
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2014

Concept Based Semantic Search Engine
Pradeep Roy
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Roy, Pradeep, "Concept Based Semantic Search Engine" (2014). Master's Projects. 351.
DOI: https://doi.org/10.31979/etd.sjj6-fxju
https://scholarworks.sjsu.edu/etd_projects/351

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70408772?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F351&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F351&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F351&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F351&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F351&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/351?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F351&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Concept Based Semantic Search Engine

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science

By

Pradeep Roy

May 2014

© 2014

Pradeep Roy

ALL RIGHTS RESERVED

The Designated Committee Approves the Writing Project Titled

CONCEPT BASED SEMANTIC SEARCH ENGINE

By

Pradeep Roy

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2014

Dr. Tsau Young Lin Department of Computer Science

Dr. Jon Pearce Department of Computer Science

Mr. Amitaba Das IBM SVL Research Center

i

ABSTRACT

In the current day and age, search engines are the most relied on and critical

ways to find out information on the World Wide Web (W3). With the ushering in

of Big Data, traditional search engines are becoming inept and inadequate at

dishing out relevant pages. It has become increasingly difficult to locate

meaningful results from the mind boggling list of returns typical of returned

search queries. Keywords, often times, alone cannot capture the intended

concept with high precision. These and associated issues with the current search

engines call for a more powerful and holistic search engine capability. The

current project presents a new approach to resolving this widely relevant

problem - a concept based search engine. It is known that a collection of

concepts naturally forms a polyhedron. Combinatorial topology is, thus, used to

manipulate the polyhedron of concepts that are mined from W3. Based on this

triangulated polyhedron, the concepts are clustered together based on primitive

concepts that are geometrically, simplexes of maximal dimensions. Such

clustering is different from conventional clustering since the proposed model

may have overlapping. Based on such clustering, the search results can then be

categorized and users allowed to select a category more apt to their needs. The

results displayed are based on aforementioned categorization thereby leading to

more sharply gathered and, thus, semantically related relevant information.

ii

ACKNOWLEDGEMENTS

I would like to express my gratitude to my academic advisor Dr. Tsau Young Lin,

for his meticulous guidance and endless encouragement.

I am indebted to Dr. Jon Pearce and Mr. Amitabha Das for serving on my

Masters’ committee.

I could not have asked for a more relevant and supportive team of professors to

keep me on the right track. Words cannot express my gratitude to my family

who has always been there for me, and to the precious friends I made during my

studies here.

iii

TABLE OF CONTENT

1. Introduction 1

2. Related Work 2

3. Proposed Approach and Work 4

 3.1 Important Terms 5

 3.2 Algorithm 7

4. Project Architecture and Components 12

 4.1 High level architecture 12

 4.2 Pseudo code 13

 4.3 Components and System Architecture 14

5. Analysis and Results 32

 5.1 Comparison with Google search results 32

 5.2 Safe range for TF-IDF 36

 5.3 Query retrieval and search results 38

6. Future Scope 40

 6.1 Applications 40

 6.2 Migration to Hadoop 42

7. References 49

iv

LIST OF TABLES

1. Simplicial complex maximal keywords sets 19

2. Simplicial complex maximal keywords sets our version 20

3. Tokens from old documents 25

4. Concepts in KnowledgeBase 25

5. Tokens from new Documents 25

6. Tokens Table after considering RawTokens 26

7. Concept from new documents 26

8. Updated Concepts 26

9. Top 150 Concepts from KnowledgeBase 32

10 Concepts for Apache Zookeeper 33

11. Concepts for Holy Grail 34

12. Concepts for Pig Latin 35

13. Concepts for Sound Investment 36

14. Map Classes 47

15. Reduce Classes 47

v

LIST OF FIGURES

1. Simplicial Complex for Keywords set 11

2. High level Architecure 13

3. Core Engine 21

4. Sequencial Diagram 21

5. RawTokens Database 27

6. Graph representing relation between TF-IDF with DF 37

1

1. INTRODUCTION

Concept based search: Search engines are assumed to get a user the required

information he is looking for from a stupendously huge collection of web pages

and documents on the World Wide Web (W3). Research conducted by Cyveillance

- a Washington D.C.-based market research firm - has revealed that more than

6,000,000 public pages are getting added to the W3 every single day. A search

engine should be equipped to retrieve correct and meaningful results from this

huge ever growing database which evidently doubles in volume every year.

However, current search engines often return a list of documents based on

individual keywords provided by users. Actually a user often want to retrieve

author’s concept and idea, in order to do so he supplies a list of keywords in the

search query. The primary goal of this project is to develop a system that will

capture the user’s idea through his list of key words. Our first task is to identify

the possible concepts that are in user’s mind, then extract all articles containing

these concepts. For instance the program should be able to relate “Zookeeper” to

big data or Hadoop, not to a person who works as zookeeper, “Sound Investment”

to finance not to music, “Holy Grail” to mythology not to the song “holy grail” etc.

We believe that documents are carrier of ideas expressed by an author. According

to this work the ideas are highly structured “concepts”. We consider a common

idea (highly repeated key words) as knowledge. So the main task of our project is

to index an organized set of knowledge that are buried in “Big Data” of web. Our

project consists of (1) Mining concepts, (2) storing the structured concepts,

termed as KnowledgeBase in a persistent storage, (3) any required concepts and

ideas of a user can be retrieved with high precision.

The scope of this project is to prove the credibility of algorithm proposed and

creation of KnowledgeBase using sample documents and proposing a new

approach to show the search results to the user.

2

2. RELATED WORK

W3 is the largest library of documents that are translated by machines and

presented to the users. This has evolved from hypertext systems, the problem is

that anyone can add documents to it. Therefore the quality of the documents

cannot be guaranteed. Current W3 contains huge information and knowledge but

machines only work well for delivery of the contents and are not responsible for

extracting knowledge. People have to do that manually.

Semantic web is effort led by World Wide Web Consortium which is evolved in

order to enhance current system of web in order to make sure that computers will

have the capability to process the information and knowledge presented on W3.

Semantic web is intended to create a huge knowledgbase and to share data

instead of documents.

Semantic web architecture consists of XML, RDF, OWL and RIF.

2.1 XML: Extensible Markup Language layer along with XML-namespace and

XML-schema definition imposes a common syntax usage in semantic web.

It is a markup language which is generally used for creating documents

containing structured information. XML documents have elements which

can be nested and elements may contain attributes and contents. It allows

to create many different markup vocabularies in one document. XML

schema allows to express schema for a particular type of XML documents.

2.2 RDF: Resource Description Framework is the core data representation

format made for semantic web. RDF presents the information about

resources in graphs. It is intended to represent metadata about the

resources like author, title. RDF can also be used for storing other data as

well. It works on triplets subject-predicate-object that creates data graph.

Semantic web data uses RDF as a representation language.

3

RDF works to describe the description of the graph formed by the above

triplets. Anyone can describe and define the vocabulary of terms used. To

allow standardized description of taxonomies and other ontological

constructs, a RDF Schema (RDFS) was created together with its formal

semantics within RDF. RDFS can be used to describe taxonomies of classes

and properties and use them to create lightweight ontologies[11].

2.3 OWL: Web Ontology Language extends RDF & RDFS. OWL adds semantics

to the schema. The primary goal of OWL is to bring the reasoning and

expressive power of description logic (DL) to the semantic web. We cannot

express everything from RDF to DL. For example, the classes of classes are

not permitted in the (chosen) DL, and some of the triple expressions would

have no sense in DL[11]. OWL is syntactic extension of RDF. To overcome

the above problem, and in order to allow layering in OWL there are 3

species of OWL are present.

OWL lite is used to express simple constraints and taxonomy e.g. 0 & 1

cardinality. OWL lite is the simplest language a maps to description logic.

OWL DL supports maximum expressiveness along with computational

completeness & decidability.

