LWA 2006

Constraining the Search Space in Temporal Pattern Mining

Andreas D. Lattner and Otthein Herzog
TZI1 — Center for Computing Technologies, Universitidt Bremen
PO Box 330 440, D-28334 Bremen, Germany

{adl

Abstract

Agents in dynamic environments have to deal
with complex situations including various tem-
poral interrelations of actions and events. Dis-
covering frequent patterns in such scenes can be
useful in order to create prediction rules which
can be used to predict future activities or situa-
tions. We present the algorithm MiTemP which
learns frequent patterns based on a time interval-
based relational representation. Additionally the
problem has also been transfered to a pure re-
lational association rule mining task which can
be handled by WARMR. The two approaches are
compared in a number of experiments. The ex-
periments show the advantage of avoiding the
creation of impossible or redundant patterns with
MiTemP. While less patterns have to be explored
on average with MiTemP more frequent patterns
are found at an earlier refinement level.

1 Introduction

Agents in dynamic environments have to deal with com-
plex situations including various temporal interrelations of
actions and events. If more elaborated technologies like
planning should be used, the representation of the agent’s
belief including background knowledge for its behavior de-
cision can become very complex, too. It is necessary to rep-
resent knowledge about object classes and their properties,
actual scenes with objects, their attributes and relations. If
even more complex scenes with temporal extents shall be
described this additional dimension must also be incorpo-
rated in the formalism.

Discovering frequent patterns in dynamic scenes can be
useful in order to create prediction rules which can be used
to predict future activities of other agents or to predict fu-
ture situations and, thus, adapt the own behavior by taking
into account this additional knowledge. In previous work
a relational representation with temporal validity intervals
and algorithms for mining temporal patterns have been in-
troduced in [Lattner et al., 2006]. Here, we present a new
algorithm which is also based on such a representation but
avoids the creation of redundant patterns by defining an op-
timal refinement operator similar to the one in [Lee, 2006].
Additionally to the own implementation the problem has
also been transfered to a pure relational association rule
mining task which can be handled by WARMR [Dehaspe
and Toivonen, 1999].

herzog} @tzi.de

2 Related Work

Association rule mining addresses the problem of discov-
ering association rules in data. One typical example is the
mining of rules in basket data [Agrawal er al., 1993]. Dif-
ferent algorithms have been developed for the mining of
association rules in item sets (e.g., Apriori [Agrawal and
Srikant, 1994]). [Mannila et al., 1997] extended associa-
tion rule mining by taking event sequences into account.
They describe algorithms which find all relevant episodes
which occur frequently in the sequence. Hoppner presents
an approach for learning rules about temporal relationships
between labeled time intervals [Hoppner, 2003]. The time
intervals consist of propositional events and temporal rela-
tions are described by Allen’s interval logic [Allen, 1983].

Dehaspe and Toivonen combine association rule mining
algorithms with ILP techniques. Their system WARMR is
an extension of Apriori for mining association rules over
multiple relations [Dehaspe and Toivonen, 1999]. The gen-
erated rules consist of sets of logical atoms. This more ex-
pressive representations (compared to itemset mining) al-
lows for discovering relational association rules.

[Kaminka er al., 2003] introduce an approach which cre-
ates a sequence of certain events or behaviors from objects’
positions in RoboCup soccer matches and searches for fre-
quent sequences in the data. In their work they compare
two approaches based on frequency counts and statistical
dependencies. The events in the sequences do not have
a temporal extent and the learned patterns do not abstract
from concrete objects in the events.

[Lee, 2006] presents an approach to mine first-order log-
ical (SeqLog) patterns from sequential relational data. He
defines optimal refinement operators and algorithms for
finding all frequent patterns. The support is defined by the
number of event sequences that match the pattern.

The approaches of Hoppner, Kaminka et al., and Lee are
quite similar to the one presented here. In contrast to Hopp-
ner and Kaminka our approach can learn relational patterns
with variables which is also supported by [Lee, 2006]. Like
Hoppner we take an interval-based representation as input
and mine temporal patterns with temporal inter-relations
between these intervals. We also use a similar support def-
inition which is based on the probability to find a pattern
at a random sliding window position in the sequence. In
contrast to our work, Kaminka et al. and Lee’s approaches
are based on event sequences without temporal extent.

Our approach combines and extends these existing ap-
proaches. To the best of our knowledge no approach has
addressed the mining of frequent temporal patterns from
multi-relational time interval-based data. Our approach al-
lows for taking hierarchical class information into account

314

(while existing approaches just provide types for variables).
Reasoning techniques are used to exploit the knowledge
about temporal relations and about classes in order to re-
duce the number of patterns to be generated and to avoid
checking inconsistent patterns.

3 Definitions and Problem Statement

The goal of the mining task is to find the set of all fre-
quent temporal patterns from a dynamic scene. Before the
approach is described in detail we provide some defini-
tions. Let V, O, C, and ZR be the sets of variables, objects,
classes, and temporal interval relations, respectively.

Definition 3.1 (Dynamic Scene) A dynamic scene is de-
scribed by the 4-tuple ds = (P,0,i,DSS) where P
is the set of predicate instances, O is the set of objects
in the dynamic scene, i : O — C maps the objects to
classes (instance-of relation), and DSS is the dynamic
scene schema. |

Definition 3.2 (Dynamic Scene Schema) The schema of
a dynamic scene DSS = (C, sc, PD,IR) consists of all
schematic information. C is the set of classes and sc : C —
C maps classes to their super classes and thus describes the
class hierarchy. C consists of at least one element which
denotes the most general class (object). PD is the set of
predicate definitions and IR the set of the temporal inter-
val relations. O

Predicate definitions consist of the identifier, the arity,
and the allowed ranges for the objects in their instances.

