13 research outputs found

    Commande des mouvements et de l'Ă©quilibre d'un robot humanoĂŻde Ă  roues omnidirectionnelles

    Get PDF
    The problem of this thesis concerns the control of the movements and the equilibrium of humanoid robots that have a mobile base with omnidirectionnal wheels. The developed methods aim to reach high dynamical performances for this type of robot, while ensuring it stability and equilibrium. Humanoid robots have generally a center of mass relatively high compared to its contact surface with the ground. Therefore, the slightest acceleration of the robot bodies induces a large variation of the distribution of the contact forces with the ground. If they are not properly controlled, the robot can fall. Moreover, the robot having a mobile base with wheels, a disturbance can easily bring it to tilt on two wheels. Finally, a specific interest have been provided about the realisation of a real time controler implemented on the embedded system of the robot. This implies some constraints about the computationnal time of the control law. In order to answer these problems, two linear models of the robot have been developed. The first allows to modelize the dynamics of the robot when it has all of its wheels in contact with the ground. The second allows to modelize the dynamics of the robot when it tilts on two of its wheels. These models have been developed by taking into account the mass distribution of the robot. These models have been subsequently used in two predictive control laws, allowing to take into account at every instant the dynamical constraints as weel as the future behavior of the robot. The first allows to control the movements of the robot when it has all of its wheels in contact with the ground, preventing it for tilting. The second allows the robot to recover itself in a situation when a disturbance bring it to tilt, in order to bring back all of its wheels in contact with the ground. Also, a supervisor that has a state machine has been made in order to define which control law has to be executed at each instant. This supervisor uses the available sensors on the robot in order to observe its tilt state. Finally, in order to validate experimentally the results of the developments of this thesis, a series of experiments has been presented, demonstrating some aspects of the control law. In particular, some tests have been made concerning the tracking of non physically feasible trajectories, the reject of disturbances applied on the mobile base, the stabilisation of the robot during its tilt, and the compensation of the variations of the ground inclination.La problématique traitée dans cette thèse concerne la commande et l'équilibre des robots humanoïdes disposant d'une base mobile à roues omnidirectionnelles. Les méthodes développées visent à atteindre de hautes performances dynamiques pour ce type de robot, tout en assurant stabilité et équilibre. Les robots humanoïdes ont en général un centre de masse relativement haut en comparaison avec leur surface de contact avec le sol. Ainsi, la moindre accélération des corps du robot induit une large variation de la répartition des forces de contact avec le sol. Si celles-ci ne sont pas correctement contrôlées, alors le robot peut tomber. De plus, le robot disposant d'une base mobile à roues, une perturbation peut l'amener aisément à basculer sur deux roues. Enfin, un intérêt particulier a été apporté à la réalisation d'une commande temps-réel implémentée sur le système embarqué du robot. Cela implique principalement des contraintes concernant le temps de calcul de la loi de commande. Afin de répondre à ces problèmes, deux modèles linéaires du robot ont été réalisés. Le premier permet de modéliser la dynamique du robot lorsque celui-ci possède toutes ses roues en contact avec le sol. Le second permet de modéliser la dynamique du robot lorsque celui-ci bascule sur deux de ses roues. Ces modèles ont été réalisés en prenant en compte la répartition massique du robot. Ainsi, il a été judicieux de le modéliser comme un système à deux masses ponctuelles, pouvant se déplacer sur un plan parallèle au sol. La première correspond au centre de masse de la base mobile, la seconde à celui du reste du robot. Ces modèles sont ensuite utilisés au sein de deux commandes prédictives, permettant de prendre en compte à chaque instant les contraintes dynamiques ainsi que le comportement du robot dans le futur. La première commande permet de contrôler les déplacements du robot lorsque celui-ci possède toutes ses roues en contact avec le sol, lui assurant de ne pas basculer. La seconde permet au robot de se rattraper d'une situation où une perturbation l'amène à basculer, afin de ramener toutes ses roues en contact avec le sol. Aussi, un superviseur disposant d'une machine à état à été réalisé afin de définir quelle loi de commande doit être exécutée à chaque instant. Ce superviseur utilise les capteurs disponibles sur le robot afin d'observer son état de basculement. Enfin, afin de valider expérimentalement le résultat des développements de cette thèse, une série d'expériences a été présentée, mettant en évidence les différents aspects de la loi de commande. Notamment, des essais ont été réalisés concernant le suivi de trajectoires non physiquement réalisables, le rejet de perturbations appliqués à la base mobile, la stabilisation du robot lors de son basculement, ainsi que la compensation de variations de l'inclinaison du sol