OWL Full has no constraints for expressiveness but it also not guaranteed

to have any computational properties. It is created with full OWL

vocabulary but it doesn’t force nay syntactic constraints so it can use full

syntactic freedom of RDF.

These three languages are layered in a sense that every legal OWL Lite

ontology is a legal OWL DL ontology, every legal OWL DL ontology is a legal

OWL Full ontology, every valid OWL Lite conclusion is a valid OWL DL

conclusion, and every valid OWL DL conclusion a valid OWL Full

4

conclusion[11].Inverse of these above relations is generally true. Every

OWL ontology is a valid RDF document but here also the inverse is not true.

3. PROPOSED APPROACH AND WORK

The work described in the report provides a fresh approach to develop a clustering

technology which discovers the semantics of the documents present on W3 by

applying text analysis. Through crawling the web and process the documents

which finally creates a KnowledgeBase after processing. The KnowledgeBse will

contain the keywords which represents the concept contained by the documents

processed. It will help in creating a semantically aware concept based search

engine. The approach described here doesn’t require any special tags in web pages

to extract the knowledge and also can work on existing web pages. This new

approach to semantic learning is the main advantage over the previous described

methodologies which require the authors to tag their pages with special

constructs using RDF or the other methodologies defined by semantic web, which

are labor intense. The work uses method derived by Dr. TY Lin’s research paper on

Concept Analysis in 2006(Tsau Young Lin, Albert Sutojo and Jean-David Hsu).This

work focuses on applying the idea presented and create a concept based semantic

search engine along with providing a new approach to present search results to

user in which user can see the main concepts contained by the papers so he

doesn’t need to go through the documents to see if that is a correct result of his

search query. The search engine works on asking user for the intended concept he

is looking for rather than guessing.

Dr. Lin (2006) showcases mapping the knowledge contained in sequence of

keywords (not necessary to be consecutive in text) into a mathematical model. He

has suggested that semantics of keywords together can be mapped to Simplicial

complex (a triangulated polyhedral Complex) [1].

5

Once all the keywords contained a document are transformed into this model, it

can be treated as a knowledge base for semantic search.

3.1 Important Terms

Let’s take top-down approach to understand the important terms used in this

work.

3.1.1 KnowledgeBase: We are here referring to this term as an organized large

collection of concepts. According to our proposal, after crawling and

processing of all the pages on W3 we will be able to successfully extract all

of the possible concepts or knowledge available in the web universe. After

which, there will be a negligible possibility of new knowledge coming in to

the KnowledgeBase. This assumption helps in computation of concepts for

successive iterations. A KnowledgeBase will be formed by processing many

documents through the program.

3.1.2 Document: A document here in this work can be defined as a dataset of

meaningful text which contains one or many “concepts”.

3.1.3 Concept: If we look at dictionary meaning of concept, then a concept is an

abstract idea; a general notion. Here in this work a “concept” is the term

used to represent the way humans express their thoughts, idea, or an

abstract form of knowledge. Concept is the underlying meaning provided by

the collection of keywords which is almost different from the individual

words. If those words repeat for many times then they together represents

a “concept”. A point worth noting here is that a concept can also be

expressed by single keyword. For example:

I. Computer Virus (A computer virus is a type of malware that, when

executed, replicates by inserting copies of itself (possibly modified)

6

into other computer programs, data files, or the boot sector of the

hard drive).

II. Biological Virus (A virus is a small infectious agent that replicates only

inside the living cells of other organisms.)

III. Wall Street (Wall Street is the financial district of New York City) etc.

IV. White House

V. Pig Latin

The words which are together and doesn’t represent any concepts are called

as keywords set.

3.1.4 Keywords set: These sets are group of words which are close to each other

in a defined proximity like a paragraph. The program has a limit to consider

upto 6 tokens in a keywords set. This limit can be changed to lower value at

run-time.

3.1.5 Keyword or Token: It is representing any English word with a definite

meaning. E.g Virus, Biology, Computer, Disease, Wall, Street, Zookeeper, Pig,

Latin etc. Once all the stop words are removed from tokens, tokens together

form keywords set which further can qualify as concept if it has some

properties contained.

3.1.6 Stop words: Some extremely common words which would appear to be of

little value in helping select documents matching a user need and are

excluded from the search vocabulary entirely.

Stop words are a crucial part of data mining and text processing endeavors.

They are generally determined by collective frequency (the number of times

each term appears in documents) and then taken out as the most frequent

words. Generally, stop words should be picked in terms of their semantics

and context. A list is prepared using the most frequent words called as ‘stop

list’. Removing of stop list from the documents being processed gives us two

7

advantages: a) it reduces computation for non-desired and senseless words

and b) it helps in better extraction of concepts and knowledge from

documents[4].

Generally, stop words are parts of speech which are used to link the words

together in order to express the desired meaning E.g. Adjective, helping

verb, conjunction, the prepositions, articles, modifiers etc.

Let’s take an example here: The phrase “The big data technology is growing”

contains two stop words “The” and “is”. In typical IR scenarios, it has been

observed that using a long stop list is better in getting better results. Web

search engines generally do not use stop lists. In this work, a thorough stop

list of 500 words has been compiled by merging different stop lists found

over the internet.

3.2 Algorithm

The following algorithms feature in this work in order to get accurate results from

data mining:

3.2.1 Apriori

The Apriori Algorithm helps in mining frequent keywords sets

Key Points

● Frequent Keywords: The keywords set which is repeated for at least

threshold number of times

● Apriori Property: It is described as any subset of frequent keywords set

will be frequent keyword(s) set.

The Algorithm in nutshell

8

First, find the frequent keywords sets that are the sets of keywords which possess

minimum support.

● According to Apriori principle it is necessary that given a subset of a

frequent key words must also be a frequent key words set. We have used

negation of Apriori principle in our project in order to eliminate keywords

set which are not going to be frequent during the candidate generation.

This theory helps in removing possible concepts which are not frequent.

Application of Apriori helps in reducing computation in early stage of token

processing and concept generation.

● i.e., if {A, B, C} is a frequent keywords set, then all {A, B}, {B, C} and {A, C}

will be a frequent keyword set. The negation would be if keyword {A} is not

frequent set then any keyword set containing {A} would never be frequent

meaning keywords sets {A, B}, {A, C} and {A, B, C} will never be frequent.

This helps in reducing computation of token/keywords sets which will

never qualify as concepts.

3.2.2 Term Frequency Inverse Document Frequency (TF-IDF)

Term Frequency Inverse Document Frequency (TF-IDF) is a value which is often

used in IR keywords extraction. This work focuses on both these areas and, so, TF-

IDF is used in our algorithm for extracting better and related concepts. The TF-IDF

value is a statistical measure used to find out how important a token is to a

document in a collection of documents. The importance of token increases in

proportion to the number of times it appears in the document but it is also

inversely proportional if a token repeats in large frequency in almost all the

documents and it is a stop word.

Changing TF-IDF values are used as a primary tool in scoring the relevance of a

document to the searched query by several search engines.

9

The simplest TF-IDF function is computed by summing it for each token. Several

TF-IDF functions are available but we have used the following one.

As previously mentioned, TF-IDF can successfully filter stop words from all

extracted tokens. Here is an example to understand this:

TF-IDF Computation

Typically, the TF-IDF values are calculated by two terms:

a. Term Frequency (TF): It is the frequency which represents the no. of times a

token repeats in the document in process, to the total no. of words in the

document. Term Frequency, which calculates the frequency of any token in a

document. As every document is different in size it is highly likely that a token

repeats more in longer documents than the smaller documents. That is the

reason why term frequency is divided by document length i.e total no. of

tokens in document in order to normalize the value.

For a keywords set K = {k1,k2,k3,k4….kn} let d is the document containing K.

For a document set of all documents D, d is subset of D

F(K,d) is the frequency which represents the number of times K is repeated in

d.

