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Abstract

This work is motivated by the growing intricacy of high performance comput-

ing infrastructures. For example, supercomputer MareNostrum (installed in 2005 at

BSC) has 10240 processors and currently there are machines with more than 100.000

processors. The complexity of this systems increases the complexity of the manual

performance analysis of parallel applications. For this reason, it is mandatory to

use automatic tools and methodologies. The performance analysis group of BSC and

UPC has a large experience in analyzing parallel applications. The approach of this

group consists mainly in the analysis of tracefiles (obtained from parallel applications

executions) using performance analysis and visualization tools, such as Paraver. Tak-

ing into account the general characteristics of the current systems, this method can

sometimes be very expensive in terms of time and inefficient.

To overcome these problems, this thesis makes several contributions. The first

one is an automatic system able to detect the internal structure of executions of high

performance computing applications. This automatic system is able to rule out non-

significant regions of executions, to detect redundancies and, finally, to select small

but significant execution regions. This automatic detection process is based on spec-

tral analysis (wavelet transform, fourier transform, etc..) and works detecting the

most important frequencies of the application’s execution. These main frequencies

are strongly related to the internal loops of the application’ source code. Finally, it

is important to state that an automatic detection of small but significant execution

regions reduces remarkably the complexity of the performance analysis process.

The second contribution is an automatic methodology able to show general but

non-trivial performance trends. They can be very useful for the analyst in order to

carry out a performance analysis of the application. The automatic methodology is

based on an analytical model. This model consists in several performance factors.

Such factors modify the value of the linear speedup in order to fit the real speedup.

That is, if this real speedup is far from the linear one, we will detect immediately

which one of the performance factors is undermining the scalability of the applica-

tion. The second main characteristic of the analytical model is that it can be used

to predict the performance of high performance computing applications. From sev-

eral execution on a few of processors, we extract model’s performance factors and we

extrapolate these values to executions on higher number of processors. Finally, we

obtain a speedup prediction using the analytical model.

The third contribution is the automatic detection of the optimal sampling fre-

quency of applications. We show that it is possible to extract this frequency using
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spectral analysis. In case of sequential applications, we show that to use this fre-

quency improves existing results of recognized techniques focused on the reduction

of serial application’s instruction execution stream (SimPoint, Smarts, etc..). In case

of parallel benchmarks, we show that the optimal frequency is very useful to extract

significant performance information very efficiently and accurately.

In summary, this thesis proposes a set of techniques based on signal processing.

The main focus of these techniques is to perform an automatic analysis of the ap-

plications, reporting and initial diagnostic of their performance and showing their

internal iterative structure. Finally, these methods also provide a reduced tracefile

from which it is easy to start manual fine-grain performance analysis. The contri-

butions of the thesis are not reduced to proposals and publications. The research

carried out these last years has provided a tool for analyzing applications’ structure.

Even more, the methodology is general and it can be adapted to many performance

analysis methods, improving remarkably their efficiency, flexibility and generality.
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Chapter 1

Introduction

1.1 General Considerations

In the last years, high performance computing has experienced major successes. On

the one hand, parallel computing infrastructures have achieved performance im-

provements which were unthinkable several years ago [7]. On the other hand, high

performance computing has become an essential tool for a wide set of topics such

as meteorology, genomics, computational mechanics, cosmology, nuclear energy, aero-

nautic engineering, etc...

These achievements have brought several challenges which have to be addressed

in order to maintain high performance computing in the way of success. First, the

increase of computational power brings more hardness to obtain optimized codes be-

cause there are more issues related to parallel machines which have to be addressed.

Second, the spread of high performance computing solutions brings problems to re-

searchers of other scientific disciplines which are not familiarized to work with su-

percomputers. They design the codes which have to be executed on parallel infras-

tructures but, due to their lack of experience, they spend a lot of time implementing

and optimizing it. In summary, we have that it is more difficult to implement parallel

computing infrastructures and that the people who have to do that it is not familiar-

ized with high performance computing world.

The solution of the problems described above is to provide tools and methodologies

which can make easier the process of developing and tuning parallel codes. These

tools have to be able to provide a friendly and easy to understand environment to

scientists in order to warrant a fast and easy developing process. The objective is

to eliminate the tedious and repetitive tasks and to automatize as much as possible

the performance analysis of parallel codes. Human intervention can not be, for the

moment, totally eliminated from the process of code implementation and performance

evaluation of it. However, things like the size of data which have to be analyzed or the

9
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1.2. WHY IS SPECTRAL ANALYSIS USEFUL TO STUDY PERFORMANCE

OF APPLICATIONS?

tedious work focused on the understanding of very general performance properties

can be remarkably reduced, as we demonstrate in this work.

1.2 Why is Spectral Analysis Useful to Study Performance

of Applications?

There are a lot of tools that come from the world of Data Mining [37] or Multivariate

Statistics [92] which can be applied to data extracted from executions of high per-

formance computing applications. However, it is important to take into account the

general properties of these applications in order to determine the kind of techniques

which can be useful for our proposals.

Remember that a remarkably relevant part of high performance computing appli-

cations are focused on the resolution of numerical issues such as systems of partial

differential equations, systems of linear equations, non-linear equations, ... Typically

these numerical issues are related with problems arisen from meteorology, mechan-

ical engineering, cosmology, quantum dynamics... These algorithms, designed from

numerical analysis theory, have a strong iterative character because they try to find

a good approximation of the solution improving, iteration after iteration, an initial

value. The executions of these codes spend most of the time on the execution, one

time after another, of code inserted in a loop.

For example, many of the applications included in the well known NAS Parallel

Benchmarks [3] carry out this kind of calculations. Concretely, the codes Multigrid

(MG), Conjugate Gradient (CG), 3-D FFT PDE (FT), LU solver (LU), Pentadiagonal

Solver (SP) and Block Tridiagonal Solver (BT) have strong iterative behavior because

they are based on typical numerical algorithms, like many high performance comput-

ing applications. In chapter 3 we explain how it is possible to detect these iterations

and we provide many concrete examples.

Due to this typical periodic behavior, the study of executions of applications from

the frequency-domain point of view becomes interesting. Assume that we extract a

time-varying metric from the application’s execution. We call signal to this time vary-

ing metric. Typically, a time-domain representation shows how this signal changes

over time. On the other hand, a frequency-domain representation shows how much

of the signal remains within each given frequency band over a range of frequencies.

A frequency-domain representation can also provide information on the phase shift

that must be applied to each sinusoid in order to be able to recombine the frequency

components to recover the original time signal. Therefore, frequency domain repre-

sentation shows a complete depiction of iterative behavior of the application, provides
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information about the loops, about how they behave and enables to know what is the

application doing during its execution. If it is possible to summarize the main be-

havior of an application’s execution using a minimal and representative segment of

the execution which is repeated many times, spectral analysis and frequency-domain

decomposition will show the path to do this.

The potential and usefulness of spectral analysis applied to study the executions

of computer applications is clear. First, it makes possible to detect the iterative be-

havior, very common in high performance computing applications, enabling the pos-

sibility to reduce the amount of data which has to be analyzed to understand the

main interesting properties of the execution. Second, it also provides the value of

the main frequency detected on the execution. Since this main frequency provides a

length that summarizes the behavior of the whole execution, it is useful to determine

a minimal representative execution segment and to perform an optimal sampling of

the execution. All these ideas are amplified, discussed, implemented and evaluated

in this thesis, providing evidence of the advantages of spectral analysis techniques in

this context.

1.3 Contributions

In this section, we describe the main contributions of this thesis. Mainly, these con-

tributions can be classified in three categories. The first one makes reference to the

application of spectral analysis techniques to message passing programs in order to

automatically detect their iterative structure. This detection provides a remarkable

reduction of several orders of magnitude of the size of data which has to be analyzed

to study the performance of these applications. The second category makes reference

to the formulation and evaluation of an analytical model of the speedup of message

passing applications. This model is extracted from the reduced information obtained

applying the contributions of the first category. It provides an automatic understand-

ing of general but non-trivial performance problems of message passing applications.

Finally, the third category is focused on the application of spectral analysis to detect

the optimal sampling frequency of applications. This information enables us to select

a minimal representative subset of applications and remarkably improves existing

techniques of analysis and selection of representative segments of applications.
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1.3.1 Automatic Phase Detection and Structure Extraction of MPI

Applications

The process of obtaining useful tracefiles from message passing applications for per-

formance analysis in supercomputers is large and tedious. If we execute applications

on hundreds or thousands of processors, the tracefile size will grow up to 10 or 20 GB.

These amounts of data cannot be directly handled by the typical visualization tools

[62, 52]. The analyst can reinstrument the source code in order to obtain a reduced

amount of data. This option implies execute again the application and requires a

deep code understanding. The analyst can try to reduce directly the size of tracefile

cutting or filtering it. However, important information can be lost in this process. In

summary, there is a need of reduction the size of tracefiles avoiding the losing of data

and the wasting of time.

The first contribution of this thesis is a methodology, based on spectral analysis

techniques, which is able to obtain internal structure of tracefiles and to select mean-

ingful parts of it. The underlying philosophy is to rule out the useless and redundant

information. The techniques used to perform this reduction are based on several

mathematical concepts, such us wavelet transform, mathematical morphology and

cross-correlation of signals.

This search for structure has two important advantages. First, its hierarchical

character allows to exploit the existence of nested loop in order to assure the maxi-

mum possible reduction of the tracefile size. Second, this methodology can use any

kind of metric as input, assuring its generality and flexibility.

In summary, the automatic methodology derived from this contribution gives the

internal structure of the tracefile, provides the most representative regions of it and,

therefore, reduces the problem of analyzing a huge tracefile (10 or 20 GB) to the study

of several hundreds of MB. The work performed in this area has resulted in the fol-

lowing publications:

Marc Casas, Rosa M. Badia, Jesús Labarta, Automatic Extraction of Struc-

ture of MPI Applications Tracefiles, In Proceedings of 13th International Euro-

Par Conference (Euro-Par), 2007. Best Paper Award

Marc Casas, Rosa M. Badia, Jesús Labarta, Automatic Phase Detection of

MPI Applications, In Proceedings of Parallel Computing: Architectures, Algorithms

and Applications (ParCo), 2007
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1.3.2 Speedup Analysis of MPI Applications

The elaborateness of high performance computing applications has been growing very

fast in the last years. Only experimented analysts are able to determine the factors

that are undermining the performance of up-to-date applications. Analyst time is

a very expensive resource and, for that reason, a strong effort to develop automatic

performance analysis methodologies has been made by the scientific community.

In this contribution, we propose a methodology that is able to automatically detect

the main performance problems of applications. These problems are very general but

they are not trivial. The main goal is to automatize as much as possible the analyst

time, eliminating tedious and repetitive work. The methodology is based on, first,

a size reduction of the performance data obtained from the executions and, second,

an analytical model obtained from this performance data which fits the speedup of

the applications in terms of several parameters. Such parameters are related to

several performance issues. This analytical model gives general performance trends,

guiding the analyst and reducing the initial search for performance problems. We

have obtained results from real up-to-date applications and we have validated the

conclusions automatically derived from the methodology.

Another significant application of the analytical model is performance prediction.

It is possible to predict values of performance factors of executions on many proces-

sors. These predictions are carried out from real values obtained from execution on a

few of processors. Finally, the model is applied to extract a speedup prediction.

In summary, this contribution provides a methodology which is able to automat-

ically detect non-trivial performance characteristics of applications and to predict

their behavior if we increase the number of processors. Since the methodology is

based on, first, a size reduction performed using fast signal processing algorithms

and, second, on a direct extraction of parameters, the automatic analysis is obtained

very quickly. On the other hand, our analysis scheme is flexible in the sense that

any performance property could be taken into account and its impact in the speedup

could be evaluated numerically. Finally, this methodology can be applied either after

the execution of the application or during the execution. The work performed in this

area has resulted in the following publications:

Marc Casas, Rosa M. Badia, Jesús Labarta, Automatic analysis of speedup

of MPI applications, In Proceedings of the 22nd ACM International Conference on

Supercomputing (ICS), 2008.
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Marc Casas, Rosa M. Badia, Jesús Labarta, Prediction of Behavior of MPI

Applications, In Proceedings of the 2008 IEEE International Conference on Cluster

Computing (Cluster), 2008.

1.3.3 Extraction of Optimal Sampling Frequency of Applications

Several applications have been proposed as benchmarks to evaluate the adequate-

ness of architectures. The performance of these benchmarks is used to determine the

strength and the weaknesses of the architectures. Therefore, the performance eval-

uation of benchmarks is a key factor in the process of designing new architectures.

The problems are the high amount of data generated by real executions and the im-

possibility to perform a detailed simulation of the whole execution in a theoretical

architectures. To address these problems, a lot of approaches have been proposed to

reduce the application’s instruction execution stream [83], [103], [50]. However, none

of the existing proposals address the problem of obtaining the optimal sampling fre-

quency. They consider the sampling frequency as an input parameter that has to be

provided by the user or they simply modify it to obtain lower errors.

In this contribution, we demonstrate that obtaining the optimal sampling fre-

quency improves remarkably the accuracy of the existing techniques and also en-

ables the possibility to obtain consecutive representative subsets of the application’s

instruction execution stream. We show how the methodology developed to reduce

the size of tracefiles, based on spectral analysis, is also useful to obtain the optimal

frequency and we evaluate it on SPEC2000 benchmarks [93]. We also evaluate the

interactions between our proposal and the existing techniques.

We also show how it is possible to extract relevant performance data from exe-

cutions of applications in a very efficient way. It reduces the computational power

required to extract some metrics. We apply these ideas to NAS Parallel Benchmarks.

In summary, spectral analysis is a powerful tool that has to be used in the context

of analysis of applications because it improves the current methodologies if it is used

as input of the currently existing tools, opens new perspectives in this topic if it is

used alone and, finally, does not increase significantly the overhead of the analysis.

The contributions in this area have resulted in the following work:

Marc Casas, Harald Servat, Rosa M. Badia, Jesús Labarta, Analyzing the Tem-

poral Behavior of Applications Using Spectral Analysis Technical Report: UPC-

DAC-RR-CAP-2009-9
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1.4 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 introduces and briefly ex-

plains several generalities which are widely used in the rest of the thesis. Chapter 3

explains the automatic search of MPI applications’ tracefiles structure and an eval-

uation of it. Chapter 4 explains and demonstrates the analytical speedup model

and shows several cases of study in order to illustrate its usefulness. Chapter 5 ad-

dresses the problem of detect the optimal sampling frequencies and its interactions

with other approaches. This chapter also shows an evaluation of the techniques pro-

posed. Finally, 6, explains the conclusions that can be extracted from this thesis.



Chapter 2

Background and Context

In this chapter, we describe several generalities and concepts which have been widely

used in this thesis. First, we talk about several basic concepts of parallel program-

ming, explaining the main programming paradigms which have been used to program

parallel machines. After, we talk about several concepts related to performance analy-

sis of high performance computing applications and we give an overview about several

well known performance tools. Finally, we explain several generalities of signal pro-

cessing and spectral analysis and how they can be useful for the main goals of this

thesis.

2.1 Parallel Programming

Parallel computing has become a widespread computing paradigm in the current

world. A lot of parallel systems have been installed in the main research and in-

dustrial centers around the world. To program this heterogeneous set of machines,

several programming models have been developed. In this section, we give a gen-

eral overview about the state of the art in methods for parallel programming. For

the moment, we have to introduce an important concept in parallel programming,

the concept of process. It is the fundamental unity in most of parallel programming

methods. A process is an instance of a program that is executed in serial form. We

say that a program is parallel if it executes more than one active process at any time

of its execution. Therefore, to be useful, parallel programming paradigms have a

well defined set of tools able to create, destroy and coordinate the different processes

during the execution of a parallel program.

2.1.1 Shared-Memory Programming

In software, shared-memory is a method of communication between processes run-

ning at the same time. One process will create an area in random access memory

17
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(RAM) which can be accessed by all the processes. From the hardware point of view,

shared memory machine is one in which all the processors have access to all mem-

ory locations. However it is also possible to emulate shared-memory machines with

distributed memory systems if we can create a global address space.

Shared-memory programming paradigms have several basic operations. First of

all, they have two kind of operations to create processes. These two ways of process

creation are called static and dynamic. The first one consists in the creation of a

process at the beginning of the execution by a directive of the operating system. The

second one consists in the creation of processes during the execution of the applica-

tion.

Second, there are three basic primitives to coordinate processes. The first specifies

the variables that can be accessed by all the processes, the second avoids problematic

accesses to shared resources and the third synchronizes the processes.

In the last years, OpenMP [68] has become the most extended standard for par-

allel programming in shared-memory machines. To create the different processes,

OpenMP uses dynamic creation. The execution starts as a single process, after sev-

eral processes are created (fork point), starting the parallel region. This region ends

when they are killed (join point) and the serial execution continues. An execution can

have several parallel regions and each region can have different numbers of parallel

processes. Obviously, the parallel regions start in a fork point and end in a join point.

For this reason, the parallel model of OpenMP is called fork-join model.

Suppose that we want to parallelize the typical algorithm of matrix multiplica-

tion. In a very simple and non-optimized form, this algorithm can be written in C

language as follows:

for (i = 0; i < rows; i++) {

for (j = 0; j < cols; j++) {

sum=0;

for (k = 0; k < rows; k++) {

sum = sum + array[i][k] * array[k][j];

}

array2[i][j]=sum;

}

}

It is important to state that each level in the nested loop can be executed inde-

pendently of each other. For this reason, the parallelization using OpenMP is very

simple: We indicate the fork point inserting the directive ”pragma omp parallel for”

just before the first level of the loop. It is also possible to insert this directive inside

the internal levels of the loop. However, the performance gain will be better if we
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insert the directive at the outermost level. In the parallelized loop, variables array,

array2, cols and rows are shared, that is, their values are shared by all the threads.

Variables i, j, k and sum are private, that is, each thread assigns values to them in-

dependently of each other. The joint point is reached when the program finishes the

execution of the nested loop.

pragma omp parallel for shared(array, array2, cols, rows) private(i, j, k, sum)

for (i = 0; i < rows; i++) {

for (j = 0; j < cols; j++) {

sum=0;

for (k = 0; k < rows; k++) {

sum = sum + array[i][k] * array[k][j];

}

array2[i][j]=sum;

}

}

Typically, OpenMP programs have a global structure which is composed by se-

quential and parallel regions. As we have said above, parallel regions start in a fork

point and end in a joint point. These regions are typically composed by fine-grain

parallel chunks of computations. Once the joint point is reached, there is an im-

plicit barrier that synchronizes all the threads. After, parallel region ends and a new

sequential execution segment starts.

2.1.2 Message Passing

The most extended paradigm to program distributed-memory systems is message

passing or a variant of it. This paradigm consists in direct communications between

the processes, that is, they explicitly send and receive messages. When the execution

starts, many different processes are created. All of them execute the same program

with different data. They are allocated at the beginning of the execution and they

are alive until the execution ends. Therefore, the message passing application has

always the same number of processes created and cannot reallocate resources. This

is a difference between message passing and the OpenMP model.

The Message Passing Interface (MPI) [58] is the most extended library interface

which provides an implementation of the message passing paradigm to parallelize

applications. The main goal of MPI is to become a widely used standard for writing

message passing applications. Other important goals of MPI are, first, provide ef-

ficient communication, second, provide implementations that can be used in a wide

range of machines, third, provide C and Fortran bindings, fourth, provide a reliable

communication interface and fifth, provide a friendly interface.
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InMPI each process has an identifier associated. For example, if we execute aMPI

application with 8 processes, each process has a rank between 0 and 7. It is possible to

define communication groups. The process assigned within a communication group

can only communicate between them. This process group is ordered and process are

identified by their rank within this group. A predefined communication group which

contains all the processes is provided by MPI. Its name is MPI COMM WORLD. MPI

has two basic functions. The first is used to send a message and the second enables

to receive it:

int MPI_Send( void* start_buffer /* input */

int count /* input */

MPI_Datatype datatype /* input */

int destination /* input */

int tag /* input */

MPI_Comm communicator) /* input */

Parameter start buffer is the initial address of the sent buffer, count is the num-

ber of elements contained in buffer, datatype is the datatype of each send buffer

element, destination is the rank of the destination, tag is the tag of the message and

communicator is the communication group.

int MPI_Recv( void* start_buffer /* output */

int count /* input */

MPI_Datatype datatype /* input */

int destination /* input */

int tag /* input */

MPI_Comm communicator /* input */

MPI_Status status) /* output */

The receive buffer is composed by the storage of count consecutive elements. The

type of these elements is specified by datatype. The receive buffer starts at address

start buffer. If the length of the received message is greater than the length of the

receive buffer, an overflow error will occur. Status parameter returns information

about the received message.

For example, suppose that process 0 sends and int i to process 2. The call of

MPI Send is as follows:

MPI_Send(&i, 1, MPI_INT, 2, 0, MPI_COMM_WORLD);

In order to receive the messages, process 2 has to call MPI Recv. To assure a

right communication between process 0 and 2, the call of MPI Recv has to match tag

and communicator parameters and the memory available for the message has to be

greater or equal than the message sent. Remember that this memory is specified by

the buffer, count and datatype parameters. The call of MPI Receive can be as follows:
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MPI_Recv(&i, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &status);

Now several problems have to be addressed. The first one happens if process

0 calls MPI Send but process 2 does not call MPI Recv. The solution of this prob-

lem depends on the system that is executing the application. Basically, there are

two solutions: The system software can buffer the message, that is, it can save the

message on the memory and process 0 can continue the execution. When process

2 calls MPI Recv, the message is transfered to it. This kind of communication is

called buffered communication. Other solution is to synchronize the execution, that

is, process 0 can send a request to 1 and wait until it receives an authorization to

begin the communication from 1. This kind of communication is called synchronous

communication.

The second problem happens if process 2 executes the receive call before that pro-

cess 0 starts the transmission of the message. The function we called, MPI Recv,

is blocking. It means that process 2 will be waiting, remaining idle, until process 0

starts the transmission of the message. It is important to state that this is not syn-

chronous communication because it is not mandatory for process 0 to receive permis-

sion to start the send. This type of communication is called blocking communications.

On the other hand, it is also possible to perform a nonblocking receive communica-

tion. It consists in another type of receive call that sends a request to the system to

inform that the process has started a receive call. This process can perform calcula-

tion which do not need the information contained in the message and check later if

the message have arrived. This receive function is called MPI Irecv:

int MPI_Irecv(void* start_buffer /* output */

int count /* input */

MPI_Datatype datatype /* input */

int destination /* input */

int tag /* input */

MPI_Comm communicator /* input */

MPI_Request *request) /* output */

Non-blocking communications can reduce substantially the overhead due to com-

munication. If a node of a parallel machine is able to compute and communicate

simultaneously, the performance of message passing programs will improve a lot.

While computations are being performed, it is also possible to do the work needed by

the non blocking operation. It is well known that communications are more expen-

sive than computations. Therefore, overlapping communication and computation can

provide important performance improvements.

For the moment, we have talked about communications that involve two pro-

cesses. For this reason, this communications are called point-to-point communica-
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tions. However, MPI provides another kind of communications which involve more

than two processes. These communications are called collective communications. A

communication is called collective when involves a group of processes. The existence

of collective communications are motivated by several performance problems that can

appear usually. For example, sometimes one process has to read all the data from one

file and after send data to the other processes to allow the beginning of computations.

Suppose that there are n processes. If the process 0 has to send all the information

to the others, it has to perform n − 1 sends and they cannot be overlapped. It’s bet-

ter to perform the sends using a tree approach, that is, process 0 sends to process 1,

after process 0 sends to process 2 and process 1 sends to process 3 and so on. This

scheme allows us to perform the message exchanges in logarithmic time because sev-

eral communications are overlapped in time. However, the implementation of this

tree approach is quite complicated if we only have the point-to-point functions we

have seen. To overcome this problem, there is a function called MPI Bcast which

performs an optimum broadcast of a message. This is the syntax of MPI Bcast:

int MPI_Bcast(void* message /* input/output */

int count /* input */

MPI_Datatype datatype /* input */

int root /* input */

MPI_Comm comm) /* input */

This call simply sends a message from the root process to the set of processes

contained in the communication group. To receive the message, the call should be

performed by all the processes involved in the communication: The root and the re-

ceiving processes. The parameter message will be an input parameter for the root

process and an output parameter for the other processes.

This is only an example of collective call. MPI provides more functions which

are able to perform other kinds of data exchange between processes. The common

denominator of these collective calls is that they involve a communication group,

that is, a set of processes.

