4 research outputs found

    Advanced Memory Data Structures for Scalable Event Trace Analysis

    Get PDF
    The thesis presents a contribution to the analysis and visualization of computational performance based on event traces with a particular focus on parallel programs and High Performance Computing (HPC). Event traces contain detailed information about specified incidents (events) during run-time of programs and allow minute investigation of dynamic program behavior, various performance metrics, and possible causes of performance flaws. Due to long running and highly parallel programs and very fine detail resolutions, event traces can accumulate huge amounts of data which become a challenge for interactive as well as automatic analysis and visualization tools. The thesis proposes a method of exploiting redundancy in the event traces in order to reduce the memory requirements and the computational complexity of event trace analysis. The sources of redundancy are repeated segments of the original program, either through iterative or recursive algorithms or through SPMD-style parallel programs, which produce equal or similar repeated event sequences. The data reduction technique is based on the novel Complete Call Graph (CCG) data structure which allows domain specific data compression for event traces in a combination of lossless and lossy methods. All deviations due to lossy data compression can be controlled by constant bounds. The compression of the CCG data structure is incorporated in the construction process, such that at no point substantial uncompressed parts have to be stored. Experiments with real-world example traces reveal the potential for very high data compression. The results range from factors of 3 to 15 for small scale compression with minimum deviation of the data to factors > 100 for large scale compression with moderate deviation. Based on the CCG data structure, new algorithms for the most common evaluation and analysis methods for event traces are presented, which require no explicit decompression. By avoiding repeated evaluation of formerly redundant event sequences, the computational effort of the new algorithms can be reduced in the same extent as memory consumption. The thesis includes a comprehensive discussion of the state-of-the-art and related work, a detailed presentation of the design of the CCG data structure, an elaborate description of algorithms for construction, compression, and analysis of CCGs, and an extensive experimental validation of all components.Diese Dissertation stellt einen neuartigen Ansatz für die Analyse und Visualisierung der Berechnungs-Performance vor, der auf dem Ereignis-Tracing basiert und insbesondere auf parallele Programme und das Hochleistungsrechnen (High Performance Computing, HPC) zugeschnitten ist. Ereignis-Traces (Ereignis-Spuren) enthalten detaillierte Informationen über spezifizierte Ereignisse während der Laufzeit eines Programms und erlauben eine sehr genaue Untersuchung des dynamischen Verhaltens, verschiedener Performance-Metriken und potentieller Performance-Probleme. Aufgrund lang laufender und hoch paralleler Anwendungen und dem hohen Detailgrad kann das Ereignis-Tracing sehr große Datenmengen produzieren. Diese stellen ihrerseits eine Herausforderung für interaktive und automatische Analyse- und Visualisierungswerkzeuge dar. Die vorliegende Arbeit präsentiert eine Methode, die Redundanzen in den Ereignis-Traces ausnutzt, um sowohl die Speicheranforderungen als auch die Laufzeitkomplexität der Trace-Analyse zu reduzieren. Die Ursachen für Redundanzen sind wiederholt ausgeführte Programmabschnitte, entweder durch iterative oder rekursive Algorithmen oder durch SPMD-Parallelisierung, die gleiche oder ähnliche Ereignis-Sequenzen erzeugen. Die Datenreduktion basiert auf der neuartigen Datenstruktur der "Vollständigen Aufruf-Graphen" (Complete Call Graph, CCG) und erlaubt eine Kombination von verlustfreier und verlustbehafteter Datenkompression. Dabei können konstante Grenzen für alle Abweichungen durch verlustbehaftete Kompression vorgegeben werden. Die Datenkompression ist in den Aufbau der Datenstruktur integriert, so dass keine umfangreichen unkomprimierten Teile vor der Kompression im Hauptspeicher gehalten werden müssen. Das enorme Kompressionsvermögen des neuen Ansatzes wird anhand einer Reihe von Beispielen aus realen Anwendungsszenarien nachgewiesen. Die dabei erzielten Resultate reichen von Kompressionsfaktoren von 3 bis 5 mit nur minimalen Abweichungen aufgrund der verlustbehafteten Kompression bis zu Faktoren > 100 für hochgradige Kompression. Basierend auf der CCG_Datenstruktur werden außerdem neue Auswertungs- und Analyseverfahren für Ereignis-Traces vorgestellt, die ohne explizite Dekompression auskommen. Damit kann die Laufzeitkomplexität der Analyse im selben Maß gesenkt werden wie der Hauptspeicherbedarf, indem komprimierte Ereignis-Sequenzen nicht mehrmals analysiert werden. Die vorliegende Dissertation enthält eine ausführliche Vorstellung des Stands der Technik und verwandter Arbeiten in diesem Bereich, eine detaillierte Herleitung der neu eingeführten Daten-strukturen, der Konstruktions-, Kompressions- und Analysealgorithmen sowie eine umfangreiche experimentelle Auswertung und Validierung aller Bestandteile