TF(k,d) = F(K,d)/max(F{K,d})

b. Inverse Document Frequency (IDF): It is the natural logarithmic value of the

no. of documents to the no. of documents in which the token in consideration

is repeated. IDF measures the importance of a token.

During the TF calculation all tokens are equally important. However it is known

that stop words e.g "the", "for", and "have" etc. may appear alot but are of

very less importance. In order to scale up the rare and important tokens we

need to weigh down the very frequent tokens by computing IDF:

10

IDF(K,D) = ln(no. of documents D/ no. of documents containing K)

TF-IDF (K,D) = TF(K,d)*IDF(K,D)

E.g.

Let’s consider a document having 500 words and token “hadoop” repeats for 10

times in it.

TF (hadoop) = (10/500) = 0.02

Now if we have 1 million documents to process and token “hadoop” appears in

1000 of the documents then IDF would be

IDF = ln(1000000/1000) = 6.907755279

Thus TF-IDF for “hadoop” is the product of TF*IDF

TF-IDF(hadoop) = 0.02* 6.907755279 = 0.138

3.2.3 Simplicial Complexes and polyhedra in search

This project proposes the method of capturing human concepts or simply

concepts using simplicial or polyhedral complexes. According to Dr. TY Lin,

A simplicial complex C consists of a set {v} of vertices and a set {s} of finite

nonempty subsets of {v} called simplexes such that

· Any set consisting of one vertex is a simplex.

· Closed condition: Any nonempty subset of a simplex is a simplex.

Any simplex s containing exactly q + 1 vertices is called a q-simplex. We also say

that the dimension of s is q and write dim s=q. We will refer to C as a non-closed

simplicial complex, if the closed condition is not fulfilled for all its constituting

simplexes[1].

Simplicial Complex in Our Project

The method used in the project to extract concepts from documents is textual

processing. The program looks for high frequency keywords which are either co-

11

occurring or may be little distant but not as much as a paragraph. We choose

paragraph size to be 25-30 keywords.

The keywords captured by the program here are called as keywords set. As

mention earlier, it is not necessary for keywords to be close to each other but they

must satisfy the precondition for closeness. When a keywordset repeats itself

more times than a threshold frequency in a document, it is stored by the program

for further processing else it is discarded and the next keyword set is picked up

and can be treated as human concept.

In the simplicial complex model of human concepts, all the vertices are taken by a

keyword/token and an edge joining two keywords together representing a human

concept. Each keyword set thus here forms an n-simplex (granule). Here n

represents the number of distinct keywords in the keyword sets. The geometry

represented by many keywords or keyword sets together is called as simplicial

complex of human concept or knowledge complex. The point to be noted here is

that even a single disjoint keyword can also represent a concept. We are mainly

interested in maximal simplex. The figure below represents a keyword simplicial

complex.

disease

d
at

a

DNA

virus
genetics

biotechnology

social

user

network

research

Figure-1-Simplicial Complex for Keywords set

12

The document contained in the simplex is representing a knowledge regarding

biotechnology research paper.

Following simplicials can be found out of the above diagram.

1. Tetrahedron - 2 Maximal 3 Simplices

a) DNA genetics virus disease

b) Biotechnology user social data

2. Triangle – 3 maximal 2 simplices

a) User virus biotechnology

3. 3 Maximal 1 simplices

a) User research

b) User network

c) User genetics

4 PROJECT ARCHITECTURE AND COMPONENTS

4.1 High Level Architecture

The following high level architecture diagram explains the flow of data contained

in the documents from crawling W3 through to storage in KnowledgeBase.

The components include WebCrawler, Parser, Concept Extractor, RawTokens

database, and KnowledgeBase. The graphical user interface used to represent

user search results is not a part of this work but is definitely an exploratory

avenue; the main objective of this project is to successfully extract the concepts

from documents and to create a KnowledgeBase. Here SQL queries are used to

return results to the user.

All components and their associated roles are explained in the following section:

13

KnowledgeBase

WebCrawler

W3DataW3Data

Parser
Concept Extractor

Core Engine

Text/Html/PDF document Store

(Raw Documents)

PDF

Documents

Text/HTML

Documents

Concepts Store

User Search Results

Figure-2-High level Architecture

4.2 Pseudo code

Load from RawTokens database

For each k, from k=1

{

 For each of the document in repository

 {

 parse and tokenise document d;

 tokens <= remove stop words;

 tokens <= lowercase and perform stemming;

 tokens <= remove newly formed stop words;

 keywords sets <= permute paragraph;

 keywords sets <= prune using TF-IDF;

 keywords sets <= prune non maximal simplices;

 store concepts in KnowledgeBase;

 if no more new concepts

 exit the loop;

 }

}

14

4.3 Components and System Architecture

4.3.1 WebCrawler

A Web crawler is program which automatically browses the W3 by following a

defined system. Its objective is to index World Wide Web data. Crawlers have

the capability to copy all data from the pages visited for processing by a search

engine which then indexes all of the downloaded documents so that a user

can search them very quickly. Crawlers can validate hyperlinks and HTML code.

This work also includes creation of an intelligent crawler for better retrieval of

pages from W3 and analysis and clustering of data according to the concepts

contained in the documents. This crawler can identify specific URLs to visit and

crawl on and leave out non-desired URLs as needed. It copies all the page data

into simple text files along with the information of the urls from which data is

collected. The crawler is provided with a list of URLs that it should visit, which

are referred to as seeds. As the crawler goes through the seed URLs, it

identifies all hyperlinks present on the page and append them to list of URLs

to visit already being maintained by it. For instance, if we wish to create a

concept cluster containing data from only educational websites, it’s always

better to provide ‘.edu’ websites data to the core engine to process rather

than all of WebSphere data. This can be incorporated in the designed crawler.

One can also specify crawling only PDF files which mostly contain solid

concepts regarding the text in them. As the core can process only text and html

files (which are also a type of text files), the crawler can also be configured to

leave out other data formats like PNG, JPEG, JPG, AVI, etc. The crawler created

also has a capability to leave a URL if it is has already been crawled on before.

This again helps in maintaining the quality of data and prevents repetition in

the index and wrong calculation of TF-IDF.

4.3.2 Parser

The core engine of the project or concept extractor expects the data to be

15

stored in either text or html files but a web crawler can crawl many types

like .doc, .pdf, jpeg, .png etc. of files from W3 and the data for which a user is

looking for can be in any format. In order to use that content as well, we have

to first pass the files through different parsers which will convert them to text

files before feeding to the concept extractor. A PDF parser has been developed

as a component to this project as our test data is mainly obtained from IEEE

papers (PDF files). We have architecture in place that can be extended in order

to add different parsers in the future without affecting present components.

4.3.2.1 PDF Parser

To prove that the algorithm is working properly and we are successfully

able to capture the concepts from documents, the program core is fed with

IEEE papers in PDF format but using IEEE papers in testing is very crucial as

we already know the content of the papers and we can easily verify the

results by looking at the knowledge base created by concepts extracted

from those papers. We tested the results on different domain papers e.g.

big data, social network, biotechnology, software defined networking to

name a few (findings in the Results section). In order to process PDF files

and cluster the concepts they contain, the relevant text needs to be

extracted out of the PDF without losing the text format and sequence of

sentences a PDF parser is also created as a part of the project. The Pdf

parser is capable of keeping the text sequence intact even after converting

the PDF file to a text file which is essential, because if the text sequence

changes from the original PDF content, the concept or knowledge

interpreted by the core will not be correct. Many commercial pdf

converters doesn't have this capability and, therefore, the need for

creating a parser increases. Pdf parser takes a directory containing the

relevant PDF files as input and stores the content in a central directory

provided from where the core engine can pick the files to process.

16

4.3.3 Tokenizer and Core Engine (Concept Extractor)

The tokenizer is the core of the algorithm which analyzes each document

provided. It only takes text/html document as input and starts scanning each

tokens contained within. It checks if the fetched token is a stop word or not

and discards the token if that is the case and not processed again during

subsequent scans. This helps in reducing computation time/effort and

provides better concepts.