Definition 3.3 (Predicate Definition) A predicate defini-
tion pd is deﬁnEd as pd = (pdnammpdarityvpdclasses)
with pdeigsses = (C1,C2, 5 Cpdy,i,). All c; denote
classes in the dynamic scene schema, i.e., c¢; € C with

1 S 1 S pdarit@y O
Definition 3.4 (Predicate Instance)
Predicate instances Pl = (pd,
Dobjects: (S,€)) are instances of predicate defi-
nition pd, consist of a list of object identifiers
Pobjects = (01,02, ,0pd,,.,,) With Yo; : 0; € O
of the dynamic scene, and additionally contain an interval
of validity (s, e) with start time s and end time e. O
For a better understanding we denote pred-
icate instances in a more readable way:
holds(predicate(oy,02, ... ,0pd,, .,) (5, €)) rep-
resents a predicate with pdyeme = predicate,

Dobjects (01,09,...,0pd,,,,), start time s, and
end time e. An example for a predicate in this notation is:
holds(inBallControl(p7), (17,42)).

Definition 3.5 (Interval Relation Function) The interval
relation function ir : (N,N) x (N|N) — IR maps time
interval pairs to interval relations. (I

It depends on the used interval relations ZR how the ac-
tual mapping from the interval pairs to the interval relation
has to be performed. Using, for instance, Allen’s interval
relations ir((s1, 1), (s2, e2)) = b (before) if (and only if)
e1 < s9 [Allen, 1983].

An atomic pattern consists only of one predicate pattern.
The difference to predicate instances is that the list of argu-
ments do not need to denote objects. In the general case the
elements of the pattern are variables that can be bound to
objects while pattern matching. However, it is also allowed
to have arguments bound to objects in the pattern already.

KDML 2006

Definition 3.6 (Atomic Pattern) An atomic pattern is de-
fined as p = (pd,parg) Where pd denotes a predi-
cate definition and p,,q specifies a list of terms pyrq =
(V1,25 -+, Updy, iy,)- All v; are either elements of O as
defined in the dynamic scene or are elements of V, the set
of variables, i.e., it holds Vv, € VU O . O

Definition 3.7 (Conjunctive Pattern) A conjunction of
atomic patterns is called conjunctive pattern. It con-
nects the atomic patterns by a conjunction (logical AND):
p1 A pa A ... N\ p, where the p; are atomic patterns with
1 < i < n; nis called the size of the pattern. O

instances above we

for conjunctive pat-

.y Ulpda'r'ity) A e A

predicate n(vn,, ..., Vn,,). An example
tarity

of a conjunctive pattern with two predicates is
uncovered(X) A pass(Y, X).

Definition 3.8 (Class Restriction) The class restriction
defines for each variable v; of a conjunctive pattern
its least general class c;. For a given variable list
(v1,va,...,v,) the class restriction is represented by a
class list (c1,ca,. .., Cn). O

Variable unifications define if certain variables in a (con-
junctive) pattern should refer to the same object in the as-
signment during pattern matching, i.e., if variables are uni-
fied.

Definition 3.9 (Variable Unification) A variable unifica-
tion of a pattern p is defined as the unification of two dif-
ferent arguments v, and vy of one or two predicates of p,
i.e., it must hold that v{ = vs. O

Similarly to the predicate
introduce a short notation
terns: predicate_1(vy,, ..

Binding a variable to a constant (i.e., to an instance) is
denoted as instantiation:

Definition 3.10 (Instantiation) A variable v; is instanti-
ated if it is bound to an instance of the set of objects in the
dynamic scene, i.e., if v; = owith o € O.

A temporal restriction defines the constraints w.r.t. the
validity intervals of two predicates in a conjunctive pattern.
The order of the predicates in a pattern defines a temporal
order implicitly already. A predicate must have an earlier or
identical start time as all its succeeding predicates. There-
fore, we define ZR 14 © ZR including those temporal
relations where the start time of the first interval s; is be-
fore the start time of the second interval s, i.€., 51 < So
and for the “head to head” temporal relations we define
TR C TR where the start times are equal, i.e., 51 = s2.

Definition 3.11 (Temporal Restriction) The temporal re-
striction TR = {TR[1,2],...,TR[n — 1,n]} of a con-
Jjunctive pattern p with size n is defined as the set of
pairwise temporal relations between all predicates. For
each predicate pair (pred;, pred;) of the pattern p where
pred; appears before pred; in the pattern, i.e., i < j,
the possible temporal relations between these two inter-
vals are defined by the set TRIi,j). It must hold that
Yir, € TR[Z,]] s try € ITRoider UIR‘: withl <i<n
and i < j < n due to the implicit temporal order of the
predicates. If the name pdyame,; of pred; is smaller than
Ddname,i of pred; w.r.t. a lexicographic order it must hold
that ¥tr, € TRIi,j] : try € TRoider in order to have a
canonical representation of the sequences. (I

In the experiments described in section 6 we use just five
temporal relations which can be seen as a condensed subset

315

LWA 2006

Bry C | uncovered(p7) <22, 35> uncovered(p6) <37, 44>
Ari B < <. = >c > ;L I]
< < < < <G <es | < <e | pass(p8,p7) <32, 45>
= > = > |
‘ > ‘ window, = <21, 33> window, = <35, 47>
<e < <e < <e <e P = o = e N e
>e > > | Support Interval: <21, 47>}
= <, <e <, <e = > > . o
attern atcl
Ze <o <e l<:’ ;C’ Zen > Zen > s pred, : uncovered(X) uncovered(p7) <22, 35>
g
> pred,: pass(Y,X) pass(p8,p7) <32, 45>
S < < S > S > S.. > S pred, older & contemp. pred,
s <es s c s
=, >ecs . .
E ¢ Figure 1: Pattern matching example

Table 1: Composition table for the temporal relations

of the temporal relations introduced by [Freksa, 1992] and
[Allen, 1983]: before and after (<, >), older & contem-
porary and younger & contemporary (<., >.), and head
to head (). Thus, in our case ZR = {<, <., &, >, >},
TRoider = {<,<c}, and ZR = {}=}. The motivation
for these temporal relations is due to keeping complexity
low and still having the relevant temporal relations for set-
ting up prediction rules. The composition table for these
temporal relations is shown in Table 1.

