21,764 research outputs found

    Incremental Consistency Checking in Delta-oriented UML-Models for Automation Systems

    Full text link
    Automation systems exist in many variants and may evolve over time in order to deal with different environment contexts or to fulfill changing customer requirements. This induces an increased complexity during design-time as well as tedious maintenance efforts. We already proposed a multi-perspective modeling approach to improve the development of such systems. It operates on different levels of abstraction by using well-known UML-models with activity, composite structure and state chart models. Each perspective was enriched with delta modeling to manage variability and evolution. As an extension, we now focus on the development of an efficient consistency checking method at several levels to ensure valid variants of the automation system. Consistency checking must be provided for each perspective in isolation, in-between the perspectives as well as after the application of a delta.Comment: In Proceedings FMSPLE 2016, arXiv:1603.0857

    A Systematic Approach to Constructing Families of Incremental Topology Control Algorithms Using Graph Transformation

    Full text link
    In the communication systems domain, constructing and maintaining network topologies via topology control (TC) algorithms is an important cross-cutting research area. Network topologies are usually modeled using attributed graphs whose nodes and edges represent the network nodes and their interconnecting links. A key requirement of TC algorithms is to fulfill certain consistency and optimization properties to ensure a high quality of service. Still, few attempts have been made to constructively integrate these properties into the development process of TC algorithms. Furthermore, even though many TC algorithms share substantial parts (such as structural patterns or tie-breaking strategies), few works constructively leverage these commonalities and differences of TC algorithms systematically. In previous work, we addressed the constructive integration of consistency properties into the development process. We outlined a constructive, model-driven methodology for designing individual TC algorithms. Valid and high-quality topologies are characterized using declarative graph constraints; TC algorithms are specified using programmed graph transformation. We applied a well-known static analysis technique to refine a given TC algorithm in a way that the resulting algorithm preserves the specified graph constraints. In this paper, we extend our constructive methodology by generalizing it to support the specification of families of TC algorithms. To show the feasibility of our approach, we reneging six existing TC algorithms and develop e-kTC, a novel energy-efficient variant of the TC algorithm kTC. Finally, we evaluate a subset of the specified TC algorithms using a new tool integration of the graph transformation tool eMoflon and the Simonstrator network simulation framework.Comment: Corresponds to the accepted manuscrip

    Conformance Checking with Constraint Logic Programming: The Case of Feature Models

    No full text
    Developing high quality systems depends on developing high quality models. An important facet of model quality is their consistency with respect to their meta-model. We call the verification of this quality the conformance checking process. We are interested in the conformance checking of Product Line Models (PLMs). The problem in the context of product lines is that product models are not created by instantiating a meta-model: they are derived from PLMs. Therefore it is usually at the level of PLMs that conformance checking is applied. On the semantic level, a PLM is defined as the collection of all the product models that can be derived from it. Therefore checking the conformance of the PLM is equivalent to checking the conformance of all the product models. However, we would like to avoid this naïve approach because it is not scalable due to the high number of models. In fact, it is even sometimes infeasible to calculate the number of product models of a PLM. Despite the importance of PLM conformance checking, very few research works have been published and tools do not adequately support it. In this paper, we present an approach that employs Constraint Logic Programming as a technology on which to build a PLM conformance checking solution. The paper demonstrates the approach with feature models, the de facto standard for modeling software product lines. Based on an extensive literature review and an empirical study, we identified a set of 9 conformance checking rules and implemented them on the GNU Prolog constraints solver. We evaluated our approach by applying our rules to 50 feature models of sizes up to 10000 features. The evaluation showed that our approach is effective and scalable to industry size models

    Prototyping Formal System Models with Active Objects

    Full text link
    We propose active object languages as a development tool for formal system models of distributed systems. Additionally to a formalization based on a term rewriting system, we use established Software Engineering concepts, including software product lines and object orientation that come with extensive tool support. We illustrate our modeling approach by prototyping a weak memory model. The resulting executable model is modular and has clear interfaces between communicating participants through object-oriented modeling. Relaxations of the basic memory model are expressed as self-contained variants of a software product line. As a modeling language we use the formal active object language ABS which comes with an extensive tool set. This permits rapid formalization of core ideas, early validity checks in terms of formal invariant proofs, and debugging support by executing test runs. Hence, our approach supports the prototyping of formal system models with early feedback.Comment: In Proceedings ICE 2018, arXiv:1810.0205

    An Empirical Study of a Software Maintenance Process

    Get PDF
    This paper describes how a process support tool is used to collect metrics about a major upgrade to our own electronic retail system. An incremental prototyping lifecycle is adopted in which each increment is categorised by an effort type and a project component. Effort types are Acquire, Build, Comprehend and Design and span all phases of development. Project components include data models and process models expressed in an OO modelling language and process algebra respectively as well as C++ classes and function templates and build components including source files and data files. This categorisation is independent of incremental prototyping and equally applicable to other software lifecycles. The process support tool (PWI) is responsible for ensuring the consistency between the models and the C++ source. It also supports the interaction between multiple developers and multiple metric-collectors. The first two releases of the retailing software are available for ftp from oracle.ecs.soton.ac.uk in directory pub/peter. Readers are invited to use the software and apply their own metrics as appropriate. We would be interested to correspond with anyone who does so

    Model driven product line engineering : core asset and process implications

    Get PDF
    Reuse is at the heart of major improvements in productivity and quality in Software Engineering. Both Model Driven Engineering (MDE) and Software Product Line Engineering (SPLE) are software development paradigms that promote reuse. Specifically, they promote systematic reuse and a departure from craftsmanship towards an industrialization of the software development process. MDE and SPLE have established their benefits separately. Their combination, here called Model Driven Product Line Engineering (MDPLE), gathers together the advantages of both. Nevertheless, this blending requires MDE to be recasted in SPLE terms. This has implications on both the core assets and the software development process. The challenges are twofold: (i) models become central core assets from which products are obtained and (ii) the software development process needs to cater for the changes that SPLE and MDE introduce. This dissertation proposes a solution to the first challenge following a feature oriented approach, with an emphasis on reuse and early detection of inconsistencies. The second part is dedicated to assembly processes, a clear example of the complexity MDPLE introduces in software development processes. This work advocates for a new discipline inside the general software development process, i.e., the Assembly Plan Management, which raises the abstraction level and increases reuse in such processes. Different case studies illustrate the presented ideas.This work was hosted by the University of the Basque Country (Faculty of Computer Sciences). The author enjoyed a doctoral grant from the Basque Goverment under the “Researchers Training Program” during the years 2005 to 2009. The work was was co-supported by the Spanish Ministry of Education, and the European Social Fund under contracts WAPO (TIN2005-05610) and MODELINE (TIN2008-06507-C02-01)
    corecore