As explained earlier stop words are auxiliary words and don’t contribute to the

core knowledge of tokens. Once a token is qualified to process it is first

stemmed to its root word. Doing so helps in recognizing one word in different

forms as one. For stemming, we use the porter stemmer algorithm. After

stemming, the word is checked for being a stop word because there can be

instances where a word isn’t considered a stop word owing to being in a

different form. If a token survives the second stop word test iteration, it is de-

capitalized to lower case in order to identify same tokens written in different

cases. E.g. “Hadoop”, “hadoop”, “HADOOP” should map to single token. After

the document is tokenized then the term frequency of each token is recorded

and the document frequency is also stored. While processing next and

successive documents the token fetched are first checked into the list of

tokens created by previous documents, if the token is already present in the

list then its token frequency is incremented along with document frequency.

All the tokens qualifying the least minimum threshold are kept, considered

Raw Concepts and stored.

The same process is repeated for finding two or more same tokens as well. But

it should be noted that while finding two tokens all the possible combinations

to form two tokens within a paragraph are considered in order to extract

context of the words.

17

4.3.3.1 Pruning of tokens

The actual stage of the core algorithm starts here. The idea proposed in the

project is mainly focused on finding co-occurring tokens or keywords that are

closer to each other and as described earlier not necessarily back to back. By

close we mean to capture the tokens which are close in the paragraph range

defined. We also record the corresponding TF and DF for the tokens. This stage

is a iterative process which says that we make the tokens to pass through

multiple passes till we capture the concepts and no new concepts are found.

It is a breadth first search which we are adapting to; it finds all one keywords

token first followed by two keywords and so on. Each pass will result into a

new K-keywords list starting at K=1. The algorithm exits the loop till the

maximum of K is reached or no new keywords are found. We have put a limit

of keeping maximum keywords length to 6 (experimental conclusion).

In order to save computation time it is necessary to complete the pruning of K

keywords sets before starting K+1th iteration.

Breadth First

A legitimate question arises here: why is breadth considered first and not

depth when we can simultaneously produce multiple K-length candidate

concepts. The answer to the question is that we get a chance to migrate the

K-length keywords out of the memory before starting K+1, which makes the

computation less expensive otherwise we will end up keeping all of the K+n

{n; 0 to 6} until the end of computation and will be using memory which is not

an efficient way of handling the case.

To understand the problem let’s take an example where we will see the

exponential growth in data to process. To find all the co-occurring tokens of

length K within a paragraph, we need to consider all of the possible K

permutations for the token in paragraph length. “Permutation” used is not in

its pure definition. Here we are not permuting the words, but we are

18

considering the permutations which retain the relative order of the words in a

paragraph.

Doing so helps in making the data growth to a limited size and serves our

purpose well.

Still, the growth of possible concepts is exponential.

For a 30-words paragraph, the possible 2-keyword concepts are:

2 Keywords possible concepts

= (30*29) + (29*28) + (27*26) +…………. + (3*2) + (2*1)

3-keyword possible concepts

 = (30*29*28) + (29*28*27) +…………+ (4*3*2) + (3*2*1)

The above example is sufficient to prove that higher the value of K the data

size quickly becomes unmanageable.

Apriori and TF-DIF, as mentioned before, are two tools from data mining

techniques to reduce the candidate space.

According to Apriori algorithm a k-keyword set can be frequent iff all of its sub

sets of keywords are frequent. Using the negotiation here we can say if a

keywords set K is not frequent its supersets containing K keywords sets can

never qualify as frequent. Using this fact, we can quickly determine the

keyword sets which can never become frequent and drop them from possible

concepts list. The breadth first search uses this principle in each of the

iteration to produce a list of retained candidates. This is another reason of

applying the breadth first strategy. The Apriori algorithm is helpful in reducing

the computation and memory expensive operations.

As for TF-IDF, we have modified its original formula to suit our requirements.

Once all available documents from the internet have been processed and

stored in the knowledge base, the value of document frequency will no longer

be necessary since all concepts will be there in the KnowledgeBase. But for

creating a KnowledgeBase we first use both TF as well as DF.

19

TF-IDF is more important and relevant to our requirement because it helps in

discovering frequent keyword sets or tokens and as well as it helps in

eliminating keyword sets that are too frequent, too commonplace or are stop

words. Instead of using the actual IDF formula we only use a simple document

frequency (DF) percentage calculation for each keyword set, and then set a

minimum and maximum threshold points to determine if a keyword set is to

be discarded.

 By using these two tools to reduce the candidate set, we have effectively

turned around an insurmountable problem into a manageable one. The actual

pruning threshold (user configurable) determines how much of the candidate

space has been reduced. Using an aggressive pruning threshold would give us

smaller candidate space but can risk discarding the important candidates (false

negatives). On the other hand, using a relaxed pruning threshold might bring

back the cardinality problem if almost all of the candidates are kept that will

give us many false positives.

Another strategy we employ is the maximal simplex property, which helps in

purifying the captured concepts or knowledge. According to maximal simplex

property, if a K-length human concept is determined as frequent and kept as

concept then any concept formed by subsets should be discarded as we have

already captured and kept a more solid human concept.

Let’s take an example from our analysis to better understand the usage of

maximal simplex.

ID Tokens TokenCount Frequency Discard

1

big data analysi

process 4 100

2 big data analysi 3 210 Yes

3 Big data 2 300 Yes

4 data 1 410 Yes

5 big 1 380 Yes

Table-1-Simplicial complex maximal keywords sets

20

In above example as per maximal simplex property we should discard all

subsets simplices “big”, “data”, “big data” and “big data analysi” as we have

captured “big data analysi process” which is the maximal simplex. While the

maximal simplex property is clear in mathematics it is very difficult and

inappropriate to apply the same version in text processing. We have slightly

modified this property in order to capture all possible human concepts. We

are allowing the subsets of maximal simplex to qualify as human concept if

satisfy in the following equation. Rather than blindly discarding the subsets,

we take into account their frequency before deciding whether to discard them

from human concepts. In this fashion, we determine if the subset is another

concept altogether or not. Here is the formula:

Let MK is maximal simplex of size K

MK-1 is subset of MK of size K-1.

In order to keep MK-1 as a human concept it should have the following

property. If Frequency FK-1 is equal or more than double the frequency FK then

keep both MK and MK-1 else discard MK-1.

Again consider above example and see which concepts can be retained.

ID Tokens TokenCount Frequency Discard

1 big data analysi process 4 100 No

2 big data analysi 3 210 No

3 Big data 2 300 Yes

4 data 1 410 Yes

5 big 1 380 Yes

Table-2-Simplicial complex maximal keywords sets our version

Here we are keeping both “big data analysi process” and “big data analysi”

even though “big data analysi” is subset keywords. But as the frequency (210)

of “big data analysi” is more than double of that (100) of “big data analysi

process”; so we keep both. But we are discarding “Big data” because its

21

frequency (300) is less than double of frequency (210) of “big data analysi”.

Same applies for “data” & “Big” concepts. By this modification in maximal

simplex property, we are able to capture more solid human concepts.

After passing through pruning, a Token set or token can be considered as

human concept and is stored in KnowledgeBase.

KnowledgeBase

Processed Text/html Documents

Concepts Store

User Search Results

Extract one, two, three, n tokens from

documents

Remove already known stop

words noise

Stem tokens using Potter

Stemmer Algorithm
TF-DF Calculation TF-IDF Pruning, Concept Load

Remove stop words created

after pruning

RawTokens

RawTokens

Figure-3-Core Engine

extractTokens removeNoise stemToken calculateTf-IDF storeRawTokens pruneConcepts

KnowledgeBase

RawTokens

Figure-4-Sequence Diagram

22

4.3.4 Rawtoken Database

Until now we have created a knowledgeBase. However, if a new document is

introduced, the existing system should be equipped to handle it.

