

An Empirical Study of a Software Maintenance Process

R Harrison, R Nithi, K T Phalp, L G Samaraweera & A P Smith

Department of Electronics and Computer Science,

University of Southampton,
Southampton, SO17 1BJ, UK.

Fax. +44 (0) 1703 593045

Abstract. This paper describes how a process support tool is used to collect metrics
about a major upgrade to our own electronic retail system. An incremental prototyping
lifecycle is adopted in which each increment is categorised by an effort type and a
project component. Effort types are Acquire, Build, Comprehend and Design and span
all phases of development. Project components include data models and process models
expressed in an OO modelling language and process algebra respectively as well as
C++ classes and function templates and build components including source files and
data files. This categorisation is independent of incremental prototyping and equally
applicable to other software lifecycles. The process support tool (PWI) is responsible
for ensuring the consistency between the models and the C++ source. It also supports
the interaction between multiple developers and multiple metric-collectors. The first
two releases of the retailing software are available for ftp from oracle.ecs.soton.ac.uk in
directory pub/peter. Readers are invited to use the software and apply their own metrics
as appropriate. We would be interested to correspond with anyone who does so.

1. Introduction

Process modelling is a potentially powerful technology which may be utilised in
order to further understand, experiment with or control the development process. It
has been suggested (Pfleeger, 1994) that process technology may be enhanced by
combining process-modelling with software measurement. We can split the research
into studies which have attempted to use the process model as a framework for
collecting product metrics and those which use it as a framework for collecting
process metrics (Shepperd 1992), (Shepperd, 1992b), (Lott, 1993c).

Recent work on combining process models and process metrics has utilised the
modelling technique as a way of displaying the process measurement such that data
and process form one coherent graphical model (Phalp, 1995). All of these techniques
use the process terminology, phase activities, or boundaries to structure their data
collection.

However, there has been relatively little work reported which uses these
complementary disciplines to study software maintenance. This paper reports on a
study which collected maintenance data with respect to four independent categories.
(Perry et. al. (1994) have taken a similar approach although theirs was an
examination of the process at a much more detailed level, and did not attempt to fit
the information into a more generic framework as we have done.) The following

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Bournemouth University Research Online

https://core.ac.uk/display/75254?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

section describes the maintenance process studied and the rationale for its adoption.
Sections 3 and 4 describe related work in this area and the application respectively.
Section 5 outlines the method used to implement and measure the maintenance
process and section 6 explains our data collection procedures followed by the results
and analysis.

2. Incremental Prototyping

The work reported here is based on the incremental prototyping lifecycle. A
prototyping phase defines the changes (required by the customer) to be made to the
existing system, so that most of the existing system is left unmodified. Following the
initial analysis, project development involves rapid design of a prototype which is
then built and used. (It should be noted that the developers only produced prototypes
for the critical parts of the system.) The repeated refinement of the prototypes
corresponds to the views of Allman and Stonebraker (1982) who suggest that it is
crucial for development to be directed towards achievable short-term goals. Although
long-term targets are not always fully understood, such targets can be decomposed
into manageable short-term goals which can provide the developers with morale-
boosting progress.

Once prototyping had finished, the coding of the actual implementation commenced.
A separate testing phase was not included. Instead, testing is incorporated into the
coding, with the testing of the implementation including the same tests as those used
with the prototypes. During development, the compilers were used to perform as
much code-checking and debugging as possible and to produce a set of run-time tests.

One feature of this project is that the developers were encouraged to experiment with
some of their own ideas as well as those of the customer. Therefore, during
development there was some experimentation in the use of features of both the
prototyping language and the implementation language.

According to Parnas (1979), software engineers have not been trained to design for
change. As the second release was being evolved by the same developers who
designed the original system, how does Parnas' statement relate to our work? We are
of the view that although developers are trained to design for change, there is still
difficulty in designing for change. Basili and Turner (1975) are of the opinion that
even if the developers have undertaken a similar project, they will still find it difficult
to produce a good design for a new system on the first try. They suggest that this
problem may be practically approached by initially implementing a subset of the
problem and then iteratively enhancing the implementation until the full problem has
been delivered. Our project uses a similar idea except that prototypes are only
iteratively produced for critical parts of the system. An additional consideration is
that the use of the same team for this successive implementation results in an increase
in the skill levels and the resultant increase in productivity.

Constraints in process support did not force reuse from the previous implementation.
A subjective assessment based on functions and classes indicates that the developers
only reused approximately half of the old code due to the temptation to produce new
code in order to experiment with new methods. This approach to code-reuse matches
the views of Allman and Stonebraker (1982) whose philosophy is that it is never too
late to discard all existing code and start again.