Definition 3.12 (Temporal Pattern) Temporal patterns
tp; = (cpi, TRy, cri) are defined as a 3-tuple of a
conjunctive pattern cp; = ap; 1 A\ ap;2 N\ ...\ ap; size, @
temporal restriction T R;, and a class restriction cr;. [

After having defined dynamic scenes, their schemata,
and temporal patterns, we can define how to match such
patterns to a dynamic scene. Pattern matching is essential
for the computation of the support of a pattern. Basically,
a match can be seen as a successful query to a database
[Dehaspe, 1998]. In order to match a temporal pattern all
predicates in the conjunction must be true (within a defined
window size), the temporal restrictions between these pred-
icates must be satisfied, and for the variable assignment the
class restriction must not be violated.

Definition 3.13 (Pattern Match) A match of pattern p =
(ep,tr,cr) is a valid assignment for each atomic pattern
p; € cp in the conjunctive pattern cp with size n to a cor-
responding (instantiated) predicate pins;, € P of the dy-
namic scene where both predicate definitions of the atomic
pattern p; = (pd;, p;,,,) and the assigned predicate in-
stance Dinst; = (pdinsti7pinstob]‘ects,i7 <3176L>) are iden-
tical, i.e., pd; = pdinst, and all arguments are pairwise
unifiable. Furthermore, it must hold that no predicate in-
stance is assigned more than once, i.e.: Yi,j : Pinst; 7
Dinst; Withi # jand 1 < 4,5 < n.

Additionally, the match must be within the sliding win-
dow range. Let ws be the window’s start position, w be
the window size, w, = ws + w be the window’s end po-
sition, and Ppqtcn be the set of all predicate instances of
the match. For all assigned predicate instances pinsi; €
Pmatch with Dinst; (pdinstj 7pinstobjectsj; <3ja ej)) it
must hold that s; < w,. and e; > ws, i.e., that the start
time of the predicate instance has already passed and that
it can still be seen within the window.

Furthermore it must hold that none of the restrictions
is violated. Let Opmatcn = (01,02,...,0m) be the list
of objects in the assigned predicate instances and cr =
(c1,¢2,...,Cm) the class restriction of the pattern. Then it
must hold that Vi : instanceo firans(0i,¢;) with 1 < i <
m where instanceo fi qns IS a transitive instance-of rela-
tion utilizing the class hierarchy defined by sc in DSS.

In order to satisfy the temporal restriction tr it must hold
that Vr, s : ir({sy,er), (Ss,€5)) € TR[r,s] with1l < r <
nandr < s <n. O

As the frequency of a pattern is directly related to its sup-
port we first introduce how the support is computed in our
case. In the task of frequent pattern discovery in logic, [De-
haspe, 1998] introduced an extra key parameter in order to
determine what is counted. Entities are uniquely identified
by each binding of the variables in key [Dehaspe, 1998, p.
34]. A disadvantage of this support definition is that the key
parameter must be part of each pattern in order to get a sup-
port > 0. Thus, it is not possible to compare two different
patterns if they do not share this key parameter.

We decided to use the observation time semantic for sup-
port computation as stated by Hoppner. Here, the support is
defined as “the total time in which (one or more) instances
of P can be observed in the sliding window” [Hoppner,
2003, p. 52]. The advantages of using observation time
as support are the clear semantics and the better efficiency
as not all matches have to be collected or maybe even fur-
ther processed. The monotonicity property for this support
definition holds and the support intervals of previous steps
(i.e., of more general patterns) can be reused in order to
restrict the search to parts of the temporal sequence in the
subsequent levels.

Definition 3.14 (Support) Let p be a temporal pattern, ds
the dynamic scene, and M the set of matches. The validity
interval of a single match m; € M is defined as v; =
[Smaz; — W+ 1, €min, + W] With Syaz, being the maximal
start time and €, the minimal end time of all predicate
instances in m;. The support of p w.r.t. ds is defined as the
length of the union of all validity intervals of the matches:

supp(p) = length (LA:/lll ’Uk) . 0

This support definition computes the length of intervals
where at least one match for a pattern can be found for
a given window size. The frequency is the probability to
find a match of a pattern at a random window position
for a given dynamic scene and window size (cf. [Hppner,
2003]).

If the support value is divided by the sequence length of
the dynamic scene plus the two times the window size mi-
nus one (sliding window at the start and the end of the se-
quence; the window must include the start time of the first
interval in order to match a pattern) we get the frequency

of the pattern, i.e., freq(p) = supp(p)

s€Qlength +2w—1"

Fig. 1 illustrates the matching of a pattern and the cov-
ered support interval by this match ({21, 47)). The pattern
in this examples matches the first time at window start po-
sition 21 when pass (p8, p7) <32,45> is visible in
the window. It still matches as long as no end time point of
a predicate in the match was left behind the window.