For this, the following two approaches have been experimented with:

4.3.4.1 First Approach

 In accordance with the existing approach used in this project, we already

have a knowledge base setup, so why not just use that to cluster the

concepts contained in the new document.

The following scenarios are possible:

I. The new document is entirely new and there is no previous

knowledge stored about it in the already existing knowledge base.

II. The document is similar to the previously processed data sets and

contains same concepts which we have already stored in the

knowledge base.

III. The new document contains some old/previously captured

concepts along with some new concepts.

All of these have one thing is common: from the project perspective, it will

first be tokenized and then after processing it will be stored in knowledge

base.

The overall approach in this situation of handling a new document can be

illustrated by the steps explained below.

Here the first step is to read the document and stored in buffer for

processing. After reading the document in to the buffer, all non-

alphabetical characters are removed from it leaving behind only English

words to process which saves processing time and memory. The first

iteration of the processing is to remove STOP words from the raw text data

- always read into lower case to remove ambiguity. After removing STOP

23

words the tokens are fed to the stemmer routine where the root/stem

word of each token is identified. Once stemming is done, we again send

the stemmed tokens for STOP words removal (to remove possible STOP

words from popping up after stemming). Let’s take an example:

Suppose we have tokens like, “User is working on big data and he is having

a great time.”

Step 1: Read tokens, lower case, and remove special characters if any.

 user is working on big data and he is having a great time

Step 2: Remove STOP words.

 user working big data having great time

Step 3: Stem the tokens and find out root words.

 user work big data have great time

Step 4: Again remove STOP words.

 user work big data great time

As we can see that removing STOP words helps in saving processing and

memory in step 3 as the program has less tokens to process. But having

step 4 for removing STOP words again helps in pure knowledge base

creation as it removes the words which have become STOP words after

stemming as here “having” was not a STOP word but “have” is a STOP word

so it should be removed.

After processing the raw data into parsed tokens, we start counting the

frequency for the tokens and insert into tokens database without

removing any tokens even if they repeat for very less frequency. As a small

document will have fewer repeating tokens but it may contain concepts

which are new to knowledge base. So we keep all the tokens obtained by

the new document. Doing this way and not calculating TFIDF for new

documents again makes the processing very fast.

We repeat the same methodology for all new documents and we keep on

24

increasing the tokens database. Once any token or token set count in the

table increases more than the threshold value for frequency it can be

considered as human knowledge and will be inserted into knowledge base

and will be removed from tokens table.

In this way we have an efficient and fast method to handle new

documents.

4.3.4.2 Second Approach

To handle the situation of new document, we made some changes in the

architecture of the system and modified the way it handles any tokens

extracted from the documents. Here we added a new RawTokens database

for all the tokens which can be candidate concepts but are not qualified as

a concept because of two main reasons:

I. Either the documents set getting processed is not very large to pick

those tokens as concept.

II. Or the value of TF-IDF is set so large that the tokens don’t qualify

for concepts.

According to the previous architecture, when we finish processing the

tokens out of the documents, the tokens which are not qualified as

concept are thrown out and then load the selected concepts to concepts

database. But what if we keep all the potential tokens along with the

information of frequency and document frequency for that token.

Doing so will help us in adding new documents or concepts in the table and

results will improve significantly.

Suppose we are processing new documents and we extract all the possible

concepts out of the document. Now we consider the RawTokens database

to calculate TF-IDF for the new tokens. This can be explained by following

example:

25

Tokens from old documents

Tokens Frequency IDF TF-IDF IsConcept

Big data 10 0.04 0.4 YES

Hadoop Analytics 20 0.03 0.6 YES

Data

Warehousing

9 0.06 0.36 NO

Business

Movement

8 0.01 0.08 NO

Table-3- Tokens from old documents

TF-IDF = 0.04

Concepts in KnowledgeBase

Tokens Frequency IDF TF-IDF IsConcept

Big data 10 0.04 0.4 YES

Hadoop

Analytics

20 0.03 0.6 YES

Table-4- Concepts in KnowledgeBase

Tokens from new Documents

Tokens Frequency IDF TF-IDF IsConcept

Social Network 8 0.02 0.16 NO

Dataset 9 0.04 0.36 NO

Data

Warehousing

3 0.04 0.12 NO

Table-5- Tokens from new documents

26

Tokens Table after considering RawTokens

Tokens Frequency IDF TF-IDF IsConcept

Social Network 8+0=8 0.02 0.16 NO

Dataset 9+0=9 0.04 0.36 NO

Data

Warehousing

3+9=12 0.05 0.6 YES

Table-6- Tokens Table after considering RawTokens

Concept from new documents

Tokens Frequency IDF TF-IDF IsConcept

Data

Warehousing

3+9=12 0.05 0.6 YES

Table-7- Concept from new documents

Updated Concepts

Tokens Frequency IDF TF-IDF IsConcept

Big data 10 0.04 0.4 YES

Hadoop

Analytics

20 0.03 0.6 YES

Data

Warehousing

3+9=12 0.05 0.6 YES

Table-8- Updated Concepts

By applying this architecture of RawTokens we have successfully dealt with

two problems:

Firstly, we can handle large datasets of documents by processing small

chunks from those documents. Consequent results will, thus, be accurate

and the concept stored will be very strong as more data is used in the

formation of the concepts and as the TF-IDF suggest larger the dataset is

more correct the concepts are.

27

Second issue tackled is the better and accurate way of handling a new

document. This contributes to dynamic growth of the KnowledgeBase.

This approach also does away with the problem of re-tokenizing entire

documents in order to find concepts as we are already considering old

documents from RawTokens table.

KnowledgeBase

Concepts Store

User Search Results

Extract one, two, three, n tokens from

documents

Remove already known stop

words noise

Stem tokens using Potter

Stemmer Algorithm
Frequency Calculation Concept Load

Remove stop words created

after pruning

New Unknowwn DocumentNew Unknown Document

TokensBase

Check Threshold

Not

Concepts

RawTokens

RawTokens

Figure-5-RawTokens Database

4.3.5 KnowledgeBase

Once the last pruning is performed on the concepts extracted from the

documents we have successfully extracted the human concepts which can be

called the KnowledgeBase. The knowledge base will be used to return the

correct and related results for the user search queries. It will offer suggestions

to users in the form of concepts related to the query from which they can

chose their intended concept post which the knowledge base will return the

documents containing relevant information. The following table shows top

150 concepts extracted from 600 IEEE papers on Big Data. We can clearly see

that all the concepts captured are related to big data and say that program is

28

successfully able to capture the concepts. The point worth noting here is the

top 150 concepts are 3 words which is due to the rule we applied during

pruning the concepts of keeping the maximal simplex. That is the reason why

concept containing only big data is pruned.

Top 150 concepts from “Big Data” KnowledgeBase

ID Tokens TokenCount Frequency DocFrequency TokensOrigin

2228 big data analyt 3 409 38 Big Data. analytics

2308 big data process 3 349 48 big data processing

2482 big data applic 3 265 33 big data application

2271 big data comput 3 230 40 BIG DATA Computer

2413 big data manag 3 218 34 Big Data Management

2334 big data analysi 3 204 30 big data analysis

2270 big data cloud 3 171 30 BIG DATA CLOUD

2324 big data technolog 3 170 30 BIG DATA Technology,

2415 big data model 3 155 23 big data model

2322 big data storag 3 141 19 big data storage

2461 big data inform 3 130 31 Big Data information.

2737 big data servic 3 129 16 big data services

2244 big data platform 3 127 25 Big Data platforms

2234 big data challeng 3 124 34 Big Data. challenges

2262 big data busi 3 116 16 big data business

2418 big data new 3 115 25 big data new

2424 big data provid 3 113 20 big data provides

2302 big data need 3 108 22 big data need

2335 big data architectur 3 96 15 big data architectural

2246 big data research 3 94 25 Big Data research.