    Commande des mouvements et de l'Ă©quilibre d'un robot humanoĂŻde Ă  roues omnidirectionnelles

    No full text
    The problem of this thesis concerns the control of the movements and the equilibrium of humanoid robots that have a mobile base with omnidirectionnal wheels. The developed methods aim to reach high dynamical performances for this type of robot, while ensuring it stability and equilibrium. Humanoid robots have generally a center of mass relatively high compared to its contact surface with the ground. Therefore, the slightest acceleration of the robot bodies induces a large variation of the distribution of the contact forces with the ground. If they are not properly controlled, the robot can fall. Moreover, the robot having a mobile base with wheels, a disturbance can easily bring it to tilt on two wheels. Finally, a specific interest have been provided about the realisation of a real time controler implemented on the embedded system of the robot. This implies some constraints about the computationnal time of the control law. In order to answer these problems, two linear models of the robot have been developed. The first allows to modelize the dynamics of the robot when it has all of its wheels in contact with the ground. The second allows to modelize the dynamics of the robot when it tilts on two of its wheels. These models have been developed by taking into account the mass distribution of the robot. These models have been subsequently used in two predictive control laws, allowing to take into account at every instant the dynamical constraints as weel as the future behavior of the robot. The first allows to control the movements of the robot when it has all of its wheels in contact with the ground, preventing it for tilting. The second allows the robot to recover itself in a situation when a disturbance bring it to tilt, in order to bring back all of its wheels in contact with the ground. Also, a supervisor that has a state machine has been made in order to define which control law has to be executed at each instant. This supervisor uses the available sensors on the robot in order to observe its tilt state. Finally, in order to validate experimentally the results of the developments of this thesis, a series of experiments has been presented, demonstrating some aspects of the control law. In particular, some tests have been made concerning the tracking of non physically feasible trajectories, the reject of disturbances applied on the mobile base, the stabilisation of the robot during its tilt, and the compensation of the variations of the ground inclination.La problématique traitée dans cette thèse concerne la commande et l'équilibre des robots humanoïdes disposant d'une base mobile à roues omnidirectionnelles. Les méthodes développées visent à atteindre de hautes performances dynamiques pour ce type de robot, tout en assurant stabilité et équilibre. Les robots humanoïdes ont en général un centre de masse relativement haut en comparaison avec leur surface de contact avec le sol. Ainsi, la moindre accélération des corps du robot induit une large variation de la répartition des forces de contact avec le sol. Si celles-ci ne sont pas correctement contrôlées, alors le robot peut tomber. De plus, le robot disposant d'une base mobile à roues, une perturbation peut l'amener aisément à basculer sur deux roues. Enfin, un intérêt particulier a été apporté à la réalisation d'une commande temps-réel implémentée sur le système embarqué du robot. Cela implique principalement des contraintes concernant le temps de calcul de la loi de commande. Afin de répondre à ces problèmes, deux modèles linéaires du robot ont été réalisés. Le premier permet de modéliser la dynamique du robot lorsque celui-ci possède toutes ses roues en contact avec le sol. Le second permet de modéliser la dynamique du robot lorsque celui-ci bascule sur deux de ses roues. Ces modèles ont été réalisés en prenant en compte la répartition massique du robot. Ainsi, il a été judicieux de le modéliser comme un système à deux masses ponctuelles, pouvant se déplacer sur un plan parallèle au sol. La première correspond au centre de masse de la base mobile, la seconde à celui du reste du robot. Ces modèles sont ensuite utilisés au sein de deux commandes prédictives, permettant de prendre en compte à chaque instant les contraintes dynamiques ainsi que le comportement du robot dans le futur. La première commande permet de contrôler les déplacements du robot lorsque celui-ci possède toutes ses roues en contact avec le sol, lui assurant de ne pas basculer. La seconde permet au robot de se rattraper d'une situation où une perturbation l'amène à basculer, afin de ramener toutes ses roues en contact avec le sol. Aussi, un superviseur disposant d'une machine à état à été réalisé afin de définir quelle loi de commande doit être exécutée à chaque instant. Ce superviseur utilise les capteurs disponibles sur le robot afin d'observer son état de basculement. Enfin, afin de valider expérimentalement le résultat des développements de cette thèse, une série d'expériences a été présentée, mettant en évidence les différents aspects de la loi de commande. Notamment, des essais ont été réalisés concernant le suivi de trajectoires non physiquement réalisables, le rejet de perturbations appliqués à la base mobile, la stabilisation du robot lors de son basculement, ainsi que la compensation de variations de l'inclinaison du sol

