4,215 research outputs found

    IMAGE PROCESSING, SEGMENTATION AND MACHINE LEARNING MODELS TO CLASSIFY AND DELINEATE TUMOR VOLUMES TO SUPPORT MEDICAL DECISION

    Get PDF
    Techniques for processing and analysing images and medical data have become the main’s translational applications and researches in clinical and pre-clinical environments. The advantages of these techniques are the improvement of diagnosis accuracy and the assessment of treatment response by means of quantitative biomarkers in an efficient way. In the era of the personalized medicine, an early and efficacy prediction of therapy response in patients is still a critical issue. In radiation therapy planning, Magnetic Resonance Imaging (MRI) provides high quality detailed images and excellent soft-tissue contrast, while Computerized Tomography (CT) images provides attenuation maps and very good hard-tissue contrast. In this context, Positron Emission Tomography (PET) is a non-invasive imaging technique which has the advantage, over morphological imaging techniques, of providing functional information about the patient’s disease. In the last few years, several criteria to assess therapy response in oncological patients have been proposed, ranging from anatomical to functional assessments. Changes in tumour size are not necessarily correlated with changes in tumour viability and outcome. In addition, morphological changes resulting from therapy occur slower than functional changes. Inclusion of PET images in radiotherapy protocols is desirable because it is predictive of treatment response and provides crucial information to accurately target the oncological lesion and to escalate the radiation dose without increasing normal tissue injury. For this reason, PET may be used for improving the Planning Treatment Volume (PTV). Nevertheless, due to the nature of PET images (low spatial resolution, high noise and weak boundary), metabolic image processing is a critical task. The aim of this Ph.D thesis is to develope smart methodologies applied to the medical imaging field to analyse different kind of problematic related to medical images and data analysis, working closely to radiologist physicians. Various issues in clinical environment have been addressed and a certain amount of improvements has been produced in various fields, such as organs and tissues segmentation and classification to delineate tumors volume using meshing learning techniques to support medical decision. In particular, the following topics have been object of this study: • Technique for Crohn’s Disease Classification using Kernel Support Vector Machine Based; • Automatic Multi-Seed Detection For MR Breast Image Segmentation; • Tissue Classification in PET Oncological Studies; • KSVM-Based System for the Definition, Validation and Identification of the Incisinal Hernia Reccurence Risk Factors; • A smart and operator independent system to delineate tumours in Positron Emission Tomography scans; 3 • Active Contour Algorithm with Discriminant Analysis for Delineating Tumors in Positron Emission Tomography; • K-Nearest Neighbor driving Active Contours to Delineate Biological Tumor Volumes; • Tissue Classification to Support Local Active Delineation of Brain Tumors; • A fully automatic system of Positron Emission Tomography Study segmentation. This work has been developed in collaboration with the medical staff and colleagues at the: • Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi (DIBIMED), University of Palermo • Cannizzaro Hospital of Catania • Istituto di Bioimmagini e Fisiologia Molecolare (IBFM) Centro Nazionale delle Ricerche (CNR) of Cefalù • School of Electrical and Computer Engineering at Georgia Institute of Technology The proposed contributions have produced scientific publications in indexed computer science and medical journals and conferences. They are very useful in terms of PET and MRI image segmentation and may be used daily as a Medical Decision Support Systems to enhance the current methodology performed by healthcare operators in radiotherapy treatments. The future developments of this research concern the integration of data acquired by image analysis with the managing and processing of big data coming from a wide kind of heterogeneous sources

    Multi Modality Brain Mapping System (MBMS) Using Artificial Intelligence and Pattern Recognition

    Get PDF
    A Multimodality Brain Mapping System (MBMS), comprising one or more scopes (e.g., microscopes or endoscopes) coupled to one or more processors, wherein the one or more processors obtain training data from one or more first images and/or first data, wherein one or more abnormal regions and one or more normal regions are identified; receive a second image captured by one or more of the scopes at a later time than the one or more first images and/or first data and/or captured using a different imaging technique; and generate, using machine learning trained using the training data, one or more viewable indicators identifying one or abnormalities in the second image, wherein the one or more viewable indicators are generated in real time as the second image is formed. One or more of the scopes display the one or more viewable indicators on the second image

    A Hybrid Approach of Using Particle Swarm Optimization and Volumetric Active Contour without Edge for Segmenting Brain Tumors in MRI Scan

    Get PDF
    Segmentation of brain tumors in magnetic resonance imaging is a one of the most complex processes in medical image analysis because it requires a combination of data knowledge with domain knowledge to achieve highly results. Such that, the data knowledge refers to homogeneity, continuity, and anatomical texture. While the domain knowledge refers to shapes, location, and size of the tumor to be delineated. Due to recent advances in medical imaging technologies which produce a massive number of cross-sectional slices, this makes a manual segmentation process is a very intensive, time-consuming and prone to inconsistences. In this study, an automated method for recognizing and segmenting the pathological area in MRI scans has been developed. First the dataset has been pre-processed and prepared by implementing a set of algorithms to standardize all collected samples. A particle swarm optimization is utilized to find the core of pathological area within each MRI slice. Finally, an active contour without edge method is utilized to extract the pathological area in MRI scan. Results reported on the collected dataset includes 50 MRI scans of pathological patients that was provided by Iraqi Center for Research and Magnetic Resonance of Al Imamain Al-Kadhimain Medical City in Iraq. The achieved accuracy of the proposed method was 92% compared with manual delineation

    An Artificial Intelligence Approach to Tumor Volume Delineation

    Get PDF
    Postponed access: the file will be accessible after 2023-11-14Masteroppgave for radiograf/bioingeniørRABD395MAMD-HELS

    Clique Identification and Propagation for Multimodal Brain Tumor Image Segmentation

    Get PDF
    Brain tumors vary considerably in size, morphology, and location across patients, thus pose great challenge in automated brain tumor segmentation methods. Inspired by the concept of clique in graph theory, we present a clique-based method for multimodal brain tumor segmentation that considers a brain tumor image as a graph and automatically segment it into different sub-structures based on the clique homogeneity. Our proposed method has three steps, neighborhood construction, clique identification, and clique propagation. We constructed the neighborhood of each pixel based on its similarities to the surrounding pixels, and then extracted all cliques with a certain size k to evaluate the correlations among different pixels. The connections among all cliques were represented as a transition matrix, and a clique propagation method was developed to group the cliques into different regions. This method is also designed to accommodate multimodal features, as multimodal neuroimaging data is widely used in mapping the tumor-induced changes in the brain. To evaluate this method, we conduct the segmentation experiments on the publicly available Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) dataset. The qualitative and quantitative results demonstrate that our proposed clique-based method achieved better performance compared to the conventional pixel-based methods
    • …
    corecore