2303 big data network 3 92 13 big data network.

2404 big data gener 3 89 25 big data general

2529 big data framework 3 88 20 big data framework

2499 big data larg 3 84 21 big data large

2409

big data

infrastructur 3 81 11 Big Data Infrastructure

2347 big data paper 3 78 27 big data paper,

2364 big data distribut 3 77 17 big data distributed

2723 big data traffic 3 77 6 big data. Traffic

2798 big data user 3 76 12 Big Data user

29

2530 big data hadoop 3 76 17 big data Hadoop

2321 big data set 3 76 27 big data set

2425 big data requir 3 75 20 big data requirements.

2512 big data secur 3 73 8 big data security.

2522 big data cluster 3 73 9 big data cluster,

2393 big data collect 3 72 18 Big data collection

2656 big data integr 3 72 13 big data integration

2450 big data differ 3 71 16 Big Data different

2372 big data http 3 70 15 Big Data http

2941 big data center 3 70 7 Big Data center

2764 big data sourc 3 69 14 big data. Sources

2320 big data scienc 3 69 16 BIG DATA Science,

2507 big data problem 3 67 18 big data problem

2229 big data analyz 3 66 17 Big Data analyze

2584 big data base 3 65 21 Big Data based

2500 big data mapreduc 3 65 14 big data MapReduce

2462 big data issu 3 63 12 Big Data Issues

2486 big data complex 3 63 13 big data complex

2479 big data volum 3 63 17 Big data volume,

2250 big data store 3 62 17 Big Data store

2408 big data includ 3 61 14 Big Data including

2316 big data result 3 60 18 big data result

2305 big data perform 3 60 22 big data performance

2582 big data type 3 58 14 Big Data types

2381 big data valu 3 57 10 big data value

2357 big data approach 3 56 18 Big Data Approach

2423 big data propos 3 55 18 big data proposes

2769 big data access 3 54 11 Big Data accessing

2558 big data relat 3 53 17 big data. related

2430 big data section 3 53 14 Big Data Section

2792 big data structur 3 52 10 Big Data. structured

2274 big data creat 3 52 12 big data creates

2488 big data cost 3 51 14 big data. cost

2282 big data environ 3 51 14 big data environment,

2414 big data method 3 50 13 BIG DATA methods

2496 big data increas 3 49 13 Big Data increasing

2699 big data develop 3 48 16 big data. Development

2291 big data ieee 3 47 20 big data IEEE

2607 big data high 3 47 12 Big Data, high

30

2635 big data govern 3 47 9 Big Data governance

2705 big data introduct 3 47 17 Big Data, Introduction

2373 big data industri 3 46 10 Big Data industry

2505 big data present 3 46 15 big data present

2580 big data tradit 3 45 12 BIG DATA traditional

2516 big data work 3 45 16 big data work,

2625 big data workload 3 45 7 Big Data workload

2345 big data organ 3 44 13 big data organizations

2732 big data make 3 44 13 big data makes

2258 big data algorithm 3 44 15 big data algorithm

2240 big data enterpris 3 42 6 Big Data enterprise

2474 big data techniqu 3 42 13 big data, techniques

2644 big data social 3 41 9 big data social

2845 big data onlin 3 40 6 Big Data online

2527 big data featur 3 40 10 Big Data feature

2778 big data heterogen 3 40 7 Big Data heterogeneity,

2608 big data import 3 39 12 Big Data, important

2431 big data semant 3 38 9 Big Data semantic

2540 big data time 3 37 13 Big data times.

2508 big data public 3 37 6 big data publication

2509 big data reduc 3 35 8 big data. reduced

2610 big data job 3 35 6 Big Data jobs

2503 big data parallel 3 34 8 big data parallel

2403 big data follow 3 34 11 Big Data following

3053 big data opportun 3 33 10 Big Data Opportunities

2352 big data refer 3 33 12 Big Data refers

2735 big data resourc 3 33 10 big data resource

2720 big data stream 3 33 8 Big Data, Stream

2476 big data varieti 3 33 10 Big data variety.

2528 big data file 3 32 8 big data File

2398 big data discuss 3 32 9 Big Data discussion.

2748 big data effect 3 32 10 big data effectively

2520 big data associ 3 32 5 Big data Associate

2652 big data exampl 3 31 10 big data example,

2538 big data softwar 3 31 9 big data software

2427 big data scientif 3 31 7 Big Data Scientific

2327 big data world 3 31 8 big data world

2799 big data vol 3 31 6 Big Data VOL.

2355 big data variou 3 30 12 big data various

31

2681 big data qualiti 3 30 7 Big Data quality,

3319 big data intellig 3 30 5 Big Data intelligence

2338 big data engin 3 30 7 Big Data Engineering

2671 big data control 3 29 9 Big data control

3034 big data studi 3 29 11 Big data study

2797 big data unstructur 3 29 7 Big Data unstructured

2561 big data wai 3 28 9 big data. ways

2911 big data queri 3 28 6 big data query

2611 big data knowledg 3 28 6 Big Data knowledge,

2886 big data oper 3 28 6 Big Data operation

2379 big data support 3 27 11 big data support,

2491 big data databas 3 27 10 big data database

3025 big data extract 3 27 4 BIG DATA extracting

2452 big data dynam 3 26 5 big data, dynamic

2879 big data futur 3 26 10 big data future

2808 big data initi 3 26 4 big data initiatives

2922 big data design 3 26 7 big data design

2968 big data consum 3 26 5 big data, consumed

2537 big data size 3 26 7 BIG DATA size

2432 big data solut 3 25 11 big data solutions

3101 big data real 3 25 7 big data real

2834 big data repres 3 25 6 big data representing

2822 big data context 3 25 5 big data context

2237 big data current 3 25 6 Big Data current

2292 big data improv 3 25 9 big data improve

2729 big data enabl 3 25 8 big data enables

2904 big data huge 3 24 6 big data huge

2377 big data scale 3 24 8 big data scaling,

2643 big data risk 3 24 4 Big Data Risk,

2433 big data specif 3 24 7 big data specific

2616 big data object 3 24 5 Big Data object

2590 big data pattern 3 24 5 Big Data patterns,

2618 big data predict 3 23 6 Big Data predictive

3005 big data ef 3 23 5 big data ef

2545 big data dataset 3 23 10 Big Data datasets

2268 big data china 3 23 4 BIG DATA China

2235 big data chang 3 23 6 Big Data changing.

2669 big data case 3 22 6 BIG DATA cases,

2272 big data confer 3 22 6 big data Conference.

32

3141 big data consid 3 22 6 big data Considering

2362 big data decis 3 22 6 big data decision

2673 big data econom 3 22 5 big data economics

2245 big data possibl 3 22 8 Big Data possibly

Table-09-Top 150 Concepts from KnowledgeBase

5 ANALYSIS AND RESULTS

5.1 Comparison with google search results

In order to verify the concepts obtained by the project we have fed some

search result pages from Google search to the program on different topics, like

“Apache Zookeeper”, “Holy Grail”, “Sound Investment”, “Pig Latin” etc. The

following tables show the concepts extracted from those pages obtained by

Google search. If we can see the same concepts in the KnowledgeBase which

we searched for, we can conclude that the program successfully captures

concepts and extracts knowledge from unknown documents.

All of the files which behaved as controlled input to the Concept Extractor are

fed as obtained.

5.1.1 Concept extracted from “Apache Zookeeper” Google search data

Top 20 results obtained by Google search for “Apache Zookeeper” is used here

as test data. These files are then fed to the program to extract human

concepts. The expected result will include concepts related to Apache

Zookeeper, Hadoop, Big data etc.

As expected, the top concepts are related to these topics. We see that “big

data”, “Cluster”, “Open Source” also feature in top concepts and thus the

proposed methodology was successfully able to relate Zookeeper to Big data

which is a clear indication that program is able to extract human concepts.

