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Abstract. Brain tumors vary considerably in size, morphology, and lo-
cation across patients, thus pose great challenge in automated brain tu-
mor segmentation methods. Inspired by the concept of clique in graph
theory, we present a clique-based method for multimodal brain tumor
segmentation that considers a brain tumor image as a graph and au-
tomatically segment it into different sub-structures based on the clique
homogeneity. Our proposed method has three steps, neighborhood con-
struction, clique identification, and clique propagation. We constructed
the neighborhood of each pixel based on its similarities to the surround-
ing pixels, and then extracted all cliques with a certain size k to evalu-
ate the correlations among different pixels. The connections among all
cliques were represented as a transition matrix, and a clique propagation
method was developed to group the cliques into different regions. This
method is also designed to accommodate multimodal features, as multi-
modal neuroimaging data is widely used in mapping the tumor-induced
changes in the brain. To evaluate this method, we conduct the segmen-
tation experiments on the publicly available Multimodal Brain Tumor
Image Segmentation Benchmark (BRATS) dataset. The qualitative and
quantitative results demonstrate that our proposed clique-based method
achieved better performance compared to the conventional pixel-based
methods.

1 Introduction

Gliomas are the most common primary tumors in adults. The median survival
for patients with high-grade gliomas is < 2 years and these gliomas account for a
disproportionate loss of potential years of life. A patient with a high-grade glioma
loses, on average, 12 years of potential life, which is one of the highest for any
type of cancer. There is also a high economic cost to families and the community
[1, 5]. Neuroimaging is a fundamental component of routine clinical care and re-
search. The routine radiological assessment of magnetic resonance (MR) studies
in patients with gliomas includes the delineation of the enhancing rim, regions of
cystic / necrotic change, the degree of tumor infiltration and surrounding edema.
These routine assessments can have large inter-rater variation, which can relate
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to the reader’s experience, and could be enhanced by accurate and reproducible
measurements of the relevant tumor sub-components such as edema, tumor edge
etc. Such indices offer the opportunity to improve image interpretation and as-
sist treatment planning. Delineation of glioma sub-components, however, relies
heavily on segmentation techniques. The aim of brain tumor segmentation is
to extract the pathologic regions from healthy tissues. Manual segmentation is
a slow process and so automated approaches have been explored over the past
decade [2–4].

A main challenge for automated methods is that gliomas vary considerably in
size, morphology, and location across patients. Intensity gradient between nor-
mal and abnormal tissues is the key factor for identifying the glioma. All brain
tumor segmentation algorithms assume that if a pixel is similar to its imme-
diate neighbors, then these pixels should be grouped together to represent the
same structure. Current brain tumor segmentation algorithms can be catego-
rized as generative or discriminative models [5]. Generative approaches encode
the prior knowledge learned from existing data, such as tumor-specific appear-
ance, or the spatial distribution of different tissues, and then infer the most likely
segmentation of the tumor for a given set of brain images based on the tissue
spatial distribution patterns [6, 7]. Generative methods need image registration
to model the tissue spatial distributions, and it is difficult to transform the se-
mantic descriptions of tumor appearances into appropriate probabilistic models.
Discriminative methods avoid modeling these patterns. Instead they use local
features, mostly pixel-wise features, e.g., intensity differences or intensity prob-
ability distribution of pixels within a patch to infer the segmentation of tumor
structures, and classify these pixels / patches as a lesion or non-lesional area us-
ing classification algorithms such as support vector machines (SVM), or random
forests [8–10]. Discriminative models typically require large amounts of training
data to ensure accurate classification performance. This approach is now being
used widely as brain tumor imaging data become increasingly available.