    Spectral analysis of executions of computer programs and its applications on performance analysis

    Get PDF
    This work is motivated by the growing intricacy of high performance computing infrastructures. For example, supercomputer MareNostrum (installed in 2005 at BSC) has 10240 processors and currently there are machines with more than 100.000 processors. The complexity of this systems increases the complexity of the manual performance analysis of parallel applications. For this reason, it is mandatory to use automatic tools and methodologies.The performance analysis group of BSC and UPC has a large experience in analyzing parallel applications. The approach of this group consists mainly in the analysis of tracefiles (obtained from parallel applications executions) using performance analysis and visualization tools, such as Paraver. Taking into account the general characteristics of the current systems, this method can sometimes be very expensive in terms of time and inefficient. To overcome these problems, this thesis makes several contributions.The first one is an automatic system able to detect the internal structure of executions of high performance computing applications. This automatic system is able to rule out nonsignificant regions of executions, to detect redundancies and, finally, to select small but significant execution regions. This automatic detection process is based on spectral analysis (wavelet transform, fourier transform, etc..) and works detecting the most important frequencies of the application's execution. These main frequencies are strongly related to the internal loops of the application' source code. Finally, it is important to state that an automatic detection of small but significant execution regions reduces remarkably the complexity of the performance analysis process.The second contribution is an automatic methodology able to show general but nontrivial performance trends. They can be very useful for the analyst in order to carry out a performance analysis of the application. The automatic methodology is based on an analytical model. This model consists in several performance factors. Such factors modify the value of the linear speedup in order to fit the real speedup. That is, if this real speedup is far from the linear one, we will detect immediately which one of the performance factors is undermining the scalability of the application. The second main characteristic of the analytical model is that it can be used to predict the performance of high performance computing applications. From several execution on a few of processors, we extract model's performance factors and we extrapolate these values to executions on higher number of processors. Finally, we obtain a speedup prediction using the analytical model.The third contribution is the automatic detection of the optimal sampling frequency of applications. We show that it is possible to extract this frequency using spectral analysis. In case of sequential applications, we show that to use this frequency improves existing results of recognized techniques focused on the reduction of serial application's instruction execution stream (SimPoint, Smarts, etc..). In case of parallel benchmarks, we show that the optimal frequency is very useful to extract significant performance information very efficiently and accurately.In summary, this thesis proposes a set of techniques based on signal processing. The main focus of these techniques is to perform an automatic analysis of the applications, reporting and initial diagnostic of their performance and showing their internal iterative structure. Finally, these methods also provide a reduced tracefile from which it is easy to start manual finegrain performance analysis. The contributions of the thesis are not reduced to proposals and publications. The research carried out these last years has provided a tool for analyzing applications' structure. Even more, the methodology is general and it can be adapted to many performance analysis methods, improving remarkably their efficiency, flexibility and generality

    Performance Analysis of Hybrid CPU/GPU Environments

    Get PDF
    We present two metrics to assist the performance analyst to gain a unified view of application performance in a hybrid environment: GPU Computation Percentage and GPU Load Balance. We analyze the metrics using a matrix multiplication benchmark suite and a real scientific application. We also extend an experiment management system to support GPU performance data and to calculate and store our GPU Computation Percentage and GPU Load Balance metrics
    corecore