3 research outputs found

    Continuous Anything for Distributed Research Projects

    Get PDF
    International research projects involve large, distributed teams made up from multiple institutions. These teams create research artefacts that need to work together in order to demonstrate and ship the project results. Yet, in these settings the project itself is almost never in the core interest of the partners in the consortium. This leads to a weak integration incentive and consequently to last minute efforts. This in turn results in Big Bang integration that imposes huge stress on the consortium and produces only non-sustainable results. In contrast, industry has been profiting from the introduction of agile development methods backed by Continuous Delivery, Continuous Integration, and Continuous Deployment. In this chapter, we identify shortcomings of this approach for research projects. We show how to overcome those in order to adopt all three methodologies regarding that scope. We also present a conceptual, as well as a tooling framework to realise the approach as Continuous Anything. As a result, integration becomes a core element of the project plan. It distributes and shares responsibility of integration work among all partners, while at the same time clearly holding individuals responsible for dedicated software components. Through a high degree of automation, it keeps the overall integration work low, but still provides immediate feedback on the quality of the software. Overall, we found this concept useful and beneficial in several EU-funded research projects, where it significantly lowered integration effort and improved quality of the software components while also enhancing collaboration as a whole

    Chapter Continuous Anything for Distributed Research Projects

    Get PDF
    International research projects involve large, distributed teams made up from multiple institutions. These teams create research artefacts that need to work together in order to demonstrate and ship the project results. Yet, in these settings the project itself is almost never in the core interest of the partners in the consortium. This leads to a weak integration incentive and consequently to last minute efforts. This in turn results in Big Bang integration that imposes huge stress on the consortium and produces only non-sustainable results. In contrast, industry has been profiting from the introduction of agile development methods backed by Continuous Delivery, Continuous Integration, and Continuous Deployment. In this chapter, we identify shortcomings of this approach for research projects. We show how to overcome those in order to adopt all three methodologies regarding that scope. We also present a conceptual, as well as a tooling framework to realise the approach as Continuous Anything. As a result, integration becomes a core element of the project plan. It distributes and shares responsibility of integration work among all partners, while at the same time clearly holding individuals responsible for dedicated software components. Through a high degree of automation, it keeps the overall integration work low, but still provides immediate feedback on the quality of the software. Overall, we found this concept useful and beneficial in several EU-funded research projects, where it significantly lowered integration effort and improved quality of the software components while also enhancing collaboration as a whole

    Together, yet apart - the research prototype architecture dilemma

    No full text
    Distributed research projects combine the know-how of industry and research partners from different organizations and countries. In IT, joint software development of research prototypes is an integral part of such projects. However, project partners have individual interests in the developments, ranging from creating new projects to finishing a PhD thesis. This leads to a dilemma - components need to work together within the projects, but have an individual purpose apart from the projects. In this work, we investigate the impact of research project characteristics, in particular the aforementioned dilemma, on software architecture in research projects. From expert interviews, we identify unique architectural challenges inherent to research projects. In this position paper, we argue that these challenges must be considered when planning and executing research projects
    corecore