1,816 research outputs found

    Elastic bundles :modelling and architecting asynchronous circuits with granular rigidity

    Get PDF
    PhD ThesisIntegrated Circuit (IC) designs these days are predominantly System-on-Chips (SoCs). The complexity of designing a SoC has increased rapidly over the years due to growing process and environmental variations coupled with global clock distribution di culty. Moreover, traditional synchronous design is not apt to handle the heterogeneous timing nature of modern SoCs. As a countermeasure, the semiconductor industry witnessed a strong revival of asynchronous design principles. A new paradigm of digital circuits emerged, as a result, namely mixed synchronous-asynchronous circuits. With a wave of recent innovations in synchronous-asynchronous CAD integration, this paradigm is showing signs of commercial adoption in future SoCs mainly due to the scope for reuse of synchronous functional blocks and IP cores, and the co-existence of synchronous and asynchronous design styles in a common EDA framework. However, there is a lack of formal methods and tools to facilitate mixed synchronousasynchronous design. In this thesis, we propose a formal model based on Petri nets with step semantics to describe these circuits behaviourally. Implication of this model in the veri cation and synthesis of mixed synchronous-asynchronous circuits is studied. Till date, this paradigm has been mainly explored on the basis of Globally Asynchronous Locally Synchronous (GALS) systems. Despite decades of research, GALS design has failed to gain traction commercially. To understand its drawbacks, a simulation framework characterising the physical and functional aspects of GALS SoCs is presented. A novel method for synthesising mixed synchronous-asynchronous circuits with varying levels of rigidity is proposed. Starting with a high-level data ow model of a system which is intrinsically asynchronous, the key idea is to introduce rigidity of chosen granularity levels in the model without changing functional behaviour. The system is then partitioned into functional blocks of synchronous and asynchronous elements before being transformed into an equivalent circuit which can be synthesised using standard EDA tools

    Improving the scalability of parallel N-body applications with an event driven constraint based execution model

    Full text link
    The scalability and efficiency of graph applications are significantly constrained by conventional systems and their supporting programming models. Technology trends like multicore, manycore, and heterogeneous system architectures are introducing further challenges and possibilities for emerging application domains such as graph applications. This paper explores the space of effective parallel execution of ephemeral graphs that are dynamically generated using the Barnes-Hut algorithm to exemplify dynamic workloads. The workloads are expressed using the semantics of an Exascale computing execution model called ParalleX. For comparison, results using conventional execution model semantics are also presented. We find improved load balancing during runtime and automatic parallelism discovery improving efficiency using the advanced semantics for Exascale computing.Comment: 11 figure

    System-on-chip Computing and Interconnection Architectures for Telecommunications and Signal Processing