33

Table-10-Concepts for Apache Zookeeper

5.1.2 Concept extracted from “Holy Grail” Google search data

Top 30 results obtained by Google search for “Holy Grail” are used as test data

for the program. We have chosen these keywords as search query as Google

returned many pages related to a song “Holy Grail” which is not the correct

concept contained by words. The expected result will include concepts related

to the Holy Grail dish and concepts related to mythology.

As expected the top concepts are related to the mythological Holy Grail. As we

can see that “knight Arthur is also in top concepts. Still we can see some of the

results related to video which is because of the pages

34

Table-11- Concepts for Holy Grail

5.1.3 Concept extracted from “Pig Latin” Google search data

Top 44 results obtained by Google search for “pig latin” are used as test data.

Those files were then fed to the program. The expected result will include

concepts related to Apache Pig, Hadoop or Big data and the language pig latin

etc. We chose this phrase as most of the results returned from google are

related to language pig latin and not to Apache Pig. This is the reason we

increased the no. of result files fed to program

As expected the top concepts are related to these topics. As we can see that

“Hadoop pig latin”, “pig script” are also in top concepts we can clearly see that

proposed methodology successfully able to relate pig latin to Big data.

35

Table-12- Concepts for Pig Latin

5.1.4 Concept extracted from “Sound Investment” Google search data

Top 52 results obtained by Google search for “sound investment” are used

here as test data. Those files then fed to the program. The expected result will

include concepts related to financial domain data and not to music industry.

Most of the results returned by google were related to music and investment

separately and not related to financial domain.

As expected the top concepts are related to these topics. As we can see that

“stock market”, “financial plan”, “stock bond” are also in top concepts we can

clearly see that proposed methodology successfully able to relate sound

investment to finance.

36

Table-13- Concepts for Sound Investment

5.2 Safe range for TF-IDF

In order to find out which threshold for term frequency or document

frequency will be best capturing the solid concepts or pure knowledge we

studied the relation between TF-DF by keeping constant data size in one

experiment and repeating the same experiment to find out how data size can

affect their relation.

Below are the result graphs explaining the relation. I must mention here that

safe range for TF-DF is between TF ranging from 1.2% to 1.8% and for DF is

from 0-95% to 10-95%. This value doesn’t change much by change in data size

and almost all the concepts are captured irrespective of data size.

37

Figure-6-Graph representing relation between TF-IDF with DF

X axis – Token frequency | Y axis – No. of concepts extracted * Constant

38

5.3 Query retrieval and search results

The search queries retrieval is also a crucial part of every search engine. We

propose a new approach in this section. Almost all of the search engine

present today works on guessing the intended meaning of the search query

like if I searched for “sound investment” google assumed that I am interested

in pages related to music but my intension was to search for pages related to

finance which talk about investment which can give me good returns.

Our search engine rather than giving the pages containing the concepts first

provides a list of related concepts from the KnowledgeBase which relates to

the search query so that user can pick up his intentional concepts. In above

query the search engine developed will the user a list of concepts related to

both finance and music from which user will choose one.

Once the user provides his intentional concepts from list of related concepts

the engine will provide the list of pages containing the concept user search

along with main concepts from those documents. By providing the list of

concepts contained by each page the possibility of user looking into wrong

document decreases to a large extent as he will know the central idea of the

document returned by just looking at the concept list of that document. So our

search engine works on “asking the correct questions to user rather than

guessing”. Below sample will provide a better understanding of the approach.

Please Enter your search query..
Sound

The knowledgebase contains following concepts related to

your query..

home sound invest, 84957,HOME Sound Investment

servic sound invest, 86082,Services Sound Investment

event sound invest, 85211,events Sound Investment

music sound invest, 86875,musical Sound Investment,

contact sound invest, 85171,Contact Sound Investment

39

audio sound, 4770,audio, sound

home invest sound, 85694,Home Investment Sound

product sound invest, 88573,Products Sound Investment

wed sound invest, 85478,wedding Sound Investment

creat sound invest, 87122,create Sound Investment

home servic sound invest, 106460,Home Services Sound

Investment

financi sound invest, 86364,FINANCIAL Sound Investment

compani sound, 14366,companies. Sound

plan sound invest, 86483,PLANNING Sound Investment

product servic sound invest, 107757,production services

Sound Investment

Please enter the intended concept id.. (As I am interested
in finance)

86364
C:\Users\Pradeep\Documents\CS298\Reports\TestData\SoundInve
stment\new 31.txt

home sound invest, 57

stock market, 24

financi plan, 22

financi invest, 20

make invest, 20

plan invest, 20

privaci polici, 19

retir invest, 19

home invest sound, 16

portfolio invest, 16

creat invest, 15

financi sound invest, 13

new invest, 13

right reserv, 13

help invest, 12

C:\Users\Pradeep\Documents\CS298\Reports\TestData\SoundInve
stment\new 26.txt

servic invest, 38

contact invest, 23

financi plan, 22

manag invest, 22

financi invest, 20

asset alloc, 20

plan invest, 20

retir invest, 19

market invest, 14

new york, 14

advisor invest, 13

financi sound invest, 13

team invest, 13

40

client invest, 12

need invest, 12

C:\Users\Pradeep\Documents\CS298\Reports\TestData\SoundInve
stment\new 19.txt

home sound invest, 57

servic invest, 38

manag invest, 22

financi invest, 20

make invest, 20

fund invest, 19

privaci polici, 19

home invest sound, 16

compani invest, 16

portfolio invest, 16

commun invest, 13

financi sound invest, 13

advisor invest, 13

compani sound, 12

need invest, 12

C:\Users\Pradeep\Documents\CS298\Reports\TestData\SoundInve
stment\new 13.txt

contact invest, 23

financi plan, 22

contact sound invest, 21

financi invest, 20

plan invest, 20

retir invest, 19

start invest, 17

financi sound invest, 13

team invest, 13

plan sound invest, 12

team sound invest, 12

save retir, 11

secur invest, 11

april invest, 10

plan financi, 10

6 FUTURE SCOPE

6.1 Applications

The built KnowledgeBase can be utilized in creating many useful semantically

aware applications. The following applications are proposed which can be

created with minor modifications in the core algorithm:

41

6.1.1 Automated Indexing of books

We can use the core engine of our work to create a system which

automatically generates index for books. There are two methods currently

available to create index for books:

a) The author has to create the index which can be automated by the

project as it is successfully able to extract the concepts contained

by the book.

b) A user reads and understands the book to create the index which

can be very tedious human effort.

Our project can help in saving this manual effort by providing a technique

for automated indexing of books and ease the efforts put in by authors and

publishers.

6.1.2 Preventing misuse of sale categories in e-commerce websites

The program created in this project can also be used to test if specific

listings of products on e-commerce websites actually belong to the

product category they are launched in by third-party sellers. Major e-

commerce websites like Amazon, eBay, Alibaba charge a commission to

the seller as per the category of the product. The commission may vary as

per the category of the product listed. It may be less for some house hold

product and more for electronic products.

To trick the commission charged what sellers do is that they list all the

products in the category for which the commission is least so that they can

save more. E.g. they will list electronics in house hold items. One thing a

seller never lies about is the description of the product.

42

As the listings are not checked for correct category and, thus, generally not

caught. But following this practice is bad for both end user as they will not

find the item they are looking for in the specific category and owners will

earn less which will hamper their profits.

Our program can extract the concepts from the description which are

always true and find out the category for the product as description will

contain information about the product which can be mapped to its

category. Like a term “phone” should be listed in electronics and not in

household.

This application will help in better online shopping experience and the

owners will also earn the profits.

6.1.3 Document clustering by their knowledge

The application can be used in creating document clusters as per their

knowledge, which our program can extract. Clustering the documents as

per their contents will help in better search results. As a document in a

cluster will be related to all other documents in that cluster so the user

might be interested in other documents as well. We can list the related

documents for him from the cluster and his query will be served better.

