1,238 research outputs found

    Assessing Seagrass Restoration Actions through a Micro-Bathymetry Survey Approach (Italy, Mediterranean Sea)

    Get PDF
    Underwater photogrammetry provides a means of generating high-resolution products such as dense point clouds, 3D models, and orthomosaics with centimetric scale resolutions. Underwater photogrammetric models can be used to monitor the growth and expansion of benthic communities, including the assessment of the conservation status of seagrass beds and their change over time (time lapse micro-bathymetry) with OBIA classifications (Object-Based Image Analysis). However, one of the most complex aspects of underwater photogrammetry is the accuracy of the 3D models for both the horizontal and vertical components used to estimate the surfaces and volumes of biomass. In this study, a photogrammetry-based micro-bathymetry approach was applied to monitor Posidonia oceanica restoration actions. A procedure for rectifying both the horizontal and vertical elevation data was developed using soundings from high-resolution multibeam bathymetry. Furthermore, a 3D trilateration technique was also tested to collect Ground Control Points (GCPs) together with reference scale bars, both used to estimate the accuracy of the models and orthomosaics. The root mean square error (RMSE) value obtained for the horizontal planimetric measurements was 0.05 m, while the RMSE value for the depth was 0.11 m. Underwater photogrammetry, if properly applied, can provide very high-resolution and accurate models for monitoring seagrass restoration actions for ecological recovery and can be useful for other research purposes in geological and environmental monitoring

    Mapping and classification of ecologically sensitive marine habitats using unmanned aerial vehicle (UAV) imagery and object-based image analysis (OBIA)

    Get PDF
    Nowadays, emerging technologies, such as long-range transmitters, increasingly miniaturized components for positioning, and enhanced imaging sensors, have led to an upsurge in the availability of new ecological applications for remote sensing based on unmanned aerial vehicles (UAVs), sometimes referred to as “drones”. In fact, structure-from-motion (SfM) photogrammetry coupled with imagery acquired by UAVs offers a rapid and inexpensive tool to produce high-resolution orthomosaics, giving ecologists a new way for responsive, timely, and cost-effective monitoring of ecological processes. Here, we adopted a lightweight quadcopter as an aerial survey tool and object-based image analysis (OBIA) workflow to demonstrate the strength of such methods in producing very high spatial resolution maps of sensitive marine habitats. Therefore, three different coastal environments were mapped using the autonomous flight capability of a lightweight UAV equipped with a fully stabilized consumer-grade RGB digital camera. In particular we investigated a Posidonia oceanica seagrass meadow, a rocky coast with nurseries for juvenile fish, and two sandy areas showing biogenic reefs of Sabelleria alveolata. We adopted, for the first time, UAV-based raster thematic maps of these key coastal habitats, produced after OBIA classification, as a new method for fine-scale, low-cost, and time saving characterization of sensitive marine environments which may lead to a more effective and efficient monitoring and management of natural resource

    3D Recording and Interpretation for Maritime Archaeology

    Get PDF
    This open access peer-reviewed volume was inspired by the UNESCO UNITWIN Network for Underwater Archaeology International Workshop held at Flinders University, Adelaide, Australia in November 2016. Content is based on, but not limited to, the work presented at the workshop which was dedicated to 3D recording and interpretation for maritime archaeology. The volume consists of contributions from leading international experts as well as up-and-coming early career researchers from around the globe. The content of the book includes recording and analysis of maritime archaeology through emerging technologies, including both practical and theoretical contributions. Topics include photogrammetric recording, laser scanning, marine geophysical 3D survey techniques, virtual reality, 3D modelling and reconstruction, data integration and Geographic Information Systems. The principal incentive for this publication is the ongoing rapid shift in the methodologies of maritime archaeology within recent years and a marked increase in the use of 3D and digital approaches. This convergence of digital technologies such as underwater photography and photogrammetry, 3D sonar, 3D virtual reality, and 3D printing has highlighted a pressing need for these new methodologies to be considered together, both in terms of defining the state-of-the-art and for consideration of future directions. As a scholarly publication, the audience for the book includes students and researchers, as well as professionals working in various aspects of archaeology, heritage management, education, museums, and public policy. It will be of special interest to those working in the field of coastal cultural resource management and underwater archaeology but will also be of broader interest to anyone interested in archaeology and to those in other disciplines who are now engaging with 3D recording and visualization