    Get PDF
    This dissertation proposes novel architectures and design techniques targeting SoC building blocks for telecommunications and signal processing applications. Hardware implementation of Low-Density Parity-Check decoders is approached at both the algorithmic and the architecture level. Low-Density Parity-Check codes are a promising coding scheme for future communication standards due to their outstanding error correction performance. This work proposes a methodology for analyzing effects of finite precision arithmetic on error correction performance and hardware complexity. The methodology is throughout employed for co-designing the decoder. First, a low-complexity check node based on the P-output decoding principle is designed and characterized on a CMOS standard-cells library. Results demonstrate implementation loss below 0.2 dB down to BER of 10^{-8} and a saving in complexity up to 59% with respect to other works in recent literature. High-throughput and low-latency issues are addressed with modified single-phase decoding schedules. A new "memory-aware" schedule is proposed requiring down to 20% of memory with respect to the traditional two-phase flooding decoding. Additionally, throughput is doubled and logic complexity reduced of 12%. These advantages are traded-off with error correction performance, thus making the solution attractive only for long codes, as those adopted in the DVB-S2 standard. The "layered decoding" principle is extended to those codes not specifically conceived for this technique. Proposed architectures exhibit complexity savings in the order of 40% for both area and power consumption figures, while implementation loss is smaller than 0.05 dB. Most modern communication standards employ Orthogonal Frequency Division Multiplexing as part of their physical layer. The core of OFDM is the Fast Fourier Transform and its inverse in charge of symbols (de)modulation. Requirements on throughput and energy efficiency call for FFT hardware implementation, while ubiquity of FFT suggests the design of parametric, re-configurable and re-usable IP hardware macrocells. In this context, this thesis describes an FFT/IFFT core compiler particularly suited for implementation of OFDM communication systems. The tool employs an accuracy-driven configuration engine which automatically profiles the internal arithmetic and generates a core with minimum operands bit-width and thus minimum circuit complexity. The engine performs a closed-loop optimization over three different internal arithmetic models (fixed-point, block floating-point and convergent block floating-point) using the numerical accuracy budget given by the user as a reference point. The flexibility and re-usability of the proposed macrocell are illustrated through several case studies which encompass all current state-of-the-art OFDM communications standards (WLAN, WMAN, xDSL, DVB-T/H, DAB and UWB). Implementations results are presented for two deep sub-micron standard-cells libraries (65 and 90 nm) and commercially available FPGA devices. Compared with other FFT core compilers, the proposed environment produces macrocells with lower circuit complexity and same system level performance (throughput, transform size and numerical accuracy). The final part of this dissertation focuses on the Network-on-Chip design paradigm whose goal is building scalable communication infrastructures connecting hundreds of core. A low-complexity link architecture for mesochronous on-chip communication is discussed. The link enables skew constraint looseness in the clock tree synthesis, frequency speed-up, power consumption reduction and faster back-end turnarounds. The proposed architecture reaches a maximum clock frequency of 1 GHz on 65 nm low-leakage CMOS standard-cells library. In a complex test case with a full-blown NoC infrastructure, the link overhead is only 3% of chip area and 0.5% of leakage power consumption. Finally, a new methodology, named metacoding, is proposed. Metacoding generates correct-by-construction technology independent RTL codebases for NoC building blocks. The RTL coding phase is abstracted and modeled with an Object Oriented framework, integrated within a commercial tool for IP packaging (Synopsys CoreTools suite). Compared with traditional coding styles based on pre-processor directives, metacoding produces 65% smaller codebases and reduces the configurations to verify up to three orders of magnitude

    A Comprehensive Methodology for Algorithm Characterization, Regularization and Mapping Into Optimal VLSI Arrays.

    Get PDF
    This dissertation provides a fairly comprehensive treatment of a broad class of algorithms as it pertains to systolic implementation. We describe some formal algorithmic transformations that can be utilized to map regular and some irregular compute-bound algorithms into the best fit time-optimal systolic architectures. The resulted architectures can be one-dimensional, two-dimensional, three-dimensional or nonplanar. The methodology detailed in the dissertation employs, like other methods, the concept of dependence vector to order, in space and time, the index points representing the algorithm. However, by differentiating between two types of dependence vectors, the ordering procedure is allowed to be flexible and time optimal. Furthermore, unlike other methodologies, the approach reported here does not put constraints on the topology or dimensionality of the target architecture. The ordered index points are represented by nodes in a diagram called Systolic Precedence Diagram (SPD). The SPD is a form of precedence graph that takes into account the systolic operation requirements of strictly local communications and regular data flow. Therefore, any algorithm with variable dependence vectors has to be transformed into a regular indexed set of computations with local dependencies. This can be done by replacing variable dependence vectors with sets of fixed dependence vectors. The SPD is transformed into an acyclic, labeled, directed graph called the Systolic Directed Graph (SDG). The SDG models the data flow as well as the timing for the execution of the given algorithm on a time-optimal array. The target architectures are obtained by projecting the SDG along defined directions. If more than one valid projection direction exists, different designs are obtained. The resulting architectures are then evaluated to determine if an improvement in the performance can be achieved by increasing PE fan-out. If so, the methodology provides the corresponding systolic implementation. By employing a new graph transformation, the SDG is manipulated so that it can be mapped into fixed-size and fixed-depth multi-linear arrays. The latter is a new concept of systolic arrays that is adaptable to changes in the state of technology. It promises a bonded clock skew, higher throughput and better performance than the linear implementation

