
ADVANCED TIMING AND SYNCHRONIZATION

METHODOLOGIES FOR DIGITAL VLSI

INTEGRATED CIRCUITS

by

Baris Taskin

B.S. in Electrical and Electronics Engineering, Middle East

Technical University, 2000

M.S. in Electrical Engineering, University of Pittsburgh, 2003

Submitted to the Graduate Faculty of

the School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/12208203?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITY OF PITTSBURGH

SCHOOL OF ENGINEERING

This dissertation was presented

by

Baris Taskin

It was defended on

July 6th 2005

and approved by

Ivan S. Kourtev, Assistant Professor, Department of Electrical and Computer Engineering

Brady Hunsaker, Assistant Professor, Department of Industrial Engineering

Alex K. Jones, Assistant Professor, Department of Electrical and Computer Engineering

Steven P. Levitan, Professor, Department of Electrical and Computer Engineering

Marlin H. Mickle, Professor, Department of Electrical and Computer Engineering

Dissertation Director: Ivan S. Kourtev, Assistant Professor, Department of Electrical and

Computer Engineering

ii

Copyright c© by Baris Taskin

2005

iii

ABSTRACT

ADVANCED TIMING AND SYNCHRONIZATION METHODOLOGIES

FOR DIGITAL VLSI INTEGRATED CIRCUITS

Baris Taskin, PhD

University of Pittsburgh, 2005

This dissertation addresses timing and synchronization methodologies that are critical to

the design, analysis and optimization of high-performance, integrated digital VLSI systems.

As process sizes shrink and design complexities increase, achieving timing closure for digital

VLSI circuits becomes a significant bottleneck in the integrated circuit design flow. Circuit

designers are motivated to investigate and employ alternative methods to satisfy the timing

and physical design performance targets. Such novel methods for the timing and synchro-

nization of complex circuitry are developed in this dissertation and analyzed for performance

and applicability.

Mainstream integrated circuit design flow is normally tuned for zero clock skew, edge-

triggered circuit design. Non-zero clock skew or multi-phase clock synchronization is seldom

used because the lack of design automation tools increases the length and cost of the design

cycle. For similar reasons, level-sensitive registers have not become an industry standard

despite their superior size, speed and power consumption characteristics compared to con-

ventional edge-triggered flip-flops.

In this dissertation, novel design and analysis techniques that fully automate the design

and analysis of non-zero clock skew circuits are presented. Clock skew scheduling of both

edge-triggered and level-sensitive circuits are investigated in order to exploit maximum circuit

performances. The effects of multi-phase clocking on non-zero clock skew, level-sensitive

circuits are investigated leading to advanced synchronization methodologies. Improvements

iv

in the scalability of the computational timing analysis process with clock skew scheduling

are explored through partitioning and parallelization.

The integration of the proposed design and analysis methods to the physical design flow

of integrated circuits synchronized with a next-generation clocking technology—resonant

rotary clocking technology—is also presented. Based on the design and analysis methods

presented in this dissertation, a computer-aided design tool for the design of rotary clock

synchronized integrated circuits is developed.

Keywords: Clock Skew Scheduling, Level-Sensitive Circuits, Linear Programming, Reso-

nant Clocking, Synchronization, Time Borrowing, Timing.

v

TABLE OF CONTENTS

1.0 INTRODUCTION . 1

1.1 MOTIVATION . 2

1.2 PROBLEM STATEMENT . 3

1.3 RESEARCH PLAN . 4

1.4 ORGANIZATION OF THE DISSERTATION 4

2.0 SYNCHRONOUS DIGITAL VLSI SYSTEMS 6

2.1 OPERATION OF A SYNCHRONOUS SYSTEM 10

2.2 GRAPH MODEL OF A SYNCHRONOUS SYSTEM 12

2.3 SYNCHRONIZATION SCHEMES . 13

2.3.1 Single-Phase Clock Synchronization 14

2.3.2 Multi-Phase Clock Synchronization 14

2.4 COMPUTER-AIDED DESIGN PERSPECTIVE 16

3.0 TIMING PROPERTIES OF REGISTERS 17

3.1 PARAMETERS OF AN EDGE-TRIGGERED FLIP-FLOP 17

3.2 PARAMETERS OF A LEVEL-SENSITIVE LATCH 20

4.0 STATIC TIMING ANALYSIS OF LEVEL-SENSITIVE CIRCUITS . 24

4.1 OPERATIONAL TIMING CONSTRAINTS 26

4.1.1 Latching Constraints . 26

4.1.2 Synchronization Constraints . 27

4.1.3 Propagation Constraints . 29

4.1.4 Skew Constraints . 31

4.2 ITERATIVE APPROACH TO STATIC TIMING ANALYSIS 32

vi

4.3 CONSTRUCTIONAL TIMING CONSTRAINTS 35

4.3.1 Validity Constraints . 35

4.3.2 Initialization Constraints . 35

4.4 LINEARIZATION OF THE TIMING ANALYSIS 37

4.4.1 Modified Big M (MBM) Method . 37

4.4.2 Linear Programming (LP) Model 39

4.5 AN EXAMPLE AND EXPERIMENTAL RESULTS 41

4.5.1 Level-Sensitive Synchronous Circuit State of Operation 45

4.5.2 Experimental Results on ISCAS’89 Benchmark Circuits 48

4.6 OPTIMALITY OF THE LP FORMULATION 52

4.7 VERIFICATION AND INTERPRETATION OF RESULTS 57

4.7.1 Parameter Data Distributions . 57

4.7.2 Skew Analysis . 60

4.8 FURTHER CONSIDERATIONS . 64

4.9 SUMMARY . 66

5.0 CLOCK SKEW SCHEDULING WITH DELAY INSERTION 67

5.1 CLOCK SKEW SCHEDULING METHODS 69

5.2 DELAY INSERTION METHOD . 70

5.2.1 Example of Reconvergence . 71

5.2.2 Reconvergence in an Edge-Triggered Circuit 72

5.2.3 Reconvergence in a Level-Sensitive Circuit 79

5.2.4 General Reconvergent Data Path Systems 80

5.3 FORMULATION AND ANALYSIS . 83

5.4 PRACTICAL CONCERNS IN MODELING AND APPLICATION 84

5.5 EXPERIMENTAL RESULTS . 86

5.6 SUMMARY . 93

6.0 MULTI-PHASE NON-ZERO CLOCK SKEW SYNCHRONIZATION 95

6.1 PREVIOUS WORK . 96

6.2 MULTI-PHASE LEVEL-SENSITIVE CIRCUIT TIMING 96

6.3 LINEARIZATION OF THE TIMING ANALYSIS 100

vii

6.4 EXPERIMENTAL RESULTS . 100

6.4.1 Multi-Phase Clocking . 103

6.4.2 Multi-Phase Clocking Effects on Time Borrowing 104

6.4.3 Multi-Phase Clocking and Clock Skew Scheduling 106

6.4.4 Simultaneous Time Borrowing and Clock Skew Scheduling 107

6.5 SUMMARY . 108

7.0 APPLICATIONS TO RESONANT CLOCKING 113

7.1 RESONANT CLOCKING . 113

7.2 ROTARY TRAVELING WAVE OSCILLATORS 116

7.3 TIMING REQUIREMENTS OF ROTARY CIRCUITS 120

7.4 SUMMARY . 122

8.0 PHYSICAL DESIGN USING RESONANT CLOCKING 123

8.1 PHYSICAL DESIGN FLOW . 124

8.1.1 Timing-Driven Partitioning . 127

8.1.2 Partitioning with Chaco . 129

8.1.3 Register Insertion for Partitioning 131

8.1.4 Clock Skew Scheduling of Partitions 132

8.1.5 Timing-Driven Register Placement 136

8.2 COMPUTER-AIDED DESIGN TOOL IMPLEMENTATION 138

8.2.1 Parallelization of Clock Skew Scheduling with Xgrid 140

8.2.2 Speedup of Computation . 143

8.3 EXPERIMENTAL RESULTS . 144

8.3.1 Rotary Clocking Results . 144

8.3.2 Circuit Partitioning Results . 146

8.3.3 Clock Skew Scheduling of Partitions Results 149

8.3.4 Overall CAD Tool Results . 153

8.4 SUMMARY . 158

9.0 CONCLUSIONS . 160

10.0 FUTURE WORK . 164

10.1 EXTENSIONS TO THE CAD TOOL . 164

viii

10.2 LP DECOMPOSITION FOR CLOCK SKEW SCHEDULING 166

APPENDIX A. NONLINEAR PROBLEM FORMULATION 168

APPENDIX B. LP PROBLEM FORMULATION 170

APPENDIX C. LP PROBLEM SOLUTION - CPLEX OUTPUT 173

APPENDIX D. CHACO RUN SAMPLE . 176

BIBLIOGRAPHY . 179

ix

LIST OF TABLES

1 Modified Big M transformations. 38

2 LP model clock skew scheduling problem of level-sensitive circuits. 40

3 Clock skew scheduling results for level-sensitive ISCAS’89 benchmark circuits. 50

4 MIP modeling of a constraint with a max or a min function. 53

5 MIP model clock skew scheduling problem of level-sensitive circuits. 55

6 LP model clock skew scheduling problem of edge-triggered circuits. 69

7 CSS method for edge-sensitive circuits with the delay insertion method. . . . 84

8 CSS method for level-sensitive circuits with the delay insertion method. . . . 85

9 Delay insertion results for edge-sensitive ISCAS’89 benchmark circuits. 88

10 Delay insertion results for level-sensitive ISCAS’89 benchmark circuits. 89

11 Operational timing constraints of a multi-phase level-sensitive circuit. 99

12 LP model clock skew scheduling problem of multi-phase level-sensitive circuits. 101

13 Minimum clock periods of multi-phase ISCAS’89 benchmark circuits. 110

14 Clock period improvements of multi-phase ISCAS’89 benchmark circuits. . . . 111

15 Circuit info and run times for multi-phase ISCAS’89 benchmark circuits. . . . 112

16 Categorization of the resonant clocking technologies. 115

17 Number of inserted registers for Industrial1 after partitioning. 147

18 Chaco 2x2 partitioning results on ISCAS’89 benchmark circuits. 150

19 Clock skew scheduling results on 2x2 partitioned ISCAS’89 circuits. 152

20 Speedup of hpictiming on 2x2 partitioned ISCAS’89 circuits. 154

x

LIST OF FIGURES

1 Finite state machine model of a synchronous system. 7

2 A local data path in a globally clocked synchronous circuit network. 8

3 Effects of time borrowing on circuit operation. 12

4 Circuit graph of a synchronous system with four registers and five data paths. 13

5 A generic single-phase synchronization clock. 14

6 A generic multi-phase synchronization clock. 15

7 An edge-triggered flip-flop or register symbol. 18

8 Typical operation of an edge-triggered flip-flop shown in Figure 7. 18

9 Timing properties of a flip-flop in a circuit with a clock period T. 19

10 A level-sensitive latch or register symbol. 20

11 Typical operation of a level-sensitive latch shown in Figure 10. 21

12 Timing properties of a level-sensitive latch in a circuit with a clock period T. 22

13 Possible cases for the arrival and departure times of data at the initial latch. . 28

14 Propagation of the data signal in a simple circuit. 30

15 The iterative algorithm for static timing analysis of level-sensitive circuits. . 33

16 A simple synchronous circuit. 42

17 A single-phase synchronization clock with a 50% duty cycle. 43

18 Zero and non-zero clock skew timing schedules for the circuit in Figure 16. . 44

19 The optimized timing schedule for s27 operable with T = 4.1. 47

20 Run times under 1500 seconds for the LP and MIP formulations. 56

21 Data propagation times for s938 with 32 registers and 496 data paths. 58

22 Maximum effective path delays in data paths of s938 for zero clock skew. . . 59

xi

23 Maximum effective path delays for s938 for non-zero clock skew. 61

24 Distribution of the clock skew values of the non-zero clock skew case for s938. 62

25 Distribution of the clock delay values of the non-zero clock skew case for s938. 63

26 Additional timing requirements of an IP block. 65

27 A simple reconvergent data path system. 71

28 Timing of the edge-sensitive reconvergent system in Figure 27 after CSS. . . . 73

29 The simple reconvergent system in Figure 27 after delay insertion. 74

30 Two reconvergent data path systems satisfying (P1) and (P2), respectively. . 77

31 Timing of the simple level-sensitive reconvergent system in Figure 27 after CSS. 79

32 A generalized reconvergent data path system. 81

33 Timing of the edge-triggered reconvergent system with m=3 and n=2. 82

34 Timing of the level-sensitive reconvergent system with m=3 and n=2. 82

35 Percentage improvements through delay insertion in Tables 9 and 10. 90

36 Percentage improvements on edge-triggered circuits in Table 9. 92

37 Percentage improvements on level-sensitive circuits in Table 10. 93

38 A local data path in a multi-phase synchronous circuit. 97

39 Multi-phase clock and multi-phase clock skew. 98

40 Propagation of the data signal in a simple multi-phase circuit. 99

41 Generation of an n-phase data path with latches. 102

42 Non-overlapping multi-phase synchronization clock. 103

43 Effects of multi-phase clocking on time borrowing. 105

44 Effects of multi-phase clocking on clock skew scheduling. 106

45 Effects of multi-phase clocking on time borrowing and clock skew scheduling. 108

46 Basic rotary clock architecture. 116

47 The RTWO theory. 117

48 The cross-section of the transmission line with shunt connected inverters. . . 118

49 The clock phase relationships on an ROA ring. 121

50 The physical design flow of VLSI circuits with RTWO clock synchronization. 125

51 Partitioning a circuit for timing analysis. 133

52 An ROA ring in a chip layout illustrated in 0.13 um technology. 137

xii

53 CAD tool flow. 139

54 Xgrid computing cluster. 142

55 Line voltage and line current for the 3.4GHz clock example. 145

56 Chaco outputs for circuit Industrial1. 148

57 The run times of hpictiming with Xgrid on large circuits. 156

58 Run time breakdown of hpictiming program steps for s38584. 157

59 Run time breakdown of hpictiming program steps for s38417. 157

60 Run time breakdown of hpictiming program steps for industrial1. 158

61 The simple synchronous circuit in Figure 16 (repeated). 168

62 The simple synchronous circuit in Figure 16 (repeated). 170

xiii

1.0 INTRODUCTION

The timing requirements of high-performance VLSI systems are becoming increasingly com-