316

KDML 2006

Algorithm 1 MiTemP-main (Pattern Generation)

Input: ds = (P,0,i,DSS), winsize, Siz€min, SiZ€maz,
min freq /x dynamic scene, window size, minimal and max-
imal pattern size, minimal frequency */

Output: All frequent patterns Py, With size, sizemin <

size < StZemax

it Prreq = 0,0 = 1

C; « create_single_predicate_patterns() /x Create one

candidate for each predicate definition %/
while C; # 0 do
support[|C;|] < MiTemP-support(ds, wins;ze, C;)
Li={c € C’i|7s;ﬁp£§;;> > minfreq}
Pireqg — Prreq U {l € Li|sizemin < size(l) <
Siz€maz A complete_temporal restriction(l)}
i—i+1
C; = MiTemP-gen-lengthening(Lj—1)
MiTemP-gen-temp-refinement(Lj,_1)
MiTemP-gen-unification(Ly_1)
MiTemP-gen-class-refinement(Li_1)
MiTemP-gen-instantiation(Ly—1)

9: end while

SNk N

cccc

The goal of this work is to identify all frequent tem-
poral patterns from a dynamic scene. In order to restrict
the search space we introduce upper and lower limits for
the number of predicates, i.e., for the minimal and maxi-
mal size of the conjunctive pattern, and force the tempo-
ral restriction to be completely constrained, i.e., all tem-
poral relation sets must consist of exactly one element.
If a pattern is frequent and it satisfies these conditions
we refer to it as a relevant frequent pattern. The set of
these patterns forms the language Lariremp = {tp|tp =
(ep, TR, cr) A freq(tp) > minfreq A sizemin < |cp| <
Siz€magz A Vi,J 1 |[TR[i,j]| = 1 with 1 < i < |ep| and
i < j < |ep|} Ue with |ep| > 1. The most general empty
pattern is denoted by e.

4 MiTemP: Mining Temporal Patterns

This section introduces the MiTemP (Mining Temporal
Patterns) algorithms. All algorithms are shown in pseudo
code while the implementation has been realized with XSB
Prolog [Sagonas et al., 2006]. The main loop for the level-
wise refinement is shown in Algorithm 1 (MiTemP-main).
As mentioned above temporal patterns consist of different
components like the conjunctive pattern, temporal restric-
tions, variable unification, class restrictions, and instanti-
ations. For each of these components refinement opera-
tors exist that specialize a given pattern. In order to set
up an optimal refinement operator which creates every pat-
tern only once a status about the executed refinements is af-
fixed to each pattern as it is also done by [Lee, 2006]. The
status keeps track of how many refinements of each type
have been performed and which position (predicate pair
for temporal refinement, variable position for unification,
class restriction, or instantiation) has been processed at last.
A status status(p) = (I,t,tiast, U, Ulasts Cy Clasts by last)
where [, %, u, ¢, are the number of refinement operations
of the different types, namely lengthening, temporal re-
finement, unification, class refinement, and instantiation;
tiasts Ulast, Clast s Llast Tefer to the last position where a tem-
poral refinement, unification, class refinement, or instanti-
ation has been performed. Similar to [Lee, 2006] we define
the following refinement operations:

e Lengthening pr,(p): Adding an atom to the end of a
conjunctive pattern

Algorithm 2 MiTemP-gen-lengthening (Lengthening Can-
didate Generation)

Input: £, /* Frequent patterns of the previous step */
Output: New candidate patterns C}
1: Fic1 = {l € Li—1|lengthening_allowed(l)}
2: for (pi (S .7:1‘_1) do
3 for (p; e Fi—1),57 > ido
4: ifp, = (ap7;71 ANapi2 N...\Nap;i—2 /\apiyi_l) Apj =
(apia Aapia A ... Aapii—2 A apji—1) then

5: Prewt = (@pia A...Aapii—2 Napii—1 \apji—1)
6: Prew2 = (api1 A .. ANapii—2 Napji—1 Aapii—1)
7 /* Add if all subsets are frequent (prune step) */
8: ifvpsub C Pnewl * Psub € ACi—l then
9: Cz — Cz @] Prnewl

10: end if

11: if vpsub - Prnew2 Psub S ﬁi—l then

12: Cz — Cz Upner

13: end if

14: end if

15: end for

16: end for

e Temporal refinement pr(p): Adding a temporal con-
straint between two predicates in the conjunctive pat-
tern at the leftmost position after the previous tempo-
ral refinement

e Unification py(p): Unifying a variable v; with a pre-
vious one v; (¢ < j) in the conjunctive pattern where
no variable v, with k£ > j has been unified before

e Class refinement pc(p): Specializing a class ¢; in the
class restriction for the variables of the conjunctive
pattern where no class restriction has been performed
to any c¢; with j > ¢.

e Instantiation p;(p): Instantiating a variable v; of the
conjunctive pattern with an instance o € O where no
variable v; has been instantiated with j > 4. It must
also hold, that no variable vy with & # ¢ has been
instantiated to o.

The refinement operator is defined as the union of these op-
erators: p(p) = pr(p) U pr(p) U pu(p) U pc(p) U pr(p).
While [Lee, 2006] also defines a “deepening” operator (for
replacing a variable by a functor) which is omitted here we
introduce the class refinement operator which exploits the
class hierarchy of the dynamic scene schema. Another dif-
ference is that the temporal refinement here adds arbitrary
temporal relatios between time intervals while the “promo-
tion” operator of Lee replaces the before relation between
two events by a directly before relation.

Certain rules for each refinement coordinate when which
refinement step is allowed. The lengthening operation is
just allowed as long as no other refinement type has been
applied and the maximal size of the conjunctive pattern is
not exceeded. In order to perform a temporal refinement
the minimum pattern size must be met, and no other refine-
ment (except lengthening) must have been applied to the
pattern. As we are looking for temporally completely con-
strained patterns the temporal refinement is only allowed
to refine the next not yet processed predicate pair in the
sequence. In the refinement step itself one of the possible
temporal relations tr € TR[i, j] is selected. After this step
the composition table (Table 1) is used to further restrict the
following temporal relations. Only those patterns where all
predicate pairs are restricted to one temporal relation are
further processed by other refinement types.