    Advanced Timing and Synchronization Methodologies for Digital VLSI Integrated Circuits

    Get PDF
    This dissertation addresses timing and synchronization methodologies that are critical to the design, analysis and optimization of high-performance, integrated digital VLSI systems. As process sizes shrink and design complexities increase, achieving timing closure for digital VLSI circuits becomes a significant bottleneck in the integrated circuit design flow. Circuit designers are motivated to investigate and employ alternative methods to satisfy the timing and physical design performance targets. Such novel methods for the timing and synchronization of complex circuitry are developed in this dissertation and analyzed for performance and applicability.Mainstream integrated circuit design flow is normally tuned for zero clock skew, edge-triggered circuit design. Non-zero clock skew or multi-phase clock synchronization is seldom used because the lack of design automation tools increases the length and cost of the design cycle. For similar reasons, level-sensitive registers have not become an industry standard despite their superior size, speed and power consumption characteristics compared to conventional edge-triggered flip-flops.In this dissertation, novel design and analysis techniques that fully automate the design and analysis of non-zero clock skew circuits are presented. Clock skew scheduling of both edge-triggered and level-sensitive circuits are investigated in order to exploit maximum circuit performances. The effects of multi-phase clocking on non-zero clock skew, level-sensitive circuits are investigated leading to advanced synchronization methodologies. Improvements in the scalability of the computational timing analysis process with clock skew scheduling are explored through partitioning and parallelization.The integration of the proposed design and analysis methods to the physical design flow of integrated circuits synchronized with a next-generation clocking technology-resonant rotary clocking technology-is also presented. Based on the design and analysis methods presented in this dissertation, a computer-aided design tool for the design of rotary clock synchronized integrated circuits is developed

    Custom Cell Placement Automation for Asynchronous VLSI

    Get PDF
    Asynchronous Very-Large-Scale-Integration (VLSI) integrated circuits have demonstrated many advantages over their synchronous counterparts, including low power consumption, elastic pipelining, robustness against manufacturing and temperature variations, etc. However, the lack of dedicated electronic design automation (EDA) tools, especially physical layout automation tools, largely limits the adoption of asynchronous circuits. Existing commercial placement tools are optimized for synchronous circuits, and require a standard cell library provided by semiconductor foundries to complete the physical design. The physical layouts of cells in this library have the same height to simplify the placement problem and the power distribution network. Although the standard cell methodology also works for asynchronous designs, the performance is inferior compared with counterparts designed using the full-custom design methodology. To tackle this challenge, we propose a gridded cell layout methodology for asynchronous circuits, in which the cell height and cell width can be any integer multiple of two grid values. The gridded cell approach combines the shape regularity of standard cells with the size flexibility of full-custom layouts. Therefore, this approach can achieve a better space utilization ratio and lower wire length for asynchronous designs. Experiments have shown that the gridded cell placement approach reduces area without impacting the routability. We have also used this placer to tape out a chip in a 65nm process technology, demonstrating that our placer generates design-rule clean results

    The MANGO clockless network-on-chip: Concepts and implementation

    Get PDF

    Elastic circuits

    Get PDF
    Elasticity in circuits and systems provides tolerance to variations in computation and communication delays. This paper presents a comprehensive overview of elastic circuits for those designers who are mainly familiar with synchronous design. Elasticity can be implemented both synchronously and asynchronously, although it was traditionally more often associated with asynchronous circuits. This paper shows that synchronous and asynchronous elastic circuits can be designed, analyzed, and optimized using similar techniques. Thus, choices between synchronous and asynchronous implementations are localized and deferred until late in the design process.Peer ReviewedPostprint (published version
    • …
    corecore