plex as both the size and complexity of these systems continue to grow. In order to satisfy

these increasingly stringent timing and power requirements, conventional circuit design and

electronic design automation techniques must be continuously revisited, modified and im-

proved [41]. The timing of nano-scale circuits is getting more complex than ever, and novel

clocking and synchronization technologies are emerging to replace conventional synchroniza-

tion schemes. These clocking and synchronization technologies are often implemented in an

ad hoc fashion because the essential automation infrastructure is non-existent. Alternative

circuit design techniques, which are not integral to the mainstream design flow, are also used

in an ad hoc fashion in order to meet specific design budgets. Electronic design automation

is essential for the transition of these alternative design and synchronization techniques into

the mainstream.

In this dissertation, advanced timing and synchronization methodologies that aim to

satisfy the stringent timing budgets of high performance integrated circuits are presented.

The presented methodologies make use of level-sensitive latches as storage elements in high

performance integrated circuits as opposed to traditional, edge-triggered flip-flops. Clock

skew scheduling and multi-phase clocking techniques are used in these level-sensitive circuits

in order to further improve the circuit performance. These novel timing methodologies

presented here are supported by fully-automated design and analysis techniques, satisfying

the increasing need for electronic design automation.

To demonstrate, the physical design flow of rotary resonant clocking technology [96] is

developed using the presented advanced timing and synchronization methodologies. This

automated physical design flow enables the design and analysis of rotary-clock synchronized

1

integrated circuits in a reasonable amount of time. The performance of these circuits are

superior compared to conventional circuits, due to both synchronization with rotary clocking

technology and the integration of the presented timing and synchronization methodologies.

The physical design flow for rotary clock synchronized circuits is implemented in a computer-

aided design tool called “hpictiming”.

1.1 MOTIVATION

The work presented in this dissertation is motivated by the increasing design technology

productivity gap [35] between the CAD tools and the current manufacturing technology

potential. This gap occurs because the limits of semiconductor manufacturing technology

cannot be fully exploited by the current state-of-the-art design technology. The gap continues

to widen because of the lack or inefficiency of available automated design support for design

and analysis methodologies that permit higher circuit performances.

In this work, advanced timing and synchronization methodologies, promoting the uti-

lization of level-sensitive latches and non-zero clock skew synchronization schemes, are pre-

sented. Level-sensitive latches permit higher operating frequencies, dissipate less power and

are smaller in size compared to industry-standard edge-triggered flip-flops [43]. However,

the design and analysis of level-sensitive circuits have been traditionally considered more

complicated from a computational perspective.

Similarly, clock skew scheduling permits higher operating frequencies compared to in-

dustry-standard zero clock skew designs. Clock skew scheduling is not very popular in

mainstream design flow mainly due to the complexity it introduces in the design of traditional

clock tree networks [26]. Next-generation clocking technologies inherently permit (and even

require) non-zero clock skew synchronization [10, 11, 62, 93, 94, 96, 97]. However, their

implementation is hindered due to the scalability of the automation of clock skew scheduling.

The work presented in this dissertation is performed with one broad objective: To demon-

strate the electronic design automation of high-performance VLSI circuits implemented with

the presented advanced timing and synchronization methodologies.

2

1.2 PROBLEM STATEMENT

In this dissertation, advanced timing and synchronization methodologies that are critical

to the design and analysis of high-performance VLSI circuits are presented. The presented

advanced timing and synchronization methodologies not only improve the results achievable

with conventional design methodologies but also constitute an integral part of the design flow

for circuits synchronized with next-generation clocking technologies. The two main problems

solved in this dissertation are:

1. Developing automated design and timing analysis methods for non-zero clock

skew, level-sensitive circuits which are synchronized by single and multi-phase

synchronization schemes,

2. Integrating these methods into the physical design flow of circuits synchro-

nized by the resonant rotary clocking technology.

In order to solve these problems, the following tasks are performed:

• Develop an automated circuit design and analysis technique that targets non-zero clock

skew, level-sensitive circuits. Currently, there are no available automated design or anal-

ysis techniques that target non-zero clock skew, level-sensitive circuits.

• Investigate and mitigate the limitations on the performance of conventional clock skew

scheduling techniques. An automated procedure to enable minor modifications to the

logic network of a non-zero clock skew circuit (in order to improve the results of clock

skew scheduling) is investigated.

• Enhance the non-zero clock skew, level-sensitive design and analysis technique to accom-

modate for multi-phase synchronization schemes. The effects of multi-phase synchroniza-

tion on non-zero clock skew, level-sensitive circuits are investigated.

• Analyze resonant clocking technologies to demonstrate their amenability to multi-phase

level-sensitive circuits with non-zero clock skew. The applicability of the advanced tim-

ing and synchronization methodologies described in this dissertation to next-generation

clocking technologies is investigated.

3

• Design and implement the physical design flow for circuits synchronized with resonant

rotary clocking technology in a CAD tool. The physical design flow to implement multi-

phase, non-zero clock skew circuits that are synchronized by rotary clocking technology

is described. Seamless integration of the advanced timing and synchronization method-

ologies into the physical design flow is pursued.

In the dissertation, the details of each task are presented in dedicated chapters.

1.3 RESEARCH PLAN

The research presented in this dissertation is completed in two main phases. The first phase

is the theoretical development phase. In this phase, the advanced timing and synchronization

methodologies presented in this dissertation are developed. The methodologies are mathe-

matically formulated for synchronous circuit models. Performance metrics are defined for

each timing and synchronization methodology. The practicality and performance of each

methodology are demonstrated on ISCAS’89 benchmark circuits with computer simulations.

The second phase is the practical implementation and integration phase. In this phase,

the presented advanced timing and synchronization methodologies are integrated in the CAD

tool “hpictiming”. Hpictiming is developed to automate the physical design flow of circuits

synchronized with the resonant rotary clocking technology. Experiments with hpictiming

are performed on ISCAS’89 benchmark circuits and an industrial circuit to demonstrate the

applicability of the advanced timing and synchronization methodologies on circuits synchro-

nized with this next-generation clocking technology.

1.4 ORGANIZATION OF THE DISSERTATION

The rest of this dissertation is organized as follows. The operation and computer represen-

tation of a static CMOS-based synchronous digital integrated circuit system are presented

in Chapter 2. In Chapter 3, the timing properties of a synchronous system and the ba-

4

sic principles of synchronous circuit operation are summarized. In Chapter 4, one of the

pivotal advanced timing methodologies discussed in the dissertation, clock skew scheduling,

is revisited. Also in Chapter 4, the application of clock skew scheduling on level-sensitive

circuits is described with a linear programming approach to solve the popular clock period

minimization problem. In Chapter 5, the delay insertion method proposed to improve the

performance of non-zero clock skew systems is presented. In Chapter 6, the timing analysis

framework presented in Chapter 4 is enhanced in order to accommodate for multi-phase

synchronization schemes. In this context, the effects of multi-phase synchronization on non-

zero clock skew, level-sensitive circuits are analyzed. In Chapter 7, the implementation and

operation characteristics of a set of next-generation clocking technologies—resonant clock-

ing technologies—are surveyed. A particular type of resonant clocking technology, rotary

clocking technology, is described in detail. Rotary clocking technology is shown to inher-

ently permit non-zero clock skew operation of circuits with fine grain skew control and

highly-improved operation characteristics. In Chapter 8, the physical design flow of circuits

synchronized with the rotary clocking technology is described. Also in Chapter 8, the de-

velopment of a CAD tool for the implementation of this physical design flow is explained in

detail. Conclusions are offered in Chapter 9. Finally, possible directions for future research

are discussed in Chapter 10.

5

2.0 SYNCHRONOUS DIGITAL VLSI SYSTEMS

VLSI is an acronym that stands for very large scale integration. This term is used to refer

to a broad area of electrical and computer engineering applications, where the focus is on

the design and analysis of large-scale electronic integrated circuits on semiconductors [6, 12,

38, 59, 87, 90]. The design and analysis of systems such as high-performance computational

elements, high-speed memory elements, sequential and combinational control logic units and

sub-micron size analog circuits are exemplary to areas related to VLSI circuit design.

VLSI circuits can be classified according to their application areas, the manufacturing

process technology, the operational characteristics and other features. In this dissertation,

digital VLSI circuit design is of particular interest and in the rest of the document, the term

VLSI design is used to refer to digital synchronous circuit design in nanometer scale unless

otherwise indicated.

Synchronous digital VLSI circuits are composed of sequential and combinational circuit

blocks. Sequential blocks consist of logic and register (or storage) elements while combina-

tional blocks consist only of the former. A detailed discussion of sequential and combinational

circuit blocks is presented in a variety of references such as [66]. All synchronous circuits

have a well-defined ordering of switching events that ensures the correct ordering of data

propagation among register elements and ultimately from inputs to outputs. Synchronous

systems are very popular in system design due to their relative simplicity in the design

and analysis stages. The sequentiality in time of data transfers in synchronous circuits are

regulated by a globally distributed synchronization signal. The globally distributed synchro-

nization signal is called the clock signal and defines the timing scheme or timing discipline of

the synchronous circuit [26]. The clock signal is distributed throughout the circuit in order

to generate and distribute the time reference to each register. The distribution of the clock

6

signal is accomplished through a highly specialized structure called the clock distribution

network or clock tree network [26].

A digital synchronous circuit is a network of combinational logic elements and globally

clocked registers. The combinational logic elements implement the functionality of the cir-

cuit. The clocked registers serve as storage elements to store the data computation results

at each clock cycle. The logical order of the computation and storage processes is moderated

by the globally distributed clock signal. An overall representation of a typical synchronous

circuit is shown in Figure 1.

Combinational
Logic

COMPUTATION

Clocked Storage
(Registers)

INPUT
DATA

OUTPUT
DATA

Clock Distribution
Network

SYNCHRONIZATION

Clock Signal

Figure 1: Finite state machine model of a synchronous system.

The operation of a synchronous system involves gradual propagation of data signals

from the input pins towards the output pins of the circuit. The gradual advancement—and

computation—of the data signal is orchestrated by the clock signal. Typically, the active

level or the transition of the clock signal initiates the propagation of data from the input

7

terminals and storage elements towards the output terminals and next stages of storage

elements. Each clock cycle constitutes a computational cycle, during which the data signals

depart from their respective sources, are processed in the combinational logic between the

registers and are finally stored in or delivered to the destination registers or the output

terminals of the synchronous circuit, respectively.

In order to analyze the operational characteristics of a synchronous circuit, local data

paths are defined. A local data path is the building block of a synchronous circuit and is

formed by a collection of combinational logic gates (combinational logic block) between two

clocked storage elements. The data signal is processed within a local data path once for

each clock signal cycle. The data signal initiating from a storage element is processed in the

combinational logic block and is stored in the next stage of storage elements, ready for the

next clock cycle. Data propagation in some paths may take multiple clock cycles. These

paths are called multi-cycle paths [71]. Multi-cycle paths are not specifically addressed in

the scope of this work, however, the presented design and analysis methods can easily be

modified to accommodate such paths.

Definition 1: Local data path. Let Ri and Rf be two registers in the clocked circuit

network where the subscripts i and f stand for initial and final, respectively. Let the input

and output terminals of these registers, and the signals present at these terminals be defined

as shown in Figure 2. A local data path is the circuit architecture formed by a sequentially

adjacent pair of registers [43] and the combinational logic block between them. The output

Qi of the initial register propagates through the combinational logic block, evaluating to

RegisterRi RegisterRf

D

C

D

C

Q
Qi

Data
Q

Xf

DataCombinational
Logic

ClockCi ClockCf

Xi

DataIn

Qf

DataOut

Figure 2: A local data path in a globally clocked synchronous circuit network.

8

the data signal Xf , before the data signal Xf arrives at the final register Rf . For proper

operation of the sequentially adjacent pair of registers Ri and Rf , the data stored in Ri must

be manipulated by the logic and stored into Rf during the next cycle of the clock signal Cf .