317

LWA 2006

Algorithm 3 MiTemP-support (Support Computation)

Input: ds = (P,0,i,DSS), winsize, PL /* dynamic scene,

window size, pattern list */

Output: Support values support(p;) for all patterns p; € PL
1: /* Smin 1S the earliest start and e€.,,42 1S the latest end time */
2: Init supp_intervals(p;) = 0, next_to_check(p;) = —oo
3: Init Pwin - @, Wstart = Smin — winsize + 1
4: while wstart < €mar do
5: for p;, € PL do
6: if (potential_match(p;, Wstart) A

next_to_check(p;) < wstart) then
7: m « pattern-match(pi, Wstart, Wing;ze)
8: if m # null then
9: supp-intervals(p;) < supp_intervals(p;) U
get_support_interval(m) /+ Add newly cov-
ered interval x/

10: next_to_check(p;) — get-min_end_time(m)
11: end if

12: end if

13: Wstart < Wstart + 1

14: end for

15: end while

16: for p; € PL do

17: support(p;) < length(supp-intervals(p;))
18: end for

The three remaining refinements — unification, class re-
striction, and instantiation— are also ordered, i.e., if a re-
finement has been applied it is not allowed to use any of
the preceding refinement types any more. Within each of
the refinements only variable positions after the the last re-
finement are allowed to be processed. For instance, if the
third variable in a conjunctive pattern has been instantiated
just the fourth or later variables can be used for further in-
stantiation steps. Variables are only unified with one out
of the set of preceeding variables. Unified variables are left
out at the remaining refinement steps (as they are processed
implicitely if the unified counterpart is restricted). At the
class refinements the current class of a variable is special-
ized to one of its direct subclasses. Instantiations are only
performed for variables which already refer to a leaf class
in the class refinement. In all cases after a refinement as
much information as possible is derived: after unification
of two variables the class restriction at the corresponding
positions is set to the more special class, after instantiation
to instance o all variable positions in the class restriction
are set to the corresponding class (o).

Due to space restrictions we can only sketch the proof
for optimality of our refinement operator. For a complete
proof the inverse refinement operators must be defined for-
mally and it must be shown that no pattern is missed by
creating the most special representation of a pattern after
refinement. An optimal refinement operator is one that sat-
isfies completeness and non-redundancy properties [Lee,
2006]. Analogical to Lee’s proof it can be shown that these
two properties hold; for more details see [Lee, 2006, p.97-
99]. The inverse operations of the refinement operators
p~t(p) = pr'(p) Upzr'(p) Upy'(p) Upg' () Upy ' (p)
are mutually exclusive as — depening on the counters in
the pattern status status(p) — just one of the inverse op-
erations can be applied. Each of these operations itself
leads to a single more 1general pattern which follows from
their definitions (at p;~ (p) just the last element can be re-
moved, at p;l (p) the last restricted position is generalized

to the set of all allowed temporal relations, at p;;' (p) the
mostright unified variable is split and replaced by a new

directSubClassOf (teaml, holds (pass (p7,p6),27,29) .

object) . holds (closerToGoal (p6, p7),23,31).
directSubClassOf (team2, holds (uncovered (p6,p6),25,33) .

object) . holds (uncovered(q9,99),30,36) .
directInstanceOf (p6, teaml) holds (closerToGoal (g8,g6),36,40) .
directInstanceOf (p7, teaml) holds (pass (p9,p7),39,41) .
directInstanceOf (p8, teaml) holds (closerToGoal (p7,p9),35,43) .
directInstanceOf (p9, teaml) holds (uncovered(qg8,q8),42,44) .
directInstanceOf (g6, team2) holds (uncovered (p7,p7),37,45) .
directInstanceOf (g7, team2) holds (pass (p8,p6),51,53) .
directInstanceOf (g8, team2) holds (closerToGoal (q7,96),50,54) .

(
directInstanceOf (q9, team2). holds (closerToGoal (p6,p8),47,55) .
holds (uncovered(g6,qg6),12,14) . holds (uncovered (p6,p6),49,57) .
holds (pass (p9,p8),15,17) . holds (pass (p8,p7),65,67) .

holds (closerToGoal (p8,p9),11,19) . holds (uncovered(g6,g6),58,68) .
holds (uncovered(p8,p8),13,21) . holds (closerToGoal (p7,p8),61,69).
holds (closerToGoal (g8,99),16,26) . holds (uncovered (p7,p7),63,71) .

Figure 2: Example input for evaluation

variable, at pal (p) the mostright restricted class is replaced
by its single super class, at pl_l(p) all occurences of the
rightmost instantiated variable are replaced by a new vari-
able). Assuming there exist two different paths (i.e., re-
dundancy is given) from the most general empty pattern
to a pattern p € LatiTempP, 70 = €,T1yevsTm = P
and so = €,81,...,8, = p with r,4; = p(r;) and
si+1 = p(si). If the inverse refinement operator is applied
to both r,, and s,, the resulting sequences must be identi-
cal due to the property of the inverse refinement operator
with r,, = $,,"n—-1 = Sp—1,...T1 = S1,T0 = Sg = €
and m = n which contradicts the assumption of the two
different paths. Thus, it follows that p is non-redundant.

In order to show completeness it is necessary to proof
that for each pattern p € Lpriremp a path py =
€,D1,--.,Pn = p exists. Here, again the inverse refinement
operator and the status can be used. Let p be any pattern
in Lysiremp. This pattern has the status status(p) with
the refinement level n = |status(p)|. If we get p,—1 =
p Y(pn) then p,, € p(pn—1) and |status(p,—1)| +1 =
|status(p)|. Referring to Lee we can find any p; with
0 <i<n—1byapplying p;_1 = p~(p;) and we know
that |status(p;)| = i and |status(pg)| = 0. By definition,
the empty pattern is the only one with a refinement level of
0. Thus, we have found a sequence py = €,p1,...,pn =D
with piy1 € p(pi).

The candidate generation algorithm for lengthening dif-
fers from the other refinements as it is not applied to each
pattern separately but to the set of frequent patterns of the
previous step. The algorithm (Algorithm 2) is similar to
apriori-gen [Agrawal and Srikant, 1994]. Starting from
single predicate patterns in each following step patterns
with the same n — 1 prefix are combined in order to create
new pattern candidates (cf. [Lee, 2006]). The difference
here is that the “items” in the list are actually predicates
which can appear multiple times in a conjunctive pattern.
As the predicate order is also relevant for distinguishing the
patterns no alphanumeric order can be used to just create
one new candidate of two previous frequent patterns with
identical prefix. Here, two patterns must be generated.

