to Apache Pig. This is the reason we 

increased the no. of result files fed to program 

As expected the top concepts are related to these topics. As we can see that 

“Hadoop pig latin”, “pig script” are also in top concepts we can clearly see that 

proposed methodology successfully able to relate pig latin to Big data. 
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Table-12- Concepts for Pig Latin 

5.1.4 Concept extracted from “Sound Investment” Google search data 

Top 52 results obtained by Google search for “sound investment” are used 

here as test data. Those files then fed to the program. The expected result will 

include concepts related to financial domain data and not to music industry. 

Most of the results returned by google were related to music and investment 

separately and not related to financial domain. 

As expected the top concepts are related to these topics. As we can see that 

“stock market”, “financial plan”, “stock bond” are also in top concepts we can 

clearly see that proposed methodology successfully able to relate sound 

investment to finance. 
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Table-13- Concepts for Sound Investment 

5.2 Safe range for TF-IDF 

In order to find out which threshold for term frequency or document 

frequency will be best capturing the solid concepts or pure knowledge we 

studied the relation between TF-DF by keeping constant data size in one 

experiment and repeating the same experiment to find out how data size can 

affect their relation. 

Below are the result graphs explaining the relation. I must mention here that 

safe range for TF-DF is between TF ranging from 1.2% to 1.8% and for DF is 

from 0-95% to 10-95%. This value doesn’t change much by change in data size 

and almost all the concepts are captured irrespective of data size.
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Figure-6-Graph representing relation between TF-IDF with DF 

X axis – Token frequency | Y axis – No. of concepts extracted * Constant 
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5.3 Query retrieval and search results 

The search queries retrieval is also a crucial part of every search engine. We 

propose a new approach in this section. Almost all of the search engine 

present today works on guessing the intended meaning of the search query 

like if I searched for “sound investment” google assumed that I am interested 

in pages related to music but my intension was to search for pages related to 

finance which talk about investment which can give me good returns. 

Our search engine rather than giving the pages containing the concepts first 

provides a list of related concepts from the KnowledgeBase which relates to 

the search query so that user can pick up his intentional concepts. In above 

query the search engine developed will the user a list of concepts related to 

both finance and music from which user will choose one.  

Once the user provides his intentional concepts from list of related concepts 

the engine will provide the list of pages containing the concept user search 

along with main concepts from those documents. By providing the list of 

concepts contained by each page the possibility of user looking into wrong 

document decreases to a large extent as he will know the central idea of the 

document returned by just looking at the concept list of that document. So our 

search engine works on “asking the correct questions to user rather than 

guessing”. Below sample will provide a better understanding of the approach. 

 

Please Enter your search query.. 
Sound 
 

The knowledgebase contains following concepts related to 

your query.. 

 

home sound invest,  84957,HOME Sound Investment 

servic sound invest,  86082,Services Sound Investment 

event sound invest,  85211,events Sound Investment 

music sound invest,  86875,musical Sound Investment, 

contact sound invest,  85171,Contact Sound Investment 
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audio sound,  4770,audio, sound 

home invest sound,  85694,Home Investment Sound 

product sound invest,  88573,Products Sound Investment 

wed sound invest,  85478,wedding Sound Investment 

creat sound invest,  87122,create Sound Investment 

home servic sound invest,  106460,Home Services Sound 

Investment 

financi sound invest,  86364,FINANCIAL Sound Investment 

compani sound,  14366,companies. Sound 

plan sound invest,  86483,PLANNING Sound Investment 

product servic sound invest,  107757,production services 

Sound Investment 

 

Please enter the intended concept id.. (As I am interested 
in finance) 
 
86364 
C:\Users\Pradeep\Documents\CS298\Reports\TestData\SoundInve
stment\new  31.txt 

home sound invest,  57 

stock market,  24 

financi plan,  22 

financi invest,  20 

make invest,  20 

plan invest,  20 

privaci polici,  19 

retir invest,  19 

home invest sound,  16 

portfolio invest,  16 

creat invest,  15 

financi sound invest,  13 

new invest,  13 

right reserv,  13 

help invest,  12 

C:\Users\Pradeep\Documents\CS298\Reports\TestData\SoundInve
stment\new  26.txt 

servic invest,  38 

contact invest,  23 

financi plan,  22 

manag invest,  22 

financi invest,  20 

asset alloc,  20 

plan invest,  20 

retir invest,  19 

market invest,  14 

new york,  14 

advisor invest,  13 

financi sound invest,  13 

team invest,  13 
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client invest,  12 

need invest,  12 

C:\Users\Pradeep\Documents\CS298\Reports\TestData\SoundInve
stment\new  19.txt 

home sound invest,  57 

servic invest,  38 

manag invest,  22 

financi invest,  20 

make invest,  20 

fund invest,  19 

privaci polici,  19 

home invest sound,  16 

compani invest,  16 

portfolio invest,  16 

commun invest,  13 

financi sound invest,  13 

advisor invest,  13 

compani sound,  12 

need invest,  12 

C:\Users\Pradeep\Documents\CS298\Reports\TestData\SoundInve
stment\new  13.txt 

contact invest,  23 

financi plan,  22 

contact sound invest,  21 

financi invest,  20 

plan invest,  20 

retir invest,  19 

start invest,  17 

financi sound invest,  13 

team invest,  13 

plan sound invest,  12 

team sound invest,  12 

save retir,  11 

secur invest,  11 

april invest,  10 

plan financi,  10 

 