Note that the clock signals Ci and Cf are representations for the two synchronization signals

at the clock input terminals of registers Ri and Rf , respectively. The clock signals Ci and

Cf are delivered with non-identical clock signal delays at respective registers, where these

delays depend on the delivery path between the clock source and the destination register.

The clock delivery paths constitute the clock distribution network.

The pair of delays [Dif
Pm, Dif

PM] represents the minimum and maximum values, respec-

tively, of the propagation time of the data signal on the combinational logic block on each

local data path Ri → Rf . This pair of minimum and maximum delay values for the logic

block encompasses the combined effects of operating conditions and process parameter vari-

ations. The pair of delay values is provided as parameters to the timing analysis framework

(and the CAD tool) presented in this dissertation by the specific delay estimation and signal

integrity techniques that are used in the pre-analysis stage. In practice, such timing data is

provided in standard design data files formats [71].

Note that the delay estimation process is independent of the timing analysis framework

described in this dissertation. It is assumed throughout this dissertation that delay esti-

mation and signal integrity techniques can accurately compute the changes in the timing

characteristics of logic and synchronous components under various operating conditions.

The inaccuracies of parameters (caused by imprecise delay estimation and signal integrity

methods) that are passed on to the timing analysis framework are not investigated in the

results of the presented work. However, designers must be aware of these dependencies.

The modeling and behavior of synchronous digital systems of interest are described in the

rest of this chapter. Specifically, the operation of a synchronous system with level-sensitive

latches is presented in Section 2.1. The representation of a synchronous circuit as a graph

is described in Section 2.2. Generalized representations of single-phase and multi-phase

synchronization schemes for synchronous circuits are defined in Section 2.3. In Section 2.4,

the computer-aided design perspective adopted in completing this dissertation work is stated.

9

2.1 OPERATION OF A SYNCHRONOUS SYSTEM

Because of interconnect delays and process parameter variations on the clock distribution

network, there may be significant time delays between the clock signals originating at the

clock source and arriving at the destination storage elements of a digital synchronous circuit.

The algebraic difference between the delays of the synchronizing clock signals at the initial

and final register of a local data path is defined as clock skew [43]:

Definition 2: Clock Skew. Let Ri and Rf be a sequentially adjacent pair of registers

(only combinational delay between registers) synchronized by the clock signals Ci and Cf ,

respectively. The clock skew between Ri and Rf is defined as

Tskew(i, f) = ti − tf , (2.1)

where ti and tf are delays of the clock signals, Ci and Cf , from a common clock source to

the registers Ri and Rf , respectively [43].

The clock skew is an algebraic difference which may evaluate to a negative, zero or

positive value depending on the values of ti and tf . Positive clock skew has a limiting effect

on the maximum operating frequency of a synchronous circuit [21, 43]. Negative clock skew

on the other hand may effectively improve the minimum clock period of a circuit [21, 43].

Precise engineering of the clock tree network enables the utilization of negative skew on

critical paths and permits positive clock skew on less-critical paths in order to improve the

circuit performance. This approach is called clock skew scheduling [21].

Definition 3: Clock skew scheduling. Clock skew scheduling is a methodology to deter-

mine the optimal values of clock signal delays tk to each register Rk in order to satisfy a

design objective. Clock skew scheduling is typically performed to either minimize the clock

period or to maximize the reliability of the circuit against secondary order effects on circuit

operation. Frequently, the term non-zero clock skew scheduling is used to refer to clock skew

scheduling [43].

Excessive negative and positive clock skew may lead to timing hazards in the circuit.

Negative skew may cause data to be latched into the final register Rf during an earlier clock

cycle than intended, thereby overwriting data latched during the earlier clock cycle. This

10

type of hazard is known as double clocking [43]. Similarly, positive skew may cause data to be

lost by arriving late at the final register. This type of hazard is known as zero clocking [43].

The double clocking and zero clocking hazards are also called hold and setup time violations,

respectively [74].

Data propagation in level-sensitive circuits is different compared to data propagation

in edge-sensitive synchronous circuits due to the transparency property of latches. In level-

sensitive circuits, the data signal arriving at a latch during the active level of the clock signal

is immediately propagated through the latch. This fact leads to the phenomenon called time

borrowing.

Definition 4 : Time borrowing [15]. Time borrowing (also called cycle stealing [48])

refers to the time sharing phenomenon between consecutive clock cycles of adjacent local

data paths due to the transparency of level-sensitive latches. Let Ri → Rj and Rj → Rk be

two local data paths in a synchronous circuit S. Let SFF and SL denote the edge-sensitive

(flip-flop-based) and level-sensitive (latch-based) synchronous circuits, respectively. In the

edge-sensitive synchronous circuit SFF , the larger of the maximum data propagation times

on the local data paths Ri → Rj and Rj → Rk is the minimum clock period TFF :

TFF = max
(
Dij

PM , Djk
PM

)
(2.2)

In the level-sensitive circuit SL, the transparency property of the latch Rj permits data

propagation times higher than the minimum clock period TL on the local data path Ri → Rj

by borrowing time from the propagation on the next local data path—next clock cycle—

Rj → Rk:

TL ≤ max
(
Dij

PM , Djk
PM

)
(2.3)

It is possible to transform most edge-sensitive circuits into level-sensitive circuits with a

simple procedure (the exceptions are some circuits with feedbacks). This procedure involves

replacing the flip-flops in SFF with latches and ensuring the proper delivery of clock signals

at the latches in order to preserve the functionality of the circuit. Due to the preservation of

the circuit topology with the modification procedure from an edge-sensitive circuit to a level-

sensitive circuit (when applicable), a shorter minimum clock period TL ≤ TFF is feasible for

a level-sensitive circuit SL. This fact is illustrated in Figure 3, where the timing diagrams

11

TFF TFF TFF

Ci

Cj

Ck

Di j
PM D jk

PM

TL TL TL

Ci

Cj

Ck

Di j
PM D jk

PM

SFF SL

Figure 3: Effects of time borrowing on circuit operation.

for SL and SFF are shown on the left and right, respectively. In Figure 3, the variables Dij
PM

and Djk
PM represent data propagation times on local data paths Ri → Rj and Rj → Rk,

respectively, and are represented by the one-sided arrows. Note that in the local data path

Ri → Rj of SL, the data signal arrival at Rj occurs during the transparent phase of Rj,

borrowing time from the adjacent local data path Rj → Rk. Detailed investigation of the

time borrowing phenomenon is presented in [48].

2.2 GRAPH MODEL OF A SYNCHRONOUS SYSTEM

A graph model is often used for computer representation of a synchronous digital system.

For convenience, the graph model representing a synchronous circuit, where each vertex

represents a register and each edge represents a combinational logic block of a local data

path, is called a circuit graph. A circuit graph provides a common abstract framework for

the automated analysis of circuits.

12

R1 R2 R3

R4

[D12
Pm,D12

PM]
→

[D32
Pm,D32

PM]
→[D 42Pm ,D 42PM]

→
[D

34
Pm
,D

34
PM

]

←

[D13
Pm,D13

PM]
→

Figure 4: Circuit graph of a synchronous system with four registers and five data paths.

Definition 5 : Circuit graph [43]. A fully synchronous digital circuit S is represented as

a connected directed graph. The number of registers r and the number of data paths p in

the synchronous circuit correspond to the number of vertices and the number of edges in

the graph, respectively. The minimum and maximum data propagation times Dif
Pm, Dif

PM ,

respectively, are represented by an edge between the vertices corresponding to the registers

Ri and Rf . The directed graph representation of a sample network is presented in Figure 4.

2.3 SYNCHRONIZATION SCHEMES

As mentioned in Section 2.1, the operation of a synchronous circuit is orchestrated by a

globally distributed clock signal. The clock signal ensures the correct ordering of operations

on local data paths. Clock signals are defined either with a single-phase or a multi-phase

scheme.

13

CL
W

φ
Csource

T

Figure 5: A generic single-phase synchronization clock.

2.3.1 Single-Phase Clock Synchronization

Single-phase (clock) synchronization is observed when the same clock signal is distributed

to all the synchronous components of a circuit. Figure 5 presents a representation of a

generic single-phase clock signal. The duty cycle is determined by the on-time of (CL
W). The

parameter Csource denotes the clock signal at the originating clock source. The subscripts to

parameter C denote the clock signal at a destination register. For instance, the clock signal

at an arbitrary register Rk is denoted Ck.

The relatively easy-to-implement and analyze single-phase scheme has several shortcom-

ings in the synchronization of state-of-the-art VLSI circuits. In nano-scale CMOS imple-

mentations, the wire sizes shrink disproportionally with the feature size [35]. Thus, only a

certain percentage of the chip is reachable during a single clock cycle [35].

2.3.2 Multi-Phase Clock Synchronization

Multi-phase (clock) synchronization is observed when different phases of the clock signal are

distributed to the synchronous components of a circuit. Figure 6 presents a representation of

a multi-phase clock signal. In Figure 6, the multi-phase synchronization scheme is generated

with overlapping clock signal phases. In practical implementation, non-overlapping clock

phases are used more frequently due to their practicality of implementation and analysis.

The duty cycles of the clock phases are considered identical with on-times of (CL
W).

14

T

Cn
source

C(n−1)
source

C2
source

C1
source

CL
W

CL
W

CL
W

CL
W

φ1

φ2

φ(n−1)

φ(n)

Figure 6: A generic multi-phase synchronization clock.

In Figure 6, the set of clock signals Cglobal = {C1, . . . , Cn} constitutes the n-phase

clocking scheme. The subscripts denote the location of the clock signals on the circuit. For

instance, C1
source denotes the clock signal at the clock source of the clock phase C1. When this

clock signal is delivered to an arbitrary register Rk, it is represented by C1
k . The start time

φpi of clock signal phase Cpi is defined with respect to a common reference clock cycle. The

phase shift operator φpipf [15] is used to transform variables between different clock phases.

The phase shift operator φpipf is defined as the algebraic difference φpipf = φpi − φpf + kT ,

where k is the number of clock cycles occurring between phases. Note that for a single-phase

clocking scheme, the phase shift operator evaluates to φif = T .

A multi-phase synchronization approach is advantageous in terms of increasing the reach-

ability of circuit registers, creating less skew within physically neighboring local clock do-

15

mains and potentially saving power. Although multi-phase synchronization is advantageous

in many aspects, the design and analysis of such synchronization schemes are more complex.

2.4 COMPUTER-AIDED DESIGN PERSPECTIVE

In this work, the design and timing analysis of circuits are presented primarily from a

computer-aided-design (CAD) perspective. The timing analysis framework is developed with

the assumption of the availability and controllability of multiple phases and fine-grained clock

delays in both novel and conventional clocking technologies. The actual physical circuit im-

plementation and other practical details of these clocking technologies are not the focus of

this work. Comprehensive presentation and analysis of these clocking technologies can be

found in various references such as [10, 11, 13, 23, 54, 55, 63, 96, 97]. Nevertheless, the

operational characteristics of one of the target clocking technologies—the resonant rotary

clocking technology—are presented in Chapter 7.

The resonant rotary clocking technology is described in order to emphasize the practical

aspects of a synchronization scheme that can deliver controllable clock delays (hence, con-

trollable clock skews) at high frequencies. The operational characteristics of a multi-phase

clocking system (either provided by a novel clocking technology or by an improved conven-

tional clock distribution system) are abstracted in order to develop the models for a CAD

implementation.

Clock speed is the predominant measure for synchronous circuit performance. Conse-

quently, this work uses the minimum clock period of a circuit as the figure of merit under

various multi-phase synchronization schemes. Throughout this dissertation, the term per-

formance improvement refers to improvement of the minimum clock period.

16

3.0 TIMING PROPERTIES OF REGISTERS

The general structure and principles of operation of a fully-synchronous digital VLSI system

are described in Chapter 2. In an abstract overview, a synchronous circuit is identified by

the storage elements (registers) and the synchronization scheme of the circuit.

Registers can be classified into two categories; (edge-triggered) flip-flops and (level-

sensitive) latches. Flip-flops are sensitive to the changes in their data input terminals when

the clock signal has low-to-high or high-to-low transitions while (level-sensitive) latches are

sensitive when the clock signal has a certain level. In this chapter, the principles of opera-

tion for the two different types of storage elements—flip-flops and latches—are presented. In

particular, the operation principles for edge-triggered flip-flops are discussed in Section 3.1

and the operation principles for level-sensitive latches are discussed in Section 3.2.

3.1 PARAMETERS OF AN EDGE-TRIGGERED FLIP-FLOP

The specific circuit design or electrical implementation of an edge-triggered flip-flop need not

be considered in this work. At a higher level of abstraction, the timing properties of flip-flops

are encapsulated by certain timing parameters. These parameters connect the events on the

input, output and clock terminals of a flip-flop.