Algorithm 3 shows the support computation procedure.
Input to the algorithm are the dynamic scene, the size of the
sliding window, and the list of patterns to check. As long as
the latest end time is not reached a window is moved over
the sequence. At each window position just the “visible”
predicates identified by the window position are taken into
account for pattern matching. This has the advantage that
during pattern matching many assignments do not need to
be checked as they are out of range of the sliding window
anyway. If a match is found for a pattern at the current
window position the support interval list is extended by the
support interval of the match and the next position to check

318

KDML 2006

uncoversdi(a6, 96) pass(pg, p8)
<12, 14> <15, 17>

[E—

oy
<23,

closerToGoal(ps, ps) serT0Goal(o6, p7)
<11, 19> 315

passip7, ps) uncowere 4(a9, 09) Ll
<27,29> <30, 36> <36,

pass(eg, p7)
<39, 41>

joserToGoal(q8, g6)
40>

overed(o8, p8)

ung uncovered(p6, pe)
<13,21> <25,33>

closerTaGoal(p7, ps)
<35, 43>

[[

closerToGoal(as, 69)
<16, 26>

uncoversdi(v7, p7)
<37, 45>

nnnnnnn (o8, o8) pass(ps, p6)
<42, 44> <51,53>

closerToGoal(a?, 46)
<50, 51>

I

closer| oGoal(pe, pE)
<47, 55>

nnnnnnn d(p6, P6)
<49,57>

pass(ps, p7)
<65, 67>

[E—

nnnnnnn (@6, 06)
<58, 68>

cioser| oGoalp/, pE)
<61, 69>

nnnnnnn d(p7, p7)
<63, 71>

Figure 3: Test scenario

is assigned. If the match is valid beyond the window border
some pattern matching steps can be omitted before the pat-
tern has to be checked again. Finally, the window position
is moved to the next position.

5 Learning Temporal Patterns with WARMR

As the temporal validity intervals of predicates can be seen
as just another dimension of relations it should be possi-
ble to transfer the learning problem to relational associa-
tion rule mining. Intuitively, it seems to be unhandy but
feasible to add information about start and end time to ev-
ery predicate. We developed a converter which automati-
cally transfers a MiTemP input file to ACE input files. ACE
is a data mining system which provides a number of dif-
ferent relational data mining algorithms including WARMR
[Blockeel er al., 2002; 2006]. Different problems had to be
solved in order to set up WARMR to mine the same frequent
patterns (with identical support calculation) as it is done by
MiTemP. Due to space restrictions it is not possible to go
into detail how the WARMR input is generated. A separate
report capturing these details is currently written.

The transformation of the class hierarchy and
corresponding instances is straight forward. The
directSubClassOf and directInstanceOf
relations can be kept and put to ACE’s knowledge base file.
The transitive clauses for querying instances of classes and
subclasses of a class can also be left unchanged and put
into the background knowledge file. The holds pred-
icates representing the validity intervals of relations are
now represented by relations with an additional argument
which stands for the time interval. The predicate instance
holds(pass(p8,p7), (32,45)) is converted to pass (1,
p8, p7, i(32, 45)) where the first argument is a
unique predicate ID.

For setting up the learning bias in WARMR it is possi-
ble to define rmode statements. These statements define
how a query can be extended during the generation of new
query candidates. It is also possible to define constraints
which must be satisfied in order to add an atom to the query.
More details about the rmodes can be found, for instance, in
Dehaspe’s doctoral thesis and the ACE user’s manual [De-
haspe, 1998; Blockeel et al., 2006].

For each given MiTemP refinement as described in sec-
tion 4 rmodes must be defined. For lengthening a rmode
must be defined for each predicate definition. In order to
avoid the same predicate instance being used more than
once it must be guaranteed that the predicate ID variable
differs from all other predicate ID variables of this query.

Temporal relations between intervals are represented by
clauses which check if the temporal relation actually holds
for the interval pair, i.e., for each temporal relation a clause
exists and a rmode is created. In order to refine a pattern
by adding a temporal constraint one of the temporal clauses
is added to the query by relating two intervals of existing
predicates of the query to each other.

Unification is handled by a special unification clause
which unifies two existing variables in the previous query.
The rmode declarations of ACE also provide means to de-
fine rmodes which do not introduce a new variable in the
new atom but reuse an existing one. However, our in-
tended solution should also cover the instantiation of vari-
ables (i.e., using constants). Setting up rmodes for all cases
(unification, constants, and new variables) and their com-
binations in predicates with an arbitrary (potentially large)
number of arguments would have lead to a huge number of
rmodes for the predicates. Thus, if a new predicate is added
to the query all arguments are new variables in the begin-
ning. These can be unified with another variable or can be
bound to a constant in further refinement steps.

For instantiation a rmode definition allows a variable to
be unified with an instance. The set of instance candidates
depends on the predicate where the variable occurs. Only
those instances are taken into account which appear at least
in one of the predicates at the variable’s position in the dy-
namic scene, i.e., no “impossible” query will be generated.

Class refinement is performed by adding instanceOf
predicates, constraining a variable to a certain class (or one
of its sub classes). A constraint definition makes sure that
for each variable just one instanceOf predicate will be
added. Additional constraints ensure that a variable will
be used just for instantiation or class refinement and that
unified variables are not refined at all.

Setting up WARMR for computing the support as in-
tended was a little bit trickier. WARMR needs a counting
attribute which is used for support computation, i.e., the
number of different values of this attribute where a query
matches determines the support of the query. In our case
the support is defined to be the number of temporal posi-
tions where within a sliding window a pattern holds. In
order to let WARMR compute the intended support a pred-
icate currentIndex has been introduced and used as
counting attribute. For each existing temporal position a
predicate is created in the knowledge base file. In combi-
nation with another predicate representing the window po-
sition (inWindowPos) for each temporal position it can
be checked if a pattern holds.