Typically, message passing executions have computation regions interspersed with

communication ones. Point to point calls are frequently used to implement commu-

nications between tasks. Collective calls are focused on synchronize the tasks or on

perform efficient and complex communicating operations.

2.1.3 Data Parallel Languages

Data parallelism [38] , also known as loop-level parallelism, is a simple approach to

program parallel systems. It consists in distribute data among the processes. Each
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process executes the same program on the part of data that has been assigned to it.

This approach is very useful if we have to compute on very regular data structures.

In this case, the programmer only has to indicate, adding some directives, that the

structure has to be distributed among the processes. Compiler automatically replaces

these directives with code that distributes the data. Obviously, as more regular is

data, more efficient is its distribution among the processes.

It is important to state that, in general, the problem of mapping data structures

to processors is very hard. The only particular case that can be easily solved is when

data structure is very regular, for example, a dense matrix. This is a very important

issue for any kind of parallel program. However, in data-parallel programs this prob-

lem becomes crucial because the mapping of data structures is specified during the

compiling time.

An example of data parallel languages are Partitioned Global Address Space pro-

gramming models (PGAS). These programming models provide high performance

computing programmers with a shared address space model which simplifies pro-

gramming while exposing data/thread locality to enhance performance. This facili-

tates the development of programming languages that can reduce both development

time and execution time.

Data Parallel Language approach is specially useful to program architectures

such as Compute Unified Device Architecture (CUDA) [36], a parallel computing ar-

chitecture based on GPU cores. CUDA uses general purpose computing on graphics

processing units (GPGPU). This technique consists in using a GPU, which typically

handles computation only for computer graphics, to perform computation in applica-

tions traditionally handled by the CPU. Finally, we want to mention that data par-

allel language approach it is also useful to program multicore architectures [28] or

reconfigurable devices [70] (FPGA’s, ...).

2.1.4 Remote Procedure Call and Active Messages

Message passing and data parallelism are the two most used approaches to program

distributed memory systems. However, we want to mention two approaches more

that have been successful: Remote Procedure Call (RPC) and Active Messages. In

these two models, the communication between processes consists not only in trans-

mission of data but also in execution of subprograms in other address spaces (another

computer) without the need of an explicit codification by the programmer of this re-

mote interaction.

The differences of these two approaches remain on the fact that, on the one hand,

RPC follows a synchronous communication model, that is, the main process is idle
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while it is waiting for the output of the subprogram executed by the remote processor.

This synchronous communication model comes from the fact that RPC was initially

designed for use in distributed computing. While the remote process is performing

the execution of the subprogram, the host system of the main process can carry out

other jobs. If the host system is composed by processors exclusively dedicated, this

communication model will not be optimal. To solve this problem, we have active

messages: When the main process has sent the message through the interconnec-

tion network, it continues its computations. When the remote receives the message,

it stops the computations which were being performed on it, reads the information

contained in the message and executes the subprogram.

2.2 Performance Analysis Tools

This section is focused on Performance Analysis Tools. First, we make a general

overview of the existing tools, explaining how we classifying them according to their

general characteristics. After, we explain some generalities about the collection of

performance data in this thesis. We explain how tracefiles are generated, we describe

their format and, finally, we talk about the possibility to visualize these files.

2.2.1 Overview of Performance Analysis Tools

Understand the behavior of an application is mandatory to evaluate its suitability

and applicability on parallel machines. To acquire this understanding, it is manda-

tory to capture from the program execution the information from which the perfor-

mance metrics will be obtained. Performance analysis tools need some mechanisms

to capture information. Typically, these mechanisms are inserted in segments of

code, enabling the possibility of extract and summarize information through a mech-

anism implemented at a lower level. For example, hardware counters [66] are based

on mechanisms which are able to summarize architecture accumulate occurrences of

specific events in registers that can be consulted by higher level mechanisms.

The information extracted from real executions of applications can be described

like a set of three dimensional points. Each point corresponds to an event occurred

during the execution of the application. The three dimensions are, first, the tempo-

ral dimension (when an event happens), second, the spatial dimension (the process

where it happens) and, third, the type of event. To capture these points, two basic

techniques can be used: Instrumentation and sampling. The first one consists in

capture each relevant event to the performance analysis. For example, if we are in-

terested in the performance of a supercomputer’s communication network , we will
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capture all the communication events. The second technique, sampling, consists in

extract the events according when an external mechanism determines. For example,

we can extract data each second.

The obtained points have to be presented to the analyst in such a way that sim-

plifies the understanding. Mainly, there are two forms to summarize data: the first

one consists in collapse the time dimension, the space dimension or both. This sum-

marization can be done online, that is, during the executions of the application or

off-line. Data presentation can be done in text format [44] or using a GUI [104, 90].

This last presentation method offers a clearer presentation to the user. The second

method to summarize data consists in time-dependant visualizations [52, 62, 107].

The underlying idea is that to observe the time evolution of the events can strongly

improve the understanding of the behavior of a parallel application.

An important consideration that we want to make is the importance of the analyst

time dedicated to performance analysis. This analysis can be expensive if the analyst

does not have previous knowledge about the studied application. Minimizing this

time is one of the most important goals of the analysis tools and methodologies. The

automatic capture of the internal structure of an application is a way to reduce this

analyst time, as we will see in this thesis.

One of the main advantages of the automatic structure extraction of applications’

execution is that it enables the possibility to acquire a first general overview of the

executions without information about the source code of the application. This infor-

mation is typically very expensive to obtain because it requires a careful observation

of the main functions of the application source code. Up-to-date high performance

computing application have large source codes. Therefore, to study these source codes

is not an easy task.

Other important advantage of our approach is that it simplifies the instrumenta-

tion process because the generation of large data sets is not problem. The automatic

reduction process of data sets makes possible to handle with this kind of sets. In the

next chapters, these ideas are explained and developed in detail.

2.2.2 Collecting and Studying Performance Data

To detect the structure of an application’s execution, we need first to generate data

from the execution which contains information related to its evolution. In order to

perform a time analysis of the execution, we need to generate a time stamped se-

quence of events from the execution of the application. This complete time stamped

sequence of events is called tracefile. Each tracefile contains information of an execu-

tion of an application. Our approach consists in generate and analyze time-varying
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signals from these tracefiles. However, it is important to mention that our approach

can be applied to other kinds of input data. Input information has to be time stamped.

This is the only condition that has to be satisfied by the input data.

2.2.2.1 Tracefile Generation

To generate a tracefile of an application, we need to instrument its source code and

perform a real execution of it. The instrumentation of the source code is needed

in order to use the functionality of a tracing package. Basically, tracing packages

are libraries which provide functions able to collect fine grained information of a

sequential or a parallel application. There are a lot of examples of tracing packages

focused on the analysis of parallel programs: VampirTrace [61], TAU [82] or MPItrace

[59]. In this work, we use the last one.

The MPItrace tool has been designed for parallel codes that use the message pass-

ing (MPI) programming model. This tool generates a Paraver trace file. In this file,

the tracing package records the basic activity of the MPI program. The MPItrace tool

assumes each MPI process has only one thread. A tracefile represents a single MPI

application execution, therefore it includes only one program with several tasks and

one thread per task. This tracing package records many types of information. These

are the three major types of information we can get using MPItrace:

States: They provide information about the activity of each thread. They can be

computing, waiting for a message or performing an input/output operation.

Communication: They provide information about point to point communica-

tions. They have identifiers for the starting and for the end of the sending and re-

ceives. They also provide the values of parameters tag and size according to their

values in the MPI calls (see section 2.1.2). Since it is not possible through the MPI

instrumentation to find out when the actual data transfer takes place, physical com-

munication is assumed to be identical to logical one.

Events: They provide information about the beginning and the end of several

operations that the applications performs during its execution. One example to tag

the beginning and the end of MPI operations, such as Barriers, Broadcast, AlltoAll,

and all kind of Send - Receive calls. Another example is to tag the beginning and the

end of flushing data to disk (see section 3.5).

In this section we have talked about tracing packages focused on the analysis of

MPI programs. However there are many packages focused on the study of other kind

of MPI programs. For example, OMPtrace [16] instruments parallel code of OpenMP

applications. Basically, this package provides information in terms of states and

events. In this context, state information means information about if a given thread
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Figure 2.1: Paraver Tracefile Example

is computing, communicating, performing an input/output operation or scheduling

(generating work/notifying termination). Information in terms of events means es-

sentially information about if a given thread entries / exits from a parallel region or

from a routine that includes OpenMP directives.

Finally, we have to mention OMPItrace [67], a tracing package able to trace ap-

plication which contain MPI and OpenMP directives, Java Automatic Code Interpo-

sition Tool (JACIT) [98] a tool which enables the user to insert probes on Java codes,

the infoPerfex [96] tool, which enables the user to obtain information from hardware

counters sampled periodically, and SCPUs [77] a tool that instruments the operating

system scheduling.

2.2.2.2 Tracefile Format

Tracefiles contain timestamped sequences of events of a given execution of an appli-

cation. Obviously, the format of this sequence is not important from the conceptual

point of view in order to generate signals. However, in order to provide a general

idea of the kind of information contained in tracefiles and, therefore, of the kind of
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information needed by our approach in order to detect execution structure, we show

an overview of the tracefile format in figure 2.1. It is the typical Paraver [52] tracefile

format.

First, we highlight the header of the tracefile. It contains information about the

total application time in nanoseconds, about the number of processors in the tracefile,

about the number of applications in it (usually we have only one application for each

tracefile), the number of tasks for each application and the number of threads for each

task. In this case we have that the total application time is equal to 181613173713

nanoseconds, the number of processors in the tracefile is equal to 4, the number of

applications in the tracefile is equal to 1 and the number of tasks of the application

is equal to 4.

After, we show an example of a state. The first number, 1, means that this record

is a state. The second, third, fourth and fifth numbers are equal to 2, 1, 2, 1 respec-

tively. These four numbers have to be read from right to left. The last pair 2, 1 means

that this event provides information about the first thread of the second task. The

first pair 2, 1 means this task belongs to application 1 and that it is mapped to proces-

sor 2. Remember that in this trace we only have 1 application and that each thread

has only 1 task. For this reason, the third and the fifth numbers are always equal to

1. The sixth number, 306214, shows the beginning of the state in milliseconds and

the seventh, 5883876428, provides its end. Finally, the eighth number gives the type

of the state. In MPI tracefiles, state 1 is usually interpreted as a computing state.

After we show an example of an event. The first number, 2, means that this record

is an event. The second, third, fourth and fifth numbers mean the same as above. The

sixth parameter is the instant of time of the event occurrence, in nanoseconds. After,

the seventh parameter, 400000003 is an identifier of the event type. This identifier

means the task is flushing its records to disk (see section 3.5). Finally, we have the

value the event. In this case, 1 means beginning of flushings.

Finally, we show an example of a point-to-point communication record. The first

number, 3, means that this line provides information about a communication. We

have two sets of four numbers, 2:1:2:1 and 4:1:4:1. The first set identifies the sending

task and the second set identifies the receiving task. On the one hand, the two num-

bers following the set 2:1:2:1, 7211314643 and 7211322500, provide the beginning

and the end of the send. On the other hand, the two number following the set 4:1:4:1

provide the beginning and the end of the receive. The last two numbers, 819200 and

4000, provide the size, in bytes, and the tag of the message.

Note that it is easy to generate time dependent signals from this kind of infor-

mation. For example, we can generate a signal which contains how many tasks are

performing a point to point send call in each instant of time or how many tasks are
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in a computing state. From these signals, we extract the structure of the execution of

the application.

2.2.2.3 Visualization and Analysis

We want to mention another important fact related to tracefile and related to per-

formance analysis: the possibility of generate visualizations of the tracefile in or-

der to visually study characteristics of the execution of the application such as the

performance properties or the general structure of the application. The process of

performance analysis of application can be remarkably accelerated with the help of

visualization tools such as Paraver [52].

Paraver is a malleable performance visualization and analysis tool. It can be used

to analyze performance properties related to MPI, OpenMP, MPI+OpenMP, Java,

Hardware counters profile, operating system activity and many others. It provides

a qualitative global perception of the whole execution of the application. It also pro-

vides the possibility of focussing the analysis on a small region of the execution and

its quantitative properties. Finally, Paraver enables the analyst to determine where

to invert the programming effort to improve the performance of the application.

The graphical views provided by Paraver represent the behavior of the application

along time. These views characterize the temporal evolution of the application and

its behavior. It is also possible to identify patterns and detect causality relationships

by the analyst who is looking at the Paraver graphical representation.

For example, in figure 2.2 we have an example of several Paraver representations.

The application is NAS-BT class A [3] executed on 4 processors. We do not show the

whole execution, only a small fraction of that. At the top, we have a typical view. In

this representation we have, in the x-axis, the time and in the y-axis the set of tasks.

Computing bursts are drawn in blue, communications in yellow and waiting time in

red. As you can see, we can follow the temporal evolution of each thread detecting by

visual inspection when it is communicating or computing. Please, note that this is the

graphical expression of information contained in tracefiles, that is, each communica-

tion, event or state is codified in the terms we explained in section 2.2.2.2. Secondly,

we have a graphical representation of a signal. This signal summarizes information

about the number of communications, that is, it provides for each instant of time the

number of flying messages which the application is transmitting. In the third place,

we have a signal generated from computing states: The sum of durations of comput-

ing states. Note that, for this case, this signal is complementary of the above signal,

that is, when we have a lot of communications, there are a few computing bursts and,

on the other hand, when we have long computing bursts there are a few communica-
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Figure 2.2: Paraver views of two iterations of NAS-BT class A executed on 4 processors.

tions. Finally, in the fourth place, we have a signal which indicates, for each instant

of time, the mean IPC achieved by the set of threads. All these signals can be gen-

erated with Paraver from the original tracefile by filtering and interpreting the trace

information. With Paraver, the analysis requires an interactive user intervention. In

this thesis, we pursue to perform this automatically for large tracefile.

With the above example, we want to emphasize the flexibility and malleability of

Paraver. It is possible to visualize many kinds of information graphically or numer-

ically. Our approach has the same philosophy from the point of view of flexibility of

metrics and signals. As we explain in the next chapters, our approach is general in

the sense that is possible to analyze signals independently of the information they

contain or the methodology we have followed to obtain them.

2.3 Signal Processing

In this work, signal processing techniques play a key role because, as we explain

in the next chapters, we characterize executions of applications using signals. For

this reason, we dedicate this section to explain several well known signal processing

techniques which are used in this thesis widely. Furthermore, we explain why they

have been used and the advantages and disadvantages of them from out point of
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view. These techniques are closely related with wavelet transform, cross-correlation

function and mathematical morphology.

2.3.1 Wavelet Transform

Wavelet transform is a well known signal processing tool used in a wide and hetero-

geneous range of topics. This transform and the techniques based on it have become

useful for relevant issues such as image compression [10], sensor networks [99], sig-

nal processing, seismic geophysics, molecular dynamics, speech recognition, climatol-

ogy, turbulence analysis, quantum mechanics, optics, ... The most important feature

of Wavelet Transform is that it captures information not only about the values of the

frequencies of the input signal but also about the physical location of these frequen-

cies, that is, using wavelet transform it is possible to know estimations of values of

the main frequencies of the signal and the places within the input signal’s domain

where these frequencies occur. Remember that the traditional Fourier Transform

does not give information about the physical location of the frequencies, only gives

the spectrum of frequencies as output. Another important difference is that Fourier

Transforms represents signals in terms of sums of sinusoids and Wavelet Transform

can represent signals using a more wide range of functions, providing a more general

analysis environment.

The history of wavelets starts with Haar’s contributions at the beginning of the

20th century. He developed the well known Haar’s transform [100], a particular case

of wavelet transform. The following step was done by Zweig, discovering the con-

tinuous wavelet transform in 1975 while he was studying the interactions between

the ear and the sound. We have to mention Stromberg [94], for his contributions to

discrete wavelets in 1983 and Daubechies’ discovering of continuous wavelets with

compact support in 1988 [22]. Many others [35] have contributed decisively in the

development of wavelets theory.

2.3.1.1 Definition

Wavelet transform expands a function in the spatial domain to an adding of orthog-

onal functions. It is a particularly interesting operator because wavelet expansions

require very few terms to approximate accurately the functions. This is the reason

why wavelet transform is widely used for compressing images or signals. In terms

of formulas, the set of orthogonal functions is �ψk�n|k ∈ Z� n ∈ Z} and the discrete

wavelet transform (DWT) is a representation of a signal x(t):
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x(t) =
∞�

k=−∞

∞�

n=−∞

dk�nψk�n(t) (2.1)

dk�n = �ψk�n(t)� x(t)� =

� ∞

−∞
ψk�n(t)x(t)dt (2.2)

where dk�n are the wavelet coefficients. The set of orthogonal functions is defined

shifting and stretching a mother function, ψ, called mother wavelet. All the func-

tions belonging to the set L2(�) (functions whose square is integrable) are eligible to

become mother wavelets. For each one of them, we can define a family of wavelets

ψk�n = 2−
k

2 ψ(2−kt − n) (2.3)

increasing n, the function is switched to the right and, otherwise, decreasing it,

the functions is switched to left. On the other hand, increasing k the function is

stretched and its value is decreased.

Note that the set �ψk�n|n ∈ Z}, that is, the subset of wavelets with a fixed value of

k, describes a given level of detail of the input signal. As the value of k increases, the

wavelets become more stretched and describe a higher level of detail of the signal.

This fact allows DWT to provide a multi-resolution analysis of the input signal. In

summary, DWT provides a multi-resolution analysis of a continuous signal in L2(�).

2.3.1.2 Fast Wavelet Transform

As we have seen in the past section, the computation of each wavelet coefficient re-

quires the numerical evaluation of an integral. It is not possible to compute these in-

tegrals from the computational point of view. To overcome this problem, an algorithm

called Fast Wavelet Transform was developed. Its theoretical basis is functional anal-

ysis [23], [100]. It is recursive and based on two filters: a low pass filter and a high

pass one. Each filter is characterized by a set of coefficients: the set �ad} character-

izes the low pass filter and �bd} the high pass one. The values of these coefficients

are derived from a function φ ∈ L2(�), called scaling function. That is, each scaling

function defines a set of two filters that make possible a quick calculation of the Dis-

crete Wavelet Transform. The theoretical definitions we made in the past section are

implicit in this scheme, that is, from the scaling function φ it is possible to define a

mother wavelet and the subsequent set of functions. However, not all the functions

in L2(�) are able to provide a multi-resolution analysis based on DWT. There are sev-

eral non-trivial mathematical conditions, described in [45], that the scaling function

has to fulfill.
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Figure 2.3: Haar Scaling Function

The simplest scaling function φ(t), called Haar’ scaling function, can be defined

as:

φ(t) =

�




1 0 ≤ t < 1�

0 otherwise.
(2.4)

From this scaling function, it is possible to obtain the Haar’s mother wavelet

function, ψ(t). The mathematical methodology that enables to generate the wavelet

mother function from a well-defined scaling one can be found in [45]. Haar’s wavelet

mother function can be described as

ψ(t) =

�




1 0 ≤ t < 1/2�

−1 1/2 ≤ t < 1�

0 otherwise.

(2.5)

In figure 2.3 we show the simplest scaling function, Haar’ scaling function and in

2.4 we have the wavelet derived from it.

As we have said above, two filters can be obtained from the scaling function, φ(t).

These two filters are the basis of the FWT algorithm. This algorithm consists in apply

recursively an operation that transforms a set of N = 2J coefficients, s0� s1� ...� sN−1

into two sets of N
2 samples. Each recursive application of the operation is called

level. The coefficients used as input to the transform are expressed s0
0� s

0
1� ...� s

0
N−1. In

general, level l coefficients, those are, sl
0� s

l
1� ...� s

l
n−1 and dl

0� d
l
1� ....� d

l
n−1 are obtained
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Figure 2.4: Haar Wavelet

from level l − 1 coefficients sl−1
0 � sl−1

1 � ...� sl−1
2n−1 according to two recurrence relations:

sl
i =

D−1�

d=0

ads
l−1
�2i+d�2n

(2.6)

dl
i =

D−1�

d=0

bds
l−1
�2i+d�2n

(2.7)

where n = N
2l , i = 0...n − 1, ad and bd are coefficients for low and high pass wavelet

filters, D is the number of values in the wavelet filters. �x�m is the modulus function

defined so that �x�m ∈ [0� m − 1] for all x ∈ Z. To execute correctly this algorithm, N

has to be power of 2, that is, N = 2J . Note that it implies that the recursive call will

be executed J times. It is important to state that sl
i contain information about low

frequencies and dl
i about high frequencies.

When the execution of the fast wavelet transform is finished, we will obtain a

set of coefficients. First, N
2 values of the level 1, s1

0� s
1
1� ...� s

1
N/2−1, after,

N
4 coefficients

of the level 2, s2
0� s

2
1� ...� s

2
N/4−1, ..., until 2 coefficients of level J , sJ

0 � dJ
0 . According to

the theory, the coefficients of level i contain information about frequencies between

[ α
2i+1 � α

2i ] where 1 ≤ i ≤ J and α is the sampling frequency of the input signal. Note

that the higher frequency considered by this multi-resolution scheme is α
2 . This fact

is coherent with the Nyquist-Shannon sampling theorem [80, 65] which states that is

not possible to obtain information from the spectral analysis of a signal of frequencies

higher than α
2 if the sampling frequency is α.
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2.3.1.3 General Considerations

As we have seen in the past section, the analysis using Discrete Wavelet Transform

(DWT) allows us to obtain a multi-resolution description of the signal. We obtain
N
2 coefficients that give information about the physical localization of frequencies

from α
2 to α

4 ,
N
4 coefficients that give information about the physical localization of

frequencies from α
2 to

α
4 , and so on ... Note that for high frequency values we have a lot

of information about the physical location of them and for lesser frequency values we

have less information about their physical location. On the other hand, the resolution

of the frequencies’ values is higher for low values of them because interval [ α
2i+1 � α

2i ] is

larger than interval [ α
2i+2 � α

2i+1 ].

This is the main problem of Fast Wavelet Transform, precision. For low frequency

values, it gives good estimations of their values but bad estimations of their physi-

cal location within the input signal domain. On the other hand, for high frequency

values, it gives bad estimations of their values but good estimation of their physical

location within the input signal domain. This phenomenon is not reduced to Wavelet

Transform. It also appears in topics such quantum physics and it is named uncer-

tainty principle [102].

On the other hand, the computational complexity of Fast Wavelet Transform is

very low. It allows to obtain a complete multi-resolution analysis of a signal with a

very reasonable computational load. Fast Wavelet Transform is performed in O(n)

operations.

In summary, we have that wavelet transform is a good tool to detect not only

the values of the frequencies, but also the physical location where these frequencies

occur. The computational complexity of the Fast Wavelet transform. However, it has

several accuracy problems, as we have explained in this section.

2.3.2 Cross-correlation and Autocorrelation

Cross-correlation is a commonly used and well known signal processing technique.

This tool and the methodologies derived from it are used in topics such us pattern

recognition, cryptography, image matching, ... It is used to evaluate the degree of

similarity between two signals. Another interesting feature of it is that it can be used

to look for a known pattern within a large signal. From the point of view of statistics,

cross-correlation has good properties because it allows calculations of distribution

probability functions of random variables generated from the composition of other

random variables with known distribution probability functions.
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2.3.2.1 Definition

Cross-correlation functions of two signals is an operation that consists in shifting

one of them and multiplying them. This operation is also known such us sliding dot

product or inner-product. In terms of formulas, if f and g are two discrete signals,

the discrete cross-correlation of them is:

(f � g)[n] =

∞�

m=−∞

f∗[m] g[n + m] (2.8)

where the symbol � means cross-correlation and f∗ means the conjugated function of

f . Obviously, it f is a real function, f = f∗.

The underlying idea behind the formula is to detect the degree of similarity be-

tween two signals. For example, suppose that we have a discrete signal, g and that

we shift this signal to the right a value k, obtaining a new signal, f , defined like

this f(t) = g(t − k). Suppose that we compute the cross-correlation between f and

g. The formula switches g function along the x-axis and computes the adding of the

multiplications of f and switched g. When m = k, the positive values of f are aligned

with the positive ones of g and the same happen with the negatives and, therefore,

the value of the cross-correlation function will be maximized in this point. Note that,

from the information provided by cross-correlation function, we are able to detect

that maximum degree of similarity between signals f and g occurs when the second

one is shifted k times to the left.

In figure 2.5 we depict a sinusoid function and we show this function shifted to the

right a value equal to π
2 , to π and to 3π

2 . In figure 2.6 we have the cross-correlations

between the initial sinusoid function and its right shiftings. As we can see, cross-

correlation reach their maximal values at the same point where we switched the

signal to the right. This is because cross-correlation slides to the right the initial

function. Where this initial function is aligned with the shifted one, cross-correlations

reach their maximal values.