A flip-flop is a type of register which is sensitive to the transition of the synchronizing

clock signal. Accordingly, a flip-flop is commonly referred to as an edge-triggered flip-flop or

edge-triggered register. A typical edge-triggered flip-flop with a clock signal C, input signal

D and output signal Q is shown in Figure 7. The operation of a flip-flop is presented in

Figure 8. Note that the presented flip-flop is a positive-edge triggered flip-flop, whose data

17

Data
Output

Data
Input
Clock
Input

D

C

Q

Figure 7: An edge-triggered flip-flop or register symbol.

output latches the input signal when the clock signal makes a low-to-high transition. The

sensitive region for a flip-flop, where the register latches the data, is indicated by the shaded

region in Figure 8.

A typical cycle of a clock signal synchronizing a positive edge-sensitive flip-flop is shown

in Figure 9. The length of the clock period is denoted by the parameter T . The on-time is

represented by the parameter CL
W . In Figure 9, the triggering edge occurs at time t3. As

pointed out in Section 2.2, the data propagation time through the combinational logic block

C

D

Q

Clock Period T

CLK

DATA
IN

DATA
OUT

Figure 8: Typical operation of an edge-triggered flip-flop shown in Figure 7.

18

t1 t4t3 t5t2 t6

Cf

(Clock)

Xf

(DataIn)

Qf

(DataOut)

ClockPeriodT

H fSf

D f
CQ

Figure 9: Timing properties of a flip-flop in a circuit with a clock period T.

of a local data path Ri → Rf is defined
[
Dif

Pm, Dif
PM

]
. The subscripts m and M stand for the

minimum and maximum values, respectively. In Figure 9, the operation of the final flip-flop

Rf of a local data path is illustrated.

Parameters Hf , Sf , DCQ and CL
W refer to the hold time, setup time, clock-to-output

delay and clock on-time, respectively. Hold time is the minimum time that the data signal

D must remain stable after the triggering edge of the clock signal so that it is registered

during the intended clock cycle. In Figure 9, the value Hf = t4 − t3 labels the hold time for

the given clock cycle on Rf . Setup time is the minimum time between the triggering edge of

the respective clock cycle and a change in Xf such that the new data value can be registered

during the intended clock cycle. The setup time on Rf is illustrated with Sf = t3 − t2. The

propagation delay of the data signal from the input terminal to the output terminal after the

active transition of the clock signal—clock-to-output delay—is shown as DCQ = t5− t3. The

subscripts m and M appended to the parameter DCQ stand for the minimum and maximum

delay values, respectively.

19

3.2 PARAMETERS OF A LEVEL-SENSITIVE LATCH

Similar to the edge-sensitive flip-flops discussed in Section 3.1, the specific circuit design

or electrical implementation of a level-sensitive latch is not considered in this work. At

a higher level of abstraction, the timing properties of latches are encapsulated by certain

timing parameters. These parameters connect the events on the input, output and clock

terminals of a level-sensitive latch.

A latch is a type of register which is sensitive to the level of synchronizing clock sig-

nal. Accordingly, a latch is commonly referred to as a level-sensitive latch or level-sensitive

register. A typical level-sensitive latch with a clock signal C, input signal D and output

signal Q is shown in Figure 10. The operation of the level-sensitive latch is presented

in Figure 11. Note that the presented latch is a positive-level sensitive latch, whose data

output follows any change in the input signal when the clock signal remains at its positive

valued. In level-sensitive circuits, the active level of the synchronizing clock signal defines

the transparent state (or transparent phase) and the inactive level of the clock signal defines

the opaque state (or opaque phase) of latch operation. The transition of the clock signal

which starts the transparent state is called the leading edge, while the trailing edge is the

transition of the clock signal which concludes the transparent state and marks the beginning

of the opaque phase. In Figure 11, the transparent state is indicated by the shaded region

on the timing diagram.

Data
Output

Data
Input
Clock
Input

D

C

Q

Figure 10: A level-sensitive latch or register symbol.

20

C

D

Q

CLK

DATA
IN

DATA
OUT

Opaque
State

Transparent
State

Figure 11: Typical operation of a level-sensitive latch shown in Figure 10.

Without affecting the generality of the presented work, the formulation of the timing

constraints is derived for a specific reference clock cycle. The reference clock cycle can

be selected as starting with the inactive value of the clock signal followed by the active

value (opaque-phase-first) or vice versa (transparent-phase-first). In this work, the timing

constraints are formulated considering an opaque-phase-first clock signal driving positive

level-sensitive latches. A typical cycle of such a clock signal synchronizing a positive level-

sensitive latch Rf is shown in Figure 12. The length of the clock period is denoted by the

parameter T . The minimum time interval between the leading and trailing edges of the clock

signal—commonly called the on-time and defining the transparent phase—is represented by

the parameter CL
W . In Figure 12, the leading and trailing edges occur at times t3 and t8,

respectively.

The data propagation time Dif
P through the combinational logic block of a local data

path Ri → Rf was defined in Section 2.2. The propagation of the data signal is formulated

during two consecutive clock cycles, generically called the k-th and (k + 1)-th. The data

signal departs from Ri during the k-th clock cycle, is processed in the combinational logic

block and arrives at the destination register Rf during the (k + 1)-th clock cycle. Note that

the departure of the data signal from Ri occurs during the transparent phase of the k-th

21

t1 t2 t3 t4 t5 t6 t7 t8

C
(Clock)

Xf

(DataIn)

Qf

(DataOut)

ClockPeriodT

H f

Sf

D f
CQ D f

DQ

Figure 12: Timing properties of a level-sensitive latch in a circuit with a clock period T.

cycle. The arrival of the data signal at Rf can occur both during the opaque and transparent

phases of the (k + 1)-th cycle. If the data signal arrives during the transparent phase, it is

immediately propagated through the latch Rf . If the data signal arrives during the opaque

phase of Rf , the data signal has to remain stable until the leading edge of the clock signal

(beginning of the transparent phase) to propagate through the latch Rf .

Parameters Hf , Sf , DDQ, DCQ and CL
W which stand for the hold time, setup time, data-

to-output delay, clock-to-output delay and clock on-time, respectively are introduced for

latches. Hold time is the minimum time that the data signal D must remain stable after

the trailing edge of the clock signal so that it is latched during the intended clock cycle.

In Figure 12, the value Hf = t2 − t1 labels the hold time for the given clock cycle on the

final register Rf of a local data path. Setup time is the minimum time between the trailing

edge of the respective clock cycle and a change in Xf such that the new data value can be

latched in the intended clock cycle. The setup time on Rf is illustrated with Sf = t8 − t7.

The propagation delay of the latch from the data input terminal to the output terminal—

data-to-output delay—on Rf is shown as DDQ = t6− t5. The propagation delay of the latch

from the clock input terminal to the output terminal—clock-to-output delay—is shown as

22

DCQ = t4 − t3. The subscripts m and M appended to the parameters DDQ and DCQ stand

for the minimum and maximum delay values, respectively.

23

4.0 STATIC TIMING ANALYSIS OF LEVEL-SENSITIVE CIRCUITS

Static timing analysis is currently the prevailing methodology to verify the temporal correct-

ness of integrated circuits due to its accuracy, relatively low computational complexity and

the practicality of accompanying timing models. One or more of these advantages of static

timing analysis can be impaired in the analysis of complex design structures or sophisticated

synchronization schemes. One computationally hard situation, for instance, is analyzed in

this chapter; namely, the static timing analysis of level-sensitive synchronous circuits.

Level-sensitive (latch-based) circuits are gaining popularity in the state-of-the-art high-

performance synchronous circuit design due to their smaller size, lower power consumption

and faster operation speeds [53, 88, 89]. The timing analysis of level-sensitive circuits,

however, is more difficult due to the non-linearity of the timing constraints caused by the

time borrowing property [15]. Traditionally, the non-linearity of constraints has been resolved

with one of two approaches. On one hand, analyses which aim to accurately model the

effects of time borrowing have been considered too optimistic and this property is fully

disregarded from the analysis [15, 74]. More recently, the non-linear constraints of operation

are relaxed using iterative solution techniques [8, 64, 73, 99]. The iterative solution techniques

are practical. However, these techniques are problem-specific. In this chapter, a novel

linear programming (LP) formulation applicable to the timing analysis of large-scale level-

sensitive synchronous circuits is presented. The presented LP formulation accurately models

the effects of time borrowing. This LP formulation is computationally efficient due to the

linearization of non-linear constraints, and the formulation and solution processes are fully-

automated.

Digital VLSI synchronous circuits are subject to different types of timing analyses. Tradi-

tional among these analysis are three different problems: clock period minimization [8, 15, 21,

24

42, 43, 64, 74, 77, 78], clock period verification [15, 73, 99] and circuit retiming [46, 49, 51, 69].

Clock period minimization is the analysis of a synchronous circuit in order to solve for the

minimum clock period—the maximum operating frequency—of a synchronous circuit. Clock

period verification is the analysis to ensure that a synchronous circuit is fully-operational

for a given clock period. Circuit retiming is the analysis of a synchronous circuit aiming to

achieve higher operating frequencies by modifying the circuit network.

Even though there are different types of timing analysis problems, the operation of the

synchronous circuit under scrutiny is identical in all cases (possibly except for retiming prob-

lems). Thus, in the formulation of the timing analysis problem, a framework of constraints

identifying synchronous circuit operation is essential. The categorized set of constraints are

verified at each local data path of a circuit subject to a specific objective function, construct-

ing the static timing analysis.

The generation of a general framework for the timing analysis of level-sensitive circuits is

also discussed in this chapter. The framework is used to formulate and solve the clock skew

scheduling problem of level-sensitive circuits. The clock skew scheduling problem of edge-

sensitive synchronous circuits has previously been addressed with both linear and non-linear

formulations in several publications [2, 21, 30, 43, 60]. The clock skew scheduling problem of

level-sensitive circuits, however, has been unexplored. Simultaneous with the development of

the timing analysis framework for level-sensitive circuits, the clock skew scheduling problem

of level-sensitive circuits is formulated as an LP problem.

In Section 4.1, the operational constraints governing non-zero clock skew, level-sensitive

synchronous circuit operation are introduced. In Section 4.2, a brief overview of previously of-

fered algorithms for the clock period minimization problem of zero clock skew, level-sensitive

circuits is presented. The constructional constraints defined for the novel LP model clock

period minimization problem are introduced in Section 4.3. In Section 4.4, linearization of

the clock period minimization problem is described. In Section 4.5, the proposed solution

method is applied to a set of benchmark circuits for experimentation. In Section 4.6, the

optimality of the LP model problem formulation is discussed. Experimental results are an-

alyzed in Section 4.7. Additional observations and potential enhancements to the proposed

formulation are offered in Section 4.8. Conclusions are offered in Section 4.9.

25

4.1 OPERATIONAL TIMING CONSTRAINTS

Certain conditions must be satisfied for every sequentially adjacent pair of registers in a level-

sensitive synchronous circuit in order to prevent timing hazards. These conditions are en-

capsulated by four sets of operational constraints and two sets of constructional constraints.

The operational constraints are the constraints that model the operation of a level-sensitive

synchronous circuit. The constructional constraints are defined to ensure the correctness and

completeness of the formulation of the proposed timing analysis problem. The definitions

for the first three sets of operational constraints—called latching, synchronization and prop-

agation constraints, respectively—are derived from the zero clock skew definitions in [15].

The fourth set of operational constraints—called the skew constraints—are derived from

the skew definitions for edge-sensitive synchronous circuits presented in [43]. The latching,

synchronization, propagation and skew constraints for a single-phase synchronization system

are described in Sections 4.1.1 , 4.1.2 , 4.1.3 and 4.1.4, respectively.

4.1.1 Latching Constraints

Latching constraints bound the arrival time of the data signal Xf (recall the local data

path in Figure 2 on page 8) in order to ensure that Xf is latched during the intended clock

cycle. The earliest arrival time of Xf at the data input terminal of Rf is denoted by the

parameter af . Similarly, the latest arrival time of Xf is denoted by Af . Both parameters are

defined in the frame of reference of the native clock cycle, that is, relative to the beginning

of the current clock cycle.

The interval for the data arrival time is characterized by the hold time and the setup

time requirements of Rf as follows:

Hf ≤ af (4.1)

Af ≤ T − Sf . (4.2)

Eq. (4.1) constrains the earliest arrival of Xf at Rf . The earliest data arrival time must be

no earlier than hold time after the trailing edge (t2 in Figure 12) of the previous clock cycle.

26

Suppose the (k + 1)-th clock cycle at latch Rf is illustrated in Figure 12 on page 22, where

t1 = tf + kT [zero in the frame of reference of (k + 1)-th cycle]. The hold time is defined

by the difference t2 − t1. If data arrives at Rf earlier than the hold time, a double-clocking

hazard occurs.

Similarly, (4.2) represents the setup constraint on Rf . As shown in Figure 12, the data

must arrive at the final latch at least setup time prior to the trailing edge of the clock cycle.

Assuming the (k + 1)-th clock cycle is illustrated in Figure 12, the trailing edge of the clock

cycle occurs at t8 = tf + (k + 1)T [T in the frame of reference of the (k + 1)-th cycle].

Thus, data cannot be latched into Rf during the (k + 1)-th cycle if the data arrives later

than t7 = tf + (k + 1)T − Sf [(T − Sf) in the frame of reference of the (k + 1)-th cycle].