3. Related Work

There are several arguments cited in the literature suggesting that the concept of the
lifecycle is unsuitable for the development of evolving systems today. In the 1970s,
the lifecycle concept of performing activities systematically supported the idea of
careful planning prior to machine access in order to make effective use of the then-
expensive computer resources (Agresti, 1986).

There are several other dated assumptions built into the conventional waterfall
lifecycle including prototyping and granularity. The sequential view does not fully
account for important process attributes such as iterations and feedback loops as
reported in Curtis (1981) and Curtis (1987). The concept of the conventional software
lifecycle has been significantly altered following the acknowledgement of the need
for prototyping (McCracken, 1982), (Gladden, 1982). Agresti (1986) challenges the
assumption that development follows a rigid sequence of activities from requirements
specification through to coding and testing. Lifecycle models offer a large-grained
view of the development process, and as such, whilst suitable as an overview, cannot
represent critical lower-level details of a project. Curtis (1992) states that many
smaller processes are overlooked when a lifecycle description is used. Processes may
be examined in terms of a whole phase instead of the multitude numbers of sub
processes used during the phase, giving a less detailed view.

Real software development processes often do not consist of phases which are
distinct. Swartout and Balzer (1982) argue that the software methodologies which
separate specification from implementation are unrealistic. They claim that every
specification is an implementation of some other higher-level specification. The
partitioning of the development process into phases such as specification and
implementation is entirely arbitrary.

Due to these problems many of the ideas of the conventional software lifecycle model
have been challenged and consequently largely rejected. However, much of the
terminology introduced still remains and indeed we have applied such terminology to
this project despite having rejected the application of the conventional lifecycle to our
work.

The problem of relating software measurement to process modelling has also been
addressed. Rombach (1990) states that models and measures are inseparable and
planned improvement of quality requires measurably improved development
processes. Lott (1993a) describes several software engineering environments which

use process models and measurement data to improve the manageability. The MVP
project (Lott, 1993) is an example of a proposed solution to the problem of using a
software process model to improve quality. The project involved developing a
prototype process representation language to specify software processes.

4. The Application

The application used for this study revolved around an Electronic Point of Sale
system developed with process support (Greenwood, 1996). The work began three
years ago, and during this time approximately 5K NCSL were developed. Release 3
involving a new set of customer requirements is now under development. The data
reported on here relates to Release 2 of the software which was developed two years
ago. Thus the maintenance process involves dealing with a large amount of legacy
code, maintaining and altering it according to customer requirements.

5. The Design Method

The software is modelled using a process algebra (Henderson, 1995) and an OO
modelling language (Henderson, 1993) before translation into C++. We used
ProcessWise Integrator (Bruynooghe, 1992) to develop a model of the evolution
process. This PWI model (Greenwood, 1995) has two main objectives:
 Recording the effort involved in a modification;
 Ensuring the consistency of the component relationships.
Associated with this model are several roles played by the project team, two of which
are now briefly described:
 The Developer's Role covers three types of actions. Effort Actions are measured

by the time spent by a developer working on a particular component. The
information required is an identifying name for the specific component and the
type of effort action. (Effort was being recorded in 1/4 day units which
corresponds to 1.5 hours excluding time for breaks.) Agrees Actions allow the
user to record that two components in a relationship agree with each other.
(Details of these actions are not relevant to the effort analysis contained in this
paper.) Change Actions are used to correct any data which has been supplied to
the model. The user is able to indicate that a component has been changed
without recording an associated 1/4 day effort. All effort information was
recorded by the developer after the effort had been expended. In future, PWI
will automatically record effort information on-line.

 The Measurer's Role is the name given to the metrics team responsible for
extracting the effort information of the developers from PWI's log. The role
only has two possible actions. Modify This Role is a default action included by
PWI which allows the possibility of making further changes to this role. Output
Effort Log causes the effort log information to be extracted and written to a
standard text file.

6. Data Collection

The actions of the developer are categorised for recording purposes into the following
four types of effort based on the activities associated with the Pumping Model
(Henderson and Warboys, 1991):
 Acquire: the acquiring and customising of existing software, including the

acquisition of other people's code and coding techniques from the literature;
 Build: the coding of low-level modules, unit testing and the building of test

harnesses;
 Comprehend: the understanding of the system, possibly involving literature

surveys and experimentation with hardware and software;
 Design: the high-level design of models or platform software prior to coding, as

well as integration-test planning.