2.3.2.2 Autocorrelation

Autocorrelation is a particular case of cross-correlation when f = g. It is specially

useful for finding repetitive patterns within the input signal. Autocorrelation has

always the global maxim value when n = 0 because in this point the signal f is

correlating with himself. The interesting points of an Autocorrelation are the local

maxim values because they are candidates to represent the value of an iterative pat-

tern within the input signal. These local maxim values can represent the value of an

iterative pattern or an harmonic of it, that is, a multiple of the real value of the iter-
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Figure 2.5: Sinusoid and right-shiftings
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ative pattern. The high importance and wide utilization of autocorrelation function,

a special case of cross-correlation, remain on the properties we have described in this

section.

2.3.2.3 Computation of Cross-correlation

The computation of cross-correlation directly from the formula 2.8 has a computa-

tional complexity of O(n2), where n is the number of samples of the signals. This

fact makes impossible a direct computation of cross-correlation function. We have

to turn to some theory to find a solution to this problem. According to a theoretical

mathematical result:

F�f � g} = F�f}∗ · F�g} (2.9)

Where F�f} means the Fourier transform of signal f and f∗ means again the con-

jugate of f . The interpretation of this formula is clear: It is possible to calculate

the values of the cross-correlation using Fourier Transform, reducing the computa-

tional complexity dramatically because Fourier Transform can be obtained with only

O(n·log(n)) operations. To calculate the cross-correlation of two discrete signals f

and g of n samples, we have to calculate, first, the Fourier Transform of both signals,

second, multiply the coefficients of the two transforms, obtaining n coefficients from

these multiplications and, finally, perform an inverse Fourier Transform to these n

multiplicative coefficients.

At the end, the computation of cross-correlation is reduced, if we have two discrete

signals of n samples, to two Fourier Transforms, n multiplications of complex num-

bers and an inverse Fourier Transform. All these calculations have a computational

complexity equivalent to O(n·log(n)) operations, better than the O(n2) operations re-

quired if we calculate the cross-correlation using formula 2.8 directly.

2.3.2.4 General Considerations

In summary, since its special properties, cross-correlation function is a widely used

tool in a very differently topics. It is used, essentially, to evaluate the similarity be-

tween two signals or to look for patterns within large signals. Autocorrelation func-

tion is a special case of cross-correlation function, specially useful for detect periodic

behavior within the signals. These techniques are well known and their theoretical

roots are rigorously established in mathematical bibliography [8].

Cross-correlation function has several well known advantages. First, we have to

mention its usefulness in problems related to pattern recognition. Second, it is possi-

ble to reduce the computation of this function to a composition of Fourier transforms,

reducing remarkably its computational complexity. Finally, we have to mention the
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simplicity of its implementation because only a library containing an implementation

of the Fast Fourier Transform (FFT) is required.

However, this technique has several disadvantages. The first one is related with

the search for periodic behavior within the signal. Autocorrelation offers several

candidates to be the repetitive pattern. However, sometimes it is not clear which

of these candidates are harmonics of the repetitive pattern or correspond to other

smaller repetitive patterns. For this reason, it is not always easy to automatically

extract the value of the main iterative pattern of a given signal from its autocorrela-

tion function. On the other hand, cross-correlation has another disadvantage related

to the search for a given pattern within the signal domain. To make this search more

effective, we need very concrete information about the pattern we are looking for. For

example, if we only know its length but we have no idea about its morphology, some

problems will sometime appear in the detection of the pattern.

2.3.3 Mathematical Morphology

Mathematical Morphology is a branch of mathematics focused on the analysis of ge-

ometrical spaces. Its theoretical roots are set theory, topology random processes and

geometry. Several geometrical and topological characteristics of continuous and dis-

crete figures of the space can be summarized by mathematical morphology. Usually,

it is used to study digital images, but it can be applied to signals, graphs and other

spacial structures. Themain focus of mathematical morphology is to extract automat-

ically useful information from images or signals without supervision. For example, it

is used to extract information about roads and railways from pictures made by planes

or satellites.

Historically, the theory was developed by J. Serra and G. Matheron [78] in the

School of Mines of Paris around 1964. After, several non-linear filters were defined

by the same authors in the context of mathematical morphology, such us dilation,

erosion, opening and closing. Around 1980, Mathematical Morphology gained inter-

national recognition and it started to be used in a larger set of problems.

2.3.3.1 Definitions

Suppose that we have a non-negative signal, f(x), called input signal, and a real

value k, called structuring value. For each structuring value, we can define a pair of

operators that can be applied to f(x): The Dilation of a function f(x) by k is defined

by:

[f ⊕ k](x) = max
y∈[x−k�x+k]

�f(y)} (2.10)
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Note that, applying this operation, the new dilated signal has the maximum value of

input signal f(x) within a given interval, defined by the value k. On the other hand,

the Erosion of a function f(x) by k is defined by:

[f � k](x) = min
y∈[x−k�x+k]

�f(y)} (2.11)

In this case, the new dilated signal has the minimum value of the input signal, f(x),

within a given interval. The interests behind these two basic operators are the com-

bination of them. On the one hand, opening is the operation consisting in apply, first,

the erosion operator and, after, the dilation one. On the other hand, closing consists

in apply, first, the dilation operator and, after, the dilation one. In terms of formulas:

f ◦ k = (f � k) ⊕ k (2.12)

f • k = (f ⊕ k) � k (2.13)

The underlying idea behind opening operator is to eliminate small regions where

signal’s value is different from zero. On the other hand, closing unifies non-zero

regions of the signal separated by small environments where the signal is equal to 0.

In the context of Mathematical Morphology, many other filters can be defined, such

us granulometry, thinning, skeletonization, and others. However, in our work we use

mainly Closings and Openings.

2.3.3.2 Computation

The computation of Erosion and Dilation filters is made directly from the definitions

2.10 and 2.11. These calculations are possible to perform because the signals we

work with have a finite precision limit. Therefore, search for maximum become a

linear search across the signal. Remember that Closing and Opening filters are com-

positions of Erosion and Dilation. For this reason, they can be obtained with the

same methodology as well.

2.3.3.3 General Considerations

Mathematical morphology is a good tool to extract relevant information from signals.

The analysis performed by its filters is based on the morphological properties of the

signals. This is because is interesting for us. The analysis point of view of Mathemat-

ical Morphology is very different from other signal processing theories, for example

Fourier Analysis. The combination of several different analysis is what enables us to

perform a complete analysis, as we will see in the next sections.
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Mathematical Morphology has several well known advantages. First, it allows

an automatic analysis of several geometrical properties of signals, images, graphs,

etc.. Second, it has a wide set of morphological filters which are easy to define, easy

to implement and have a wide set of application possibilities. Finally, Mathematical

Morphology is a solid theory with robust theoretical roots.



42 2.3. SIGNAL PROCESSING



Chapter 3

Automatic Phase Detection and

Structure Extraction of MPI

Applications

The process of obtaining useful message-passing application tracefiles for performance

analysis in supercomputers is a long and tedious task. When using hundreds or thou-

sands of processors, the tracefile size can be as large as 20 GB. It is clear that an-

alyzing, or even storing, these large traces is a problem. The methodology we have

developed and implemented performs an automatic analysis that can be applied to

huge tracefiles, by determining its internal structure and selecting meaningful parts

of the tracefile. This chapter presents the methodology and also the results obtained

from real applications.

3.1 Introduction

In this section, we explain the main characteristics of the automatic phase detection

and structure extraction of MPI applications. First, we define what we mean by

structure extraction and why it is possible to extract this structure from executions

of MPI applications. Second, we make an overview of the automatic process and

we explain its main characteristics. Finally, we indicate the main applications of

structure extraction in performance analysis of high performance computing kernels.

3.1.1 Definition of Structure Extraction

Structure extraction is an automatic process which consists in detecting the different

phases of real executions of high performance computing applications, ruling out the

perturbed regions and, finally, providing good representative segments of the whole

43
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execution. This process takes advantage of the typical characteristics of high perfor-

mance computing applications: Many repetitions of the same segment of code, due

to the typical iterations which numerical kernels perform, and several well defined

execution phases, due to the initialization of values, the processing of them, and the

final output of the results.

This process is composed by several steps, each one of them is focused on one of

the above specific tasks which the structure extraction has to carry out. Each step is

automatic and, thus, can be carried out without human intervention. As we will see,

spectral analysis of signals plays a key role in the structure extraction process. The

signals are directly extracted from data derived from real executions. In the next

sections, we explain with more precision which are the main characteristics of the

whole process and how it is carried out.

3.1.2 Overview of the Structure Extraction Process

The first step of our approach is to characterize the execution of the application from

a particular point of view. There are a lot of approaches to the characterization of the

execution of applications, but in our work we use signals to do this. These signals are

generated from data contained in the tracefile. The information contained in them

is the time evolution of a given metric during the execution of the application. For

example, we generate a signal that contains howmany processes are executing a MPI

[58] call in an instant of time. It is possible to generate this kind of signal because

tracefiles are timestamped sequences of events. The characterization of executions

of applications is done using signals for several reasons. The first reason is that

it is possible to keep the highly-detailed information contained in tracefiles of the

variations on space (set of processes) and time. Secondly, we use signals because it is

possible to isolate a given performance metric and perform an analysis based only on

it and, therefore, determine the impact of this parameter over the whole execution.

Thirdly, the algorithms based on signal processing theory have a low computational

complexity, are able to automatically provide relevant information and, finally, are

based on a solid and powerful mathematical theory.

We use signal processing techniques (wavelet transform, cross-correlation, mor-

phological filters, ...) in order to provide a very fast, automatic detection of the phases

of MPI application execution. These signal processing techniques are interesting for

our analysis because they have several important properties which allow us to build

an automatic system based on them. First, morphological filters derived from the the-

ory of Mathematical Morphology provide a signal processing framework which is able

to detect regions that are affected by corrupting factors. Second, wavelet analysis pro-
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vides a classification of the physical domains of signals according to the occurrence

of frequencies on them, that is, the criterion of wavelet transform in order to perform

the analysis is to separate regions according to their frequency behavior, i. e., a re-

gion with a small iteration which is repeated many times is separated from another

region with no periodic behavior. Third, autocorrelation provides us with a means of

detecting the value of the iterative period within the regions with strong periodical

behavior, that is, it gives the exact value of the time span of the main iterative pe-

riods within the periodical regions, which have been detected by wavelet transform.

Fourth, cross-correlation makes it possible to detect which of the iterations are the

most representative of the whole periodic region. The criterion of cross-correlation

to select the most representative iterations is to look for the iterations closest to a

perfect periodical signal.

3.1.3 Applications of Structure Extraction in Performance Analysis

In recent years, parallel platforms have vastly increased in performance and in num-

ber of nodes and processors. For example, the most recent supercomputing facilities

have more than 100.000 processors and many of them have a performance peak near

or higher than the petaflop barrier [85]. Thus, the study of the execution of applica-

tions in these platforms has involved increasingly hard and tedious work. A complete

timestamped sequence of events of an application, that is, a tracefile of the whole ap-

plication, results in a huge file (10-20 GB). It is impossible to handle this amount of

data with tools such as Paraver [52]. Also, it is often the case that some parts of the

trace are perturbed, and the analysis of these parts can be misleading. A third prob-

lem is the identification of the most representative regions of the tracefile. To reduce

tracefiles sizes, the process of application tracing must be carefully controlled, en-

abling the tracing in the interesting parts of the application and disabling otherwise.

The number of events of the tracefile (hardware counters, instrumented routines,

etc...) must be limited. This process is long and tedious and requires knowledge of

the source code of the application.

For these reasons, several authors [63, 97] believe that the development and uti-

lization of trace-based techniques has several flaws. However, techniques based on

tracefiles allow a very detailed study of the variations on space (set of processes) and

time that could crucially affect the performance of the application. Therefore, there

is a need to develop techniques that allow us to handle large event traces.

Our approach is to start from very large tracefiles of the whole application, allow-

ing simple tracing methodologies, and then analyze them automatically. The under-

lying philosophy is to use resources that are generally available (Disk, CPU, ...) in
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order to avoid the use of an expensive resource, namely analyst time. The tool we

have developed first warns the analyst about those parts of the trace perturbed by

an external factor not related to the application or to the machine itself, and subse-

quently gives a description of the internal structure of the application, which leads

to the identification and extraction of the most relevant parts of the trace. Third,

our automatic system can be applied not only on off-line tracefile but also on data

extracted on-line from an execution of a parallel application.

In section 3.2 we discuss related studies which have been carried out in the last

few years. In section 3.3 we explain the different metrics we have used and we give

some examples. In section 3.4, we describe the typical execution phases of high per-

formance computing applications and we explain how we automatically detect them.

In section 3.5, we discuss several factors which can corrupt the information contained

in tracefiles. In section 3.6, we describe the typical iterative structure within the

computing phase of high performance computing applications and we explain the

methodology we use to detect it. Finally, in section 3.7 we evaluate our automatic

methodology.

3.2 Related Work

There are various approaches to tracefiles which attempt to either avoid or to handle

large event traces. KOJAK [49], is a tool for the automatic detection of performance

bottlenecks. It looks for patterns representing inefficient behavior and quantifies its

influence over execution. It focuses on studying locally every communication con-

tained in the tracefile. However, KOJAK does not distinguish between execution

phases because it does not look for the internal tracefile structure. For that reason,

it needs large traces in order to amortize the initialization phase or the cost of per-

turbations. Our automatic system can be used to prepare data that will be given to

KOJAK as input. This previous step will help it to focus on the most relevant regions

in the tracefile.

DeWiz performance tool [51] performs an automatic analysis. The idea of DeWiz

stems from the fact that most tools rely on graph-based analysis methods or use

space-time diagrams for visualization of program behavior. As a result, a unified di-

rected graph may be used to capture different program properties and to represent

the basis for analysis activities. This analysis is focused, on one hand, on the de-

tection of communication failures by pairwise analyzing of communication patterns,

and on the other hand, DeWiz identifies repeated patterns in the event graph. It is in

this second point that the DeWiz approach and our own is similar. However, DeWiz

is unable to find structure on the temporal evolution of the application’s execution.
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These two tools, KOJAK and DeWiz, also try to distribute data processing in order

to analyze large tracefile. A parallel extension of KOJAK, SCALASCA [6], has been

developed and DeWiz also has a modular design which enables it to be executed on

distributed computing infrastructures.

VAMPIR Next Generation tool (VNG) [47, 9], an extension of the visualization

tool Vampir [62] does not perform an automatic analysis but tries to explore, like

SCALASCA and DeWiz, distributed data processing. Furthermore, VNG is composed

of a parallel analysis server and a visualization client, where each analysis is exe-

cuted on a different platform. Another important VNG feature is the utilization of a

data structure called Complete Call Graph (CCG), which holds the full event stream,

including time information, in a tree.

Previous studies have used signal processing techniques in order to detect pro-

gram phases. In [81], wavelets are used as a time-frequency analysis method to iden-

tify behavior changes on the locality of a program. Next, phase markers are inserted

in the program using binary rewriting. When the execution of the instrumented pro-

gram begins, the first few executions of a phase are used to predict all subsequent

executions. This approach uses signal processing in order to predict the locality of a

program and, for that reason, it is different from ours. In contrast, in [43] the au-

thors also use wavelet analysis to perform phase analysis. Wavelet coefficients are

used as a similarity metric and k-means clustering is applied on them. The goal of

this work is to capture the memory bus behavior of commercial applications. This ap-

proach is different to ours because, unlike our approach, it does not use wavelets as

a time-frequency analysis method. In [27], wavelets are used to reduce the amount

of data that has to be analyzed to study the load imbalance on high performance

computing applications. This approach achieves several orders of magnitude of data

reduction using compression techniques from signal processing and image analysis.

Additionally, low error and high speed reductions are achieved by the approach. The

main difference between this work and ours is that we use the information obtained

from the wavelet transform to make an analysis about the general structure of exe-

cutions while, in this work, the wavelet transform is just used to compress data, not

to understand it.

On the other hand, Paradyn [75] is a non-trace-based performance tool which an-

alyzes data in real-time, i.e., program instrumentation and performance evaluation

are done during the execution. It performs a search which is focused on answer-

ing three questions: 1) Why is the application performing poorly?, 2) Where is the

performance problem?, and 3) When does the problem occur?. To answer the first

question, the system includes hypotheses about potential performance problems in

parallel programs. It collects performance data to test whether these problems exist
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in the program. In answering the second question, it isolates a performance problem

to a specific program resource (e.g., a disk system, a synchronization variable, or a

procedure). To identify when a problem occurs, it tries to isolate a problem to a spe-

cific phase of the program’s execution. Finding a performance problem is an iterative

process of refining the answers to these three questions.

Finally, mention should be made of Periscope [30], an automatic performance

analysis tool for large-scale parallel systems. Periscope applies an automatic dis-

tributed online search in order to detect performance bottlenecks. It consists of a

graphical user interface, a hierarchy of analysis agents and two separate monitoring

systems. The graphical interface allows the analyst to begin the analysis process and

to study the results. The agent hierarchy performs the actual analysis. The node

agents autonomously search for performance problems which have been previously

specified. Typically, a node agent is started on each node of the target machine. It is

responsible for the processes and threads on that node. Detected performance prob-

lems are reported to the master agent.

Several of the approaches discussed above perform an automatic performance

analysis. However, most of them do not look for the internal structure of the tracefile

(and thus they need large traces to amortize the cost of the initialization phases),

and only a few look for repeated patterns not based on temporal evolution of the ap-

plication’s execution. Thus, we believe that our approach satisfies the need for an

automatic performance tool based on the structure of the temporal evolution of the

application. While other approaches have attempted to overcome the increasing size

of tracefiles in recent years using distributed computing, our work tries to overcome

that problem by using a shrewder methodology and a more sophisticated power anal-

ysis. Furthermore, unlike the other approaches, our methodology can be parallelized.

3.3 Metrics Generation

As we have said above, our approach consists in characterizing executions of parallel

applications using signals. The main reasons are that, first, signals keep the highly-

detailed information contained in tracefiles, second, signals make possible to isolate

a given performance metric and, third, the algorithms based on signal processing

theory have a low computational complexity.

In order to summarize important aspects of parallel program performance, we de-

rive signals from data contained in the tracefile, capturing the temporal application

behavior from a particular point of view. However, these signals can be generated

from any kind of time-stamped data. For this reason, out approach is not limited to

work with tracefiles. Each metric we generate summarizes one aspect of the parallel
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program’s execution. In this section, we discuss a set of metrics. Some of the metrics

put more emphasis on the execution phases than on those associated with commu-

nication, while others put more emphasis on communication. The automatic system

takes these metrics as input and processes them. Depending on the situation, some

metrics show phases of the program’s execution more clearly than others.

3.3.1 Number of Processes Computing

This metric shows the number of processes which are performing computations at

each instant of time. It indicates the location of intensive computing regions. Typi-

cally, its lower values are located on instants of time when the execution is perform-

ing communications. Otherwise, when the execution is performing the main com-

putations, the value of the signal will reach its highest values. Another important

qualitative characteristic of this metric is its low variance, explained by the fact that

it can only reach a finite set of values, from 0 to P , where P is the number of pro-

cesses. It is generated from the running states contained in the tracefile. For each

thread, we generate a signal which contains, for each instant of time, t, value 0 if

the thread is not in a running state and 1 otherwise. Finally, signals generated by

threads are added, obtaining this metric.

3.3.2 Sum of Durations of Computing Bursts

This metric shows the instantaneous sum of computing bursts. It will reach its lower

values when the execution is performing a few short calculations. Otherwise, high

values will appear when a lot of long bursts are being computed by the processors.

For this reason, this metric summarizes the kind of calculations we find in execution.

Finally, The variance of the metric will be higher than that of the Number of Pro-

cesses Computing metric because it can reach a wide set of parameters, depending

on the duration of running bursts.

For each thread, we generate a signal which contains, for each instant of time

t, the duration of the running burst that is being executed. If there is no running

burst in this moment, i. e. the process is inside a MPI Call, the value assigned to t is

0. Finally, the signals generated for all the threads are added. Focusing on point to

point MPI calls provides a way of looking at the application parallel structure from

the point of view of communications between processes. This approach complements

the metrics explained above because it takes into account communications performed

by the application.
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3.3.3 Number of Point to Point MPI Calls

This metric shows the number of processes which are executing a point to point MPI

call at a given moment. Therefore, the range of its values is from 0 to P , P being the

total number of processors. It reaches its minimum values when the application is

in a calculation phase because these phases have very few communications. On the

other hand, the maximum values of this metric are reached when the occupation of

the interconnection network is at its maximum.

To generate this signal, we have to cover all the tracefile and, every time we find

the beginning of a MPI call we add 1 to the signal. When we find the end of a MPI

call, we subtract 1 to the signal. Obviously, the value of the signal at the beginning

of the execution is 0.

3.3.4 Number of Collective MPI Calls

This metric shows the number of processes which are executing a collective MPI call.

The range of its values is from 0 to P , P being the total number of processors. Typi-

cally, the execution of applications implies a lot of collective calls at the initialization

phase in order to provide the information to start the computations. However in com-

putation phases we can also find collective calls. The difference is that, on the one

hand, the collective calls in the initialization phase do not appear following a periodic

pattern and, on the other hand, the collective calls on the computation phase have a

periodic pattern.

3.3.5 Instructions per Cycle

This metric shows the average rate between instructions and cycles of the set of

processes in a given instant of time. These values are extracted from the hardware

counters contained in the tracefile. The values of these counters are extracted at the

beginning and at the end of computing bursts. For this reason, the granularity of

the signal will be equal to the granularity of the signals derived directly from the

computing bursts.

3.3.6 Communications

This metric shows the number of flying messages at a given moment. It is very close

to the number of point to point MPI calls but is not exactly the same, for two reasons:

first because the transmission of a messages involves two MPI calls and second be-

cause the execution of a MPI send or receive does not imply an instantaneous trans-

mission of the message. Typically, if the intercommunication network is collapsed,
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these two metrics will show different behavior because the MPI calls need to wait in

order to send or receive the message. However, if the network is not collapsed, the

behavior of these two metrics is closer.

3.3.7 Examples

In figure 3.1, we show examples of the metrics we referred to above in this section.

In this figure we show, for each instant of time of the execution, the value of the

metrics. The figures were obtained from a tracefile that was generated executing

WRF-NMM [64] application with 128 processors in MareNostrum Supercomputer.

At the top of the figure we can see two signals: The sum of durations of computing

bursts, expressed in milliseconds, and the number of processes computing. In the

middle, there are two more metrics: The number of point-to-point MPI calls and the

number of collectives. Finally, at the bottom, we have the IPC and the total number

of flying communications.

It is important to state that we see the same kind of behavior in all of the signals.

In general we see an initial phase of low activity, a phase in the middle with strong

activity and, finally, a phase with low activity. The exception to this behavior is

the collective communications signal. In this signal, we see a strong activity at the

beginning of the execution. The reasons for the common behavior of the signals and

the exception of the collectives are explained in the next section below.

3.4 Program Phases

Typically, high performance computing applications radically change their behavior

when executed on parallel architectures. For example, in the case of MPI applica-

tions, there is little in common between the interval of time in which a MPI collective

call is being performed, and the interval of time when all the processors are perform-

ing computations. The first is characterized by an intense utilization of the inter-

connection network and the lack of computations while the second is characterized

by great activity focused on computations and a lack of communication between pro-

cesses. This is only a very simple example of the wide diversity of situations that

can be found within the execution of a high performance computing application. In

the next section, we explain the typical structure of a high performance computing

application and how we detect it.
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Figure 3.1: Visualization of the metrics explained in section 3.3. At the top, we show the

Sum of Duration of Computing Bursts and the Number of Processes Computing. In the mid-

dle, we show the number of Point to Point MPI Calls and the number of Collective Calls.

Finally, at the bottom, we see the IPC and the number of Communications. These metrics

have been generated from a tracefile of an execution of WRF-NMM application on 128 pro-

cessors.
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3.4.1 Description of the Program Phases

The execution of scientific applications has several well-defined phases. Typically, the

execution has an initialization phase, which consists of the initial communications in

order to assign initial values to the variables, domain decomposition, etc... This ini-

tialization phase is often not targeted by the analysis since the high cost is typically

amortized over a long run. The performance of this initialization phase is not related

to the core scientific computation we want to study here. Also, many applications

show a final phase, which consists, mainly, of output data operations. As with the

initialization phase, this final phase is not important in studies of parallelization

efficiency.