Late arrival of the data signal results in a zero clocking hazard as previously described in

Chapter 2.

4.1.2 Synchronization Constraints

Synchronization constraints define the departure time of the data signal Qi from the initial

latch of a local data path. The departure time from a latch depends on the state of the

latch—transparent or opaque. Implementation-specific register internal delays, DDQ and

DCQ, affect the departure times in transparent and opaque states of operation, respectively.

The earliest departure time di of Qi from Ri is defined in (4.3). The latest departure time

Di is defined by (4.4):

di = max
(
ai + Di

DQm, T − CL
W + Di

CQm

)
, (4.3)

Di = max
(
Ai + Di

DQM , T − CL
W + Di

CQM

)
. (4.4)

An exhaustive inspection of all possible cases of earliest and latest departure times during

the k-th clock cycle is shown in Figure 13. The time intervals for the arrival and departure

times are illustrated by the upper and lower parallel dotted lines, respectively. The left

and right ends of these dotted lines in the figure correspond to earliest and latest times,

respectively. The lengths of the white and black rectangular boxes correspond to the clock-

to-output and data-to-output latch delays, respectively. Note that cases V through VIII may

exhibit timing hazards.

27

k-th clockcycle

← ti +(k−1)T ti +kT→

k-th clockcycle

← ti +(k−1)T ti +kT→

Case I Case II

k-th clockcycle

← ti +(k−1)T ti +kT→

k-th clockcycle

← ti +(k−1)T ti +kT→

Case III Case IV

k-th clockcycle

← ti +(k−1)T ti +kT→

k-th clockcycle

← ti +(k−1)T ti +kT→

Case V Case VI

k-th clockcycle

← ti +(k−1)T ti +kT→

k-th clockcycle

← ti +(k−1)T ti +kT→

Case VII Case VIII

Figure 13: Possible cases for the arrival and departure times of data at the initial latch.

Consider (4.3), which describes the earliest departure time of the data signal Qi from

latch Ri. The first term of the max function,
(
ai + Di

DQm

)
, describes the time instant when

the input data arrival occurs at its earliest time during the active phase of the clock signal Ci.

The data signal immediately propagates through the latch (as illustrated in cases I and VIII

of Figure 13). In these cases, the earliest departure time di from Ri depends on the earliest

arrival time ai of the data signal and the time Di
DQ it takes for the data to appear at the

output terminal of Ri.

The second term of the max function,
(
T − CL

W + Di
CQm

)
, refers to the case when the

earliest data arrival time occurs during the opaque phase of Ri. In the opaque phase of

28

operation, the departure time of the data signal from the initial latch occurs clock-to-output

delay Di
CQ later than the leading edge of the clock signal. Such data propagation is illustrated

in cases II-VII of Figure 13. The max function is used to combine these cases and to define

the earliest departure time di from the initial latch Ri. Similar reasoning applies to the

derivation of the latest departure time Di defined by (4.4).

4.1.3 Propagation Constraints

Propagation constraints define the arrival time of the data signal Xf at the final latch Rf of

a local data path. These constraints are as follows:

af =
(
min

i

[
di + Dif

Pm + Tskew(i, f)
])
− T (4.5)

Af =
(
max

i

[
Di + Dif

PM + Tskew(i, f)
])
− T . (4.6)

For each incoming path to latch Rf , the lower bound for af is individually calculated using

the expression
[
di + Dif

Pm + Tskew(i, f)− T
]
. The minimum of the arrival times among the

incoming data paths is assigned as the earliest arrival time at Rf . The latest arrival time Af

for the data signal is defined similarly. In case of multiple data paths fanning into Rf , the

maximum of the arrival times among the incoming data paths is the latest arrival time of

the data signal at Rf . These two facts are implied in the formulation by the inclusion of the

min and max functions in (4.5) and (4.6), respectively.

The propagation constraints are illustrated on a sample synchronous circuit in Figure 14.

Note that in Figure 14, two local data paths starting at the latches Ri1 and Ri2 and ending at

Rf are considered. The time intervals for the arrival and departure times of the data signal

are illustrated by the upper and lower parallel dotted lines, respectively. The lengths of

the white and black rectangular boxes correspond to the clock-to-output and data-to-output

latch delays, respectively. The earliest arrival time is illustrated on the data path Ri1 → Rf .

The data signal departs from Ri1 at time di1 and propagates on the data path Ri1 → Rf for a

time period of Di1f
Pm. The earliest data arrival time

[
di1 + Di1f

Pm + Tskew(i1, f)− T
]

observed

on this data path is earlier than the arrival time
[
di2 + Di2f

Pm + Tskew(i2, f)− T
]

observed on

the only other incoming path to Rf , Ri2 → Rf . Hence, the earliest data arrival time af at

29

Tskew(i1, i2) < 0

Tskew(i1, f) > 0

Tskew(i2, f) > 0

ai1 Ai1Di1di1

ai2 Ai2Di2di2

af Af
D f

df

Di1 f
Pm

Di1 f
PM

Di2 f
Pm

Di2 f
PM

k-th clockcycle k+1-thclockcycle

k-th clockcycle k+1-thclockcycle

k-th clockcycle k+1-thclockcycle

ti1 +(k−1)T ti1 +kT ti1 +(k+1)T

ti2 +(k−1)T ti2 +kT ti2 +(k+1)T

t f +(k−1)T t f +kT t f +(k+1)T

Ci1

Ci2

Cf

Figure 14: Propagation of the data signal in a simple circuit.

Rf is defined by the propagation on the Ri1 → Rf data path. Similarly, on the data path

Ri2 → Rf , a maximum data propagation time of Di2f
PM elapses conferring the latest data

arrival time at Rf ,
[
Af = Di2 + Di2f

PM + Tskew(i2, f)− T
]
.

The departure of Qi and the arrival of Xf must occur during two consecutive clock cycles

for proper circuit operation. In order to switch between the frame of references of these two

cycles, the phase shift operator φif is used. The phase shift operator evaluates to φif = T

for single-phase synchronization as discussed in Section 2.3. Thus, the clock period T is

subtracted from the calculated arrival time in order to shift the point of reference of the

data arrival time at Rf to the beginning of the previous clock cycle.

30

4.1.4 Skew Constraints

Skew constraints introduce lower and upper bounds on clock skew on a local data path:

Ai + Di
DQM + Dif

PM ≤ 2T − Tskew(i, f)− Sf (4.7)

Di
CQM + Dif

PM ≤ T + CL
W − Tskew(i, f)− Sf (4.8)

max
[
ai + Di

DQm, T − CL
W + Di

CQm

]
+ Dif

Pm ≥ T − Tskew(i, f) + Hf . (4.9)

Presence of clock skew in level-sensitive synchronous circuits significantly affects the system

timing. The latching [(4.1) and (4.2)], synchronization [(4.3) and (4.4)] and propagation

[(4.5) and (4.6)] constraints presented previously are derived considering the presence of

non-zero clock skew in the clock tree network. These three sets of constraints naturally

impose lower and upper bounds on clock skew. Thus, the skew constraints are redundant if

a typical minimization of the clock period problem is pursued. However, if implementation-

specific constraints modify or suppress any of the given constraints, such that, the bounds

on clock skew are invalidated, the skew constraints are essential to the correct analysis of

the circuit.

The effects of clock skew on synchronous circuit operation can be derived from the

latching [(4.1) and (4.2)], synchronization [(4.3) and (4.4)] and propagation [(4.5) and (4.6)]

constraints. Note that the variable Af described in (4.2) can be expressed as follows:

Af = Di + Dif
PM + Tskew(i, f)− T. (4.10)

Substituting (4.4) in (4.10), then substituting the result into (4.2) leads to,

max
[
Ai + Di

DQm, T − CL
W + Di

CQm

]
+ Dif

PM + Tskew(i, f)− T ≤ T − Sf , (4.11)

conveniently represented by the first two sets of skew constraints [(4.7) and (4.8)].

Eq. (4.1) must hold to prevent the early arrival of data signal, where af depends on di

as implied by (4.5):

af = di + Dif
Pm + Tskew(i, f)− T. (4.12)

Eq. (4.12) also depends upon whether the data signal arrives before or during the transparent

state of the latch. Substituting (4.3) into (4.12), (4.12) into (4.1) and rearranging the terms

31

lead to the last set of the skew constraints, (4.9). Eq. (4.9), re-written in (4.13), is a non-

linear skew constraint, as the elimination of the max function is not straightforward:

Hf ≤ max
[
ai + Di

DQm, T − CL
W +Di

CQm

]
+ Dif

Pm + Tskew(i, f)− T. (4.13)

As stated before, the skew constraints [(4.7), (4.8) and (4.9)] are redundant in the formulation

of a typical clock period minimization problem, as these constraints are derived from the

existing set of constraints [(4.1)–(4.6)]. The skew constraints are not included in the LP

model presented in Section 4.4.2, but are used in the verification of the proposed solution

method in Section 4.7.

4.2 ITERATIVE APPROACH TO STATIC TIMING ANALYSIS

The operational constraints (Section 4.1) provide a system of equations defining the tim-

ing operation of a level-sensitive synchronous circuit. Different versions of the constraints

presented in Section 4.1 have been used by designers in order to develop timing analysis

models for zero clock skew, level-sensitive circuits. The set of constraints initially defined

for the clock period minimization problem of a conventional zero clock skew problem in [15]

is known as the SMO formulation [65].

A popular timing analysis approach for level-sensitive circuits is presented in [8, 64, 65, 74]

based on the SMO formulation. This timing analysis approach involves several algorithms

targeting clock period verification and minimization problems, all based on the analytical

framework described in Section 4.1. The proposed algorithms are iterative algorithms. In

particular, very small values are assigned to the timing variables of a circuit and the circuit

is investigated for timing violations by iteratively incrementing the values of the timing

variables. It is important to note that the clock delay values ti and consequently the clock

skew values Tskew(i, f) are pre-determined numerical values in these algorithms. Thus, these

iteration-based algorithms do not support clock skew scheduling.

The iterative algorithm proposed in [64] for the clock period minimization problem of

level-sensitive circuits is presented in Figure 15. In the algorithm, r is the number of registers

32

//Initialize the latch arrival times

for i = 1 to |r| {

Aprev
i = aprev

i = −∞;

// iterate the evaluation of the departure and arrival time equations

// until convergence or a maximum of |r| iterations

iter = 0;

repeat

iter = iter + 1;

// update the latch departure times based on the latch arrival times

// computed in the previous iteration

for i = 1 to |r| {

Di = max (Aprev
i , φi + Di);

di = max (aPrev
i , φi + di);

};

// update the latch arrival times based on the just-computed

// latch departure times

for i = 1 to |r| {

Ai = maxj (Dj + DPM);

ai = minj (dj + DPm);

};

until (((Ai = Aprev
i) && (ai = aprev

i)) || (iter + 1 > |r|))) ;

};

// check and record setup and hold violations

for i = 1 to |r| {

SetupV io[i] = Ai > T - Si + di;

HoldV io[i] = ai < Hi + Di;

};

Figure 15: The iterative algorithm for static timing analysis of level-sensitive circuits.

33

in the synchronous circuit. The a, d, A and D vectors are the earliest arrival/departure and

latest arrival/departure times, respectively, where the superscript prev identifies the value of

a variable in the previous clock cycle. The variables SetupV io and HoldV io hold the timing

violation information for each register. In this algorithm, the arrival times are initialized

to ai = Ai = −∞, where the algorithm simulates the start-up timing of the circuit. At each

iteration step, the execution of the circuit at a clock cycle is simulated. Finally, once the

arrival and departure times of the latches are determined, the algorithm checks for potential

setup and hold time violations.

The algorithm presented in Figure 15 has been shown to converge to solutions relatively

quickly [64]. The algorithm complexity is reported as O(|r||p|), where |r| is the number of

latches in a circuit and |p| is the number of edges of a circuit graph (recall from Section 2.2

that the number of edges of a circuit graph is the number of local data paths). However, it has

been proven in [74] that in case of data-path loops (sequential feedback) in the synchronous

circuit, the arrival and departure times might increase without bound. This leads to a

setup violation and the described algorithm fails to provide reasonable run times. In [8], a

correction is offered to the algorithm. This correction is based on the assumption that, a data

path loop in the circuit can be detected in |r| iterations. Thus, the algorithm is modified

to artificially limit the number of iteration steps by |r|. In the modified algorithm, the

complexity of the resulting algorithm is cubic in the number of registers r, as each iteration

involves examining up to |p| edges, and p is at most |r|2.

The iterative algorithm presented in Figure 15 is later modified in [29] and [99] in order

to account for multiple clock domains and crosstalk, respectively. Briefly, even though

the iterative algorithm provides an initial and useful formulation for the timing analysis of

level-sensitive circuits, the algorithm may fail in the presence of data path loops and does

not provide a common framework for general timing analysis. In the next two sections, a

novel model for the timing analysis of level-sensitive synchronous circuits is developed. The

developed model constitutes a well-defined framework for general timing analysis problems.