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    Advances in Robot Kinematics : Proceedings of the 15th international conference on Advances in Robot Kinematics

    Get PDF
    International audienceThe motion of mechanisms, kinematics, is one of the most fundamental aspect of robot design, analysis and control but is also relevant to other scientific domains such as biome- chanics, molecular biology, . . . . The series of books on Advances in Robot Kinematics (ARK) report the latest achievement in this field. ARK has a long history as the first book was published in 1991 and since then new issues have been published every 2 years. Each book is the follow-up of a single-track symposium in which the participants exchange their results and opinions in a meeting that bring together the best of world’s researchers and scientists together with young students. Since 1992 the ARK symposia have come under the patronage of the International Federation for the Promotion of Machine Science-IFToMM.This book is the 13th in the series and is the result of peer-review process intended to select the newest and most original achievements in this field. For the first time the articles of this symposium will be published in a green open-access archive to favor free dissemination of the results. However the book will also be o↵ered as a on-demand printed book.The papers proposed in this book show that robot kinematics is an exciting domain with an immense number of research challenges that go well beyond the field of robotics.The last symposium related with this book was organized by the French National Re- search Institute in Computer Science and Control Theory (INRIA) in Grasse, France

    Advancing Musculoskeletal Robot Design for Dynamic and Energy-Efficient Bipedal Locomotion

    Get PDF
    Achieving bipedal robot locomotion performance that approaches human performance is a challenging research topic in the field of humanoid robotics, requiring interdisciplinary expertise from various disciplines, including neuroscience and biomechanics. Despite the remarkable results demonstrated by current humanoid robots---they can walk, stand, turn, climb stairs, carry a load, push a cart---the versatility, stability, and energy efficiency of humans have not yet been achieved. However, with robots entering our lives, whether in the workplace, in clinics, or in normal household environments, such improvements are increasingly important. The current state of research in bipedal robot locomotion reveals that several groups have continuously demonstrated enhanced locomotion performance of the developed robots. But each of these groups has taken a unilateral approach and placed the focus on only one aspect, in order to achieve enhanced movement abilities;---for instance, the motion control and postural stability or the mechanical design. The neural and mechanical systems in human and animal locomotion, however, are strongly coupled and should therefore not be treated separately. Human-inspired musculoskeletal design of bipedal robots offers great potential for enhanced dynamic and energy-efficient locomotion but also imposes major challenges for motion planning and control. In this thesis, we first present a detailed review of the problems related to achieving enhanced dynamic and energy-efficient bipedal locomotion, from various important perspectives, and examine the essential properties of the human locomotory apparatus. Subsequently, existing insights and approaches from biomechanics, to understand the neuromechanical motion apparatus, and from robotics, to develop more human-like robots that can move in our environment, are discussed in detail. These thorough investigations of the interrelated essential design decisions are used to develop a novel design for a musculoskeletal bipedal robot, BioBiped1, such that, in the long term, it is capable of realizing dynamic hopping, running, and walking motions. The BioBiped1 robot features a highly compliant tendon-driven actuation system that mimics key functionalities of the human lower limb system. In experiments, BioBiped1's locomotor function for the envisioned gaits is validated globally. It is shown that the robot is able to rebound passively, store and release energy, and actively push off from the ground. The proof of concept of BioBiped1's locomotor function, however, marks only the starting point for our investigations, since this novel design concept opens up a number of questions regarding the required design complexity for the envisioned motions and the appropriate motion generation and control concept. For this purpose, a simulator specifically designed for the requirements of musculoskeletally actuated robotic systems, including sufficiently realistic ground reaction forces, is developed. It relies on object-oriented design and is based on a numerical solver, without model switching, to enable the analysis of impact peak forces and the simulation of flight phases. The developed library also contains the models of the actuated and passive mono- and biarticular elastic tendons and a penalty-based compliant contact model with nonlinear damping, to incorporate the collision, friction, and stiction forces occurring during ground contact. Using these components, the full multibody system (MBS) dynamics model is developed. To ensure a sufficiently similar behavior of the simulated and the real musculoskeletal robot, various measurements and parameter identifications for sub-models are performed. Finally, it is shown that the simulation model behaves similarly to the real robot platform. The intelligent combination of actuated and passive mono- and biarticular tendons, imitating important human muscle groups, offers tremendous potential for improved locomotion performance but also requires a sophisticated concept for motion control of the robot. Therefore, a further contribution of this thesis is the development of a centralized, nonlinear model-based method for motion generation and control that utilizes the derived detailed dynamics models of the implemented actuators. The concept is used to realize both computer-generated hopping and human jogging motions. Additionally, the problem of appropriate motor-gear unit selection prior to the robot's construction is tackled, using this method. The thesis concludes with a number of simulation studies in which several leg actuation designs are examined for their optimality with regard to systematically selected performance criteria. Furthermore, earlier paradoxical biomechanical findings about biarticular muscles in running are presented and, for the first time, investigated by detailed simulation of the motion dynamics. Exploring the Lombard paradox, a novel reduced and energy-efficient locomotion model without knee extensor has been simulated successfully. The models and methods developed within this thesis, as well as the insights gained, are already being employed to develop future prototypes. In particular, the optimal dimensioning and setting of the actuators, including all mono- and biarticular muscle-tendon units, are based on the derived design guidelines and are extensively validated by means of the simulation models and the motion control method. These developments are expected to significantly enhance progress in the field of bipedal robot design and, in the long term, to drive improvements in rehabilitation for humans through an understanding of the neuromechanics underlying human walking and the application of this knowledge to the design of prosthetics