The core phase that interests us, and that is found in scientific parallel appli-

cations, is the computation phase. This phase is characterized by sets of computing

bursts alternated by communications, and typically has a periodic behavior prompted

by the application’s structure, which performs iterations on space (physical domain of

the problem) and time. Thus, there is a pattern that we can find repeated many times

during this computation phase. Furthermore, it is in this computation phase when

the application shows its parallel efficiency, and it is in this phase where it is inter-

esting to study whether the application has a good parallelization or not, whether the

load is balanced optimally, etc. Consequently, the parallelization study of the applica-

tion has to be made here. Although this is the typical behavior found in the execution

of many scientific applications, it is possible to find different behaviors. Nevertheless,

the most important issue for us is whether our automatic system will always be able

to detect the execution phases.

In the signals depicted in figure 3.1 we see this behavior clearly. The case of

the collectives signals is specially interesting because it shows the strong collective

communication pattern in the initialization phase in order to provide the tasks with

the initial values to start the computations. Furthermore, the other signals have the

typical behavior showing strong activity in the computation phase.

3.4.2 Detection of the Program Phases

As explained in the previous section, the initialization and final phases are typically

not targets in performance analysis because, since they strongly depend on the in-

put/output system of the machine, the interconnection network, the operating system

and many other factors, they do not represent the application. These considerations

explain why we are not so interested in these phases and why we concentrate on the

detection of the computation phase in order to guide and focus performance analysis.

The computation phase typically comprises computation bursts followed by com-
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munications. And, typically, it has periodical behavior; that is, there is an iterative

pattern repeated many times. For all of these reasons, we can expect the highest fre-

quencies of the signals to appear in the computation phase. Hence, our criterion for

automatically detecting the computation phase of applications is: the region where

the highest frequencies occur.

The tool used to detect the higher frequencies is wavelet transform, several gener-

alities of which were explained above in section 2.3.1. As has been explained, wavelet

transform provides a multi-resolution analysis able to identify the locations where

the frequencies occur. Given a signal, assume that we sample it in N = 2i samples,

using a sampling frequency α. As was explained in section 2.3.1, we obtain from

wavelet transform 2i−1 coefficients of the locations of frequencies belonging to [α
4
� α

2
].

In general, wavelet transform gives 2i−k coefficients of the locations of frequencies be-

longing to [ α

2k+1 � α

2k ]. Remember that, on the one hand, we are interested essentially

in the detection of the highest frequency in order to detect the computation phase

and, on the other hand, the precision of the location is best for the highest frequen-

cies. For these reasons, we base our detection on the 2i−1 coefficients (level 1) of the

frequencies belonging to [α

4
� α

2
]. If at this level there is no significant information, we

can use the 2i−2 coefficients (level 2) whose frequencies belong to [α

8
� α

8
], and so on.

Remember that we have i levels of coefficients, where i is an initial parameter.

Once the wavelet transform has provided us with the coefficients, we make a se-

lection of the high-frequency regions based on two parameters: λ and δ. The first

represents the threshold from which we select the coefficients, while the second rep-

resents the granularity of the selection. More precisely, λ is a number between 0

and 1 that defines the minimum of the selected coefficients. It is defined in terms

of the maximum, that is, λ = 0.3 means that we select all the coefficients equal or

greater than the 30% of the maximum coefficient. The second number, δ, says, given

a selected coefficient due to λ’s criterion, how many neighbor coefficients we select.

For example, if λ = 0.3 and δ = 10, we will select all the coefficients equal or greater

than 30% of the maximum and, after, that, for each selected coefficient, we take ten

coefficients from the right neighborhood and ten more from the left neighborhood.

Figure 3.2 gives an example of a signal. It is clear that this signal has three very

defined phases: first, a phase with low frequency behavior, then, a second phase with

high frequency behavior and, finally, a low frequency phase. In figure 3.3 we can

see how wavelet transform shows the presence of high frequencies. Finally, in figure

3.4 we show the selection we made from the wavelet transform. The parameters are

λ = 0.3 and δ = 10.
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3.5 Corrupting Factors

By corrupted regions we mean those regions with distorted relative timing behavior

of the application being analyzed. See [60] for a detailed discussion of these dis-

tortions. Furthermore, all these perturbations have a common characteristic: they

are neither caused by the application nor by the architecture. They are caused by

external factors such as tracing packages, unknown system activity, etc. Different

phenomena or metrics can be identified as being the cause of a significant perturba-

tion of the program behavior. An example of these phenomena is flushing, which is

caused by the fact that tracing packages keep individual records in a buffer in mem-

ory during the tracing process. The problem is that when the buffer is full, these

records have to be flushed to disk. This flushing takes so long that it affects the ex-

ecution and the statistics derived from the tracefile. Also, flushing does not appear

simultaneously in all the processes, although it is typical that the flushing of differ-

ent processes occur in bursts. Other corrupting factors are preemptions, problems

with the communication network of the machine, etc... In the next paragraphs, we

describe the main corrupting factors and we explain how we automatically detect

them.

3.5.1 Flushing

Tracing packages [67] keep individual records in a buffer in memory during the trac-

ing process. The problem is that when the buffer is full, the records will have to be

flushed to disk. This flushing takes so long that it can affect execution. Furthermore,

it can affect other processes as well as the process that is currently flushing, thus gen-

erating further delays. If we do not rule out these delays, the statistics will be notably

affected. Another important property of flushing is that it does not have to appear

simultaneously in all processes, even if, in many applications, flushing of different

processes typically occurs in bursts. In figure 3.5 we give an example. We can see the

impact of flushing records to disk on normal execution behavior. The signal indicates

how many processes are flushing data to disk. The application is WRF-NMM [64]

executed on 128 processes.

The phenomenon of flushing is characterized by a signal indicating for each in-

stant of time the number of processors flushing to disk. We derive this signal from a

tracefile that contains flushing events, indicating when each process starts and fin-

ishes the flushing to disk. Figure 3.6 shows an example of a flushing signal. In this

kind of signal we frequently observe interleaved small bursts with flushing peaks

and periods without flushing. The tracefile is perturbed not only during flushing but
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also at instants right after flushing peaks. Therefore, we want to consider the bursts

of flushing as a single perturbed region. With this objective, we use a set of mor-

phological filters, defined in the context of Mathematical Morphology. These filters

are non-linear and are based on the minimum and maximum operations, aiming at

the study of structural properties of the signal. The two basic morphological filters

are Erosion and Dilation. The first has the property of eroding those regions of the

signal with values different to zero. The second filter has the property of dilating the

regions of the signal different to zero. Both operators have an associated width that

has to be specified before the filter is applied. If we combine the two operators doing

a Dilation followed by an Erosion we obtain an interesting result: first, the Dilation

will merge the small regions with their larger or nearby neighbors, and after that,

the Erosion will allow us to return towards the initial signal, except in the cases that

two different regions have been merged by the Dilation. With this combination, we

obtain a new morphological operator called Closing. Figure 3.7 shows the result of

performing a Closing on the signal represented in figure 3.6. Note that the small

regions that appear in figure 3.6 have been merged into a larger region. This scheme

is specially useful in analyzing flushing signals because it merges several close re-

gions where some processes are flushing data to disk. As we have said, the execution

is perturbed not only during flushing but also at instants right after flushing. The

closing operator merges the bursts of flushing into single perturbed regions.

3.5.2 Preemptions

Preemptions by daemons or other system activity are another cause of performance

degradation in large scale applications. Identifying preemptions is important in order

to calculate their impact and to try to reduce it. Otherwise, if the analyst suspects

that a given trace file is affected by preemptions, he will drop all the file. However,

there may be parts of the trace without perturbation and, therefore, good for the

analysis. In conclusion, we can say that the identification of regions with preemptions

allows the analyst to improve the confidence of the tests. An easy way to identify

regions with preemptions is based on the cycles counter available in the trace. The

ratio of cycles to time should be equal to the processor clock frequency. If we obtain a

value less than the clock frequency, we will infer that for some time the process did

not get CPU and, therefore, the cycles counter did not increase.

To automatically detect regions perturbed by preemptions, we want to eliminate

small oscillations of the signal, because they are not significant, and keep the large

intervals where the value of the signal is lower than the CPU frequency. The solution

is to perform a closing to the signal because it eliminates small oscillations under the
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Figure 3.5: An example of flushing. Processes are flushing records to disk.
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Figure 3.7: Closing of the Signal
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CPU frequency and keeps the significant ones. After that, we consider regions with

low values as corrupted regions due to preemptions.

3.5.3 Clogged System

This term is applied to the regions with a large number of messages in transit while

a low system bandwidth is achieved. There are several interpretations of this behav-

ior. It may be caused by the preemption of one thread that plays a fundamental role

in the critical path of the region where the behavior takes place. Another possible

reason is that another system activity stole bandwidth while the execution of the ap-

plication was running. As we have said, the metric that will identify this behavior

is the ratio between the messages in transit and the system bandwidth achieved at

a given moment. This metric can be easily derived from the records contained in

the trace file. Figure 3.8 gives an example. The application is NAS-SP [3] executed

on 121 processors. At the top we show a typical Paraver visualization. In it we can

see initially normal execution behavior followed by a region where the transmission

of messages is extremely low. Finally, normal execution behavior is resumed by the

application. At the bottom, we can see the ratio between the messages in transit and

the system bandwidth. This metric is able to characterize the communication prob-

lems that the execution is suffering. This metric is directly derived from the tracefile

of the application. Typically, it is characterized by small bursts in which the signal

has low values. This is the normal behavior, indicating that there are no problems

with the communications. However, if the interconnection network is collapsed and

many messages are waiting to be sent, or if the bandwidth is remarkably low, the

signal will reach high values in large bursts.

To automatically detect regions perturbed by clogged system effect we need a fil-

ter capable of eliminating the sets of short, low bursts and of keeping back long,

high ones. The Opening filter is useful for this operation. It is composed of, first,

an Erosion, which eliminates short bursts, and, second, Dilation, which restores the

remaining bursts to their original size. Thanks to Opening, we are able to automat-

ically detect the location of long and high bursts and eliminate the low values of the

signal.

In summary, following the methodology described in this section, we make three

steps: First, we generate a signal from the initial tracefile, for example the number

of processes flushing to disk. Second, we apply a morphological filter to extract the

relevant information from the signals. The choice of the morphological filter depends

on the characteristics of each signal. For example, in the case of a flushing signal,

the Closing filter is used in order to merge the pulses of the signal that are too close



60 3.6. STRUCTURE

Figure 3.8: An example of clogged system. Many communications are being transmitted
with an extremely low bandwidth.

in a unified burst. The width associated to each filter is based on the minimum span

of time we consider useful for the analysis. Third, we rule out the perturbed regions,

taking into account the pulses of the resulting signal. They indicate which are the

perturbed (thus, useless) regions of the tracefile and the areas of the signal which are

the non-perturbed regions. Finally, the process of identification of structure explained

in the next section is applied to these non-perturbed regions of the trace.

3.6 Structure

Once we have detected, on the one hand, the regions with relevant information, that

is, with high frequency behavior and, on the other hand, we have detected and ruled

out the regions corrupted by factors not related to the application or the architec-

ture, we perform an analysis focused on the detection of the iterative behavior of the

largest non-perturbed region with high-frequencies.

There are two main characteristics of the structure that we look for in a region.

First, the periodic structure is based on the identification of several different smaller

regions that are very similar. We say that two execution regions are very similar if

the signal that represents a metric is very similar in the two regions. The second
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main characteristic we look for is the hierarchy of the periodicities. The periodic

structure is expressed in different levels: the first level is the structure within the

original trace, the second level of periodicities is the structure within one period of

the first level, and so on. In order to obtain that hierarchical structure, our algorithm

is recursive, that is, when the internal structure of one level is detected, we apply

again the algorithm within one period of that level.

The information derived from this hierarchical structure based on periodicities

is useful in at least two ways. First, our tool shows the analyst the structure as a

first approach to the execution of the application under analysis. Second, the tool

provides the user with chunks of traces which are cut from the original trace. These

small traces are representative parts of the original trace at different levels of the

structure. These chops of the original tracefile allow an accurate analysis, but the

tool also reports several metrics (percentage of time in MPI, ...) for each of the regions

to give a first approach to the performance obtained by the application.

The analysis is based on signals derived from the region we are studying. As in-

dicated in section 3.3, it is possible to select many signals to perform the study of the

periodicity behavior of the application. In applications with strong communication

activity, signals related to MPI calls can give good information. On the other hand,

in applications with strong computations activity, signals derived from computing

bursts are a better option. In general, signals related to computing bursts give better

results, as we will see in section 3.7.

3.6.1 Iterative Pattern Detection

To find the internal structure of the application we apply the autocorrelation function

to the signal generated from the tracefile. Below is a simple definition of autocorre-

lation function:

A(k) =
N−1�

i=0

(xi)(xi+k) (3.1)

where the set �xi} is generated sampling the signal obtained from the tracefile. The

higher values of the function A(k) will be reached when k is equal to one of the main

periods of �xi}. However, for accuracy reasons [73], the numerical values of A(k)

are not obtained following (3.1). It is possible to obtain the value of A(k) function

performing, first, a Discrete Fourier Transform (DFT) and, after that, an Inverse

Discrete Fourier Transform (IDFT) taking the square of the modulus of each spectral

coefficient obtained with the DFT [73]. This method can be implemented using an

FFT library. An important feature of FFT is its computational complexity, O(n log(n)),
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which allows us to calculate the values of A(k) in reasonable time. Once we have the

values of the Autocorrelation function, the principal periodicities are selected [24].

We will select the maximum of the relatives maximums. In other words, the period

we select, T , will satisfy the following:

A(T ) = Max�A(k)|A(k − 1) < A(k) > A(k + 1)� k > 0} (3.2)

Here, we should point out that the signal may not have meaningful periods, or

that has 2 or 3 significant periods. Therefore, there is a need for a method to estimate

the correctness of the period obtained. The approach taken is the following: assuming

that T is the period identified and that M is the set of those k where A(k) has a

relative maximum.

∀k� (k ∈ M ∧ k �= T ) ⇒ 0.9 >
A(k)

A(T )
(3.3)

If the above formula holds, the 90 % of the value of A(T ) is higher than all the

values in the rest of the maximum values. In that case, we will assume that T is

a good approximation to the main period. We will check the logical formula (3.3)

every time we perform an autocorrelation. If the formula is true, we will assume the

correctness of the results. If not, we will perform a filtering to the original signal

in order to filter the small oscillations that can perturb the results and repeat the

process. We perform the filtering in order to obtain a coarse-grained description of

the signal. This replacement of a fine-grained description with a lower-resolution

coarse-grained model will outline the global signal behavior.

Another good criterion to estimate the correctness of the period obtained is the

detection of its harmonics. By harmonics we mean multiples of the maximum of the

relative maximums. For example, if the maximum of relative maximums is T , its

first harmonic is 2T . If this first harmonic is the second maximum of the relative

maximums, the correctness of the period obtained will be remarkably high because

the existence of harmonics indicates a strong iterative behavior whose value is T .

Once a “good” period is identified, we select a region of the signal containing an

iteration of this period and apply the methodology again to look for inner structure.

At the same time, we cut the original tracefile in order to provide the analyst with

one period on every periodic zone we found. Finally, this methodology needs the exe-

cution of intense processes. In order to perform these executions and take advantage

of several concurrent processes, we have implemented the methodology with GRID

Superscalar [2], a grid programming environment developed at BSC.
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3.6.2 Representative Iterations

Once we have extracted the value of the iterative pattern, T , we have to select n

iterations from the execution. This is not a trivial issue, because we can often find

iterations which are not good representatives of the whole execution. To detect the

best iteration, we perform a cross-correlation. In signal processing, cross-correlation

is a measure of similarity of two signals. It reaches its maximum where the first sig-

nal is closer to the other one. In this work, we consider the cross-correlation between

the input signal (extracted from the execution of the application) and a test signal.

This test signal contains n sinusoid periods of value T . Below is the definition of the

test signal:

f(x) =

�
sin(2πx

T
) if x ∈ [0� nT ]

0 otherwise
(3.4)

The underlying idea here is to detect where the input signal is closer to a sinusoid

function of period T . To detect this, we select the point where the cross-correlation

between the input signal and the test one is higher. This point, t is the beginning of

the representative segment.

In summary, at the end of the spectral analysis, a representative subset which

contains one iteration is selected. This representative subset starts at time t and

finish at time t + nT . If it was possible, we applied the methodology recursively over

the subset. The extraction of hierarchical patterns is based on spectral analysis. This

detection and the subsequent hierarchical search are detailed in [12].

3.6.3 Hierarchy detection

As seen above, we perform a hierarchical detection of the structure of executions

of applications. The objective of this hierarchical detection is to identify the minimal

representative region of the execution. Many high performance computing codes base

the computing phase on a succession of nested loops. It is possible to find internal

levels of these nested loops that are representative of the whole computing phase

because the main calculations are carried out within these internal levels. However,

the initial structure detection finds the most external iterative structure, that is, the

iterations of the most external loop. If we want to detect the structure related to

internal nested loops, we will apply the methodology recursively over the selected

representative region.

The structure found within the whole execution of the application is called Level

1 structure. As we have said, it is the structure related to the most external levels of

the nested loops. Subsequently, the iterative structure found within one iteration of
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Level 1 is called Level 2 structure. It is related to the second level of the nested loops.

This terminology continues as we apply the searching methodology recursively. The

search for hierarchy finishes when no iterative structure is found.

Finally, it is important to state that this internal iterative behavior within the

Level 1 structure exists only if most of the computations are performed within the

internal nested loops. Therefore, the existence of nested loops in the source code does

not warrant the detection of Level 2 structure, since it is possible that the application

performs the main calculation outside the most internal loops.

3.7 Evaluation

This section is divided into four subsections. In the first one, we provide an evalua-

tion of the detection of the complete internal structure of several applications. This

subsection is focused on the evaluation of the hierarchical search for structure of ap-

plications and on the detection of the internal structure among them. In the second

subsection, we provide an evaluation of the automatic analysis on several applica-

tions using the metrics explained in section 3.3. This subsection is focused on the

evaluation of the efficiency of several metrics in detecting internal structure. For this

reason, the results depicted in this section are more focused on the differences of the

results obtained with the different metrics than on the complete internal structure

of the applications. The third subsection is focused on evaluating the size reductions

achieved using our technique, that is, we compare the size of the original tracefile

with respect to the size of two iterations extracted from the original data. Finally, in

the fourth subsection we show that the automatic methodology scales linearly with

respect to the size of the input.

3.7.1 Evaluation of Complete Internal Structure and Hierarchical

Searching

In this section, we evaluate the complete internal structure detected by spectral anal-

ysis and its hierarchical search. In order to do so, we apply the methodology explained

in this chapter to four real applications: Liso [41] with 74 processors, Idris [95] with

200 processors, Gadget [91] with 256 processors and Linpack[54] with 2048 proces-

sors. These have been executed and traced in MareNostrum [57]. The structure

found in these applications is based on one of the metrics explained in section 3.3,

the MPI Point to Point calls.

In figure 3.9 we show graphically a part of the structure of the Liso tracefile. This

structure is shown with a Paraver visualization. In this visualization, the horizontal
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Figure 3.9: On top, visualization of the whole Liso tracefile and the flushing zones . In the
middle, the first region without flushing is shown. We highlight a region without periodic

structure and a region with 5 iterations. At the bottom, we show one of these iterations.
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Span/�it/T
Flushing

Level 0 Level 1 Level 2

356352/1/-

18020/1/-

47306/5/9010

3245/6/545

970/1/-

1615/3/550

3180/1/-

10273/1/- X

49166/5/9105

1490/3/545

1140/1/-

1585/3/550

3030/1/-

1860/3/535

11880/1/- X

60773/7/9100

3215/6/540

1004/1/-

1615/3/550

3266/1/-

11576/1/- X

49253/5/9145

1650/3/550

2825/1/-

3400/6/550

1270/1/-

12269/1/- X

48347/5/9045

3185/6/550

1015/1/-

1625/3/560

3220/1/-

13312/1/- X

24177/3/8905

1875/1/-

3425/6/550

1010/1/-

1635/3/555

960/1/-

Table 3.1: Liso application structure detected by our system. The time units are millisec-
onds. The first three columns show the hierarchical levels of periodicity. Level 0 column

shows the total elapsed time, Level 1 column shows the different phases detected by the au-

tomatic system and Level 2 shows the internal structure of one of the periods of Level 1. In

the first three columns, each cell contains three numbers: The total span of the region, the

number of the periods found in that region and the duration of each period.
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Span/�it/T
Flushing

Level 0 Level 1 Level 2

1091695/1/-

205740/1

885955/9/102870

550/5/110

590/1/-

540/7/80

101190/1/-

Table 3.2: Idris. Table Representation

Table 3.3: Idris. Tree Representation

Span/�it/T
Flushing

Level 0 Level 1

1097460/1/-

55000/1/-

811126/23/35095

286334/1/- X

Table 3.4: Gadget

Span/�it/T
Flushing

Level 0 Level 1

223168/1/-
82850/1/-

140318/130/1130

Table 3.5: Linpack

axis represents the time and the vertical axis the different processes. The color black

means that a given process in a given instant of time is not executing any MPI Call.

On the other hand, a light colored point (green when printing or visualizing in color)

indicates that an MPI call is being executed by the process. The figure first shows

a visualization of the whole tracefile. The flushing regions are also outlined. In the

second part of figure 3.9 we show the structure of the first region without flushing.

In this case, we show, first, a region with a non-periodic structure that corresponds

to the initialization phase of the application. The span of the initialization phase is

18029 ms. After that, there is periodic region with 5 iterations. The span is 47306 ms

and the period shown is 9010 ms. Finally, in figure 3.9 we show one of the iterations

of the periodic zone.

Table 3.1 shows that the automatic system was able to detect the structure shown

in figure 3.9. Furthermore, we can see the results of the automatic analysis for the

whole Liso application. In this table we show two characteristics of the execution:

first, from left to right we show the hierarchy. Second, from top to bottom we show

the temporal sequence.

In the first column, we show the duration of the whole execution in milliseconds.

Next, in the second column of table 3.1 there is a decomposition of the total elapsed

time of execution. In this second column, we show a set of numbers in each cell.

The first number is the total time span of the region, the second is the number of
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periods found in that region and, finally, the third is the duration of each period. In

the regions where no periodicity was found a dash line is written.

The second column refers to the first level of hierarchical structure, i. e., is the

structure over the original trace. For example, the MPI Point to Point calls distribu-

tion of the first (18020 ms) and second (47306 ms) regions of the tracefile shown in

figure 3.9 are represented in the first and second cells of the second column.

The third column contains the second level of the structure, i.e, the structure that

can be found in one of the periods of the first level. For example, the second, third,

fourth and fifth cells of the third column are the decomposition of one of the periods of

level 1. The MPI Point to Point distribution is shown on figure 3.9. Here, the second

level of structure can be identified, with 6 periods (of 545 ms) of communication, a

computation period (of 1005 ms), 3 more periods of communication (each of 550 ms)

and a final computation period (of 3180 ms).

Finally, the fourth column shows the existence of flushing events in a given region

of the tracefile.

Note that the first five rows correspond to the structure represented in figure 3.9

The output of the tool is basically the information contained in this table plus the

names of the files where the chops of the original tracefile can be found.

In table 3.2 we show the structure detected in the Idris application. In table 3.3

we show another possible representation of the same information. In this represen-

tation, the hierarchical structure is depicted from top to bottom and the temporal

sequence is drawn from left to right. Finally, in tables 3.4 and 3.5 the structure found

in Gadget and Linpack applications is shown.

3.7.2 Evaluation of Metrics

In this section, we evaluate the automatic system using several applications as input

and changing the metrics. The applications are ALYA [40] executed on 64 processors,

some of the NAS benchmarks [3]: NAS-BT class C executed on 16, 36, 64, 121 and

256 processors, NAS-CG class C executed on 16, 32, 64 and 128 processors, CPMD

[18] on 64 processors, NAS-LU class C on 16, 32 and 64 processors, NAS-MG class C

on 16, 32 and 64 processors, NAS-SP class C on 16, 36 and 64 processors, RTM [5] on

32 processors, SPECFEM3d [48] on 1944 processors, VAC [76] on 128 processors and

WRF-NMM [64] on 128, 256 and 512 processors.