The local features in discriminative models are usually extracted from the
neighborhoods of pixels [11]. To construct the neighborhood, a straightforward
way is to use the standard 4- and 8-pixel neighborhoods [12]. This approach,
although widely used, restricts the adaptability to neighborhood variations. For
example, a pre-defined neighborhood may contain both a tumor and a non-tumor
structure. There are also other algorithms that model the local relationship based
on spatial interaction between nearby pixels [13], or a wider spatial context of
the pixels [14]. While they can successfully model local information, these meth-
ods are usually computationally inefficient. Hence, we present an automated
method to extract the local relationship among pixels and to segment the brain
tumor into different sub-structures in an effort to increase the effectiveness and
efficiency of current discriminative methods. This method is inspired by the con-
cept of clique in graph theory, i.e., a subset of nodes (pixels) in which all of them
are mutually connected [15]. Thus, the local relationship is defined at the clique-
level instead of at the pixel-level. We also propose a clique propagation scheme
for image segmentation based on the inter- and intra-clique variations. Our pro-
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posed method is designed to accommodate the various sequences that are used in
the MR assessment of gliomas - T2-weighted (T2), T2-weighted fluid-attenuated
inversion recovery (FLAIR), T1-weighted (T1), T1-weighted contrast-enhanced
with intravenous gadolinium (T1c), diffusion and perfusion sequences. We eval-
uated our method on the publicly available Multimodal Brain Tumor Image
Segmentation Benchmark (BRATS) dataset [5]. We present our findings when
compared to the conventional methods that use pixel-wise features.

2 Methods

Our proposed method has three steps. Step 1 is feature extraction and neighbor-
hood construction. Local features are extracted for individual pixels, and used
to calculate the similarities between neighboring pixels to construct the neigh-
borhood represented by a pixel adjacency matrix. Step 2 is clique identification.
A set of k-clique, each containing k connected pixels, are identified based on the
pixel adjacency matrix, and a weighted clique transition matrix is further built
to show the connectivity between different cliques. Step 3 is clique propagation,
which groups the connected cliques into different tumor sub-structures.

Feature Extraction and Neighborhood Construction Features are firstly
extracted from the multi-sequence imaging data to describe the pixels numeri-
cally and further to construct the pixel adjacency matrix. Without overempha-
sizing the feature design, we used the first order texture features in this study.
Specifically, mean, variance, skewness and kurtosis were computed from the local
patches around the pixels in each of the scans. In this study, each subject had
undertaken T1, T1c, T2 and FLAIR sequences. Along with the original multi-
modal intensities, each pixel p is represented as a 20-dimensional feature vector
V (p), as in Eq (1):

V (p) = Vv∈{T1,T1c,T2,FLAIR}(I(p),M(p), V (p), S(p),K(p)) (1)

where I,M, V, S,K indicate intensity, mean, variance, skewness and kurtosis
for the pixel p. A pixel adjacency matrix PM is constructed to represent the
neighborhood information, with pm(pi, pj) = 1 indicating the two pixels are
neighbors. Instead of connecting all pixels within the local patch, a thresholding
scheme was adopted to eliminate some dissimilar items for the target pixel.
Specifically, cosine similarity was applied to calculate the similarity between
pixels based on the feature vectors, and the threshold slow was used to regulate
the size of neighborhood for a target pixel pt, as in Eq (2):

pm(pt, pj) = 1, if cos(V (pt), V (pj)) > slow (2)

where pj belongs to the local patch defined for pt. In our experiments, a 5 × 5
window with the target pixel in the center was selected as the local patch, which
was also used for computing the feature vector. The threshold was set at 0.99
since the pixels are highly similar in terms of the extracted feature vectors.
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Clique Identification and Connection The aim of brain tumor segmentation
is to find the regions where the pixels are highly homogeneous. The threshold-
ing scheme described above helps to eliminate heterogeneous pixels from the
surroundings. However, the direct similarity between pixels is not sufficient to
measure the homogeneity without considering the neighbors. So for our method
we would like to build the relationship between pixels by further utilizing the
neighborhood information. Specifically, the clique is used as the underlying unit
to define how the pixels are related.