    Real-Time Optimization of Interconnected Systems via Modifier Adaptation, with Application to Gas-Compressor Stations

    Get PDF
    The process industries are characterized by a large number of continuously operating plants, for which optimal operation is of economic and ecological importance. Many industrial systems can be regarded as an arrangement of several subsystems, where outputs of certain subsystems are inputs to others. This gives rise to the notion of interconnected systems. Plant optimality is difficult to achieve when the model used in optimization is inaccurate or in the presence of process disturbances. However, in the presence of plant-model mismatch, optimal operation can be enforced via specific real-time optimization methods. Specifically, this thesis considers so-called Modifier-Adaptation schemes which achieve plant optimality by direct incorporation of process measurements in the form of first-order corrections. As a first contribution, this thesis proposes a novel problem formulation for modifier adaptation. Specifically, it is focused on plants consisting of multiple interconnected subsystems that allows problem decomposition and application of distributed optimization strategies. The underlying key idea is the use of measurements and global plant gradients in place of an interconnection model. As a second contribution, this thesis investigates modifier adaptation for interconnected systems relying on local gradients by using an interconnection model. We show that the use of local information in terms of model, gradients and measurements is sufficient to optimize the steady-state performance of the plant. Finally, we propose a distributed modifier-adaptation algorithm that, besides the interconnection model and local gradients, employs a coordinator. For this scheme, we prove feasible-side convergence to the plant optimum, where a coordinator ensures that the local optimal inputs computed for each subsystem are consistent with the interconnection model. The experimental effort necessary to estimate the plant gradients increases with the number of plant inputs and may become intractable and sometimes not feasible or reliable for large-scale interconnected systems. The proposed approaches that use the interconnection model and local gradients overcome this problem. As an application case study of industrial relevance, this thesis investigates the problem of optimal load-sharing for serial and parallel gas compressors. The aim of load-sharing optimization is operating compressor units in an energy-efficient way, while at the same time satisfying varying load demands. We show how the structure of both the parallel and serial compressor configurations can be exploited in the design of tailored modifier adaptation algorithms based on efficient estimation of local gradients. Our findings show that the complexity of this estimation is independent of the number of compressors. In addition, we discuss gradient estimation for the case where the compressors are operating close to the surge conditions, which induces discontinuities in the problem

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Affective Computing

    Get PDF
    This book provides an overview of state of the art research in Affective Computing. It presents new ideas, original results and practical experiences in this increasingly important research field. The book consists of 23 chapters categorized into four sections. Since one of the most important means of human communication is facial expression, the first section of this book (Chapters 1 to 7) presents a research on synthesis and recognition of facial expressions. Given that we not only use the face but also body movements to express ourselves, in the second section (Chapters 8 to 11) we present a research on perception and generation of emotional expressions by using full-body motions. The third section of the book (Chapters 12 to 16) presents computational models on emotion, as well as findings from neuroscience research. In the last section of the book (Chapters 17 to 22) we present applications related to affective computing
    corecore