We analyzed these applications using many metrics: Sum of Duration of Comput-

ing Bursts (SDCB), Number of Processes Computing (NPC), Number of Processes in

a MPI point-to-point call (MPIp2p), Ratio between the Cycles and the Instructions

(CPI), Number of Flying Communications (Communications), Number of Floating
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Name Processors
SDCB NPC MPIp2p CPI

Main Period Main Period Main Period Main Period

ALYA 64 11132 Not Found Not found Not found

BT

16 1277 1277 1277 1276
36 639 639 639 639
64 357 357 357 357
121 197 197 197 197
256 115 115 114 Not found

CG

16 39 39 39 39
32 23 23 23 Not Found

64 17 17 17 Not Found

128 11 11 Not Found Not Found

CPMD 64 229393 Not Found Not Found Not Found

LU

16 1441 1439 1439 Not Found

32 530 539 539 Not Found

64 227 227 209 Not Found

MG

16 1777 1775 1773 Not Found

32 982 981 981 Not Found

64 372 372 372 372

RTM 32 1175 1175 1170 1170

SP

16 1341 1341 1340 1341
36 841 840 840 840
64 330 330 330 330

SPECFEM3D 1944 10626 10356 Not Found Not Found

VAC 128 4644 4667 4631 Not Found

WRF

128 2194 2194 2194 Not Found

256 1193 Not Found Not Found Not Found

512 792 Not Found Not Found Not Found

Table 3.6: Evaluation of Spectral Analysis. Metrics used are SDCB (Sum of Duration of

Computing Bursts), NPC (Number of Processes Computing), MPIp2p (Number of Processes

in a MPI point-to-point call) and CPI (Cycles per Instruction). Results are depicted in mil-

liseconds.
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Name Processors
Communications FLOPS MPICol Instructions

Main Period Main Period Main Period Main Period

ALYA 64 Not Found Not Found 11395 Not Found

BT

16 1277 1277 Not Found 1277
36 639 639 Not Found 639
64 357 357 Not Found 357
121 197 197 Not Found 197
256 115 114 Not Found 116

CG

16 39 Not Found Not Found Not Found

32 23 Not Found Not Found Not Found

64 17 Not Found Not Found Not Found

128 Not Found Not Found Not Found Not Found

CPMD 64 Not Found Not Found 229386 Not Found

LU

16 1442 Not Found Not Found 1441
32 529 Not Found Not Found Not Found

64 227 210 Not Found Not Found

MG

16 1774 1778 Not Found 1778
32 982 982 Not Found Not Found

64 372 372 Not Found Not Found

RTM 32 1170 Not Found Not Found Not Found

SP

16 1341 1341 Not Found Not Found

36 841 841 Not Found Not Found

64 330 330 Not Found Not Found

SPECFEM3D 1944 Not Found Not Found Not Found Not Found

VAC 128 4638 Not Found 4626 Not Found

WRF

128 2194 Not Found 2193 Not Found

256 Not Found Not Found Not Found Not Found

512 Not Found Not Found Not Found Not Found

Table 3.7: Evaluation of Spectral Analysis. Metrics used are Communications (number

of flying communications), FLOPS (number of floating point instructions executed), MPI-

col (number of processes in a MPI collective call) and Instructions (number of instructions

performed). Results are depicted in milliseconds.
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Point Instructions Executed (FLOPS), Number of Processes in a MPI Collective Call

(MPICol) and Number of Instructions Performed (Instructions).

Tables 3.6 and 3.7 depict the results. In the first column of these tables, we show

the name of the application and in the second column we specify the number of pro-

cessors used to execute the application. In the third column of table 3.6 we show

results using the Sum of Duration of Computing Bursts metric. In each cell of this

column, we depict the duration in milliseconds of the main periodicity detected within

the execution of the application. We do not show information about the whole struc-

ture of the application, as was done in table 3.1, in order to provide a more friendly

representation of data. As we have said, in this section we are more interested in

comparing the results of the automatic analysis using many metrics than in a com-

plete description of the results. Then, in the fourth column of table 3.6 we show the

results using the Number of Processes Running metric, in the fifth we depict the re-

sults taking the Number of Processes in a MPI point-to-point call and, finally in the

sixth column we show the results using the Ratio of Instructions per Cycle.

In table 3.7 we show, in the third column, results taking the Number of Flying

Communications as input metric, and, in the fourth column, we depict results us-

ing the number of floating point instructions executed. In the fifth column we show

results obtained using Number of Processes in MPI Collective Calls as metric. Fi-

nally, in the sixth column, we show some results taking the Number of Instructions

Performed.

As we can see in tables 3.6 and 3.7 the best results, understanding best result as a

correct structure detection, are achieved using the two metrics related to computing

bursts (Sum of Duration of Computing Bursts and Number of Processes Computing).

Metrics such as the Number of Processes in a MPI Point to Point call and Number of

Flying Communications also provide good results in general. On the other hand, met-

rics such as Number of Instructions Performed, IPC and Number of Floating Point

Instructions Executed provide poorer results. The justification of these differences

is that the regularity of the first set of metrics highlights the iterative structure of

executions of applications. Metrics related to hardware counters are subjugated to a

lot of irregular oscillations which can cloud the iterative structure. The metric gener-

ated from the collective call is also very regular, but the problems is that sometimes

there are no collective calls, or they do not have iterative behavior because they only

initialize data. Finally, it is important to state that the results are sound, that is,

if the system successfully detects the value of the main periodicity of an execution

using different metrics as input, the values obtained are very close.
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Application Total Trace Size Level 1 Size Level 2 Size

Liso 2.02 GB 64 MB 6 MB

Idris 2.7 GB 250 MB 25 MB

Gadget 2.7 GB 53 MB

Linpack 6.7 GB 46 MB

Table 3.8: Sizes of all the representative traces of each level.

Figure 3.10: Sum of the sizes of all the representative traces of each level.

Figure 3.11: Representation, in logarithmic scale, of size reductions of the applications

depicted in tables 3.6 and 3.7. Results are depicted in Bytes. The metric used to perform the

analysis is the Sum of Durations of Computing Bursts.
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Figure 3.12: Representation, in logarithmic scale, of size reductions of the applications

depicted in tables 3.6 and 3.7. Results are depicted in Bytes. The metric used to perform the

analysis is the Sum of Durations of Computing Bursts.

3.7.3 Evaluation of Tracefile Size Reductions

This section evaluates the tracefile size reductions achieved using the automatic

methodology explained in this chapter. First, we provide data about the applications

used in section 3.7.1. In this data we see that strong reductions are achieved when

we pass from the original tracefile to the first level chops. The hierarchical search

reduces the size even more, but this last reduction is weaker than the first.

In table 3.8 we show the average size of the chops of the original trace. As ob-

served in section 3.6.1, every time the system finds a periodic region, it selects one

of the periods of that region and cuts the tracefile to provide the analyst with repre-

sentative chops of the original tracefile. The sizes shown in table 3.8 are, first, the

size of the total tracefile and, second, the average size of the periods of the first level.

For example, the Liso tracefile has 6 periodic regions, one of these regions in every

non-flushing zones. If we take one period of every periodic region and then we cut

the tracefile, we will obtain 6 small tracefiles. The average size is the value we show.

Finally, the third column is the average size of the second level periods. Note the

large reduction in the amount of data to study.

In figure 3.10 we represent, first, the size of the whole trace. Next, we show the

total sum of the sizes of the first and second level chops. Obviously, if there is only one

periodic region, the value shown in figure 3.10 is the same as the value represented

in table 3.8. The first level of Idris application is an example. The most important
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Figure 3.13: Scalability of the system

thing, however, is that the global behavior of the applications, with the exception of

the flushing and initialization regions, is contained in Level 1 tracefiles. We have

reduced notably, from GB to a few MB, the amount of data to be analyzed in order to

study the performance of the applications.

We also provide the size reductions of the applications used in section 3.7.2 as

shown in tables 3.6 and 3.7. Remember that these applications were used to check

the behavior of several metrics with respect to spectral analysis. Strong reductions

on them are also achieved by using the metric generated from durations of computing

bursts.

In figures 3.11 and 3.12 we show the results in terms of the size of the tracefiles.

For each execution of each application on different number of processors, we show the

size of the whole tracefile and the size of the reduced one. This reduced trace contains

two iterations. In these cases, the reduced trace is derived from the structure found

within the whole execution of the application, that is, Level 1 structure. As we can

see, we achieve remarkable reductions in all the cases. The results shown have been

obtained using the Sum of Duration of Computing Bursts as input metric.



CHAPTER 3. AUTOMATIC PHASE DETECTION AND STRUCTURE

EXTRACTION OF MPI APPLICATIONS 75

Figure 3.14: Scalability of the system

Figure 3.15: Scalability of the system
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3.7.4 Scalability of the Analysis

As has been pointed out in this chapter, the analysis we apply to executions of applica-

tions consists mainly in applying signal processing algorithms. It is widely reported

that these algorithms have very low computational complexity. Therefore, our auto-

matic methodology also has low complexity. In order to prove this statement, in this

section we perform a detailed study of the scalability of our analysis with respect to

input data size.

In figures 3.13 and 3.14 we depict, for each application, the input data size and the

execution time needed to perform the reduction of size. As we can see, the relation-

ship between these two magnitudes is almost linear. This fact becomes clear looking

to the results of BT or LU applications. As we increased the number of processors

where we executed these applications, the size of the generated data is increased and

the reduction time is also increased. The relationship between the input data size

and reduction time is clearly linear.

In figure 3.15 we depict another view of the scalability of the system. In the x-

axis, we put the size of the tracefiles. In the y-axis, we put the time needed by the

automatic system to perform the reductions. Each point represents an execution of

the automatic system. Each point is labeled with the name of the application tracefile

used as input data. The same conclusions indicated above can be extracted from this

figure.

It should be noted that the input data size is higher in the case of WRF executed

on 512 processors than in the case of RTM executed on 32 processors. However, the

required reduction time is higher in the case of RTM 32 than in the case of WRF 512.

The explanation for this is that data extracted fromWRF execution on 512 processors

has more perturbed regions (flushing, clogged system) than RTM. Since the analysis

is applied on non-perturbed regions, the study of RTM requires the analysis of larger

data sets and, therefore, the required time to perform the reduction is higher. The

same can be said comparing WRF 512 against CPMD 64. In general, input data sets

with very few perturbed regions require more analysis time, but they provide more

possibilities of finding significant structure within them.

It is important to state that the most remarkable size reductions are the largest

reduction processes. Two clear examples of this fact are, first, RTM 32 and CPMD

64. On both cases, we achieve significant reductions, ruling out several Gigabytes of

redundant or damaged data but we need more than 15 minutes to perform the reduc-

tions. Even these largest reduction processes can be performed in a few minutes.



Chapter 4

Speedup Analysis of MPI

Applications

The intricacy of high performance computing applications has been growing very fast

in the last years. Only skilled analysts are able to determine the factors that are under-

mining the performance of up-to-date applications. Analyst time is a very expensive re-

source and, for that reason, a strong effort to develop automatic performance analysis

methodologies has been made by the scientific community. In this chapter, we propose

a methodology that is able to automatically detect the main performance problems of

applications. This methodology is based on, first, a size reduction of the performance

data obtained from the executions and, second, an analytical model obtained from

this performance data which fits the speedup of the applications in terms of several

parameters related to several performance issues. The chapter also shows results ob-

tained from real up-to-date applications and validates the conclusions automatically

derived from the methodology.

4.1 Introduction

In the last years, supercomputing has consolidated as a fundamental tool for do

research in many topics (computational biology, mechanics engineering, meteorol-

ogy, ...). A wide set of scientific applications has been developed to give answers to

questions arising in scientific research on those topics. Improving application perfor-

mance is critical for scientific progress.

Performance analysis of parallel applications based on event tracing is a well ac-

cepted technique since it provides a very detailed study of the variations on space (set

of processes) and time that do appear in parallel program executions and could affect

notably the performance of the applications. A complete time-stamped sequence of

events is analyzed afterwards with the help of visualization tools like Vampir [62] or

77
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Paraver [52], which allow a fine-grained study of execution behavior. However, these

tools become almost useless when large amounts of data, generated from executions

of massive parallel applications, have to be analyzed. In this context, the process of

tracing an application becomes a tedious and expensive task because the analyst is

forced to apply techniques to reduce the total size of the tracefile. Once the reduced

tracefile is generated, the analyst can start the performance analysis without any

general guidelines of the execution of the application. This is also a hard task that

can only be carried out by a specialist. The aim of our approach is to provide solutions

to these problems automatizing the process of performance analysis.

We propose a system able to detect the main factors that are undermining the ap-

plication’s scalability. In chapter 3, we have already presented the first step of this de-

tection that is based on a previous analysis of the application’s execution phases and

on an identification of the most relevant regions of the tracefile. These regions sum-

marize the application’s behavior during the execution. The system generates sub-

traces from the original tracefile. In this chapter we go one step further, by proposing

a methodology that applies an analytical model to several tracefiles, each obtained

varying the number of processors. This makes possible the generation of a scalability

model of the application which explains the execution’s evolution on an increasing

number of processors. The combination of the automatic structure extraction of the

tracefile and the automatic fitting of an analytical model of the speedup automatically

and quickly provides an accurate performance analysis of the application.

The analytical model is also used as a basis for a prediction framework. This

framework provides an estimation of the main performance undermining factor of

the application if it is executed on a high number of processors. It also provides an

estimation of the speedup achieved by the application. These predictions are useful

to avoid real executions on high number of processors which are very expensive and,

very often, they do not provide significant performance improvements.

The chapter is organized as follows: First an overview of the related work in sec-

tion 4.2. After, the automatic speedup analysis is shown in section 4.3. An evaluation

of the methodology is shown in section 4.4.

4.2 Related Work

There are other approaches to model the behavior of applications from some point

of view. In [20], the authors explain a parallel machine model that highlights the

critical technology trends underlying parallel computers. It is intended to serve as a

basis for developing fast and portable parallel algorithms and to provide guidelines to

machine designers. Such a model maintains a balance between detail and simplicity
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in order to reveal important bottlenecks without making analysis of interesting prob-

lems intractable. The model uses four factors. They model the computing bandwidth,

the communication bandwidth, the communication delay, and the efficiency of cou-

pling communication and computation. According to the authors, parallel programs

typically adapt to parallel machines configurations in terms of these factors.

In [87] a modeling of an application’s use of interconnect network and capturing

factors related to scalability is shown. The method is based on a relaxed task graph

model, a queuing model, and a memory hierarchy model. The relaxed task graph is

a compact representation of communicating processes of an application mapped onto

the target machine. Simultaneous accesses to the resources of a multi-processor node

are modeled by a queuing network. The execution time of the application is computed

by an evaluation algorithm.

In [32], the authors discuss issues related to the accuracy of performance predic-

tion methods for MPI applications. They present the results of two sets of exper-

iments to quantify the effect of the instrumentation overhead and variance in the

accuracy of Dimemas. The results show that this performance prediction tool can be

used with a high level of confidence as the effect of instrumentation overhead on the

predicted performance is minimal. The authors show that it is possible to carry out

instrumentation runs in highly loaded multi-user environments and still be able to

accurately analyze the performance of the application as if it had run alone.

In [89, 11], a performance modeling methodology that is faster than the tradi-

tional cycle-accurate simulation and more sophisticated than the performance esti-

mation based on system peak-performance metrics is shown. It combines machine

signatures, that is, characterizations of the rates at which a machine can (or is pro-

jected to) carry out fundamental operations and application profiles, that is, detailed

summaries of the fundamental operations to be carried out by the application inde-

pendent of any particular machine. Algebraic mappings of the application profiles

on to the machine signatures are used to arrive at a performance prediction. These

mappings are called convolutions.

In [34] there is another approach. It uses high-fidelity simulation, to observe

component and system characteristics (e.g. performance and power) in order to make

vital design decisions. To reduce the simulation time, the system supports large-scale

system simulation by using models to capture the behavior of only the performance-

critical component. To achieve a balance of accuracy and simulation time, the authors

provide a methodology and associated toolset to evaluate numerous architectural op-

tions. This approach allows users to make system design decisions based on quantifi-

able demands of their key applications rather than using manual analysis which can

be error prone and impractical for large systems.
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In [33], there is a comparison of two models used for the analysis, design and

prediction of asynchronous message passing programs. The authors compare the ac-

curacy of the models focused on the prediction of message passing programs based

on pairwise synchronization against the predicting models focused on barrier syn-

chronization. They consider three test cases to evaluate the models and find that the

accuracy of the prediction models of these two message passing paradigms are equiv-

alent. On the other hand, the authors see a better performance in message passing

programs based on barrier synchronization.

In [46], analytical models are derived from the examination of the key character-

istics of an application. These models are based in computational and communication

performances of an individual system and can be used to predict the performance of

an application prior to system availability. Two applications are considered to eval-

uate the methodology: an adaptive mesh refinement code on structured meshes, and

an Sn transport code on unstructured meshes. The interesting point in this work is

see how the models are used to explore the achievable performance on hypothesized

future systems with increased peak computation and communication performance.

In [105], a method approaching cross-platform performance translation based on

relative performance between two platforms is shown. According to the authors, rel-

ative performance can be observed without running a parallel application in full. We

show that it suffices to observe very short partial executions of an application since

most parallel codes are iterative and behave predictably manner after a minimal

startup period The prediction approach is based in very short partial executions of

an application. The authors claim that prediction derived from partial executions can

yield high accuracy at a low cost.

In [74], an approach focused on models which are able to describe the perfor-

mance of parallel applications without looking at the source code is shown. Linear

models are extracted from a tracefile by fitting the outcome of a set of simulations.

The simplicity of linear models allows an easy interpretation of the impact of the

main performance parameters. This approach also takes into account the need for

performance prediction on parallel machines which are not the machine where the

execution have been done.

In [21], a method focused on address the problem of simultaneous runtime opti-

mization of high performance computing systems is shown. In this work, the authors

combine two software tools for reducing the dynamic power consumption of parallel

systems. The first tool is called dynamic concurrency throttling (DCT). It adapts the

level of concurrency at runtime based on execution properties. The second tool is

called dynamic voltage and frequency scaling (DVFS). The combination of these two

approaches has a huge search space which it is not possible to explore, particularly at
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runtime. To overcome this problem, this work proposes a dynamic multi-dimensional

predictor which shows the impact of any thread mapping and any DCT and DVFS

levels available on the parallel system. The prediction is based on a a regression

model.

4.3 Parallelization Efficiency

As we have seen, our automatic system provides (for each periodic phase), first, a

small subtrace which contains 2 iterations of the periodic phase of the application.

This subtrace, smaller than the whole trace, allows the analyst to perform a detailed

analysis of the execution of the application that cannot be made using other analysis

approaches such as profiling. Second, the system gives several general indicators

about the performance of the execution which are useful during the analysis. These

indicators are automatically extracted from the 2-iterations subtrace and based on a

model of the speedup. This section is focused on this second kind of analysis that our

system performs.

4.3.1 Speedup Extraction

In order to extract the real speedup achieved by the application we will base our

analysis on the results obtained from the size reduction explained on chapter 3. We

compute how many times the execution of a fixed number of iterations with p proces-

sors is faster than the execution of the same number of iterations with p0 (we take p0

as reference) processors:

Sp =
Tp0

Tp

(4.1)

where Tp and Tp0
are the repeated pattern’s period found by the algorithm under p

and p0 processors, respectively.

4.3.2 Speedup Model

Meaningful information about the speedup behavior will be very useful for the an-

alyst in order to achieve a deep understanding of the application’s execution. Since

speedup’s observed value does not provide enough in-depth information, we have

developed an analytical approach, able to give automatically an explanation of the

speedup’s evolution when the number of processors is increased due to a set of indi-

cators such as load balance or communication efficiency.
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4.3.2.1 Initial Parameters

Given an application, for each execution with a different number of processors P ,

a set of indicators or parameters from the 2-iterations subtrace are extracted. Each

parameter is defined in the period of time which contains these 2 iterations. The time

span of this period is called T . The composition of these parameters defines a model

of the speedup. These parameters have a clear physical meaning:

Communication Efficiency (CommEff) is defined as the maximum computing time,

normalized to T , performed by a single process:

CommEff =
Max(ti)

T
(4.2)

It shows the real weight of the computation phase within the region we are study-

ing. If the computation phase covers all the region, this number will be close to 1.

Otherwise, if there is a high proportion of communications, the value will be close to

0.

Second, Load Balance (LB) that is defined as the ratio between the sum of com-

puting time performed by all the processes and P ·Max(ti):

LB =

�
i ti

P ·Max(ti)
(4.3)

It shows the differences between the computing times of each thread. If these val-

ues are similar, this number will be close to 1. Otherwise, if there are significant

differences between each thread’s computing time, the value will be far from 1.

Therefore, CommEff and LB parameters give information about parallelization

efficiency. However, while CommEff evaluates the weight of MPI time due to actual

communications, LB evaluates MPI time due to load imbalance. In both cases, the

values of the parameters are closer to 1 for low values of MPI time. In figure 4.1,

we show a representation of these parameters. In the x-axis, there is the normalized

time. In the y-axis, there is the set of processes. For each process we show, first, its

computing time and, second, its communication time. In this picture, we highlight

the maximum of the computing times, that is, the CommEff factor. On the other

hand, the area drawn with the darkest grey (blue in colors) is the sum of computing

time performed by all the processes. LB is the quotient between this area and P ·

Max(ti). The communication time (time in MPI) has been divided in two subsets:

Communication time due to load imbalance and actual communication time.

The third factor is the Average Instructions per Cycle (IPC) which the application

has achieved within the computation time. Applications may experience different

IPC’s when varying the number of processors, for example due to different problem
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Figure 4.1: Representation of CommEff and LB factors. In the x-axis, there is the nor-

malized time. In the y-axis, there is the set of processes. For each process we show, first,

its computing time and, second, its communication time. The communication time (time

in MPI) has been divided in two subsets: Communication time due to load imbalance and

actual communication time.

size per processor and cache size. These factors could bring superlinear behavior of

speedup. This circumstance is considered by our analytical speedup model, being an

example of its generality. IPC is extracted from the hardware counters contained in

the tracefile.

Finally, the last factor is the Number of Instructions (�Instr) performed by the ap-

plication during the computation time. Ideally, this parameter will remain constant

as we increase the number of processors of the execution. If it grows, it will mean

that the application is adding load when we increase the number of processors, i.

e., it replicates calculations. This replication can have an important impact on the

application’s performance.

4.3.2.2 Derivation of a Partial Model

In this section we derive an equation which relates the speedup of the application

with the parameters explained above. The aim of this equation is to explain the evo-

lution of the speedup in terms of parameters chosen to have real physical meaning.

To detect quickly the real factor that is undermining the speedup of the application

is the final goal and the motivation of this model.

Let’s assume that we have executed a given application using P0 and P processors

and that we have extracted the 2-iterations subtrace in both executions. The spans
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of these subtraces are T and Tp. Let’s consider here several issues:

The first one is that the total execution time in the case of P processors, that is,

the sum of all processes execution times, is equal to P ·Tp since each process’ average

execution time is Tp.

The second one is that total execution time can be decomposed in total commu-

nication time, Tcm and total computation time, Tcp. In terms of equations, these two

considerations can be expressed like this:

Total Execution Time = P · Tp = Tcm + Tcp (4.4)

The third is that the total computation time, Tcp, is equal to the sum of all pro-

cesses computation time:

Tcp =
�

i

ti (4.5)

The fourth one is that the total computation time, Tcp, is equal to the number of

cycles performed by the application during the computation time, �cycles, divided by

the processor’s clock frequency, α. We assume that this frequency is the same for all

the processors where the parallel application is run:

Tcp =
�cycles

α
=

�cycles
�Instr

�Instr

α
=

�Instr

IPC
·

1

α
(4.6)

Finally, taking into account all this considerations, we can find the following ex-

pression of the total execution time:

PTp = Tcm + Tcp =
Tcp

Tcp

Tcm+Tcp

=
�Instr
IPC

·
1
α

Tcp

Tcm+Tcp

= (4.7)

=
�Instr
IPC

·
1
α

Tcp

P ∙Tp

=
�Instr
IPC

·
1
α�

i ti
P ∙Max(ti)

Max(ti)
Tp

(4.8)

In section 4.3.2.1, we have defined CommEff as
Max(ti)

Tp
. On the other hand, we

have that the quotient
�

i ti
P ∙Max(ti)

is LB. Finally, we obtain:

PTP =
�Instr

LB · CommEff · α · IPC
(4.9)

And putting this expression into the speedup definition in 4.1:

Sp =
Tp0

Tp

=
P

P0

CommEff

CommEff0

LB

LB0

IPC

IPC0

�Instr0

�Instr

α

α
= (4.10)
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=
P

P0

CommEff

CommEff0

LB

LB0

IPC

IPC0

�Instr0

�Instr
(4.11)

4.3.2.3 Derivation of the Final Model

In the previous section, we consider that CommEff parameter shows the real weight

of the computation phase within the region we are studying. However, sometimes

communications overlap computations and sometimes not. It is useful to separate

these two effects, that is, to decompose CommEff parameter in two parameters.