The concept of clique is introduced in graph theory as a subset of vertices
such that every two vertices in this subset are connected. In our study, treating
the pixel adjacency matrix as a graph, a k-clique Ck is a group of k pixels that
are neighbors to each other, as in Eq (3):

Ck = {p(1), p(2), ..., p(k)},∀i, j ∈ [1, k], s.t., pm(p(i), p(j)) = 1 (3)

The pixels in a clique (triangle) are fully connected, sharing common neighbors
with each other, thus these pixels are reinforced mutually and regarded as highly
coherent. On the other hand, with the local patch approach, only the most related
items are incorporated such that the influence of unrelated pixels in the patch
is eliminated. While the pixels in the same clique are considered in the same
class, the next step was to identify how pixels from different cliques are related.
Specifically, we defined that two cliques are connected if they share common
pixels. Supposing there are h (0 < h < k) common pixels, the two cliques are
h-connected. According to this, the pixels are considered to be related if the
located cliques are connected.

Clique Propagation The relationship of all cliques can be represented as a
weighted transition matrix TM in which the weight indicates the connectivity
according to h, i.e., tm(C(i), C(j)) = h. Starting from a certain clique, clique
propagation is conducted by traversing the whole transition matrix to find the
connected cliques, which represent one of the regions for the segmentation result.
The weights in the transition matrix are used to control the coherence of the
connected cliques by reserving connection above the threshold hlow, i.e.,

tm(C(i), C(j)) = 1, if h > hlow (4)

The clique size k and the threshold hlow are two major parameters to deter-
mine the segmented region’s size. Lowering k and hlow will relax the coherence,
leading to larger segmented regions. In this study, we selected hlow as k − 1 so
that two cliques were highly connected. The influence of k is discussed in Section
3. Finally, the segmentation result is obtained by finding all connected subsets
of cliques.

2.1 Performance Evaluation

As previously indicated we used the publicly available BRATS dataset [5] to eval-
uate the methods. The dataset contained 30 sets of multi-sequence MR scans
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from 10 patients with low-grade (astrocytomas or oligoastrocytomas) and 20
with high-grade (anaplastic astrocytomas and glioblastoma multiforme tumors)
gliomas. All subjects had T1, T1c, T2 and FLAIR imaging sequence carried out.
Each subject’s images were rigidly registered to the T1c scan, and resampled to
1mm isotropic resolution in a standardized axial orientation. All scans were man-
ually annotated by up to four human expert raters. Five tumor sub-structures
(classes) were labeled for each patient - ‘edema’ (class 1), ‘non-enhancing core’
(class 2), ‘necrotic core’ (class 3), ‘active core’ (class 4) and others (class 0).

In our experiments, each subject’s data were processed at the axial slice-level,
and the segmentation result was obtained by combining all slices. Each slice was
segmented into different regions with the clique propagation algorithm. The size
of clique k was selected manually for each subject. Then, the SVM classifier
was used to identify the label of each region based on the average pixel feature
within each region. The SVM model was trained using LibSVM [16] with linear
kernel by C-SVC [17] (with the default parameters, i.e., gamma =1/number of
features, coef0 = 0, and degree = 3). In addition, evaluation was performed
from intra- and inter-patient perspectives. For the intra-patient evaluation, the
SVM classifier was trained on one slice that crosses the center of the tumor such
that all classes were included. For the inter-patient evaluation, the leave-one-
subject-out cross-validation was performed.

3 Results

For our method the relationship between pixels was established based on cliques.
According to the definition of a clique, a larger clique is composed of multiple
small cliques, e.g., a 4-clique contains four 3-cliques. Thus, two pixels are def-
initely in the same region with 3-clique propagation if they are together with
4-clique propagation, but not vice-versa. In other words, the parameter k can be
used to control the size of the segmented regions. The segmentation results of
the proposed clique propagation algorithm on an example slice before labeling
using the SVM classifier, with k = 3 and 4 (shown in the second and third row),
is shown in Fig. 1. Compared to the expert segmentation (shown in the first
row), the 3-clique propagation can recognize the outline of edema, but it also
includes some unexpected tissues, such as necrosis (as indicated with the light
green circle in (b)) and a non-tumor region (at bottom). Increasing the clique
size to 4, i.e., only 4-cliques are extracted to build the transition matrix, the
4-clique propagation can segment the edema, which is a better segmentation re-
sult. Thus, a smaller clique size will lead to an excessively smooth segmentation.
On the other hand, while the larger clique size would be helpful to discriminate
different structural details, it would also result in over-segmentation. In the ex-
periments, based on our visual inspection, most of subjects in BRATS dataset
under study were analyzed with k=4; k=5 was used for a few subjects where
the tumors were difficult to identify.