Some tricks have made it possible to use WARMR as in-

319

LWA 2006

140000
I

—=— Created by WARMR
-4~ Created by MiTemP

100000

patterns

60000
I

20000
I

0
I

Maximal level

Figure 4: Number of created patterns

tended for mining temporal patterns. However, we had to
accept some compromises in the solution. Computing the
support is a little bit more inefficient as necessary as there
is no way to use a real sliding window which covers an ex-
tended interval. In the current solution each time position
has to be checked on its own (even if it can theoretically be
known that the pattern holds at the current position due to
the sliding window of an earlier position) and also predicate
instances out of scope of the window might be checked.

Another problem is that redundant patterns are generated
by WARMR. To the best of our knowledge it is not possible
to avoid that for a unification two patterns are generated
(A = B and B = A). Furthermore, different represen-
tations can be generated for the same pattern if additional
restrictions could be derived from the pattern (e.g., tempo-
ral relations using the composition table, class restrictions
which should be specialized due to unification of variables
as it is done by MiTemP).

In the case of MiTemP we required each pattern to be
completely constraint w.r.t. temporal relations, i.e., that for
each predicate pair exactly one temporal relation should be
assigned. To the best of our knowledge it is not possible to
define a constraint in ACE which guarantees to just create
patterns which satisfy this property. This leads to the gen-
eration of some patterns which are out of scope of MiTemP.

Even though WARMR might have some drawbacks for
our temporal pattern mining task it should be stated clearly
that WARMR is not a special solution for mining temporal
patterns from such an interval representation but a generic
system for mining frequent queries which also can be used
to mine queries representing temporal patterns.

6 Evaluation

The experiments with WARMR and MiTemP have different
goals. First of all, it is a proof of concept that both ap-
proaches can be used to mine frequent temporal patterns.
In order to find out if both approaches lead to the same
support values the frequencies of all common patterns are
compared. Furthermore, it is expected that constraining the
search space at the refinement steps of the algorithm reduce
the number of generated patterns a lot.

For the evaluation a simple soccer scenario has been
used (Fig. 2). Different objects in the dynamic scene
are objects p6 - p9 of class teaml and objects g6 - g9
of class team2. Relations between these objects can be
uncovered, closerToGoal, and pass. Fig. 3 shows
the temporal validity intervals of the relations between the
objects (time proceeding from left to right).

18000
I
>

—=— Frequent patterns found by WARMR
—A— Frequent patterns found by MiTemP
Redundant patterns WARMR
-4- Redundant patterns MiTemP

o

14000
I I

patterns
10000
1

0 2000 6000
I I

Maximal level

Figure 5: Number of frequent and redundant patterns

WARMR :

freq(8,96635,
[currentIndex (A), getWindowPos (A,B),pass(C,D,E,F,B),
uncovered (G, H, I,J,B),not (G=C) ,unif (I,H),unif (I,E),
olderContemp (J,F),instanceOf (I,teaml)],0.903614457831325) .

MiTemP :
pattern (4544,
[uncovered(_h6502661, _h6502661),
pass (_h6502666,_h6502661)],temp(tr([olderContemp])),
classRestr (teaml, teaml, object, teaml),
status(2,1,temp(1,2),2,varPos(2,2),0,varPos(-1,-1),
1,varPos(1,1))) [Freg: 0.9036]

Figure 6: Example for a learned pattern

In different experiments the maximal refinement level of
WARMR and MiTemP has been altered from five to eight.
As WARMR could not create any complete pattern as de-
fined above with a maximal refinement level below five
these settings have been left out here. Table 2 summarizes
the results of the test runs. Besides the number of created,
redundant, and frequent patterns for both approaches it is
also shown how many patterns have just been found by one
approach up to this level and how many common patterns
have been found by both approaches. The last two columns
show the coverage, i.e., how many patterns of the other ap-
proach are covered at the current level. Fig. 4 shows a graph
comparing the number of generated patterns at the different
maximal refinement levels. Fig. 5 compares the number of
mined frequent patterns and the number of redundant pat-
terns of both approaches for the different levels.

All common patterns of WARMR and MiTemP get iden-
tical frequency values assigned. Fig. 6 shows example out-
puts of the same pattern by WARMR and MiTemP. While
WARMR creates a number of redundant patterns (growing
with an increasing maximal refinement level) the refine-
ment operators in MiTemP are optimal as no redundant pat-
tern was created (dotted lines in Fig. 5). MiTemP identifies
much more frequent patterns at the different maximal re-
finement levels and creates less patterns at maximal refine-
ment levels seven and eight— at levels five and six MiTemP
creates more patterns. While the fraction of relevant fre-
quent patterns to created patterns is quite low with WARMR
(at level eight it is 123223 = 4.68%) almost every second
pattern created by MiTemP is a relevant frequent one (at
level eight: £7949 = 44.98%).

In the eighth level some patterns which have been mined
by WARMR have not yet been found by MiTemP at this
level. An inspection of the patterns has shown that these
are patterns with many instantiations. Due to the refine-
ment structure in MiTemP a variable is not instantiated be-
fore the class refinement restricts the variable to a leaf class
(i.e., having no sub classes). In the WARMR solution in-

320

KDML 2006

Max,| #created | #frequent| #redundant #created | #frequent| #redundany #common | #unique #unique | Coverage of | Coverage of
levell] WARMR | WARMR | WARMR MiTemP | MiTemP | MiTemP patterns patterns pat- MiTemP patterns in WARMR patterns in
patterns patterns patterns patterns patterns patterns WARMR/ | WARMR terns WARMR MiTemP
MiTemP MiTemP

5 498 16 0 1436 779 0 16 0 763 =0 = 2.05% 18 =100.0%

6 3317 399 31 5087 2653 0 399 0 2254 236959. = 15.04% 399 = 100.0%

7 20754 2380 807 14962 7178 0 2380 0 4798 2380 = 33.16% 2380 —100.0%
8 139543 6530 5523 39889 17940 0 6340 190 11600 % = 35.34% ,,;,% = 97.09%

Table 2: Results of the test runs with different maximal refinement levels

stantiation can be performed directly to a variable, i.e., the
intermediate class refinement steps (specializing variables
to teaml or team?) are not needed and thus, some pat-
terns can be created at an earlier refinement level.