The first one measures the weight of overlapped communications and the second one

measures the weight of the communications that are not overlapped with computa-

tions. The first parameter is called Micro Load Balance (µLB) and the second one

Real Communication Efficiency (RealCommEff ).

To determine the value of these two parameters, we perform a simulation of the 2-

iterations subtraces with ideal communications, that is, Latency = 0, Bandwidth = ∞

and �links = ∞. Performing this simulation, the time spent on those regions of the

subtrace where only communications are performed is not considered, since those

communications are instantaneous. Simulating the 2-iterations subtrace, we obtain a

simulation time which is an estimation of the execution time under ideal communica-

tions, Tideal which value is less or equal to the 2-iterations execution time, T . To carry

out the simulations, we use Dimemas [31], a simulator of message-passing applica-

tions on a configurable parallel platform. The simulation of the small 2-iterations

subtraces requires a few seconds.

Parameter RealCommEff is defined as Tideal

T
. It computes the relative time when

at least one of the processes is computing. For the reasons we explained in the above

paragraph, 0 ≤ RealCommEff ≤ 1. µLB is defined as
Max(ti)
Tideal

where ti is the comput-

ing time of the process i. Now we have:

µLB ·RealCommEff =
Max(ti)

T
= CommEff (4.12)

Combining formulas 4.12 and 4.11, we easily obtain the following:

Sp =
P

P0

RealCommEff

RealCommEff0

µLB

µLB0

LB

LB0

IPC

IPC0

�Instr0

�Instr
(4.13)

Summarizing, we have obtained an analytical model that shows the impact of the

non-overlapped communications (RealCommEff ), of the communications overlapped

with computations (µLB and LB) and of the computations (IPC and �Instr) over the

speedup. It provides a first diagnostic of the application that guides the analyst in

the analysis of the 2-iterations subtrace. It is important to highlight that, in order
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to obtain RealCommEff and µLB parameters, we need a complete timestamped se-

quence of events, i. e., a tracefile of the execution we are studying. This is due to the

fact that we have to make a distinction between the communications overlapped with

computations and the non-overlapped ones. This distinction can not be made without

a temporal sequence of events. Other techniques of analysis of applications, such us

profiling, do not allow us to separate the impact of communications overlapped with

computations to the impact of the non-overlapped communications since they do not

provide a complete timestamped sequence of events.

The model decomposes the speedup in six multiplicative quotients. The first one

is the linear speedup (ideal) and the other ones are applied to this. If the theoretical

model speedup is far from the linear one, we will quickly detect the reason by looking

at the quotient that is far from one, that is, the problem that is preventing an ideal

speedup of the application.

The utility of the model remains on, first, the intuitive physical meaning which

everyone of the factors has, second, on the fact that together are able to fit the real

speedup extracted value and, finally, on the circumstance that is possible to automat-

ically extract the parameters from the subtraces automatically generated.

4.4 Evaluation

In this section, we perform an evaluation of the analytical speedup model in order to

show its usefulness. As we have said above in this chapter, the input of the speedup

model are the trace chops generated using the methodology explained in chapter 3.

In order to provide a general overview of our approach, we briefly explain several

characteristics of the size reduction and, after, we make a detailed exposition of the

results obtained using the speedup model.

4.4.1 Size Reduction

We have applied the size reduction explained in chapter 3 to the Weather Research

and Forecasting (WRF) system. We have analyzed the Nonhydrostatic Mesoscale

Model (NMM) [64] core and the Applied Research Weather (ARW) [1] one. We exe-

cuted each core on 128, 256 and 512 processors. These executions have been made

using, first, a 4 kilometers grid of the Iberian Peninsula of 401x401x35 points and,

second, a 12 kilometers grid of Europe of 401x401x35 points. The executions have

been performed on the MareNostrum supercomputer [57].

In figure 4.2 there is a graphical representation of the results of the analysis of the

WRF-NMM execution run on 128 processors using the Iberia’s grid as input. At the
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top there is a global visualization of the tracefile of one execution. Below, we have a

graphical representation of the signal generated from the tracefile. In chapter 3 there

is more information about how is this signal obtained and what kind of information

contains. Below this signal, we have a zoom of the signal focused on the periodical

region. At the bottom, we have a visualization of the generated subtrace, which

contains 2 iterations of the periodical region.

In figure 4.3 the execution times needed for the automatic system to find the

structure of the tracefile are shown jointly with the size of the original tracefiles

analyzed by the system. As we can see, the execution time grows almost linearly with

the size of the original tracefiles. In figure 4.4 we show the size reduction achieved

in logarithmic scale. As we can see, the volume of data to study is dramatically

decreased after the reduction process.

4.4.2 Results Obtained with the Performance Model

We have applied the analytical model to the set of 2-iterations subtraces obtained fol-

lowing the methodology explained in chapter 3. The executions have been performed

on MareNostrum supercomputer.

After the application of the size reduction, the automatic system generated sev-

eral subtraces (one for each execution). Each subtrace contains two iterations of the

computation phase of the application. From them, the system obtains the parameters

explained on section 4.3.2 and has fitted the model. These results are shown in figure

4.6. In order to scale the value of the parameter �instr, we draw the ratio �instr0

�instr
.

The value �instr0 is the number of instructions performed by the application in the

execution that we take as reference to perform the speedup analysis.

The results of WRF-ARW application are shown in figures 4.5 and 4.6. First,

in figure 4.5 we can see that when we use the Iberian’s grid as input and using

128 processors as reference, the measured speedup is close to 1.5 executing on 256

processors and close to 2.8 executing on 512 processors. It is remarkable that the

speedup extracted from the model is almost identical to the real measured speedup,

which is an empirical proof that the analytical proof of the model provided above is

right. On the other hand, as we can see in figure 4.6, the factor that has a largest

impact on the speedup evolution is the decrement of µLB and LB parameters. These

decrements are indicators of a remarkable impact of the communications overlapped

with computations on application’s performance.

In figures 4.5 and 4.6 we also show the results of WRF-NMM. When we use the

Iberian’s grid as input, the measured speedup is close to 1.8 executing with 256 pro-

cessors and close to 3.2 executing with 512 processors. Again, the directly extracted



88 4.4. EVALUATION

Figure 4.2: Application of the size reduction. The input is a tracefile obtained from the ex-

ecution of WRF-NMM application on 128 processors in MareNostrum supercomputer. First,

the automatic system derives a signal from the tracefile. After that, Wavelet Analysis finds

the periodic phase and, finally, a subtrace that contains two iterations is generated.
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Figure 4.3: Execution Times needed by the
automatic system to perform the reduction

from the whole trace to the 2-iterations sub-

trace. Sizes of the whole traces are also

shown.

Figure 4.4: Size of the whole trace and size
of the 2-iterations subtrace generated by the

automatic system.

values of the speedup are almost equal to the speedup extracted from the model. The

main problem of WRF-NMM is the increasing number of instructions executed when

the number of processors is increased. This fact is derived from the decrement of
�instr0

�instr
, that we detect in figure 4.6. For that reason, we can conclude that WRF-NMM

replicates calculations. Replication of calculations means that, due to an inefficient

domain decomposition, several regions of the original data are mapped to more than

one thread and, therefore, are processed more than one time. This replication of

computations undermines the scalability of the application.

Looking at figure 4.5, we state that the speedup of the WRF-NMM code is higher

than the WRF-ARW. The model is able to automatically find the explanation of this

fact: In figure 4.6 we see that the only factor that is undermining the scalability

in WRF-NMM is the increase of the number of instructions executed, since the rest

of the factors remain unchanged as we increase the number of threads. However,

in the case of WRF-ARW, we find not only an increase of the number of instruc-

tions executed, but also a decrement of µLB and LB. It means that the communica-

tions overlapped with computations scale well in WRF-NMM but do not scale well in

WRF-ARW. In figure 4.7 there is an empirical proof of this different communication

behavior. A Paraver visualization of communications overlapped with computations,

that is, a visualization of the simulation under ideal communications (Latency = 0,

Bandwidth = ∞ and �links = ∞) is shown. In this kind of simulations, communi-

cations which are not overlapped with computations are performed instantaneously.

For that reason, if we visualize this simulation, we only will see overlapped com-

munications. In this visualization, the horizontal axis represents the time and the
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vertical axis the different processes. Black color means that a given process in a given

time instant of time is not communicating. On the other hand, light colored points

(green when printing or visualizing in color) represent communications. The applica-

tions are WRF-ARW executed on 128 and 512 (using an Europe’s Grid as input) and

WRF-NMM executed on 128 and 512 processors (using an Iberia’s Grid). These two

applications show different behavior in the overlapped communications’ pattern. The

relative weight of the communications increases notably in WRF-ARW-Iberia. This

increase is almost zero in WRF-NMM-Europe. This fact is captured by the analytical

model in terms of the evolution of µLB and LB parameters. This is a practical case

that demonstrates the usefulness of this automatic methodology: It is able to auto-

matically detect performance problems without the need of any kind of visualization

or performance analysis made by analysts.

We have also applied the size reduction and extracted the analytical model to

the CPMD [18] code, which is particularly designed for molecular dynamics. Accord-

ing to the documentation of CPMD code [19], its main parallelization problem in

distributed memory is load-balancing. This documentation explains that a partial

solution to this problem is a technique which allows to scale the application in mod-

ern supercomputers by avoiding load imbalance. It is applied when executing CPMD

with the parameter Taskgroups. We have executed CPMD using this parameter and

without using it. Results are shown in figure 4.6. They correctly show the impact

of the technique which avoids load imbalance. In the two executions that we have

made without the technique, the parameters LB and µLB are smaller than the same

parameters extracted from the executions that use the technique. This is another em-

pirical proof of the usefulness and robustness of our model: It is able to automatically

detect non-trivial execution characteristics without visualization or another kind of

human activity.

It is interesting to state that, when CPMD uses Tasksgroups parameter, the load

imbalance and the replication of calculations have almost disappeared. However, on

the other hand, theRealCommEff parameter is higher in the execution that does not

use Tasksgroups parameter. It means that the application, when it uses the technique

designed to avoid load imbalance, performs more non-overlapped communications

to balance correctly the load. Finally, the speedups achieved are the same on both

executions. The speedups directly extracted are, again, almost equal to the speedups

extracted from the model.
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Figure 4.5: Values of the speedups obtained from the executions of WRF-NMM and WRF-

ARW on 128, 256 and 512 processors. Input data are grids of Iberia and Europe. Each grid

has 401 x 401 x 35 points. The figure also shows these values for CPMD application executed

on 32 and 64 processors. CPMD has also been executed on 32 and 64 processors using a

technique which avoids load imbalance (Taskgroups). The figure also shows the speedups

derived from the model. In all the cases, the model fits correctly the values.
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Figure 4.6: Values of the parameters of the model obtained from the executions of WRF-

NMM and WRF-ARW on 128, 256 and 512 processors. Input data are grids of Iberia and

Europe. Each grid has 401 x 401 x 35 points. The figure also shows these values for CPMD

application executed on 32 and 64 processors. CPMD has also been executed on 32 and 64

processors using a technique which avoids load imbalance (Taskgroups).

Figure 4.7: Representation of communications overlapped with computations, that is, a

visualization of a simulation under ideal communications. The applications are WRF-ARW

executed on 128 and 512 (using an Europe’s Grid as input) and WRF-NMM executed on 128

and 512 processors (using an Iberia’s Grid).
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4.5 Prediction

This section is focused on the prediction of, first, applications speedup and, second,

the main performance undermining factor as we increase the number of processors

where the executions are performed. We take executions on a few processes as ref-

erence and we predict the execution of the application on a larger number of pro-

cesses. We assume that processor architecture and interconnection network remain

unchanged.

The prediction scheme is based on several executions of the application on a few

processors. For each execution, a set of parameters is extracted. These sets are char-

acterizations of the executions. The prediction is based on them. For each parameter,

we perform a log-linear fitting [39], capturing its evolution as we increase the num-

ber of processors and obtaining a function of these parameter against the number of

processors. The reason why we use log-linear fitting instead of linear one to predict

the parameters is because this kind of fitting provides better numerical results in

terms of prediction’s accuracy. For example, if we execute a given application on 16,

32 and 64 processors, we extract the Average Instructions per Cycle (IPC) for each

execution and we fit a log-linear model to the data, we will obtain a function of the

IPC against the number of processors. From this function, we will predict the IPC of

an hypothetic execution on 1024 processors.

The last step of the prediction scheme is the derivation of the speedup from the

analytical model explained above. The set of predicted parameters is used as input.

In the next sections, there are numerical evaluations of the prediction errors apply-

ing this methodology to several applications. We also compare real values of the

model parameters with respect to predictions of these values. In figure 4.8 there is a

graphical representation of the scheme of the prediction of executions increasing the

number of processors.

This scheme has several strengths and also several weaknesses. Essentially, its

basic strength is that it provides fast predictions without the need of expensive sim-

ulations or long executions. On the other hand, its basic weakness is that, since this

method is based on the information extracted from executions performed on very few

processors, it is unable to predict performance undermining factors that only appear

on executions carried out on many processors.

4.5.1 Prediction of the Execution Time

In this section, we use real executions on MareNostrum (MG on 16, 32 and 64 pro-

cessors and, on the other hand, BT and SP on 16, 36 and 64 processors) as reference
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Figure 4.8: Graphical representation of the scheme of the prediction increasing the num-
ber of processors: First, we perform executions of the application on P1, P2 and P3 proces-

sors. For each execution, we extract a set of parameters. From these sets, we predict a new

set of parameters. This new set belongs to a predicted execution of the application on P4

processors. Finally, we extract the execution time from the analytical model applied to the

predicted parameters.

to predict executions on MareNostrum increasing the number of processors. We pre-

dict the elapsed time of the executions on 121 (128 in the case of MG), 256 and 1024

processors. To do this, we follow the methodology explained in section 4.5, that is,

we extract real values of model parameters from a few of real executions, we perform

log-linear fittings, one fitting for each parameter, we obtain the predicted parameters

and, finally, we derive the predicted speedup. After, we extract the relative error of

the predicted speedup, comparing its value with respect to the real speedup value,

which has been obtained from real executions of the applications on 128, 256 and

1024 processors.

Obviously, there are many numerical techniques to perform this prediction. In

this work, we compare the results provided by the analytical model with the values

provided by several classical prediction techniques: linear, quadratic and log-linear

extrapolations. Linear extrapolation consists in to perform a linear fitting on real

speedups and, after that, extrapolate the values increasing the number of processors.

This scheme is not only used on linear fitting but also on quadratic and log-linear

ones. In figures 4.9, 4.11 and 4.13 we have drawn predicted speedups provided by the

4 extrapolation techniques we have used (analytical model and linear, quadratic and

log-linear fittings). The quadratic fitting is always very far from the real speedup

value in the case of 1024 processors. On the other hand, log-linear fitting is also

far from the real values. Only the predictions based on linear fitting and analytical

model are reasonably near from the real values. However, the prediction based on

analytical model is always more accurate than the based on linear fitting.

Relative errors of the predictions are shown in figures 4.10, 4.12 and 4.14. On the

one hand, we have drawn the value of the relative error of the prediction based on

analytical model. On the other hand, we have drawn the relative error of the predic-
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Figure 4.9: Predicted NAS-SP

speedups using several techniques.

Real speedup on MareNostrum is

also shown in the picture.
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Figure 4.10: Relative error predict-
ing NAS-SP speedup on MareNos-

trum using several techniques. Re-

sults are shown for 121, 256 and 1024

processors.
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Figure 4.11: Predicted NAS-MG

speedups using several techniques. Real

execution on MareNostrum speedup is

also shown.
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Figure 4.12: Relative error predicting

NAS-MG speedup on MareNostrum using

several techniques. Results are shown

for 128, 256 and 1024 processors.

tions using the classical methodologies: Remember that the first one is a linear fitting

of the speedup on 128, 256 and 1024 processors taking the execution time on 16, 32,

64 as references, the second is a log-linear fitting of the speedup and the third is a

quadratic one. As we can see, the minimum relative error is always achieved using

our technique. It means that we have improved the classical approach of performing

a simple fitting from the data.

4.5.2 Prediction of the Performance Undermining Factors

In the last section we have shown that our methodology has successfully predicted

the speedup of the applications we are studying. Remember that, in order to predict

the elapsed time, we obtain estimated values of the performance factors using log-

linear fittings. These values are not only useful in order to predict the speedup, but

also to predict the performance evolution of the application.

In section 4.4 we have shown that, using the analytical model explained there, it is
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Figure 4.13: Predicted NAS-BT

speedups using several techniques.

Real speedup on MareNostrum is also

shown.
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Figure 4.14: Relative error predicting

NAS-BT speedup on MareNostrum using

several techniques. Results are shown

for 121, 256 and 1024 processors.

possible to detect automatically the performance undermining factor. In this section

we are focused on show how is it possible to to predict this performance undermining

factor. The information obtained it is not trivial because, thanks to this information,

we obtain a first understanding of the reasons of the performance problems of the

application.

In figure 4.15 we can see the real parameters of the analytical model extracted

from real executions of NAS-SP application. It is clear that the two parameters which

are undermining the performance of the application are LB and µLB. The decreases

of LB and µLB parameters imply that the differences between the computing times of

each process increase as we increase the number of processors where the application

is executed. These are the two factors which mainly undermine the speedup of the

applications. In figure 4.16 we can see the predicted values of the model using a log-

linear fitting and taking the real executions on 16, 36 and 64 as input. The predicted

values are quite similar to the real ones. It means that, using our prediction scheme,

we are able to predict not only the speedup but also the factors which undermine this

speedup.

In figures 4.17 and 4.18 we have the results for NAS-MG application. In this case,

the real values show decreases of LB and µLB parameters. Again, the predictions

of the model fit correctly the real values and, therefore, they predict successfully the

main performance undermining factors of NAS-MG application.

In figure 4.19 we can see the values extracted from real executions of NAS-BT ap-

plications. The performance undermining factors are RealCommEff and µLB. The

decrease ofRealCommEff implies that the weight of communications non-overlapped

with computations increases as we increase the number of processors. Predictions

shown in 4.20 have the same kind of behavior, that is, decreases of RealCommEff

and µLB factors.
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Figure 4.15: NAS-SP. Parameters of the
Analytical Model explained above. They

have been extracted from real executions

on MareNostrum.
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Figure 4.16: NAS-SP. Parameters of the
Analytical Model predicted from real ex-

ecutions on 16, 36 and 64 processors on

Marenostrum.
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Figure 4.17: NAS-MG. Parameters of the
Analytical Model explained above. They

have been extracted from real executions

on MareNostrum.
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Figure 4.18: NAS-MG. Parameters of the
Analytical Model predicted from real ex-

ecutions on 16, 32 and 64 processors on

Marenostrum.
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Figure 4.19: NAS-BT. Parameters of the
Analytical Model explained above. They

have been extracted from real executions

on MareNostrum.
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Figure 4.20: NAS-BT. Parameters of the
Analytical Model predicted from real ex-

ecutions on 16, 36 and 64 processors on

Marenostrum.
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Chapter 5

Optimal Frequency Extraction

Several applications have been proposed as benchmarks to evaluate the adequateness

of architectures and high performance computing infrastructures. The performance

of these benchmarks is used to determine the strength and the weaknesses of novel

designs. Therefore, the performance evaluation of benchmarks is a key factor in the

process of designing new architectures. In this chapter, we propose an analysis of

executions of benchmarks based on spectral analysis. This analysis provides a rep-

resentative segment of the executions. This segment is useful because it provides the

optimal sampling interval length of applications. This optimal length complements

and improves existing techniques focused on the reduction of the application’s instruc-

tion execution stream of sequential benchmarks and enables the extraction of signif-

icant performance information of parallel benchmarks without executing the whole

application.

5.1 Introduction

The behavior of programs is a key issue in computer architecture and high perfor-

mance computing. The development and design of novel architectures and super-

computing infrastructures is based on the performance results achieved by sets of

benchmarks. Performance metrics are extracted from real executions to analyze the

main characteristics of applications [4]. However, several problems arise from this

situation: First, it is very expensive to extract complete performance data of execu-

tions. The reason is that it requires intensive use of computational power because

many performance factors have to be taken into account and it is not always possi-

ble to extract all the required information from a single execution. Second, we have

that a fine-grain performance analysis of real applications requires the generation

of huge amounts of data. This data requires an intensive use of storage power and

many hours of analysis time.

99
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In this work, we show an approach able to overcome these problems. We collect

performance data of applications using hardware counters. They contain values of

a performance metrics during a given interval of execution. From the values of the

hardware counters, we derive signals which summarize the behavior of the applica-

tion. Each signal is related to a given performance metric of the application. For

example, we generate a signal which summarizes unified L1 misses during the whole

execution of the application.

We apply spectral analysis techniques (wavelet analysis [23] and cross-correlation

function [73]) to those signals in order to detect the periodic behavior on them. Once

the periodic behavior is detected, it is possible to elect a minimal region which is

representative of the whole execution. This election opens a wide range of options.

In the case that we are analyzing parallel benchmarks, our approach accelerates the

process of performance analysis because it reduces the amount of data that has to

be analyzed. The reason is that performance data is summarized by spectral anal-

ysis techniques, eliminating the redundant data and electing the minimal subset

which represents the whole execution. Second, our approach reduces dramatically

the computing time required to extract information about performance. The reason

is that our approach detects an optimal interval length that summarizes the whole

execution. Therefore, extracting performance data from intervals whose length is the

optimal, we can obtain significant information of the whole execution.

In the case of sequential benchmarks, our approach improves existing tools fo-

cused on the reduction of the application’s instruction execution stream. This im-

provement is based on the detection of the optimal sampling frequency. This point

has not been addressed by previous works. In these works, the sampling frequency is

an arbitrary and fixed election [83] or it is simply modified to reduce the error [103].

As we have said, the extraction of the optimal frequency improves remarkably the

results of these approaches without an increase of computational load.

It is important to state that algorithms which come from the spectral analysis

theory have in general a reasonably low computational complexity. Since our analysis

is based on spectral analysis, it has a good behavior in terms of scalability. Therefore,

the analysis can be applied in a wide range of data and results can be obtained in a

reasonable span of time.

In section 5.2, we make an overview of other approaches and we discuss the in-

teractions between them and our approach. In section 5.3 we explain how we elect

the minimal representative subset of the whole execution and we show results. In

sections 5.4 and 5.5 we show two important applications of spectral analysis.
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5.2 Related Work

In the last years, several approaches have beenmade in order to detect representative

and small regions of executions of applications:

The Sampling Microarchitecture Simulation (SMARTS) [103] framework applies

statistical sampling to microarchitecture simulation. It provides a procedure for sam-

pling a minimal subset of a benchmark’s instruction execution stream to estimate the

performance of the complete benchmark with quantifiable confidence. The sampling

frequency and the length of each sampling unit are used to control the overall simula-

tion time. SMARTS uses a statistical sampling theory to estimate the CPI error of the

reduced simulation versus the complete one. If the estimated error is higher than the

user specified confidence interval, it recommends a higher sampling frequency. How-

ever, its minimal representative subset is non-connected and, therefore, requires a

warm-up every time we have to simulate one of the regions of the subset and it does

not allow an early termination of the simulation because its minimal representative

subset is spread along the execution.

Another interesting approach is MinneSPEC [50]. In this work, the authors de-

velop new benchmarks workloads for use in simulation-base studies. The behavior

of the SPEC CPU 2000 benchmark programs when executed with these small work-

loads is compared with the reference workloads. Our approach could be applied to

executions with small workloads, reducing even more the data generated and the

simulation subset.

SimPoint technique [83] chooses a number of simulation points to be the repre-

sentative of the behavior of the entire program. To determine the simulation points,

they first perform a profiling of the benchmark to identify the candidate simulation

points and then they use clustering to elect a set that is representative of the en-

tire program. After simulation, the results from each simulation point are weighted

to compute the final simulation results. The number of simulation points and the

length of each determine the overall simulation time. SimPoint determines the num-

ber of simulation points using machine learning techniques. However, the length of

the simulation points is equal to the sampling interval chosen for the profiling. As

we demonstrate in the following sections, the election of the sampling interval length

is not a trivial issue for the posterior election of representatives. As we will see in

section 5.4, if we elect a length close to the minimal representative length, the results

of the clustering will improve notably.

In [17] the authors obtain multiple simulation points by randomly picking in-

tervals of execution, and then examining how these fit to the overall execution of

the program for several architecture metrics (IPC, branch and cache statistics). Our
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work could be used as input because it can determine the optimal sampling interval

of the random analysis.