34

4.3 CONSTRUCTIONAL TIMING CONSTRAINTS

The constructional constraints, called validity and initialization constraints, are defined to

ensure the correctness and completeness of the formulation of the presented timing analysis

problem. The first type of constructional constraints, the validity constraints, are presented

in Section 4.3.1. The second type of constructional constraints, the initialization constraints,

are presented in Section 4.3.2.

4.3.1 Validity Constraints

The definitions of the parameters af , Af , df and Df require the value of af (df) to be smaller

than or equal to the value of Af (Df):

Af ≥ af (4.14)

Df ≥ df . (4.15)

While the four sets of operational constraints introduced in the preceding sections model the

timing properties of the circuit, the required sequentiality in time of the referred variables

is not explicitly enforced. Consistency in the definitions of af , Af , df and Df , must be

maintained through post-solution checks or by including additional constraints. A solution

leading to a result where af > Af , for instance, is incorrect and must be disregarded.

Introducing the validity constraints [(4.14) and (4.15)] in the problem formulation is

preferred over performing post-solution checks for two significant reasons. The first reason

is to gain the ability to easily detect the feasibility of the problem. The second reason is to

preserve the automation of the solution procedure.

4.3.2 Initialization Constraints

The LP model clock skew scheduling problem is formulated in order to minimize the clock

period of a synchronous circuit. Besides the minimum clock period, it may also prove essen-

tial to accurately calculate the nominal data arrival and departure times for each register.

The initialization constraints are introduced in order to fulfill this purpose, by leading to a

35

consistent timing schedule for the data signal propagation in a level-sensitive synchronous

circuit.

After clock skew scheduling, the feasible (or optimal) solution set for one or more variables

can be a range of values rather than a specific value. For instance, suppose that the earliest

arrival time of a data signal at an arbitrary latch Rk can get any value in the interval

1.8 ≤ ak ≤ 2.3 without changing the minimum clock period of the circuit. For consistency,

it is preferable to assign the smallest value to the earliest arrival time (ak = 1.8). In general,

it is better to assign the smallest possible values to the earliest arrival and departure time

variables and the largest possible values to the latest arrival and departure time variables

(where applicable). Such assignment provides a more comprehensive representation of data

propagation (and sensitivity information [92]) in the system. Identification of the sensitivity

information is useful to check for the consistency of the timing schedule generated by the

LP problem (if necessary) as will be briefly discussed in Section 4.7.

Note that, the earliest and latest data arrival times at all registers, except for the input

registers, are set to their lowest and highest possible values, respectively. These assignments

are enforced by the propagation constraints [(4.5) and (4.6)]. The values assigned to the

earliest and latest data arrival times (a, A) at the input registers do not affect the minimum

clock period unless the assigned values cause the departure times to change. It may even

be considered redundant to define earliest and latest arrival time variables (a, A) at the

input registers as the non-local data paths do not affect the circuit timing directly. For

consistency and completeness of the generated timing schedule, the data arrival times at the

input registers are defined and the following constraints are included in the LP formulation

for each input register Rl:

Al = dl −
(
Dl

CQm or Dl
DQm

)
∀Rl : |Fan− in(Rl)| = 0. (4.16)

Note that (4.16) is computed only for input registers.

36

4.4 LINEARIZATION OF THE TIMING ANALYSIS

The non-linear max and min functions in the constraints shown in (4.3), (4.4), (4.5) and

(4.6) present a major challenge in solving the clock skew scheduling problem. A method is in-

troduced in this chapter in order to replace the non-linear constraints with linear constraints.

Although theoretically inequivalent, it is demonstrated that the same results are obtained

with the original non-linear programming (NLP) model and the novel linear programming

(LP) model problems in experimentation with ISCAS’89 benchmark circuits.

The proposed linearization method is described in Section 4.4.1. The LP model for the

clock period minimization problem of non-zero clock skew, level-sensitive circuits is offered

in Section 4.4.2.

4.4.1 Modified Big M (MBM) Method

The linearization of the constraints which exhibit non-linear behavior is a commonly applied

procedure in operations research [92]. When possible, non-linear constraints are manipulated

to derive linear constraints, which are inherently easier to solve. In this work, a collection

of linearization procedures is applied to the non-linear constraints of the timing analysis

problem. The collection of these procedures is called the Modified big M (MBM) method. It

is considered reasonable to denominate the collection of linearization procedures the MBM

method, as the research is developed by an inspiration from the “big M method” [92]. The

big M method is a special case of the simplex algorithm [92] which has applications in a

completely distinct set of problems with respect to the MBM method. The only similarity

between the big M method and the MBM method is the use of the constant M in both

methods. The constant M symbolically represents a very large positive number used to

assign an overwhelmingly large penalty to a variable in the objective function in order to

increase the priority of the variable in the optimization process.

The collection of linearization procedures composing the MBM method is presented

in Table 1. For a minimization type LP problem—subject to constraints that have min

and max functions—the transformations listed in Table 1 are applied to replace non-linear

37

constraints with linear constraints. Note that only relevant constraints and relevant terms

of the objective function are included in Table 1.

Define a finite set N , consisting of the variables N = {a, b, c, . . . , n}. Consider all vari-

ables in the finite set N to be elements of the real numbers set N = {a, b, c, . . . , n} ⊂ <.

The objective function Z is a linear function of the variables {a, b, c, . . . , n} and is defined

Z : <|N | → <. There are no limitations on variables being inter-dependent, provided the

linearity of the constraints is preserved.

Two different linearization scenarios are presented in Table 1. In the first scenario [lin-

earization of a = max(b, c) expression], the variable a is constrained to be the greater of the

variables b and c. The constraint is replaced with two new constraints, explicitly requiring

the variable a to be greater than or equal to the variables b and c. The initial constraint and

the relaxed constraints are equivalent if either of the following conditions holds:

1. Equality condition is observed for at least one of the inequalities, while the other in-

equality operation returns true,

2. Equality condition is observed for both inequalities.

The cost function denoted by the product Ma is added to the objective function. The

product Ma is overwhelmingly large with respect to other cost functions in the objective

function as a result of the highly-weighed cost figure (recall the very large coefficient M).

Table 1: Modified Big M transformations.

min Z → min (Z + Ma)

a = max(b, c) → a ≥ b

a ≥ c

min Z → min (Z −Ma)

a = min(b, c) → a ≤ b

a ≤ c

38

Thus, Ma is given the highest priority in the minimization process. As a result, the greater

of the variables b and c is assigned to variable a.

The relaxation method in the second scenario [linearization of a = min(b, c) expression] is

also presented in Table 1. In this case, the cost function Ma is subtracted from the objective

function in order to exploit the maximum value to be assigned to the variable a.

Similar to its implementation in the big M method, the constant M is defined sufficiently

large, but as small as possible. The selection of a value for the constant M depends on

the solution space of a specific problem (problem constraints) and the objective function Z.

Typically, the number M must be chosen significantly larger than the values of any parameter

in the problem. However selection of an extremely large M may cause the LP solver to fail

drastically [19]. A value of M = 5000 was experimentally found to be sufficiently large for

the analysis of circuits with arrival and departure times up to 100 (time units), number

of registers up to 2000, and number of data paths up to 30000. The interpretation of

value assignment and the derivation of a lower bound on the constant M fall outside the

scope of this work and will not be discussed. The comparison of the results between the

non-linear problem and the MBM method-transformed linear problem is a straight-forward

post-solution check.

4.4.2 Linear Programming (LP) Model

An LP model of the clock period minimization problem is generated through the application

of the MBM method. There are five sets of constraints in the LP model. These sets are

the latching [(4.1) and (4.2)], synchronization [(4.3) and (4.4)], propagation [(4.5) and (4.6)],

validity [(4.14) and (4.15)] and initialization [(4.16)] constraints. Note that, for simplicity,

the skew constraints [(4.7), (4.8) and (4.9)] are not included in the LP model for the clock

period minimization problem. The finalized LP model for the clock period minimization

problem is shown in Table 2.

The latching, validity and initialization constraints exhibit linear behavior. Therefore,

these constraints remain unchanged in both the LP and NLP models as shown in constraints

(i-ii , vii-ix) of the formulation. The synchronization constraints, however, are formed by

39

Table 2: LP model clock skew scheduling problem of level-sensitive circuits.

LP Model

min T + M [
∑
∀Rj

(dj + Dj) +
∑

∀Rk:|Fan−in(Rk)|≥1

(Ak − ak)]

subject to

(i) af ≥ Hf

[Latching-Hold time]

(ii) Af ≤ T − Sf

[Latching-Setup time]

(iii) di ≥ ai + Di
DQm

di ≥ T − CL
W + Di

CQm

[Synchronization-Earliest time]

(iv) Di ≥ Ai + Di
DQM

Di ≥ T − CL
W + Di

CQM

[Synchronization-Latest time]

(v) af ≤ di1 + Di1f
Pm + Tskew(i1, f)− T

...

af ≤ din + Dinf
Pm + Tskew(in, f)− T

[Propagation-Earliest time]

(vi) Af ≥ Di1 + Di1f
PM + Tskew(i1, f)− T

...

Af ≥ Din + Dinf
PM + Tskew(in, f)− T

[Propagation-Latest time]

(vii)Af ≥ af

[Validity-Arrival time]

(viii)Df ≥ df

[Validity-Departure time]

(ix) Al = dl − (Dl
CQm or Dl

DQm), ∀Rl : |Fan− in(Rl)| = 0

[Initialization]

40

the max function and exhibit non-linear behavior. The MBM method is used on the syn-

chronization constraints in order to generate linear constraints for the LP model problem

(constraints iii and iv). For instance, (iii) depicts the replacement of the non-linear con-

straint presented in (4.3) with two linear constraints, where di is greater than or equal to

both operands of the max function,
(
ai + Di

DQm

)
and

(
T − CL

W + Di
CQm

)
. Note that the

cost function Mdi is added to the objective function. Propagation constraint on the latest

data arrival time (4.6), exhibits similar non-linearity with the synchronization constraints

such that the max function is used. The linearized propagation constraints in the LP model

are shown in (vi). In the LP model, the variable Af is greater than or equal to the expres-

sions
([

Di + Dif
PM + Tskew(i, f)

]
− T

)
, evaluated for each fan-in path of register Rf . In the

formulation, fan-in paths of Rf are indexed by the parameter n.

Unlike other non-linear constraints in the formulation, the propagation constraint on the

earliest arrival time af is modeled by the min function. In this type of linearization, af

is set to be less than or equal to each operand of the min function. As shown in (v), the

expressions
[
di + Dif

Pm + Tskew(i, f)− T
]

evaluated for each fan-in path of register Rf are

included in the finalized LP model.

In order to illustrate the derivation of the NLP and LP model formulations for a clock

period minimization problem, a simple synchronous circuit is investigated. The NLP model

formulation of the clock period minimization problem is presented in Appendix A. The non-

linear constraints in the NLP problem formulation are linearized using the MBM method

described in Section 4.4.1. The finalized LP model formulation for the clock period mini-

mization problem is presented in Appendix B.

4.5 AN EXAMPLE AND EXPERIMENTAL RESULTS

The circuit network shown in Figure 16 is analyzed in order to illustrate the application of

the proposed linearization procedure. Without affecting the generality of the solution, zero

setup and hold times and zero internal delays are considered (Si = Hi = DCQ = DDQ = 0).

A single phase synchronization scheme with 50% duty cycle is selected as shown in Figure 17.

41

R1 R2 R3

R4

[2.9,3]
→

[5,7]
←

[3,4]← [2.
5,

5]

←

[3,4]
→

Figure 16: A simple synchronous circuit.

Given single-phase synchronization under zero and non-zero clock skew operation, the

clock period minimization problems of three different synchronous circuits with same circuit

topology are formulated. These circuits are:

1. Zero clock skew, edge-sensitive circuit,

2. Zero clock skew, level-sensitive circuit,

3. Non-zero clock skew, level-sensitive circuit.

The simpler (in terms of timing analysis) circuit, which is used as the basis of comparison

for other circuits, is the zero clock skew, edge-sensitive circuit. The minimum clock period of

a zero clock skew, edge-sensitive circuit is defined by the maximum data propagation time in

the circuit [43]. Thus, the synchronous circuit network presented in Figure 16 has a minimum

clock period of T = D32
PM = 7 (time units) when used with edge-triggered flip-flops.

The second synchronous circuit of interest is the zero clock skew, level-sensitive circuit.

In order to design a level-sensitive synchronous circuit, each flip-flop in the given circuit

topology is replaced with a level-sensitive latch. Zero clock skew, level-sensitive circuits

exhibit improved circuit performance due to time borrowing.

Clock skew scheduling is applied to the zero clock skew, level-sensitive circuit to generate

the non-zero clock skew, level-sensitive circuit. This circuit exhibits performance improve-

ment due to the simultaneous consideration of time borrowing and clock skew scheduling.

42

CL
W = T/2

φ = T/2
Csource

T

Figure 17: A single-phase synchronization clock with a 50% duty cycle.

The generic LP model shown in Table 2 (page 40) is used in problem formulation. The

commercial optimization package CPLEX (v7.5) [36] is used to solve for these clock period

minimization problems of the generated synchronous circuits. In experiments, the primal

and dual simplex optimizers of CPLEX are used. The worst case analysis shows that the

simplex method and its variants may require exponential number of steps to reach an optimal

solution [19]. However, a vast amount of practice has confirmed that in most cases, the

number of iterations to reach an optimal solution is polynomial [19].