7. Analysis and Results

7.1 Chronological analysis of developer activities

Figure 1

0

2

4

6

8

10

12

14

1 3 5 7 9 11 13 15 17 19

Week

C
um

ul
at

iv
e

D
ay

s

Acquire

Build

Comprehend

Design

The graph illustrating the cumulative time spent by the developer per task across the
component database (figure 1) shows that in the initial stages of this project, the most
time-consuming activity was that of comprehension. Indeed, the developers' time was
concentrated wholly on this activity of understanding during the first week of the
project. Intuitively, this is the expected result, with the developers interspersing
periods of time doing background reading with periods of experiment. During the
first few weeks of the project (weeks 2 to 4), figure 1 illustrates that the developer
also spent a small amount of time acquiring and customising existing software and
tools to be used at a later date or experimenting with coding techniques described in
the literature.

Figure 1 also shows that the relationship between the cumulative amount of time
spent designing and the week number is almost linear between weeks 2 and 8. As

suggested by Curtis et al. (1990), part of this time spent on designing can be
accounted for by team meetings. In our case, the developers met to exchange
information and to discuss the details of the shared process support.

However, in the following period of the project (from week 9 onwards), the design
was deemed to be finalised (apart from small amounts of time spent adding extra
functionality to the design in weeks 11 and 17) and the developer's efforts were
almost solely concentrated on coding. After a while, more of the available time needs
to be spent on anti-regressive activities such as the restructuring of code and the
updating of documentation. This may account for the time spent updating the design
in weeks 11 and 17.

Gersick (1988) suggested that halfway through a group project, there is a critical
point where the team comes to a consensus in order to make progress. This may be
reflected by the delivery of the design and the concentration of the effort on coding.
Flatter sections of the graph indicate periods of consolidation in the project. Once the
task had been fully understood (around week 7), only a couple of occasional periods
of time needed to be spent understanding the project in weeks 15 and 16.

Figure 1 also shows that the relationship between the cumulative time spent for the
developer activity Build and time (project weeks) is almost linear throughout the
duration of the project.

7.2 Chronological analysis of the project database

Figure 2

0

1

2

3

4

5

6

7

8

1 3 5 7 9 11 13 15 17 19

Week

C
um

ul
at

iv
e

D
ay

s

Specifications

Models

Structures

Bodies

Paradigm

Generator

Platform

Figure 2 shows the plots of the cumulative time spent for each of the types of
component in the database. The largest proportion of developer time was Models.
Although for the early stages of the project, the relationship between the cumulative
time for modelling and the week number is fairly linear, from week 9 no further
modelling time was spent (corresponding to the critical point) and thus all subsequent

effort was concentrated on coding. This effort is captured by the Code Structures and
Code Bodies components, which have accounted for the second and third largest
proportions of developer time. Although no coding was done during the first week of
the project, from week 2 onwards the relationship between the cumulative time spent
on code interfaces and the project week number is fairly linear. At this time, the
developers worked on the overall structure of the C++ classes to be used to
implement the models. The production of code for the implementation of these
classes (Code Bodies) was initiated much later (week 6).

Figure 2 also illustrates that the majority of initial project effort was applied to the
specification, which was worked on in two periods of activity (weeks 1-2 and week
7). Again, from the critical point of week 8 onwards, the specification was finalised
and all developer effort was channelled towards the implementation.

The components Platform and Paradigm only account for small periods of the
developers' time early on in the project. Both of these were associated with the
acquiring and comprehending the workings of existing tools and code. Figure 2
shows that no time at all was spent for the Generator components because the
developers did not construct any tools for aiding the conversion of the model into
code.

8. Conclusions

Following other recent work which has combined process models and process
metrics, we have collected process data for each category of the process model.
However, our decision to collect effort data against our four independent categories
(Acquire, Build, Comprehend and Design) represents a departure from this
orthodoxy.

Generally, the developer activity throughout this project followed the expected
trends. Initially a large amount of the developer's time was devoted to tasks relating
to comprehending the legacy products from previous releases. This leads us to
suggest that project effort could be reduced by supplying additional documentation
giving more details of the software's functionality.

All of this abstract activity information provides a distinct and orthogonal view of the
developer's personal process. For example, we can see how comprehending the
existing system spans a number of process activities or phases. This approach
provides us with a much more detailed picture of the process than collection of data
solely against the process model categories, and is also independent of the underlying
process model. Hence it is invariant of process change and would be applicable to
other situations irrespective of the project’s process.