    Underwater Drone Architecture for Marine Digital Twin: Lessons Learned from SUSHI DROP Project

    Get PDF
    The ability to observe the world has seen significant developments in the last few decades, alongside the techniques and methodologies to derive accurate digital replicas of observed environments. Underwater ecosystems present greater challenges and remain largely unexplored, but the need for reliable and up-to-date information motivated the birth of the Interreg Italy–Croatia SUSHI DROP Project (SUstainable fiSHeries wIth DROnes data Processing). The aim of the project is to map ecosystems for sustainable fishing and to achieve this goal a prototype of an Unmanned Underwater Vehicle (UUV), named Blucy, has been designed and developed. Blucy was deployed during project missions for surveying the benthic zone in deep waters of the Adriatic Sea with noninvasive techniques compared to the use of trawl nets. This article describes the strategies followed, the instruments applied and the challenges to be overcome to obtain an accurately georeferenced underwater survey with the goal of creating a marine digital twin

    Advances in Sonar Technology

    Get PDF
    The demand to explore the largest and also one of the richest parts of our planet, the advances in signal processing promoted by an exponential growth in computation power and a thorough study of sound propagation in the underwater realm, have lead to remarkable advances in sonar technology in the last years.The work on hand is a sum of knowledge of several authors who contributed in various aspects of sonar technology. This book intends to give a broad overview of the advances in sonar technology of the last years that resulted from the research effort of the authors in both sonar systems and their applications. It is intended for scientist and engineers from a variety of backgrounds and even those that never had contact with sonar technology before will find an easy introduction with the topics and principles exposed here

    Underwater Drone Architecture for Marine Digital Twin: Lessons Learned from SUSHI DROP Project

    Get PDF
    The ability to observe the world has seen significant developments in the last few decades, alongside the techniques and methodologies to derive accurate digital replicas of observed environments. Underwater ecosystems present greater challenges and remain largely unexplored, but the need for reliable and up-to-date information motivated the birth of the Interreg Italy-Croatia SUSHI DROP Project (SUstainable fiSHeries wIth DROnes data Processing). The aim of the project is to map ecosystems for sustainable fishing and to achieve this goal a prototype of an Unmanned Underwater Vehicle (UUV), named Blucy, has been designed and developed. Blucy was deployed during project missions for surveying the benthic zone in deep waters of the Adriatic Sea with non-invasive techniques compared to the use of trawl nets. This article describes the strategies followed, the instruments applied and the challenges to be overcome to obtain an accurately georeferenced underwater survey with the goal of creating a marine digital twin

    Seabed fluid flow-related processes: evidence and quantification based on high-resolution imaging techniques and GIS analyses

    Get PDF
    This work provides new insights on different aspects of seabed fluid flow processes based on seafloor observations. The methods used entirely rely on ROV-based high-resolution imaging and mapping techniques. Optical data are used to produce visual maps of the seafloor, in the form of geo-referenced video- and photo-mosaics, whereas acoustic techniques allow mapping the micro-bathymetry of the seabed, as well as the signal reflectivity of the sediment surface and of the water column. This work presents three case studies, about two sites of seabed fluid flow: the Menez Gwen hydrothermal vent on the MAR and the REGAB pockmark in the Lower Congo Basin. On the technical side, some of the high-resolution techniques used in this thesis are not commonly used by the marine scientific community. This is particularly the case for large-area photo-mosaics. Although the interest in mosaicking is growing, there are still no tools freely and readily available to scientists to routinely construct large-area photo-mosaics. Therefore, this work presents a MATLAB toolbox for large-area photo-mosaicking (LAPM toolbox), which was developed as part of this thesis
    • …
    corecore