Note that the number of problem constraints m is proportional to the number of registers

r and the number of local data paths p in the circuit. Let s denote the number of input

registers for which the initialization constraints are defined. In the LP model clock period

minimization problem shown in Table 2, there are eight (8) constraints for each register,

two (2) constraints for each local data path, and one (1) constraint for each input register.

Thus, the number of constraints in the problem formulation is m = 8r + 2p + s. The

minimum clock period T is a problem variable. Also, there are five (5) problem variables

defined for each register leading to a total number of n = 5r + 1 variables in the problem

formulation. The exact computational complexity cannot be determined since the internal

presolver, matrix-sparsity checker and large-scale optimizer [19, 36] routines employed within

CPLEX are proprietary and unknown.

In the analysis, the minimum clock period for the zero clock skew, level-sensitive circuit

is calculated as 4.66 (time units), which is a 33% improvement over the zero clock skew,

43

CLK4

CLK3

CLK2

CLK1

CLK4

CLK3

CLK2

CLK1

T = 4.66
Zeroclockskew

T = 4.05
Non-zeroclockskew

A3 = 1.66= D1 +4−4.66
A2 = 4.66= D3 +7−4.66

ZeroSkew
A3 = 2.025= D1 +4+(0.05−0)−4.05
A2 = 4.05= D3 +7+(0−0.925)−4.05

Non-ZeroSkew Critical Path

R3→ R2

R1→ R3

Figure 18: Zero and non-zero clock skew timing schedules for the circuit in Figure 16.

edge-sensitive synchronous circuit. Note that the percentage improvement is calculated by

the expression 100(Told − Tnew)/Told. As stated earlier, clock skew scheduling is applied to

the level-sensitive circuit in order to generate the non-zero clock skew, level-sensitive circuit.

The calculated minimum clock period of 4.05 for the non-zero clock skew, level-sensitive

circuit is a 13% improvement over the zero clock skew, level-sensitive circuit and a 42%

improvement over the zero clock skew, edge-sensitive circuit. Note that 13% improvement

is only due to clock skew scheduling, while 42% improvement is due to time borrowing and

clock skew scheduling. Further analysis of the time borrowing and clock skew scheduling

effects on circuit timing are presented in Section 4.5.2. The clocking schedules and the data

propagation on the critical paths of the circuit in Figure 16 are shown in Figure 18. In

Figure 18, the clocking schedule for the zero clock skew circuit is shown on the left, with a

minimum clock period of T = 4.66. Non-zero clock skew scheduling results with a minimum

clock period of T = 4.05 is shown on the right. For non-zero clock skew scheduling, the

optimal clock signal delays at the register are t1 = 0.05, t2 = 0.925, t3 = 0 and t4 = 0.475.

The arrows represent data signal propagation on the respective critical paths. Note that

44

unlike the case presented in Figure 18, the critical paths for zero and non-zero clock skew

scheduling need not be identical.

4.5.1 Level-Sensitive Synchronous Circuit State of Operation

Presence of data path loops (cycles) and transient state errors are two major issues that need

to be identified in the timing analysis of level-sensitive circuits. As discussed in Section 4.2,

the iterative algorithm offered in [64] suffers from excessive run times and produces false

negative outputs in presence of data path loops [73]. In [73], modifications are offered for

the iterative algorithm in order to detect and handle the effects of data path loops in the

circuit. Also in [73], it has been shown that synchronous circuits are prone to suffer from

transient state errors. The transient state errors occur due to the non-unique solution sets of

the problem parameters, discussed (within a different context) in Section 4.3.2. In circuits

under transient state errors, setup violations occur in certain registers after the system is

initiated from a reset state. The arrival and departure times may not be stable at start-up,

in which case these times change during initial clock cycles, constituting the transient state.

As circuit operation progresses in time, the arrival and departure times converge to their

steady-state values.

There are two major conventions in evaluating the transient errors and determining the

steady-state behavior. The first convention overlooks the transient errors and presumes that

the departure times converge to the opening edge of the driving clock, which is the expected

schedule for the steady-state of operation. The second convention is more strict in that

transient state errors are not permitted. The first convention is adopted more commonly

within the proposed solution algorithms and leads to a generally acceptable solution unless

the transient state operation of the level-sensitive circuit is decisive to overall circuit oper-

ation. Given that the second convention is adopted, the reset state is preferably extended

until the steady state of operation is reached [73].

The LP model proposed in this work assumes the transient-state operation of a level-

sensitive circuit to be negligible. The aim of the generated model is to solve for the steady-

state timing scheduling problem. The simplex algorithm-based LP solver directs the gradual

45

advancement of parameter values as they are enforced by the LP model (Table 2). Previously

offered algorithms are vulnerable to potential fallacies caused by data path loops due to their

iterative nature. However, in the presented procedure, complications posed by the presence

of data path loops are resolved within the mechanics of the LP solver without significantly

affecting the run time or quality of the solution. If the problem remains feasible, the timing

parameters for the steady state operation of the circuit are calculated.

In order to illustrate the described phenomenon, the steady-state optimal timing sched-

ule for the ISCAS’89 benchmark circuit s27 is presented in Figure 19. Simplifications of

Dif
Pm = Dif

PM ,∀Ri → Rf and Si = Hi = Di
CQ = Di

DQ = 0 are considered. The circuit

s27 has one input register and a data path loop consisting of two other registers. The data

signal departs from input register R3 and perpetually propagates on the loop between R1

and R2. The minimum clock period is calculated to be 4.1, where the pre-computed data

propagation times are indicated on the circuit graph.

In Figure 19, the data propagations occurring on all data paths of the s27 benchmark

circuit are analyzed. As defined in Section 2.3, the subscripts to the clock signal indicate the

register being synchronized by the clock signal. The clock signals most likely are not aligned

in time due to the non-identical clock delays to their respective destination registers. The

clock signal C3 at the input register R3 has no delay in time with respect to the clock signal

at the clock source (t3 = 0). Hence, the origin of the clock signal at the source is aligned

with the origin of C3. The clock signals C1 and C2 however, are shifted in time by t1 = 3.8

and t2 = 1.3 relative to the origin of the clock signal at the source. The horizontal axis of

Figure 19 represents the time, where the beginning (k− 1)T of the k-th clock cycle of C3, is

defined as the local time reference, with an assigned value of zero. In Figure 19, the numbers

associated with the leading (enabling) and trailing (latching) edges of the clock signals label

the times with respect to the local time reference. The arrows illustrate the propagation

between the registers and are drawn to scale. Illustration of the data propagation on three

consecutive clock cycles are sufficient to analyze the behavior of the data path loop of the

benchmark circuit s27. Arbitrary cycles labeled the k-th, (k+1)-th and (k+2)-th clock cycles

are selected. The solid arrows represent the data propagation during the selected clock cycles.

For instance, the propagation between R3 and R1 is represented by the arrows initiating from

46

k-
th

cl
oc

k
cy

cl
e

k
+

1-
th

cl
oc

k
cy

cl
e

k
+

2-
th

cl
oc

k
cy

cl
e

k-
th

cl
oc

k
cy

cl
e

k
+

1-
th

cl
oc

k
cy

cl
e

k
+

2-
th

cl
oc

k
cy

cl
e

k-
th

cl
oc

k
cy

cl
e

k
+

1-
th

cl
oc

k
cy

cl
e

k
+

2-
th

cl
oc

k
cy

cl
e

(k
−

1)
T

(k
−

1)
T

+
4.

1
(k
−

1)
T

+
8.

2
(k
−

1)
T

+
12

.3
(k
−

1)
T

+
16

.4ti
m

e g
lo

b
a

l

C
1

C
2

C
3

1.
3

3.
35

5.
4

7.
45

9.
5

11
.5

5
13

.6

3.
8

5.
85

7.
9

9.
95

12
14

.0
5

2.
05

6.
15

10
.2

5
0

4.
1

8.
2

12
.3

16
.4

T s
ke

w
(3

,1
)
=
−

3.
8

T s
ke

w
(3

,2
)
=
−

1.
3

T s
ke

w
(1

,2
)
=

2.
5

8.
65

12
.7

5

R
1

R
2

R
3

[1
.6

]
→ [6
.6

]
←

[6
.6
]

←
[5
.4
] →

a 1
=

0.
75

d 1
=

2.
05

A
1
=

2.
05

D
1
=

2.
05

t 1
=

3.
8

a 2
=

2.
05

d 2
=

2.
05

A
2
=

2.
05

D
2
=

2.
05

t 2
=

1.
3

a 3
=

0
d 3

=
2.

05

A
3
=

0
D

3
=

2.
05

t 3
=

0

F
ig

u
re

19
:

T
h
e

op
ti
m

iz
ed

ti
m

in
g

sc
h
ed

u
le

fo
r
s
2
7

op
er

ab
le

w
it

h
T

=
4.

1.

47

the C3 row at times 2.05 and 6.15, and concluding at the C2 row at times 8.65 and 12.75,

respectively. Data propagation on the data path loop between the registers R1 and R2 is

visible by the cross-structured arrows initiating and concluding in the corresponding clock

signal rows. Note that the calculated nominal arrival and departure times are illustrated on

the circuit graph, inside the boxes associated with each node.

In steady-state of operation, the departure times of the registers that constitute a data

path loop converge to the beginning of their respective clock cycles. The circuit s27 in

Figure 19 is analyzed in order to provide a better insight on how the latest departure times

converge to a certain value in the steady-state. Define a variable ε, where ε is a very small

period of time. Suppose that a deviation of ε occurs in the departure time of the data signal

from R3. The signal departure from R3 occurs at time 2.05+ε, delaying the arrival times at

R1 and R2 by ε. The departure from R2 is gradually delayed by ε every turn, which in turn

delays the arrival time at R1. The arrival and departure times cumulatively increase in each

turn of the data signal around the loop. Eventually, the signal arrivals at the latches occur

during the non-transparent state of the latches. At this point, the signal departure times

return to their starting values, which are the trailing edges of their respective clock cycles.

It is evident that the arrival times will finally be restored to their initial values when the

source of the deviation vanishes. Thus, the assignment of the time-varying departure times

to the leading edges of the synchronizing clock signals is referred to as the steady-state of

operation for the synchronous circuit.

4.5.2 Experimental Results on ISCAS’89 Benchmark Circuits

The timing analysis method described in this chapter is applied to the selected suite of

ISCAS’89 benchmark circuits in order to derive the performance results and illustrate the

efficiency and accuracy of the presented method. The original ISCAS’89 benchmark circuits

are edge-sensitive synchronous circuits without any timing information. The timing infor-

mation for the benchmark circuits is generated explicitly with an algorithm, where the type,

size and fan-out of a gate are included in the computed combinational gate delay.

48

Level-sensitive implementations of the ISCAS’89 benchmark circuits are generated by

replacing each flip-flop in the original benchmark circuit with a level-sensitive latch as dis-

cussed in Section 4.5. In experimentation, a single phase clock signal with a duty cycle of

50% is selected. Without affecting the generality of the solution, the setup and hold times

and the internal delays are assumed to be zero (Si = Hi = DCQ = DDQ = 0). The consid-

eration of these numeric constants in an actual problem is straightforward. Edge-sensitive

and level-sensitive synchronous circuit implementations are analyzed for zero and non-zero

clock skew scheduling applications. The effects of time borrowing and clock skew schedul-

ing in circuit implementation are investigated. The results of the analyses—computed on a

440MHz Sun Ultra-10 Workstation—are presented in Table 3. For each circuit, the follow-

ing data are listed—the circuit name, the number of registers r and the number of paths

p, the clock periods T noskew
FF for a zero skew circuit with flip-flops, T noskew

L for a zero skew

circuit with latches, T skewed
FF for a non-zero skew circuit with flip-flops, T skewed

L for a non-zero

skew circuit with latches, and T r
L for a non-zero skew circuit where the clock delays to I/O

registers are restricted to be equal. The subscripts FF, L represent circuit topologies for

flip-flop based and latch-based circuits, respectively. The superscripts noskew, skewed indi-

cate zero or non-zero clock skew scheduling. Also listed are the calculation time of T skewed
L ,

tskewed
L , and the clock period improvements ITB

L , ICSS
FF and ITBCSS

L , where the superscripts

TB, CSS, TBCSS stand for time borrowing, clock skew scheduling and both, respectively.

The minimum clock periods calculated for the edge-sensitive synchronous circuits under

zero and non-zero clock skew scheduling (T noskew
FF and T skewed

FF , respectively) are borrowed

from [43]. It is reported in [43] that, due to clock skew scheduling, an average improvement

of 30% is reported in the minimum clock period for the ISCAS’89 benchmark circuits.

The experimental results shown in Table 3 present significant improvements in the mini-

mum clock period for synchronous circuits with level-sensitive latches. In digital synchronous

circuits, utilizing latches as storage elements instead of flip-flops may result in up to 33%

improvements of the minimum clock period under zero clock skew (for single-phase, 50%

duty cycle clock synchronization). On the ISCAS’89 benchmark circuits, an average of 15%

improvement is observed when the flip-flops are replaced by latches (under zero clock skew).