In [106], the authors perform an evaluation to determine the accuracy of the tech-

niques we have explained above. In these evaluations, they arrive to the conclusion

that SimPoint is the best technique because it has a quite accurate representative

election and a fast obtaining of them. SMARTS is slightly more accurate than Sim-

Point but it is remarkably slower.

In [25], the authors reduce simulation time using statistical techniques: Given a

benchmark program, they generate a synthetic trace from statistics of branch, cache

and program. After, they perform simulations using this small synthetic trace as

input. This methodology enables quick and accurate design decisions in the early

stages of computer design, at the processor and system levels. Spectral analysis can

be used in the early stages of the process focused to obtain synthetic traces, that is,

spectral analysis can accelerate the generation of these traces.

In [101] the authors show a simulation tool infrastructure that uses statistical

sampling theory to reduce the simulation effort. The goal is maintain the accuracy

while the simulation time is reduced. The main problem they address is the depen-

dency of a sample of the execution time on memory states. For example, a sample of

100 executed instructions could be meaningless if the cache and the branch predictor

were full of invalid entries.

In [72] there is an approach focused on the detection of patterns within the ex-

ecution on programs. The authors look for these patterns in executions of message

passing programs.

In [53], the authors use a wide range of techniques derived from statistics and de-

rive models based on piece-wise polynomial regression and neural networks to model

performance of parallel applications. This work is related with our in the sense that

the authors apply analytical techniques to study executions of programs. The differ-

ence is that we apply signal processing techniques.

As we have seen, many efforts have been dedicated to reduce the performance

analysis effort from many points view. However, the question of determine the opti-

mal sampling frequency and apply it in performance analysis has not been addressed.

In this chapter, we handle these questions with the aim of complementing and im-

proving the current work in this field.

5.3 Minimal Representative Subset Detection

As we explained in chapter 3, we use auto-correlation functions to detect periodicities

within executions. The analysis is improved by the use of Discrete Wavelet Trans-
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form.

In this chapter, we generate signals from hardware counters extracted from real

executions. The values of these counters are extracted performing a sampling during

the execution. Each time that a fixed number of instructions is executed, we extract

values of several hardware counters. Finally, we obtain a timestamped sequence of

values of hardware counters. Each member of this sequence characterizes an interval

of the benchmark’s execution. Values of hardware counters of a given interval indi-

cate several performance metrics within this interval. Signals are generated from

these values and the analysis is applied to them.

The extraction of information requires the election of a minimal interval length

from which we extract the values of counters. This election implies that there is

maximum frequency in our studies whose value supposes a threshold which can not

be trespassed, that is, there is a maximum frequency which delimits the maximum

granularity which can be studied. According to Nyquist-Shannon theorem [65, 80],

the sampling frequency limits the minimal period that can be detected. Of course,

this frequency can be fixed to a high value that ensures the detection of significant

subsets. As we can see in section 3.7, the minimal iterative periods detected are

remarkably higher than the minimal sampling periods. This fact ensures that we are

not losing significant information in the extraction of the values of counters.

5.3.1 Results

This section is divided in two parts: In the first one, we report the results obtained

applying the methodology explained above to SPEC CPU 2000 (SPEC) Benchmarks

[93]. In the second part, we study NAS Parallel Benchmarks (NPB) [3]. SPEC bench-

marks are widely used in computer architecture to study the impact of hypothetical

architectural changes using simulation. Simulated executions are the basis to evalu-

ate novel ideas an approaches. NPB are used to measure performance of high perfor-

mance computing machines. As we can see in this section, our methodology performs

well in both sets of benchmarks. This is a proof of its generality and applicability.

In the next sections, we provide errors to demonstrate the representativity of the

selected execution segments.

5.3.1.1 Sequential Benchmarks

In table 5.1 and figure 5.1 we show the results obtained applying the methodology ex-

plained in chapter 3 to SPEC CPU 2000 benchmarks [93]. They have been executed

on one core of a PowerPC 970MP processor at 2.3 GHz. The name of each benchmark

is shown in the first column. After, we show the length of the representative subset.
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It is expressed in �instructions. In the third column, we show the total length of the

application. After, in the fourth, we show the average CPI value of the representative

subset. Average CPI value is obtained from hardware counters extracted each 10
7 in-

structions executed. Fifth column contains the global average CPI value of the whole

application. Finally, we show the relative error of the CPI’s representative subset in

the sixth column. In the seventh, eighth, and ninth columns we show the average

unified L1 cache misses every 10
7 instructions in the case of the representative sub-

set, the same value in the case of the whole application, and the relative error of the

representative subsets.

The spectral analysis (wavelet transform and cross-correlation analysis) has been

made taking the CPI signal as input. For this reason, it is logical that the relative

error calculated using CPI is, in general, lesser than the error calculated using L1

misses. As we can see in table 5.1, the errors are in general very low, except in a

few of applications, for example galgel. The reason is that these applications do not

have a strong periodic behavior and it is not possible to find representative subsets

which fit exactly the global behavior of the application. On the other hand, applica-

tions with a strong periodic behavior, for example applu, have representative subsets

which fit almost exactly the global behavior of the application. It’s important to state

that errors calculated using the average unified L1 cache misses are in general low.

Since average unified L1 cache misses have not been used in the representative sub-

set’s detection, low errors demonstrates that the representative subsets have physical

meaning, that is, they really summarize the behavior of the whole application. The

mean error of prediction of L1 cache misses of SimPoint is reported to be equal to 20

%, in the case of instruction cache, and 5 %, in the case of data cache [83]. Using our

technique, the mean error of prediction of unified L1 cache misses is equal to 4.6 %.

Another important issue is the length of the representative subsets. We can see

clearly that the applications are divided in two groups. The first one is composed by

the applications with a length of the representative subset equal or lesser than 10
9

instructions. The second one is composed by the applications which have a length of

the representative subset higher than 10
9 instructions. The applications of the first

group have periodic behavior within the iteration initially elected as representative.

For this reason, it has been possible to reduce even more the length of the represen-

tative subset. On the other hand, the applications of the second groups do not have a

strong periodic behavior within the iteration initially elected as representative sub-

set. The length of the representative subsets obtained using SimPoint is reported to

be between 10
9 and 10

8 [83]. The same order of magnitude as ours.

In figure 5.1, we show a summary of the evaluations we have made. For each

representative subset, we have obtained the relative error a set of metrics comparing
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their average value within the representative segment against the global average

value. Results shown in table 5.1 are summarized in the average errors depicted in

the first two columns of the figure. We also show the average errors obtained taking

into account instructions dispatched, branch mispredictions and unified L2 cache

misses. As we can see, average errors are low in the case of instructions dispatched

and branch mispredictions. In case of unified L2 cache misses, the average error is

higher because several benchmarks, for example gzip, have a small number of L2

misses. Due to this fact, relative errors can be high in these benchmarks. Since a few

of programs have high error rates, the final arithmetic mean is remarkably increased.

Gap, Perlbmk and Sixtrack do not have periodic behavior and, therefore, the re-

duction cannot be made. In table 5.1 we have depicted this fact. In order to show

graphically this non-periodic behavior in contrast with the periodic one, in figures

5.2 and 5.3 we depict CPI measured from executions of one typical periodic applica-

tion, applu, and a non-periodic one, perlbmk. On the left of figure 5.2 we have global

view of the evolution of the CPI during the whole execution of applu. We can see a

large number of oscillations during the execution. On the right, we see a zoom of

these oscillations. It is clear that they are periodical. In figure 5.3 we can see the

same representations in the case of perlbmk application. It is clear that, in this case,

the execution has mainly a non-periodic behavior. For this reason, it has not been

possible to find a representative subset using our methodology.

Instead of this, our methodology is able to find good representative subsets in

most of the SPEC CPU 2000 benchmarks. If it detects a representative segment of

the execution, it means that an iteration of the main loop of the program has been

detected. And the same detection can be obtained from an analysis which uses differ-

ent metrics as input. In this section, we have made an evaluation taking into account

several totally independent metrics. That is, if the execution of a given application

is based on the iterative execution of the same segment of source code, we detect

this behavior and we select one of these executions of the same segment of code as a

representative subset using any kind of metrics as input. This approach is general

and it works in most of the cases, as we demonstrate in the results shown in this

section. This generality is based on the iterative character of the loops contained

in many source codes. However, as we have seen, there is a minority of programs

whose executions do not have this iterative properties because these executions are

not based on iterations contained in loops. In this case, our approach can not select a

minimal representative subsets of benchmarks’ instruction execution stream. There

are also mixed cases, that is, applications whose executions are strongly dominated

by the iterative execution of a loop but they also have non-periodic regions. In these

applications, we can select a representative subset but the relative errors extracted



106 5.3. MINIMAL REPRESENTATIVE SUBSET DETECTION

Name
Representative’s Application’s Representative’s Global Error Representative’s Global Error
Length (�Ins) Length (�Ins) CPI CPI CPI L1 misses L1 misses L1 misses

Ammp 63 ∙ 10
�

22611 ∙ 10
�

3�693445 3�680016 0�36� 0�028336 0�028967 2�22�

Applu 51 ∙ 10
�

18020 ∙ 10
�

2�515707 2�514651 0�04� 0�010121 0�010081 0�40�

Apsi 386 ∙ 10
�

27013 ∙ 10
�

1�993946 1�993527 0�02� 0�017020 0�017064 0�26�

Art 4 ∙ 10
�

3090 ∙ 10
�

6�321399 6�320715 0�01� 0�095121 0�093114 2�11�

Bzip2 247 ∙ 10
�

11418 ∙ 10
�

1�015490 1�049764 3�37� 0�006498 0�006785 4�41�

Crafty 2 ∙ 10
�

3809 ∙ 10
�

0�850096 0�848195 0�22� 0�014319 0�015180 6�01�

Equake 17 ∙ 10
�

10604 ∙ 10
�

2�349061 2�347667 0�06� 0�019959 0�019048 4�56�

Facerec 702 ∙ 10
�

22394 ∙ 10
�

1�173704 1�178809 0�43� 0�011775 0�011840 0�55�

Fma3d 61 ∙ 10
�

23885 ∙ 10
�

1�640557 1�640441 0�00� 0�011932 0�012175 1�99�

Galgel 267 ∙ 10
�

20125 ∙ 10
�

1�446805 1�444753 0�14� 0�011812 0�014225 20�43�

Gap Not Found 22296 ∙ 10
� Not Found Not Found Not Found Not Found Not Found Not Found

Gcc 32 ∙ 10
�

4599 ∙ 10
�

1�023815 1�023999 0�02� 0�009547 0�008462 11�36�

Gzip 290 ∙ 10
�

1538 ∙ 10
�

0�870649 0�889749 2�15� 0�012350 0�011667 5�53�

Lucas 102 ∙ 10
�

12834 ∙ 10
�

2�614271 2�614617 0�01� 0�002158 0�002390 10�75�

Mcf 1018 ∙ 10
�

5126 ∙ 10
�

20�072752 20�050443 0�11� 0�167533 0�150976 9�88�

Mesa 28 ∙ 10
�

29072 ∙ 10
�

0�958044 0�957993 0�00� 0�007190 0�007666 6�62�

Mgrid 48 ∙ 10
�

48088 ∙ 10
�

0�997486 0�997603 0�01� 0�002439 0�002418 0�86�

Parser 3 ∙ 10
�

31619 ∙ 10
�

1�654040 1�668365 0�86� 0�016293 0�015256 6�36�

Perlbmk Not Found 1167 ∙ 10
� Not Found Not Found Not Found Not Found Not Found Not Found

Sixtrack Not Found 31906 ∙ 10
� Not Found Not Found Not Found Not Found Not Found Not Found

Swim 26 ∙ 10
�

20152 ∙ 10
�

1�744981 1�744852 0�01� 0�011389 0�011186 1�78�

Twolf 29 ∙ 10
�

25279 ∙ 10
�

2�971909 2�971368 0�02� 0�046011 0�045594 0�91�

Vpr 8 ∙ 10
�

7875 ∙ 10
�

3�158843 3�160272 0�04� 0�044318 0�043834 1�10�

Wupwise 420 ∙ 10
�

31935 ∙ 10
�

0�950760 0�950736 0�00� 0�003213 0�003225 0�37�

Table 5.1: Minimal Representative Subsets of SPEC CPU 2000 benchmarks.

from it will be slightly higher than a typical periodic application. For example, bzip2

is one of this mixed cases.

It is important to state that, using this methodology, we obtain minimal subsets

of a benchmark’s instruction execution stream which are consecutive, that is, the

program executes all the instructions of the minimal subset without executing an

instruction which do not belong to the representative. It provides the optimal sam-

pling length of SPEC CPU 2000 benchmarks because, due to iterative behavior, each

execution segment whose length is equal to the optimal one summarizes the whole

execution.

5.3.1.2 Taking the Length Arbitrarily

In the past section, we have detected the length and the localization of the minimal

representative subset of a benchmark’s instruction execution stream. Also, we have

determined the correctness of these representative subsets showing the relative er-

rors of the values of several metrics within the subsets. In table 5.1 we have shown

that these relative errors are in general low and, therefore, we have demonstrated

the correctness of the subset’s election.

In this section, we want to emphasize that the length is crucial in order to obtain

good representative subsets. To do so, we consider arbitrary lengths (20%, 40%, 60%,

80%, 100%, 120%, 140%, 160%, 180% and 200% of the optimum length detected using

spectral analysis). After, we extract the values of several metrics within segments of

the execution whose length is one of the previously described. These segments start
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Figure 5.1: Average relative errors of the minimal representative subsets of SPEC CPU
2000 benchmarks. Five different metrics have been used to compute errors.
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Figure 5.2: On the left we have a global view of the evolution of the CPI during the whole
execution of applu application. We can see a large number of oscillations during the execu-

tion. On the right, we see a zoom of these oscillations. They are periodical.
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Name Metric
20% 40% 60% 80% 100� 120% 140% 160% 180% 200�

of R. L. of R. L. of R. L. of R. L. of R. L. of R. L. of R. L. of R. L. of R. L. of R. L.

Ammp
CPI 8.07 30.72 20.04 12.96 0.36 25.47 41.10 56.23 77.16 9.80

L1 miss 8.46 8.81 6.11 4.59 2.18 3.94 28.76 33.18 37.47 17.10

Applu
CPI 17.18 21.50 7.21 2.49 0.04 8.53 1.95 3.36 9.51 0.21

L1 miss 53.65 2.82 31.01 7.13 0.40 7.49 0.11 12.23 3.56 0.17

Apsi
CPI 26.80 55.32 55.05 21.29 0.02 6.02 7.89 8.41 4.27 0.07

L1 miss 36.73 20.04 15.79 1.74 0.26 11.00 7.28 2.65 2.60 1.82

Art
CPI 7.69 5.08 4.64 5.39 0.01 5.95 10.30 5.14 9.26 5.46

L1 miss 18.52 15.94 1.66 7.67 2.16 7.29 12.41 7.47 7.47 7.09

Bzip2
CPI 10.35 16.23 12.26 8.05 3.26 1.39 5.83 8.40 11.20 13.55

L1 miss 9.06 14.47 5.47 7.95 4.23 0.23 5.25 7.21 9.61 12.44

Crafty
CPI 79.91 13.19 39.38 24.58 0.22 20.18 8.35 18.74 10.85 1.00

L1 miss 36.43 18.30 42.90 29.55 5.67 24.09 12.86 22.34 14.83 0.08

Equake
CPI 8.08 4.90 1.33 3.09 0.06 2.55 4.73 2.35 3.98 2.30

L1 miss 1.92 11.38 4.31 9.98 4.78 8.45 10.05 7.67 9.80 7.22

Facerec
CPI 36.40 10.45 3.98 3.44 0.43 2.27 11.33 8.98 4.99 2.48

L1 miss 15.28 9.16 13.12 1.18 0.55 10.58 7.07 8.61 11.54 8.31

Fma3d
CPI 116.34 63.32 10.36 2.61 0.00 10.19 13.76 5.41 0.86 0.07

L1 miss 191.83 102.21 22.66 2.26 1.99 13.91 17.87 7.93 0.39 2.44

Galgel
CPI 16.95 21.17 15.82 12.56 0.14 3.53 0.41 0.38 0.80 3.67

L1 miss 1.84 6.61 11.21 13.95 16.96 18.98 18.30 18.42 18.72 19.53

Gap
CPI

Not Found Not Found Not Found Not Found Not Found Not Found Not Found Not Found Not Found Not Found
L1 miss

Gcc
CPI 1.43 3.90 9.65 9.57 0.02 6.66 2.93 1.33 0.14 1.48

L1 miss 16.05 13.82 9.31 9.52 12.82 10.63 9.73 7.57 6.05 6.60

Gzip
CPI 3.30 3.42 2.95 2.97 2.15 3.85 4.09 4.70 4.94 4.94

L1 miss 17.97 17.89 19.35 19.35 5.85 11.40 23.12 32.07 35.92 35.92

Lucas
CPI 4.32 7.43 7.43 2.54 0.01 1.63 1.94 2.28 1.60 0.51

L1 miss 31.96 39.75 15.90 15.90 9.71 13.91 21.21 11.84 12.10 10.49

Mcf
CPI 3.88 5.30 6.78 14.58 0.11 0.61 2.15 2.27 2.27 2.27

L1 miss 0.04 5.45 4.77 7.81 10.97 12.41 12.89 12.87 12.87 12.87

Mesa
CPI 5.57 1.52 0.96 1.72 0.00 1.62 0.43 1.64 0.77 0.00

L1 miss 7.82 1.80 1.29 0.43 6.21 3.71 3.73 2.05 3.19 5.44

Mgrid
CPI 20.69 21.87 8.24 1.04 0.01 4.46 5.88 3.47 0.93 0.41

L1 miss 54.84 118.20 44.45 12.32 0.87 11.08 28.10 15.63 4.80 0.25

Parser
CPI 39.89 390.40 7.92 41.08 0.86 15.48 4.81 5.84 19.52 0.01

L1 miss 53.99 439.87 18.45 59.42 6.80 24.58 2.08 13.51 28.20 8.40

Perlbmk
CPI

Not Found Not Found Not Found Not Found Not Found Not Found Not Found Not Found Not Found Not Found
L1 miss

Sixtrack
CPI

Not Found Not Found Not Found Not Found Not Found Not Found Not Found Not Found Not Found Not Found
L1 miss

Swim
CPI 39.69 24.19 11.25 6.91 0.01 10.89 8.90 5.12 3.78 0.06

L1 miss 30.19 22.18 4.18 4.69 1.81 7.78 7.74 1.79 2.26 1.00

Twolf
CPI 4.05 0.84 0.42 0.99 0.02 0.49 0.10 0.50 0.04 0.32

L1 miss 0.17 1.45 0.50 1.56 0.91 1.59 1.17 1.64 1.32 1.07

Vpr
CPI 22.52 2.64 9.20 1.22 0.04 4.36 7.08 2.50 7.08 3.51

L1 miss 16.10 1.39 6.10 6.10 1.10 4.37 9.47 5.30 9.58 6.34

Wupwise
CPI 8.00 5.22 1.44 1.91 0.00 1.52 1.42 0.39 0.73 0.05

L1 miss 26.82 16.03 3.38 2.69 0.37 5.28 4.09 0.96 0.68 0.43

Mean Error
CPI 22.91 33.74 11.25 8.62 0.37 6.55 6.92 7.02 8.31 2.48

L1 miss 29.98 42.26 13.42 10.75 4.60 10.12 11.58 11.09 11.09 7.85

Table 5.2: Values of CPI and L1 miss’ relative errors taking representatives whose length is
different from the optimal one. For each application, the three best lengths are highlighted.

We consider a length better than another if its adding of the two errors is lower than the

other one. It is important to state that, in general, 100 � and 200 � are two of the best

lengths. Their mean errors are the best.
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Figure 5.3: On the left we have a global view of the evolution of the CPI during the whole
execution of perlbmk application. On the right, we see a zoom. In this case, the whole

execution is mainly under a non-periodic behavior.

in the same point which is the beginning of the representative subsets detected by

the spectral analysis.

In table 3.1 we depict the experiments. In the first column, there are the names of

the applications. After, in the following columns we show the results obtained using

several length’s segments. Note that the results taking 100% of the representative’s

length have the same values than the results in table 5.1. For each application,

we highlight the three best lengths. We consider a length better than other if the

addition of CPI and L1 misses errors is lower than the other one.

We can see clearly that, in general, the best results are obtained taking 100%

of the representative’s length or 200% of it because the mean errors of these two

lengths are the lowest. The interpretation of this fact is clear: the representative

detected using spectral analysis really summarizes the execution of the application.

Adding more instructions to the representative segment makes worse the results,

except in the case that we take exactly two times the representative segment. On

the other hand, it is important to state that this behavior is detected looking not

only the CPI metric, but also the metric derived from L1 Cache Misses. Remember

that the spectral analysis is performed taking the CPI metric. It means that the

representatives are useful from the CPI point of view and from other metrics point of

view.

5.3.1.3 Parallel Benchmarks

We have applied spectral analysis techniques to Class B NAS Parallel Benchmarks

[3]. We executed BT, CG, FT, MG and SP on 16 and 64 processors. They have been

executed on MareNostrum supercomputer [57]. In table 5.3 we depict the results ob-
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tained. Representative segment and whole application sizes are depicted in millisec-

onds because time it is a clear metric in parallel applications since it has a common

value for all the processes. In the second, third and fourth columns we show the du-

rations of initialization phase, of representative segment and of whole execution. In

the fourth and fifth columns we depict the average value of CPI within the represen-

tative segment and within whole execution. This average value is obtained taking

into account all the processes involved in the execution. In the sixth column there

is the relative error of the average CPI extracted from the representative segment

in contrast to the same value extracted from the whole execution. In the seventh

and eight columns we depict the average value of the unified L1 cache misses per

millisecond within the representative segment and within the whole application. Fi-

nally, we show the relative error of this average value. These data have been obtained

extracting hardware counters each nanosecond of execution.

It is important to state that the main difference between results obtained from

parallel and sequential benchmarks is the initialization phase. In parallel cases,

wavelet analysis detects an initial non-periodic phase which consists in communica-

tions in order to assign initial values to the variables, domain decomposition, etc... In

the sequential benchmarks we have analyzed, this initial phase is negligible because

it is very short. This is the reason why we show the initialization phase in parallel

benchmarks and we omit this value in sequential benchmarks.

In general, we achieve significant reductions, that is, the length of representatives

segments are remarkably smaller than whole application lengths. Relative errors of

CPI and L1 cache misses metrics are quite low in general. There is only one case

that shows a significant error: L1 cache misses extracted from the representative

segment of FT application are not a good approximation of the real value. The reason

is that there are very few L1 cache misses during the execution of this application

and, therefore, L1 cache misses are not a significant metric in the case of FT. Many

executions on 64 processors do not have significant L1 misses because the whole data

can be stored in the L1 cache memories of 64 CPU’s.

Any kind of performance analysis can be performed taking the data contained

within the representative segment of execution selected using spectral analysis. This

is an automatic method to remarkably reduce the amount of data which has to be

considered to extract conclusions about the performance of applications. The length

of the representative segment is a useful value to efficiently extract information from

executions, as we can see in section 5.5.
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Name
Initializa- Represen- Applica- Represen-

Global Error
Represen- Global Error

tion’s tative’s tion’s tative’s tative’s Ratio Ratio L1 Ratio L1
Length (ms) Length (ms) Length (ms) CPI CPI CPI L1 misses / ms misses /ms misses / ms

BT 16 339 335 69426 0.806 0.815 1.10% 461.3 466.3 0.21%
BT 64 1102 95 30096 1.515 1.587 4.53% Negligible Negligible –
CG 16 718 15 37743 2.272 2.325 2.28% 2527.9 2269.11 11.40%
CG 64 1616 8 32448 1.613 1.723 6.38% 2359.70 2132.34 10.66%
FT 16 2995 1079 25349 1.754 1.515 15.77% 5.551 3.779 46.89%
FT 64 1963 313 8686 1.613 1.515 6.47% Negligible Negligible –
LU 16 256 203 58419 1.695 1.666 1.74% 2328.73 2566.67 9.27%
LU 64 1920 61 36587 1.449 1.515 4.35% 4861.08 4786.55 1.56%
MG 16 270 199 5709 2.128 2.083 2.16% 3402.79 4451.13 23.55%
MG 64 140 55 2590 1.724 1.5151 13.78% Negligible Negligible –
SP 16 198 329 135291 5.010 5.172 3.13 % 311.488 307.19 1.39%
SP 64 4051 71 43897 2.857 2.778 3.49% Negligible Negligible –

Table 5.3: Minimal Representative Subsets of Class B NAS parallel benchmarks.