6 FUTURE SCOPE 

6.1 Applications 

The built KnowledgeBase can be utilized in creating many useful semantically 

aware applications. The following applications are proposed which can be 

created with minor modifications in the core algorithm: 
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6.1.1 Automated Indexing of books 

We can use the core engine of our work to create a system which 

automatically generates index for books. There are two methods currently 

available to create index for books:  

a) The author has to create the index which can be automated by the 

project as it is successfully able to extract the concepts contained 

by the book.  

b) A user reads and understands the book to create the index which 

can be very tedious human effort.  

Our project can help in saving this manual effort by providing a technique 

for automated indexing of books and ease the efforts put in by authors and 

publishers. 

6.1.2     Preventing misuse of sale categories in e-commerce websites 

The program created in this project can also be used to test if specific 

listings of products on e-commerce websites actually belong to the 

product category they are launched in by third-party sellers. Major e-

commerce websites like Amazon, eBay, Alibaba charge a commission to 

the seller as per the category of the product. The commission may vary as 

per the category of the product listed. It may be less for some house hold 

product and more for electronic products. 

To trick the commission charged what sellers do is that they list all the 

products in the category for which the commission is least so that they can 

save more. E.g. they will list electronics in house hold items. One thing a 

seller never lies about is the description of the product.  
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As the listings are not checked for correct category and, thus, generally not 

caught. But following this practice is bad for both end user as they will not 

find the item they are looking for in the specific category and owners will 

earn less which will hamper their profits.  

Our program can extract the concepts from the description which are 

always true and find out the category for the product as description will 

contain information about the product which can be mapped to its 

category. Like a term “phone” should be listed in electronics and not in 

household. 

This application will help in better online shopping experience and the 

owners will also earn the profits. 

6.1.3 Document clustering by their knowledge 

The application can be used in creating document clusters as per their 

knowledge, which our program can extract. Clustering the documents as 

per their contents will help in better search results. As a document in a 

cluster will be related to all other documents in that cluster so the user 

might be interested in other documents as well. We can list the related 

documents for him from the cluster and his query will be served better. 

6.2 Migration to Hadoop 

The central idea is to prove that the algorithm explained by the project work 

is relevant and utilizable in creation of semantic search engine. After the proof 

of concept and taking into account promising results, a platform has been 

created for future scope by building the foundation and successfully migrated 

the program to Hadoop by keeping the underlined vision that we would like to 

extend the project to create a better semantically aware concept based search 
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engine. We have seen that as per the results we can surely say that the project 

is successfully able to capture the concepts and it is correctly extracting 

knowledge from unknown documents. This project is to demonstrate that the 

same algorithm can be used for creating a concept based semantic search 

engine. Let’s first revise the terms used here: 

Concept means human knowledge represented in words in the documents as 

well as html pages on the web. If we are extracting that knowledge from the 

documents we can say that our system will know that knowledge and can 

behave as a brain, if you will, which has all the answers or links to the 

documents containing the answers for any query (Central assumption: the 

system has processed all of the available documents/html pages and stored all 

the concepts achieving which is discussed later in this section).  

The second term is semantic which means that words which are written 

together (side by side to each other) or in a nearby paragraph are related to 

each other in the context which they are trying to represent. I will use an 

example here provided by Dr. Pearce during one of the discussions on project 

and it clearly explains the meaning. Let the sentence be “Pradeep Roy is skiing 

and swimming and he is nature lover.” The words ‘Pradeep’ and ‘nature lover’ 

do not appear side by side but are still getting used to express the fact that 

Pradeep loves nature. So these words are semantically related to each other 

representing a concept. Our system also captures this scenario and 

successfully finds the semantics in the words. So the search engine made on 

top of the current setup will be semantically aware.  