Although our study is on a relatively small scale, our preliminary findings suggest
that such an approach gives us a far greater understanding of the software
development process than traditional approaches which only have an activity-based

view. Further work is continuing with both different developers and large-scale
projects so that we can learn more about the nature of industrial software
development and the applicability of our method.

Acknowledgements

The authors would like to thank Dr. Greenwood at the University of Manchester and
Professor Henderson at the University of Southampton for their assistance throughout
this project, and the EPSRC for their financial support.

9. References

Agresti, W. W., 1986, The conventional software life-cycle: Its evolution and
assumptions, IEEE Computer Society Press.
Allman, E. and Stonebraker, M., 1982, Observations of the evolution of a software
system, IEEE Computer, 27-32.
Basili, V. R. and Turner, A. J., 1975, Iterative enhancement: A practical technique for
software development, IEEE Transactions on Software Engineering, 390-396.
Bruynooghe, B., Hook, P., Cook, P., Greenwood, R. M., Butler, P. and Parker, J.,
1992 Processwise Integrator: Sun hosted system - 1.1, ICL.
Curtis, B., Kellner, M. I., and Over, J., 1992, Process modeling, Communications of
the ACM, 35(9): 75-90.
Curtis, B., Walz, D., and Elam, J., 1990, Studying the process of software design
teams, 5th Software Process Workshop, Kennebunkport, Maine, USA, IEEE
Computer Society Press: 52-53.
Curtis, B., Krasner, H., Shen, V., and Iscoe, N., 1987, Substantiating programmer
variability, Proceedings of the Ninth International Conference on Software
Engineering, 96-103.
Curtis, B., 1981, Substantiating programmer variability, Proceedings of the IEEE, 69:
846.
Gersick, C. J. D., 1988, Time and transition in work teams: Toward a new model of
work development, Academy of Management Journal, 31(1):9-41.
Gladden, G. R., 1982, Stop the life-cycle, i want to get off, ACM SIGSOFT Software
Engineering Notes, 7(2): 35-39.
Greenwood, R. M. and Warboys, B. C., 1996, Co-operating evolving components a
rigorous approach to evolving large software systems, Proceedings of the Eighteenth
International Conference on Software Engineering.
Greenwood, R. M., 1995 EPOS evolution process processwise integrator, tech. rep.,
Department of Computer Science, University of Manchester, UK.
Henderson, P. and Smith, A. P., 1995, Rapid prototyping of distributed systems, tech.
rep., University of Southampton.
Henderson, P., 1993, Object-Oriented Specification and Design with C++, McGraw-
Hill.
Henderson, P. and Warboys, B., 1991, Configuration description for component
reuse, 1st International Workshop on Software Reuse, Dortmund, Germany.

Lott, M. C., 1993a, Process and measurement support in sees, tech. rep., Universitat
Kaiserslautern.
Lott, M. C., Pantelis, M., and Rombach, H. D., 1993, A mvp-l solution for the
software-process modeling problem, tech. rep., University of Maryland.
Lott, M. C. and Rombach, H. D., 1993c, Measurement-based guidance of software
projects using explicit project plans, Information and Software Technology.
McCracken, D. D. and Jackson, M. A., 1982, Life-cycle concept considered harmful,
ACM SIGSOFT Software Engineering Notes, 7(2): 29-32.
Parnas, D. L., 1979, Designing software for ease of extension and contraction, IEEE
Transactions on Software Engineering, 5(2).
Perry, D. E. and Staudenmayer, N. A., 1994, People, organizations, and process
improvement, IEEE Software.
Phalp, K. T., 1995, An investigation of process modelling in practice, Ph.D Thesis.
Bournemouth University, UK.
Pfleeger, S. L. and Rombach, H. D., 1994, Measurement based process improvement,
IEEE Software.
Rombach, H. D., 1990, Design measurement some lessons learned, IEEE Software.
Shepperd, M. J., 1992, Products, processes and metrics, Information and Software
Technology, 34(10): 674.
Shepperd, M. J., 1992b, Quantitative approaches to process modelling, Colloq. on
Process Planning and Modelling, London, IEE.
Swartout, W. and Balzer, R., 1982, On the inevitable intertwining of specification and
implementation, Communications of the ACM, 25: 438-440.

	1. Introduction
	2. Incremental Prototyping
	3. Related Work
	4. The Application
	5. The Design Method
	6. Data Collection
	7. Analysis and Results
	7.1 Chronological analysis of developer activities
	7.2 Chronological analysis of the project database

	8. Conclusions
	9. References