5.4 Clustering

There are several approaches to analyze data. In this section, we explore interactions

between spectral analysis techniques (wavelet analysis, Fourier transform, ...) and

clustering techniques (k-means algorithm, ...). On the one hand, information derived

from spectral analysis does not classify the intervals but it gives information about

the iterative behavior of the execution. On the other hand, information derived from

clustering techniques provides a classification of intervals according to the values of

the counters. Intervals with low values of the counters will be classified in the same

cluster and the same will happen with intervals with high values. The key point to

obtain a successful clustering of the intervals is to have a good initial set of data. And

this is where spectral analysis and clustering interact: spectral analysis can provide

the value of the optimal sampling interval length which generates a good initial set

of data for clustering.

As we have seen in section 5.2, the most recognized methodology to detect min-

imal subset of a sequential benchmark’s instruction execution stream to estimate

the performance of the complete benchmark, SimPoint, is based on clustering tech-

niques. These techniques have several advantages. For example, the computational

complexity of clustering algorithms is low and they achieve strong reductions of the

benchmark’s instruction execution stream. However, clustering techniques have sev-

eral faults, for example, strong sensitivity to initial conditions.

In this section, we focus on the fact that clustering techniques do not provide

insights about the optimal sampling interval length and we demonstrate that to per-

form a clustering on data which have been obtained using this optimal value is better

than to use data obtained from an arbitrary sampling length. For example, in [83],

the sampling interval length has a fixed value of 10
8 instructions. This is an arbitrary

election, forced by the fact that it is not possible to estimate the value of the optimal

length without spectral analysis. As we demonstrate in section 5.4.2, the election
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of this length is important in terms of accuracy. Therefore, spectral analysis can be

applied as input of clustering based methodologies in order to improve their accuracy

and obtain better minimal subsets of benchmarks’ instruction execution stream.

To illustrate the impact that the detection of the optimal sampling length has, we

depict several information extracted from an execution segment of the applu appli-

cation in figure 5.4. We show the CPI signal. As we have said in section 5.3.1.1, this

signal has a minimal granularity of 10
7 instructions. We also depict three examples

of three different samplings. If a sampling is performed using a length of, for exam-

ple, 10
8 instructions, each sampling point will provide the average value of the cycles

performed each ten of million of instructions within an interval of 10
8 instructions.

The first one, sampling A, is performed each 3 · 10
8, the second, sampling B, is per-

formed each 5.1 · 10
8 millions of instructions and the third is done each 8 · 10

8. As we

can see, the variance of data in the case of sampling B is lower than in the other two

samplings. The explanation is that each point of sampling B represents one minimal

iterative region of the execution. Remember that the length of the minimal represen-

tative subset in the case of applu is, according to table 5.1, 5.1 · 10
8. It means that the

length of the minimal representative subset of a benchmark’s instruction execution

stream shows a way to generate a good initial set of points. In the next sections, we

evaluate the errors of clustering techniques applied to many sets of points.

5.4.1 Description of the Experiments

To demonstrate the limitations that arise from the fact that the sampling interval

length is arbitrarily chosen, we perform the following experiment: Taking the SPEC

CPU 2000 benchmarks, we extract two performance metrics from each application.

On the one hand, we extract the number of cycles performed by the processor from

each sampling interval. Remember that the sampling interval length is measured in

�instructions. Therefore, if we divide the number of cycles by the sampling interval

length, we will obtain the CPI within this interval. On the other hand, we extract

L1 cache misses from each sampling interval. Remember that, as we have said in

section 5.1, the signals are generated from hardware counters. For example, suppose

that we extract a hardware counter that gives the number of L1 cache misses. If the

sampling interval length is equal to 10
7 instructions, the extraction of the counter

will be made each time 10
7 instructions are executed. A signal is generated from

this information. That is, for each application and each sampling interval length, we

generate two signals: One signal contains information derived from the counter of L1

cache misses and the other one contains data derived from the counter of cycles.

For each application, each sampling interval length and each metric we have a
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Figure 5.4: CPI signal extracted from an execution segment of the applu application. We

also show samplings using 3 different lengths. The first one, Sampling �, is performed each

3∙108 millions of instructions, the second, Sampling B, is performed each 5.1∙108 and the third

is done each 8∙108. If a sampling point has the coordinates �x� y), it means that y is the average

value of cycles executed each ten million of instructions within the execution interval [x −

length� x]. For example, if �x� y) belongs to Sampling �, it summarizes the execution interval

[x − 3 ∙ 108� x].
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signal. This signal contains values associated to intervals. We perform a clustering

of the intervals based on these values using k-means [55] algorithm. After, we elect

a representative interval for each cluster. It is the nearest point of each cluster to

cluster’s centroid. This method could be used as a predictor, that is, if we perform

the clustering and we find the representatives taking the L1 cache misses as input,

we can predict the global value of CPI taking its values within the representatives

and multiplying it for the weight of the centroid. In terms of formulas, if we want to

predict the global value of a given performance factor Xglobal, we do the following:

Xglobal =

nclusters�

i=1

wi · xi (5.1)

Where wi is the weight of each cluster, that is, the ratio between the number of

points contained in it and the total number of points, xi is the value of the perfor-

mance factor X of the representative of cluster i and nclusters is the total number of

clusters of the division performed by k-means.

The value of nclusters is a value that has to be provided to k-means algorithm as

an input parameter. In our experiments, we provide a value of 4. Obviously, a value

greater than 4 will provide better results because clusterings will be more accurate

and, therefore, the representative subset will be greater. In any case, the goal of this

work is to explore the sensitivity of the sampling interval length and how this length

can be provided by spectral analysis. Results shown in next section are focused to

this point. Obviously, the value of nclusters affects the results of the experiments,

reducing or increasing the errors. However, the qualitative behavior of the results

remains untouchable, that is, if the sampling interval length provided by spectral

analysis improves clustering with nclusters = 4, it will also improve clusterings with

nclusters ≥ 4. It is important to state that improvements with low values of nclusters

are important because they provide small and accurate representative subsets.

In addition, we perform two predictions more using two more techniques. On the

one hand, we chose as representative the interval that has the closest value of a given

metric to the global mean of this metric within the whole execution. For example, if

we are analyzing an execution from the L1 cache misses point of view, we will elect

the interval which has a L1 cache misses value closer the global mean of L1 cache

misses. This global mean is extracted from the values of all of the intervals. On the

other hand, we chose as representative a set of consecutive intervals. The elected

set of consecutive intervals has the closest mean value of a given metric to the global

mean of this metric within the whole execution. The number of intervals of each set

is equal to the parameter nclusters.

The three techniques we have explained in this section are inspired to the tech-
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Figure 5.5: Applu application: Errors obtained using techniques inspired on Multiple Sim-
Points, Single SimPoints and Large SimPoints taking several sampling interval lengths. Best

results are obtained near 5.1 ∙ 108 and 1.02 ∙ 109. These are the values we showed in table 5.1

when we were studying the length of the minimal representative subset and two times this

value.

niques explained in [83] and called Multiple Simulation Point (MSP), Single Simula-

tion Point (SSP) and Long Simulation Point (LSP). The first one, MSP, is comparable

to the clusterization explained above using k-means algorithm. The second, SSP, is

comparable to chose as representative subset the interval that has the closest value

of a given metric to the global mean of this metric. Finally, the third, is equivalent to

elect several consecutive intervals as representative subset.

5.4.2 Evaluation

In this section, we evaluate the sensitivity of changing the length of sampling inter-

vals. In order to do so, we have applied several times the techniques explained above

to the same set of applications but changing the sampling interval length. This set

of is composed by the applications applu, fma3d, lucas, mgrid and swim. They are 5

typical applications with iterative behavior. They represent most of the SPEC CPU

2000 benchmarks.

We extract data taking a sampling interval length equal, first, to 10
7 instructions,

after 2 ·10
7 until two times the value of the representative subset’s length depicted in

table 5.1. We want to study what happens when the sampling interval length is near

to the representative’s length or a multiple of it.

In figures 5.5, we can see the results of experiments using applu application. To

calculate the values of Multiple Simulation Point technique, we have performed a

clusterization using k-means algorithm. To highlight the independence of metric

election, we use unified L1 cache misses as input. The errors are obtained comparing
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Figure 5.6: Fma3d application: Errors obtained using techniques inspired onMultiple Sim-
Points, Single SimPoints and Large SimPoints taking several sampling interval lengths. Best

results are obtained near 6.1 ∙ 108 and 1.22 ∙ 109. These are the values we showed in table 5.1

when we were studying the length of the minimal representative subset and two times this

value.

Figure 5.7: Lucas application: Errors obtained using techniques inspired on Multiple Sim-
Points, Single SimPoints and Large SimPoints on Lucas application and taking several sam-

pling interval lengths. Best results are obtained near 1.02 ∙ 109 and 2.04 ∙ 109. These are the

values we showed in table 5.1 when we were studying the length of the minimal representa-

tive subset and two times this value.
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Figure 5.8: Swim application: Errors obtained using techniques inspired on Multiple Sim-
Points, Single SimPoints and Large SimPoints on Swim application and taking several sam-

pling interval lengths. Best results are obtained near 2.6 ∙ 108 and 5.2 ∙ 109. These are the

values we showed in table 5.1 when we were studying the length of the minimal representa-

tive subset and two times this value.

Figure 5.9: Mgrid application: Results using techniques inspired on Multiple SimPoints,
Single SimPoints and Large SimPoints techniques taking several sampling interval lengths.

Best results are obtained near 4.8 ∙ 108 and 9.6 ∙ 108. These are the values we showed in table

5.1 when we were studying the length of the minimal representative subset and two times

this value.
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the predicted CPI with the real one. Parameter nclusters is equal to 4. We also show

the predictions of the two other techniques. As we can see in the figures, we first take

sampling interval length equal to 10
7 instructions, after 2 · 10

7,..., until 1.02 · 10
9. In

figure 5.5 we can see that the best values for sampling are, for the three techniques,

included in two intervals. The first interval is a neighborhood of the representative’s

length depicted in table 5.1, 5.1·10
8. The second interval is neighborhood of two times

this value. The conclusion we extract is that, if we sample using the length of the

minimal representative subset, we obtain the best predictions. Furthermore, it does

not matter the technique we use because the results obtained using Long Simulation

Point, Single Simulation Point and Multiple Simulation Point are excellent. This fact

highlights the importance of the detection of the optimal sampling interval.

In figure 5.6 we can see the experiments using fma3d application. As we can see,

we take sampling interval lengths between 10
7 until 1.22 · 10

9. Again, we can see

how the techniques are not very accurate for low values of sampling interval length,

specially in the case of Single Simulation Point. In this case we can see how the best

values are around 6 · 10
8 and 1.2 · 10

9. The first point is equal to value of the length of

the representative subset, shown in table 5.1. The second point is equal to two times

the length of the representative segment.

In figures 5.7, 5.8 and 5.9 we show the same kind of results for lucas, swim and

mgrid. In all cases, we can see how the best results are obtained in neighborhoods

whose center is equal to the value of the representatives’ length of table 5.1 or equal

to two times this value.

In all these examples we have shown several facts which are important to state:

The first one is that an optimal election of sampling interval length always improves

the accuracy of the results, that is, it does not matter to use Long Simulation Point

(LSP), Multiple Simulation Point (MSP) or Single Simulation Point (SSP) if we use

the optimal sampling interval length because the results will be accurate. However,

the length of the representative subset will be different depending on the technique

we use, that is, SSP technique provide smaller representative subsets than MSP and

LSP. Therefore, it seems more reasonable to use SSP technique if we are able to

detect the optimal sampling interval length because this technique provides smaller

representative subsets than the other two. However, if we have no idea of the optimal

sampling length, it is more reasonable to use MSP or LSP techniques because they

provide more accurate results than SSP.

In conclusion, it is demonstrated that a previous detection of the optimal sampling

interval length improves the results of clustering techniques focused on the detection

of minimal representative subsets of applications’ instruction execution stream. An

important issue is the independence of the representative subset with respect to ar-
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chitectural parameters. Note that if we use results from our technique to provide

SimPoint with the optimal sampling interval length, we will obtain more accurate

results than SimPoint alone and the representative subset will be independent of

the architecture because it is reported that SimPoint detects representative subsets

independently of the architecture [71].

5.5 Optimal Information Extraction

In order to study the performance problems of parallel applications, it is mandatory

to extract information from their executions. It is not an easy work. Many times, the

amount of information extracted is very large and it is not trivial to select significant

data. In our previous work, we addressed this problem and we proposed methods to

automatically elect significant data [12] and to extract general but non-trivial perfor-

mance properties of the applications [14].

In this section, we use information extracted from spectral analysis to develop a

methodology able to optimally extract relevant data. It is well known that, if we want

to extract values of several hardware counters, we have to address several problems:

First, we have to perform a complete execution of the application if we do not know

insights about the representative execution segments. Second, we have the problem

that many combinations of hardware counters are incompatible and, therefore, we

have to execute the application several times, one time for each incompatible counter.

Remember that these executions are, in general, computationally expensive.

The information extracted from spectral analysis can overcome this problems. As

we have said, our methodology can identify, first, the initialization phase of the exe-

cution and, second, the computation phase and its main iterative period. Remember

that this iterative behavior of the computing phase is due to the loops contained in

the source code. The length of iterations is the optimal sampling length because to

sample using optimal sampling length supposes extract data from each iteration of

the computing phase. As we have seen, these iterations summarize the behavior of

the application. Therefore, if we want to extract the values of three incompatible

hardware counters, we only have to execute the application during the initialization

phase, which is not representative, and during three iterations of the computation

phase. These three iterations are the three sampling intervals from which we extract

the prediction of the global value of each incompatible hardware counter.

Our concrete experiment consists in predict the number of translation lookaside

buffer (TLB) misses, the number of floating point instructions and the number of

branch mispredictions performed during the whole execution of an application. These

hardware counters are incompatible [66], that is, if we are extracting data about the
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Figure 5.10: Extraction of the predictions of global values of hardware counters. Counter 1
is the number of floating point operations performed, counter 2 is the number of TLB misses

and the third is the number branch mispredictions.

Figure 5.11: Time focused on extract

predictions of three independent hardware

counters (reduced time) and total execu-

tion time of applications. To extract the

global value of each incompatible hardware

counter we need one complete execution.

Figure 5.12: Relative errors of the pre-

dictions of global values of hardware coun-

ters obtained using our methodology based

on spectral analysis (wavelet transform, ...).

Note that the average error is around 15�

and the maximal error is around 25�.

number of floating point instructions in a given moment, we can not extract data

about TLB misses or branch mispredictions. We validate the results comparing the

values obtained using our methodology against values extracted from complete exe-

cutions.

The set of applications is composed by several representative applications of NAS

Parallel Benchmarks: BT class B, FT class B, SP class B and MG class B. All of them

have been executed on 16 processors of MareNostrum supercomputer [57]. Similar

studies can be performed with the other applications represented in section 5.3.1.3.

The reason why we limited the range of study to executions on 16 processors is that

the experiments explained in this section are very expensive from the computational

point of view because the validation requires many complete executions of each par-

allel application. Since hardware counters are incompatible, we need to execute the

applications as many times as the number of incompatible counters we are interested

to.
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In figure 5.10, we have depicted graphically how we obtain the predictions of

global hardware counters. For example, in the case of FT, we obtained the predic-

tion of the global floating point instructions from the execution segment which starts

just after the initialization phase, this is 2995 ms after the beginning of the execution,

and ends 1079 ms after. The prediction of TLB misses is obtained from the following

execution segment of 1079 ms and, finally, the number of branch mispredictions from

the next one. Remember that this optimal sampling length has been obtained from

the spectral analysis and that it is depicted in table 5.3. In figure 5.10 we also show

the same kind of information in the cases of SP, MG and BT applications.

In figure 5.11 we compare the execution time needed to extract the predictions

of the three hardware counters against tot total execution time of each application.

Remember that, in order to extract the global values of three incompatible hardware

counters, it is mandatory to execute three times the whole application, that is, three

times the total time value depicted in figure 5.11.

In figure 5.12 we show the relative errors of our predictions. In general, relative

errors are higher in those application whose initialization phase has more relative

weight within the execution. A clear example of this effect is FT. On the other hand, it

is also possible to obtain relative errors higher than 10% if predicted metrics have low

values during the execution. Branch Mispredictions in the case of MG is an example.

The average error is around 15% and the highest one is around 25%. Thanks to

our methodology, we can estimate significant hardware factors with a very reduced

computational effort.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis we have applied spectral analysis to information derived from real

executions of applications. On the one hand, these applications are message passing

programs. In these cases, spectral analysis is useful in order to reduce the amount of

information and in order to study performance properties of message passing codes.

On the other hand, these applications are SPEC2000 benchmarks, programs widely

used in computer architecture. In these cases, spectral analysis is useful in order

to detect the optimal sampling frequency, value that remarkably improves existing

analysis tools focused on detect representative subsets of whole executions. We can

extract several conclusions, related to several topics:

6.1.1 Automatic Phase Detection and Structure Extraction of MPI

Applications

This topic consists of explore the possibility of automatically derive the internal struc-

ture of a tracefile. This structure has two main properties: First, it is based on pe-

riodicities and, second, it is hierarchical. We have shown that it is possible to, first,

detect the perturbed regions of the tracefile and, second, derive the internal structure

of non-perturbed regions. It is useful in many aspects: It makes easier the process

of tracing the application, it avoids the spending of time studying perturbed zones, it

gives the internal structure of the tracefile and, finally, gives the most representative

regions of it. In conclusion, we have reduced the problem of analyzing a huge tracefile

(10 or 20 GB) to the study of several hundreds of MB.

Other important aspect to take into account is the flexibility of the methodology.

We have demonstrated that it is possible to apply the automatic analysis to any kind

of metric we can generate from data contained in tracefiles. This flexibility opens

123



124 6.1. CONCLUSIONS

the possibility to study the application from many points of view, ruling out the non-

significant metrics and taking into account the useful ones.

The automatic detection of structure of MPI applications tracefiles is the first

step to automatize, as much as possible, the process of performance analysis of exe-

cutions of applications in order to reduce the time required to analyze data generated

from executions. Automatic structure detections using spectral analysis opens a wide

range of possibilities, as we can see in the other contributions of the thesis. It enables

the possibility to fit an analytical speedup model which is able to detect performance

problems and warn about it. This fitting can not be made without the size reduction

because the size of the data would be too large.

6.1.2 Speedup Analysis of MPI Applications

This topic consists in the proposal of a model for the automatic detection of the fac-

tors which undermine the scalability of applications. First, it is mandatory to apply

the size reduction explained above in order to detect the execution phases and rule

out the non-significant ones. The reduction also generates subtraces which contain

several repetitions of the periodic pattern detected on the computation phase. After

that, it is possible to automatically extract information from the subtraces and to fit

an analytical model of the speedup. This model is useful to explain the behavior of

the speedup, extracting conclusions about the main problems of the performance of

the application.

The performance analysis of applications is based on the 2-iterations subtrace.

This trace contains with a very high detail the information of the execution of the

application but is smaller than the original trace since the damaged regions of it and

the redundant information have been eliminated. The information derived from our

speedup model provides a very good general guideline for the analyst. The combina-

tion of these two factors, the automatic reduction of the size of the tracefile without

lose of high detail information and the conclusions derived automatically from the

model, makes easier the process of performance analysis of an application and re-

duces dramatically the required time. The potential of this combination cannot be

achieved by other performance analysis techniques such us profiling.

The model can easily be extended in order to automatically study performance

properties of applications which are related to memory. With this extension, it is pos-

sible to automatically perform a numerical analysis of the impact of memory behavior

of applications. Furthermore, note that our approach is as flexible as the application

requires, i. e., it is possible to study any factor which can undermine the speedup

only extending the speedup model.
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On the other hand, an automatic analysis done in a streaming manner, that is, an

analysis which do not requires the storage of the whole trace, is being implemented

to extend as far as possible the functionalities and features of the approach shown in

this thesis. This kind of analysis will give us the possibility of automatically obtain a

speedup decomposition and, therefore, an explanation of the behavior of the speedup

before than the complete execution of applications.

We have also shown an approach focused to the prediction of the execution time of

parallel applications. Taking into account several executions of a given application,

it is possible to extrapolate this executions on a higher number of processors. This

prediction scheme is able to provide an estimation of the execution time of the appli-

cation increasing the number of processors which is better than the classical linear

interpolation. It is also possible to obtain information about the main performance

undermining factor using the analytical model we propose.

The possibility to obtain fast predictions of executions of applications gives a first

qualitative idea of suitability of increasing the number of processors if we want to

improve the performance of the application. Since there is an increasing need of

computing power in many scientific and engineering areas, this topic will become

more and more important in the next years. For this reason, it is mandatory to do

more research to improve the current prediction methods.

In conclusion, we provide a methodology which is able to automatically detect gen-

eral but non-trivial performance characteristics of applications. Since the methodol-

ogy is based on, first, a size reduction performed using fast signal processing al-

gorithms and, second, on a direct extraction of parameters, the automatic analysis

is obtained very quickly. On the other hand, our analysis scheme is flexible in the

sense that any performance property can be taken into account and its impact in

the speedup can be evaluated numerically. Finally, this methodology can be applied

either after the execution of the application or during the execution.

6.1.3 Extraction of Optimal Sampling Frequency of Applications

In this topic, we have explored the possibility of extract the optimal sampling fre-

quency of applications using spectral analysis. We have applied the methodology to

SPEC CPU 2000 and NAS Parallel benchmarks. In general, minimal representative

subsets automatically found summarize the whole execution of the application. An

interesting feature of these subsets is that they are consecutive. This point is impor-

tant because it supposes the detection of an optimal sampling length which shows

which is the size of minimal representative execution segments. It has many appli-

cations.
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On the one hand, we have shown how the length of these representative subsets

can be used as input by clustering based tools such us SimPoint. We have shown

that, if we use a sampling interval length equal to the length of the representative

subset (or a multiple of it), the results of clusterings will be more accurate. The

interaction between techniques derived from spectral analysis and currently existing

tools focused on electing a minimal subset of a benchmark’s instruction execution

stream to estimate the performance of the complete benchmark is a very productive

topic because spectral analysis can give valuable insights to existing tools. This point

is very important and has not been taken into account in previous works.

On the other hand, we have used the optimal sampling length to predict global

performance properties of applications. In the case of parallel applications, it is very

relevant because it significantly reduces the computational load required to extract

performance data. Prediction errors are reasonably low.

In summary, spectral analysis is a powerful tool that can be used in the context of

analysis of applications because it improves the current methodologies if it is used as

input of the currently existing tools, opens new perspectives in this topic if it is used

alone and, finally, does not increase significantly the overhead of the analysis due to

its low computational complexity.

6.2 Future Work

The work performed in this thesis opens several perspectives that can be addressed

in the future:

Run time analysis of executions of applications is a perspective that is currently

being implemented. On the one hand, this run-time analysis provide a remarkable

reduction of the storage requirements of our methodology because it provides the

possibility to perform the analysis without generating a whole tracefile. On the other

hand, the computing time required to execute the whole application can also be re-

markably reduced because it is not mandatory to execute the application entirely. It

is important to state that, from the conceptual point of view, the analysis method-

ology applied on run-time is the same as the applied one to postmortem tracefiles.

That is, the application of the methodology is only an implementation issue, it is not

a fundamental issue of our approach. This fact highlights the generality of our work.

The integration to Paraver of the source code implemented to evaluate the ap-

proach of this thesis is being made. This integration can provide to Paraver with an

automatic analysis module can satisfy the need for simplification and automatization

of the analysis in order to help unfamiliarized users to work with Paraver.

An extension of the performance properties of our model will provide more gener-
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ality and flexibility to our approach. For the moment, issues related to the memory

or the operating system are not directly taken into account. Indirectly, these issues

can impact performance factors which are eventually related to them. However a di-

rect expression of such performance issues can be easily derived from the theoretical

point of view and can provide a clearer performance analysis.

The integration of the spectral analysis methodology as a pre-process step in or-

der to improve the analysis performed by tools such as SimPoint or Smarts can be

fruitful to improve these tools and search for more complete, general, and accurate

methodologies to select the minimal representative subset of an application’s instruc-

tion execution stream.

As you have seen, in this work we have studied executions of parallel applications

implemented using the message passing paradigm. We have not paired attention to

shared memory applications. However, several performance properties of these ap-

plications, such us the efficiency of the scheduling or the load balance can be studied

using our approach, that is, generating signals from the executions and, after that,

analyzing them. The perspective of study shared memory applications can give more

generality and flexibility to our approach.
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