The third word is Search Engine which explains that the system developed and 

demonstrated by the project will be used in making a search engine to provide 

the better search results to user then most of the available search engines 

present today. 
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6.2.1 Building blocks of search engine 

The basic and the most important building block of any successful search 

engine is the amount of data it knows and can search from. The quality of 

results is directly proportional to the data size, more the data more accurate 

the results are if processed correctly. In order to make our search engine we 

would require to process all of the data available on W3. We have already 

found out the limitation of the prototype created in the project that it cannot 

handle large amount of data. The only solution to the problem is to migrate to 

Hadoop where we can analyze Big Data without hitting the memory 

constraints. Hadoop is designed specifically to overcome these constraints. As 

a trend it is better to migrate Hadoop in the first place rather than after 

creating a stable product. The only requirement to migrate to Hadoop other 

than having the infrastructure is paralleling the task. If a task can be paralleled, 

the algorithm can be successfully paralleled as well. We can parallelly analyze 

the documents divided into many small documents and extract the potential 

concepts out of them and then finally we can merge all the potential tokens to 

find out actual tokens. 

After a brief introduction to Hadoop we will see the pseudo code explaining 

the flow in terms of map reduce. Knowing Hadoop architecture will help us 

better understand the problems which we may face in future and their 

solutions. 

6.1.2 Hadoop Architecture and MapReduce 

Hadoop works on Hadoop Distributed File System (HDFS) which is designed 

and implemented to run on cheap commodity hardware. It has transformed 

by keeping some part with typical Distributed File System and in that way it is 

very much similar to it. Even then the differences are significant and 

prominent. HDFS is designed to be fault tolerant and is designed to run on low 
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cost hardware. HDFS is very much suitable to the applications which are 

designed to handle very large datasets like search engine. Google and Yahoo 

run on HDFS and many other social networking companies have large HDFS 

clusters of approximately 1000 nodes and process petabytes of data. HDFS has 

high throughput access for the application data. 

HDFS provides the platform to run Hadoop MapReduce jobs. Hadoop 

MapReduce is a java framework which is built to write applications which 

process large amounts of data. Applications can process that large data in 

parallel on large clusters which are reliable and fault tolerant. A MapReduce 

job is basically divides the data into independent chunks which are then 

processed by map tasks in parallel. The output of the map tasks is the input to 

reduce tasks. The MapReduce framework is takes care of scheduling, 

monitoring and re-execution of failed tasks.  Typically the data-nodes which 

store the data are also the compute nodes. MapReduce and HDFS run on the 

same nodes. This configuration enables the MapReduce to schedule the tasks 

on the nodes where data available in advance. This saves a lot of bandwidth 

for data transmission. MapReduce has two components: 

I. Single master JobTracker, 

II. One TaskTracker per node in the cluster 

The JobTracker works for scheduling the jobs and deploy the tasks to slave 

nodes, monitoring, and re-executing failed tasks. The slave nodes perform the 

tasks. The applications developed specify input and output locations from 

where to get data and to where to store the results. All the applications have 

map and reduce functions via implementations of corresponding interfaces or 

abstract class. Hadoop job client is responsible for submitting the jobs and 

configuration to JobTracker. Hadoop MapReduce framework is written in Java 

but it is not mandatory to write the applications using it in Java. Our 
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application is written in Java. 

6.1.3 Pseudo Code and Class explaination 

For any project to run on Hadoop, it is mandatory that the task can be split 

into many parallel tasks so that Hadoop can utilize the underlying concept of 

map and reduce. 

The pseudo code remains the same and the outline would be: 

Crawl the web space and collect the documents 

For each task do { 

Documents <= parse to make usable format 

Map: For documents extract tokens 

         Calculate TF, DF for tokens 

Reduce: Merge TF-DF for same tokens 

         Calculate TF-IDF 

Perform pruning 

} 

Map Classes 

Mapper Class Functionality 

TokenCountInDoc  Many mappers reads a document in parrallel 

Calculates the frequency of each token in the document 

TokenCountInDocs Calculates token frequency of each token for many 

documents using TokenCountInDoc 

 Keep a record of document frequency for each token 
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TokenTFIDF Calculates TF-IDF for all the tokens 

Table-14- Map Classes 

Reduce Classes 

Reducer Class Functionality 

TokenCountInDocRedu

cer 

 Takes input from corresponding mappers and 

merge the results 

TokenCountInDocsRed

ucer 

 Takes input from corresponding mappers and 

merge the results 

TokenTFIDFReducer Takes input from corresponding mappers and 

merge the results 

Table-15- Reduce Classes 

6.1.4 Initial development 

As migration to Hadoop is a future scope, we have successfully developed part 

of the project where TF-IDF from all of the documents can be calculated for all 

multiple keyword tokens sets. 

Pruning of keywords which don’t qualify for being designated a concept is an 

area that can be picked up along with implementing the above mappers and 

reducers. 

6.1.4 Infrastructure suggested 

The following recommendations are made based on my research: 
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DataNode or Slaves: 

· 1-4 TB HDD configuration 2 quad-core processors having at least 2-

2.5GHz 4-8 GB RAM 

· Bonded Gigabit Ethernet card. 

NameNode or Master Node: 

· 1TB hard disks 2 quad core processors, at least 2-2.5GHz 16-32 GB 

of RAM 

· Bonded Gigabit Ethernet card 
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