The results of our method, compared to the expert segmentation on two
slices from a low-grade and a high-grade tumor, are shown in Fig. 2. For the
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Fig. 1. Comparisons of the clique propagation method with different parameter k.
Ground truth: (a) Original cropped MR scan, (b) expert segmentation; 3-clique prop-
agation: (c) region map, (d) segmentation result; 4-clique propagation: (e) region map,
(f) segmentation result. The segmented regions are indicated with various colors.

low-grade tumor, the whole tumor outline and necrosis are shown in the first
row, and the corresponding segmentation results using our method are given in
the second row. For the high-grade case, the whole tumor and tumor core are
shown. Visually, it can be seen that our results are reasonably close to the expert
labeling.

Quantitative results from the comparison are summarized in Table I. As sug-
gested by Menze et al. [5], the Dice coefficient was computed to describe the
performance from three levels: whole tumor (comprising tissue classes 1-4), tu-
mor core (classes 1, 3, and 4) and active tumor (class 4). The second and the
third columns show the intra-patient and inter-patient evaluation results. Over-
all, our method outperformed the SVM approach with a higher Dice coefficient.
Since the SVM approach is based on the pixel feature extracted from the local
patch, the improvement indicates the advantage of constructing the enforced
neighborhood relationship, i.e., the clique. While relatively small improvement
was obtained at the whole tumor level, Dice values were better at the tumor and
active core levels compared to the SVM approach. This shows that our method
is able to identify the small structures that are usually difficult to identify. Nev-
ertheless, the small sized regions are more sensitive to the clique relationship as
shown in the intra-patient AC HG segmentation.
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Fig. 2. Transaxial images from a low-grade glioma (left) and a high-grade glioma
(right). The expert segmentation results are given in the second row. In the low-grade
glioma, contours of the tumor with minimal surrounding edema and cystic elements
are shown; in the high-grade glioma, the edema and tumor core contours are displayed.
Our segmentation results are shown in the third row.
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Table 1. Average DICE coefficient for the 10 patients with low-grade (LG) and 20
with high-grade (HG) gliomas for whole tumor (WT), tumor core (TC) and active core
(AC).

Intra-Patient Inter-Patient
SVM Proposed SVM Proposed

WT LG 0.821 0.825 0.710 0.757
WT HG 0.678 0.708 0.607 0.619

TC LG 0.625 0.705 0.388 0.536
TC HG 0.569 0.653 0.358 0.469

AC LG 0.622 0.699 0.176 0.512
AC HG 0.661 0.641 0.199 0.410

4 Conclusions and Future Works

In this paper, we present a clique-based algorithm for brain tumor segmentation
in multi-sequence MR scan data. All cliques were identified based on the neigh-
borhood of each pixel and the relationship between pixels was built from intra-
and inter-clique perspectives in terms of the connections among cliques. The
clique propagation algorithm was used to finalize the segmentation. We applied
it to a publicly available glioma dataset (BRATS). Our approach was superior
to the SVM-based approach. Since our method does not specifically depend on
any features, we used the simplest features, such as mean and variance in the
imaging data. We would expect a better performance when using customized
features for different imaging modalities.

In future work we will design novel features to capture the complex char-
acteristics of human gliomas. Currently, the weight for transition matrix, the
selection of hlow, and clique size k are determined empirically, so we will inves-
tigate intelligent methods to select these parameters and then evaluate them.
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