7 Conclusion

In this paper we have presented an approach to tempo-
ral pattern mining which mines frequent patterns from
time interval-based relational representations of dynamic
scenes. An Apriori like algorithm has been introduced
which performs a top-down search of the pattern space
without multiple generation of patterns. The use of reason-
ing techniques creates the most specialized representation
after refinement or identifies inconsistencies in patterns.
This avoids the creation of “impossible” patterns which
cannot be frequent as well as reduces the number of spe-
cialization steps which are implicit in the pattern already.
Here, a composition table is used for identifying possible
temporal refinements, and class information of variables
is used to find the most special class of a variable by tak-
ing into account predicate definitions, variable unifications,
and instantiations. An implementation of the well-known
WARMR algorithm has been used to create another solu-
tion for the mining problem. The experiments have shown
the advantage of avoiding the creation of impossible or re-
dundant patterns in MiTemP. While less patterns had to be
explored at refinement levels seven and eight much more
frequent patterns have been found by MiTemP already. This
can be particularly of importance if large sequences have to
be processed, i.e., if support computation is costly.

Acknowledgment

We would like to thank Frank Hoppner at the Fach-
hochschule Braunschweig/Wolfenbiittel for helpful discus-
sions on support computations in temporal pattern mining.
We also want to express our gratitude to the members of
the DTAI research group of the KU Leuven, Belgium, for
providing the ACE system including WARMR [Blockeel et
al., 2002]. Particularly, we would like to thank Jan Struyf
for his great support with ACE/WARMR.

References

[Agrawal and Srikant, 1994] Rakesh Agrawal and Ra-
makrishnan Srikant. Fast algorithms for mining asso-
ciation rules. In Proceedings of the 20th International
Conference on Very Large Data Bases, VLDB, pages
487-499, September 1994.

[Agrawal et al., 1993] Rakesh Agrawal, Tomasz Imielin-
ski, and Arun N. Swami. Mining association rules be-
tween sets of items in large databases. In Proceedings
of the 1993 ACM SIGMOD International Conference
on Management of Data, pages 207-216, Washington,
D.C., May 1993.

[Allen, 1983] James F. Allen.

Maintaining knowledge
about temporal intervals. Communications of the ACM,
26(11):832-843, November 1983.

[Blockeel et al., 2002] Hendrik Blockeel, Luc Dehaspe,

Bart Demoen, Gerda Janssens, Jan Rammon, and Henk
Vandecasteele. Improving the efficiency of inductive
logic programming through the use of query packs.
Journal of Artificial Intelligence Research, 16:135-166,
2002.

[Blockeel et al., 2006] Hendrik Blockeel, Luc Dehaspe,

Jan Rammon, Jan Struyf, Anneleen Van Assche, Celine
Vens, and Daan Fierens. The ACE Data Mining System,
User’s Manual. Katholieke Universiteit Leuven, Bel-
gium, February 16 2006.

[Dehaspe and Toivonen, 1999] Luc Dehaspe and Hannu

Toivonen. Discovery of frequent DATALOG patterns.
Data Mining and Knowledge Discovery, 3(1):7 — 36,
March 1999.

[Dehaspe, 1998] Luc Dehaspe. Frequent Pattern Discov-

[Freksa, 1992] Christian Freksa.

[Hoppner, 2003] Frank Hoppner.
from Sequential Data. PhD thesis, Technische Univer-

[Kaminka ef al., 2003] Gal Kaminka,

ery in First-Order Logic. PhD thesis, Katholieke Uni-
versiteit Leuven, Belgium, 1998.

Temporal reasoning
based on semi-intervals. Artificial Intelligence, 54(1—
2):199-227, 1992.

Knowledge Discovery

sitdt Braunschweig, 2003.

Mehmet Fidan-
boylu, Allen Chang, and Manuela Veloso. Learning the
sequential coordinated behavior of teams from observa-
tion. In Gal Kaminka, Pedro Lima, and Raul Rojas, edi-
tors, RoboCup 2002: Robot Soccer World Cup VI, LNAI
2752, pages 111-125, Fukuoka, Japan, 2003.

[Lattner et al., 2006] Andreas D. Lattner, Andrea Miene,

[Lee, 2006] Sau Dan Lee.

Ubbo Visser, and Otthein Herzog. Sequential pattern
mining for situation and behavior prediction in sim-
ulated robotic soccer. In Bredenfeld et al., editor,
RoboCup-2005: Robot Soccer World Cup VIII, pages
118-129. Springer Verlag, Berlin, 2006. LNCS 4020.

Constrained Mining of Pat-
terns in Large Databases. PhD thesis, Albert-Ludwigs-
Universitit Freiburg, 2006.

[Mannila et al., 1997] Heikki Mannila, Hannu Toivonen,

[Sagonas et al., 2006] Konstantinos Sagonas,

321

and A. Inkeri Verkamo. Discovery of frequent episodes
in event sequences. Data Mining and Knowledge Dis-
covery, 1:259-289, 1997.

Terrance
Swift, David S. Warren, Juliana Freire, Prasad Rao,
Baogqiu Cui, Ernie Johnson, Luis de Castro, Rui F. Mar-
ques, Steve Dawson, and Michael Kifer. The XSB Sys-
tem Version 3.0 - Volume 1: Programmer’s Manual, Vol-
ume 2: Libraries, Interfaces, and Packages, 2006.