6.2 Migration to Hadoop

The central idea is to prove that the algorithm explained by the project work

is relevant and utilizable in creation of semantic search engine. After the proof

of concept and taking into account promising results, a platform has been

created for future scope by building the foundation and successfully migrated

the program to Hadoop by keeping the underlined vision that we would like to

extend the project to create a better semantically aware concept based search

43

engine. We have seen that as per the results we can surely say that the project

is successfully able to capture the concepts and it is correctly extracting

knowledge from unknown documents. This project is to demonstrate that the

same algorithm can be used for creating a concept based semantic search

engine. Let’s first revise the terms used here:

Concept means human knowledge represented in words in the documents as

well as html pages on the web. If we are extracting that knowledge from the

documents we can say that our system will know that knowledge and can

behave as a brain, if you will, which has all the answers or links to the

documents containing the answers for any query (Central assumption: the

system has processed all of the available documents/html pages and stored all

the concepts achieving which is discussed later in this section).

The second term is semantic which means that words which are written

together (side by side to each other) or in a nearby paragraph are related to

each other in the context which they are trying to represent. I will use an

example here provided by Dr. Pearce during one of the discussions on project

and it clearly explains the meaning. Let the sentence be “Pradeep Roy is skiing

and swimming and he is nature lover.” The words ‘Pradeep’ and ‘nature lover’

do not appear side by side but are still getting used to express the fact that

Pradeep loves nature. So these words are semantically related to each other

representing a concept. Our system also captures this scenario and

successfully finds the semantics in the words. So the search engine made on

top of the current setup will be semantically aware.

The third word is Search Engine which explains that the system developed and

demonstrated by the project will be used in making a search engine to provide

the better search results to user then most of the available search engines

present today.

44

6.2.1 Building blocks of search engine

The basic and the most important building block of any successful search

engine is the amount of data it knows and can search from. The quality of

results is directly proportional to the data size, more the data more accurate

the results are if processed correctly. In order to make our search engine we

would require to process all of the data available on W3. We have already

found out the limitation of the prototype created in the project that it cannot

handle large amount of data. The only solution to the problem is to migrate to

Hadoop where we can analyze Big Data without hitting the memory

constraints. Hadoop is designed specifically to overcome these constraints. As

a trend it is better to migrate Hadoop in the first place rather than after

creating a stable product. The only requirement to migrate to Hadoop other

than having the infrastructure is paralleling the task. If a task can be paralleled,

the algorithm can be successfully paralleled as well. We can parallelly analyze

the documents divided into many small documents and extract the potential

concepts out of them and then finally we can merge all the potential tokens to

find out actual tokens.

After a brief introduction to Hadoop we will see the pseudo code explaining

the flow in terms of map reduce. Knowing Hadoop architecture will help us

better understand the problems which we may face in future and their

solutions.

6.1.2 Hadoop Architecture and MapReduce

Hadoop works on Hadoop Distributed File System (HDFS) which is designed

and implemented to run on cheap commodity hardware. It has transformed

by keeping some part with typical Distributed File System and in that way it is

very much similar to it. Even then the differences are significant and

prominent. HDFS is designed to be fault tolerant and is designed to run on low

45

cost hardware. HDFS is very much suitable to the applications which are

designed to handle very large datasets like search engine. Google and Yahoo

run on HDFS and many other social networking companies have large HDFS

clusters of approximately 1000 nodes and process petabytes of data. HDFS has

high throughput access for the application data.

HDFS provides the platform to run Hadoop MapReduce jobs. Hadoop

MapReduce is a java framework which is built to write applications which

process large amounts of data. Applications can process that large data in

parallel on large clusters which are reliable and fault tolerant. A MapReduce

job is basically divides the data into independent chunks which are then

processed by map tasks in parallel. The output of the map tasks is the input to

reduce tasks. The MapReduce framework is takes care of scheduling,

monitoring and re-execution of failed tasks. Typically the data-nodes which

store the data are also the compute nodes. MapReduce and HDFS run on the

same nodes. This configuration enables the MapReduce to schedule the tasks

on the nodes where data available in advance. This saves a lot of bandwidth

for data transmission. MapReduce has two components:

I. Single master JobTracker,

II. One TaskTracker per node in the cluster

The JobTracker works for scheduling the jobs and deploy the tasks to slave

nodes, monitoring, and re-executing failed tasks. The slave nodes perform the

tasks. The applications developed specify input and output locations from

where to get data and to where to store the results. All the applications have

map and reduce functions via implementations of corresponding interfaces or

abstract class. Hadoop job client is responsible for submitting the jobs and

configuration to JobTracker. Hadoop MapReduce framework is written in Java

but it is not mandatory to write the applications using it in Java. Our

46

application is written in Java.

6.1.3 Pseudo Code and Class explaination

For any project to run on Hadoop, it is mandatory that the task can be split

into many parallel tasks so that Hadoop can utilize the underlying concept of

map and reduce.

The pseudo code remains the same and the outline would be:

Crawl the web space and collect the documents

For each task do {

Documents <= parse to make usable format

Map: For documents extract tokens

 Calculate TF, DF for tokens

Reduce: Merge TF-DF for same tokens

 Calculate TF-IDF

Perform pruning

}

Map Classes

Mapper Class Functionality

TokenCountInDoc Many mappers reads a document in parrallel

Calculates the frequency of each token in the document

TokenCountInDocs Calculates token frequency of each token for many

documents using TokenCountInDoc

 Keep a record of document frequency for each token

47

TokenTFIDF Calculates TF-IDF for all the tokens

Table-14- Map Classes

Reduce Classes

Reducer Class Functionality

TokenCountInDocRedu

cer

 Takes input from corresponding mappers and

merge the results

TokenCountInDocsRed

ucer

 Takes input from corresponding mappers and

merge the results

TokenTFIDFReducer Takes input from corresponding mappers and

merge the results

Table-15- Reduce Classes

6.1.4 Initial development

As migration to Hadoop is a future scope, we have successfully developed part

of the project where TF-IDF from all of the documents can be calculated for all

multiple keyword tokens sets.

Pruning of keywords which don’t qualify for being designated a concept is an

area that can be picked up along with implementing the above mappers and

reducers.

6.1.4 Infrastructure suggested

The following recommendations are made based on my research:

48

DataNode or Slaves:

· 1-4 TB HDD configuration 2 quad-core processors having at least 2-

2.5GHz 4-8 GB RAM

· Bonded Gigabit Ethernet card.

NameNode or Master Node:

· 1TB hard disks 2 quad core processors, at least 2-2.5GHz 16-32 GB

of RAM

· Bonded Gigabit Ethernet card

49

7 REFERENCES

1. Tsau Young (T. Y.) Lin, Albert Sutojo and Jean-David Hsu; Concept Analysis

andWeb Clustering using Combinatorial Topology (2006)

2. Tsau Young (T. Y.) Lin and Jean-David Hsu; Knowledge Based Search Engine

Granular Computing on theWeb

3. Apriori algorithm; http://www.cs.sunysb.edu/~cse634

4. Introduction to Information Retrieval - By Christopher D. Manning, Prabhakar

Raghavan & Hinrich Schütze ; Website: http://informationretrieval.org/ ;

Cambridge University Press

5. Google Search, http://www.google.com.

6. Porter Stemmer Algorithm, http://tartarus.org/martin/PorterStemmer/,

2006.

7. https://pdfbox.apache.org/index.html

8. http://hadoop.apache.org/docs/r0.18.0/hdfs_design.pdf

9. http://www-01.ibm.com/software/data/infosphere/hadoop/mapreduce/

10. https://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-

for-your-new-hadoop-cluster/

11. http://obitko.com/tutorials/ontologies-semantic-web/semantic-

webarchitecture.html

	San Jose State University
	SJSU ScholarWorks
	Spring 2014

	Concept Based Semantic Search Engine
	Pradeep Roy
	Recommended Citation

	CS298_4_20_14.pdf