This level of improvement is solely due to time borrowing.

49

Table 3: Clock skew scheduling results for level-sensitive ISCAS’89 benchmark circuits.

Circuit Info Zero CS I (%) Non-Zero CS I (%) t (sec) R I (%)
Circuit r p Tnoskew

FF Tnoskew
L ITB

L T skewed
FF T skewed

L ICSS
FF ITBCSS

L ICSS
L tskewed

L T r
L Ir

L

s27 3 4 6.6 5.4 18 4.1 4.1 38 38 24 0.02 4.1 38
s208.1 8 28 12.4 8.6 31 4.9 5.2 60 58 40 0.01 7.6 39
s298 14 54 13.0 10.6 18 9.4 9.4 28 28 11 0.02 10.6 18
s344 15 68 27.0 18.4 32 18.4 18.4 32 32 0 0.03 18.4 32
s349 15 68 27.0 18.4 32 18.4 18.4 32 32 0 0.03 18.4 32
s382 21 113 14.2 10.3 27 8.5 8.5 40 40 17 0.04 8.7 39
s386 6 15 17.8 17.3 3 17.3 17.3 3 3 0 0.03 17.3 3
s400 21 113 14.2 10.4 27 8.6 8.6 39 39 17 0.05 8.8 38
s420.1 16 120 16.4 12.6 23 6.8 7.2 59 56 43 0.04 10.3 37
s444 16 113 16.8 12.4 26 9.9 9.9 41 41 20 0.07 9.9 41
s510 6 15 16.8 14.8 12 14.8 14.3 12 15 3 0.02 14.8 12
s526 21 117 13.0 10.6 18 9.4 9.4 28 28 11 0.05 10.6 18
s526n 21 117 13.0 10.6 18 9.4 9.4 28 28 11 0.05 10.6 18
s641 19 81 83.6 66.2 21 61.9 61.9 26 26 6 0.05 63.1 25
s713 19 81 89.2 71.2 20 63.8 63.8 28 28 10 0.05 65.0 27
s820 5 10 18.6 18.3 2 18.3 18.3 2 2 0 0.01 18.3 2
s832 5 10 19.0 18.8 1 18.8 18.8 1 1 0 0.01 18.8 1
s838.1 32 496 24.4 20.6 16 8.3 9.1 66 63 56 0.28 15.6 36
s938 32 496 24.4 20.6 16 8.3 9.1 66 63 56 0.31 15.6 36
s953 29 135 23.2 21.2 9 18.3 18.3 21 21 14 0.10 21.2 9
s967 29 135 20.6 17.9 13 16.2 16.6 21 19 7 0.08 17.9 13
s991 19 51 96.4 91.6 5 79.4 79.4 18 18 13 0.02 79.4 18
s1196 18 20 20.8 16.0 23 10.8 7.8 48 63 51 0.03 16.0 23
s1238 18 20 20.8 16.0 23 10.8 7.8 48 63 51 0.01 16.0 23
s1423 74 1471 92.2 86.4 6 77.4 75.8 16 18 12 1.10 75.8 18
s1488 6 15 32.2 29.0 10 29.0 29.0 10 10 0 0.02 29.0 10
s1494 6 15 32.8 29.6 10 29.6 29.6 10 10 0 0.01 29.6 10
s1512 57 415 39.6 34.8 12 34.8 34.8 12 12 0 0.28 34.8 12
s3271 116 789 40.3 29.8 26 28.6 28.6 29 29 4 0.69 29.0 28
s3330 132 514 34.8 23.4 33 17.8 17.8 49 49 24 0.49 23.2 33
s3384 183 1759 85.2 77.4 9 67.4 67.4 21 21 13 1.88 76.2 11
s4863 104 620 81.2 75.4 7 69.0 69.0 15 15 8 0.64 69.0 15
s5378 179 1147 28.4 23.2 18 22.0 22.0 23 23 5 1.66 22.0 23
s6669 239 2138 128.6 124.6 3 109.8 109.8 15 15 12 3.62 109.8 15
s9234 228 247 75.8 64.8 15 54.2 54.2 28 28 16 4.59 59.2 22
s9234.1 211 2342 75.8 64.8 15 54.2 54.2 28 28 16 3.88 59.2 22
s13207 669 3068 85.6 67.4 21 57.1 57.1 33 33 15 14.86 57.1 33
s15850 597 14257 116.0 92.8 20 83.6 83.6 28 28 10 76.96 83.6 28
s15850.1 534 10830 81.2 71.4 12 57.4 57.4 29 29 20 58.89 57.4 29
s35932 1728 4187 34.2 34.1 0 20.4 20.4 40 40 40 80.03 20.4 40
s38417 1636 28082 69.0 54.8 21 42.2 42.2 39 39 23 603.49 43.0 39
s38584 1452 15545 94.2 76.4 19 65.2 65.2 31 31 16 321.74 64.8 31
Average 15 30 27 14 24

50

Utilizing non-zero clock skew, an even higher improvement is possible. Improvements up

to 63%—over flip-flop based synchronous circuit with zero clock skew—are observed. The

average improvement in the minimum clock period for ISCAS’89 benchmark circuits is 27%.

This level of improvement is due to simultaneous application of clock skew scheduling and

consideration of time borrowing.

In the 27% simultaneous improvement for non-zero clock skew, level-sensitive circuits,

the improvement due to time borrowing is 15% and the improvement due to clock skew

scheduling is 14%. It is interesting to note that the improvements achieved through time

borrowing and clock skew scheduling are not additive. Time borrowing and clock skew

scheduling target the same resource in performance improvement, the slack propagation

time on local data paths. There is a limited amount of slack propagation time on the critical

paths and a circuit where time borrowing is abundantly realized, cannot benefit as much

from clock skew scheduling. It has been shown however, that even though time borrowing

and clock skew scheduling are battling effects (battling for the same resource), dramatically

shorter clock periods are achievable through the collaboration of both effects.

The zero clock skew, level-sensitive circuit implementation is analogous to the circuits

targeted in previous research presented in [8, 74]. Note that unlike the unit-delay-per-gate

approach used in [8, 74], the combinational logic delays are calculated by assuming different

delay times for each logic gate type and considering effects of fanout on the propagation

time. Thus, the obtained results are not directly comparable to the previously published

algorithm results. However, presuming the accuracy and correctness of both procedures, the

results listed for T noskew
L can be considered as the results that are calculated by the methods

presented in [8, 74].

Simultaneous consideration of time borrowing and clock skew scheduling in the proposed

procedure results in higher improvements (ITBCSS
L) compared to consideration of time bor-

rowing and constant clock skew (T noskew
L). Therefore, the procedure presented in this work

is superior to the methods presented in [8, 74] in terms of performance improvement.

51

4.6 OPTIMALITY OF THE LP FORMULATION

The operational constraints (latching [(4.1) and (4.2)], synchronization [(4.3) and (4.4)]

and propagation [(4.5) and (4.6)] constraints) accurately model the timing of level-sensitive

synchronous circuits. However, the synchronization and propagation constraints are non-

linear, leading to a non-linear programming (NLP) problem formulation. Remember from

Section 4.4 that the NLP formulation is illustrated for a simple circuit in Appendix A.

Typical NLP problems, especially for large-scale systems, are very hard to solve effi-

ciently. Consequently, alternative modeling and solution procedures to solve for the timing

constraints of level-sensitive circuits are of interest for researchers. As discussed in Sec-

tion 4.4, a novel linearization procedure that generates an LP formulation is presented in

this dissertation. Neither the iterative solution methods proposed in [8, 74] nor the LP model

problem presented in this work are equivalent to the original non-linear problem. These al-

ternative solution methods are proposed in order to generate results that are as close as

possible to the optimal solution in relatively shorter run times.

In this section, a Mixed-Integer (Linear) Programming (MIP) [19, 92] formulation that

is equivalent to the NLP formulation of the clock skew scheduling problem for level-sensitive

circuits is described. A MIP problem is a linear programming problem in which some or all

of the problem variables are constrained to be integers [19, 92]. If the integer variables are

further constrained to take only 0 or 1 values, these variables are called binary variables.

In general, a MIP problem can be solved optimally (granted enough time) or within a

close proximity of the optimal solution [19]. A typical MIP problem, although generally

harder to solve than an LP problem of similar size, is generally easier to solve than an NLP

problem of similar size [92]. In experimentation, the MIP problems generated for the clock

skew scheduling problem of level-sensitive ISCAS’89 benchmark circuits are solved optimally.

In order to generate the MIP formulation for the clock skew scheduling problem of level-

sensitive circuits, the non-linear synchronization and propagation constraints in Table 2

(page 40) are re-modeled using binary variables. Remember from Section 4.4.1 that the non-

linearity of the synchronization and propagation constraints are due to the max and min

functions. The transformations in Table 4 can be used to model a constraint with a max

52

Table 4: MIP modeling of a constraint with a max or a min function.

yi = max(xi, xj, . . . , xk) yi = min(xi, xj, . . . , xk)

yi ≥ xi yi ≤ xi

yi ≥ xj yi ≤ xj

...
...

yi ≥ xk yi ≤ xk

yi + (Bxi − 1)M ≤ xi yi + (1−Bxi)M ≥ xi

yi + (Bxj − 1)M ≤ xj yi + (1−Bxj)M ≥ xj

...
...

yi + (Bxk − 1)M ≤ xk yi + (1−Bxk)M ≥ xk

Bxi + Bxj + · · ·+ Bxk ≥ 1 Bxi + Bxj + · · ·+ Bxk ≥ 1

Bxi, Bxj, . . . , Bxk binary Bxi, Bxj, . . . , Bxk binary

function or a min function using a binary variable. In Table 4, yi, xi, xj and xk are continuous

variables. A binary variable Bxa is defined for each operand xa (xa ∈ {xi, xj, . . . , xk}) of the

max or min function. For operand xi of the max function shown on the left hand side of

Table 4, for instance, the binary variable Bxi is defined. The parameter M is a sufficiently

large constant, similar to its definition in Section 4.4.1.

For a non-linear constraint with the max function in the form [yi = max(xi, xj, . . . , xk)], yi

is constrained to be greater than or equal to each one of the operands. For the max function to

hold, equality condition must be true for at least one of these inequalities (multiple equalities

occur when two or more identical operands are the maximal value). Binary variables are

used in order to enforce the equality of at least one of these inequalities. The assignment

of 0 or 1 to the binary variables Bxa either constrain yi to be less than or equal to xa or

53

constrain yi to be strictly greater than xa. In particular for operand xi, when Bxi = 1, the

relevant constraints become the following:

yi ≥ xi (4.17)

yi ≤ xi (4.18)

which simplifies to the equality yi = xi through xi being the largest of the operands

xi, xj, . . . , xk. On the other hand, if Bxi = 0, the relevant constraints become the following:

yi ≥ xi (4.19)

yi −M ≤ xi (4.20)

which simplifies to yi > xi. The transformation for a non-linear constraint with the min

function in the form [yi = min(xi, xj, . . . , xk)] is similar, as shown on the right hand side of

Table 4.

Using the transformation procedures defined in Table 4 on the non-linear synchronization

and propagation constraints, the MIP problem is constructed for the clock skew scheduling

problem of level-sensitive circuits. The constraints from Table 2 that change in the MIP

problem are shown in Table 5.

The MIP formulations of the clock skew scheduling problem are derived for the ISCAS’89

benchmark circuits. The MIP formulations are equivalent to the NLP formulation, thus, the

results of the MIP problems are optimal for each benchmark circuit. These MIP problems

are solved in order to observe the potential deviations from optimality because of modeling

the NLP problem as an LP problem as described in Section 4.4.1. It is observed that all of

the ISCAS’89 suite of benchmark circuits are solved optimally with the LP model problem.

For small-sized circuits, the MIP formulation can be preferred due to its guarantee for

optimality. However, as the number of registers and paths grow, the solutions of the MIP

problems can suffer from very long run times (can be practically insolvable). In order to

compare the run times of the MIP problems with the run times of the LP problems, experi-

ments are performed on the ISCAS’89 benchmark circuits. Note that, the run times for the

LP problems are reported in Table 3 under column tskewed
L .

54

Table 5: MIP model clock skew scheduling problem of level-sensitive circuits.

MIP Model

min T

subject to

(iii) di ≥ ai + Di
DQm

di ≥ T − CL
W + Di

CQm

di + (Bai − 1)M ≤ ai + Di
DQm

di + (BTai − 1)M ≤ T − CL
W + Di

CQm

[Synchronization-Earliest time]

(iv) Di ≥ Ai + Di
DQM

Di ≥ T − CL
W + Di

CQM

Di + (BAi − 1)M ≤ Ai + Di
DQM

Di + (BTAi − 1)M ≤ T − CL
W + Di

CQM

[Synchronization-Latest time]

(v) af ≤ di1 + Di1f
Pm + Tskew(i1, f)− T

...

af ≤ din + Dinf
Pm + Tskew(in, f)− T

af + (1−Bdi1f)M ≥ di1 + Di1f
Pm + Tskew(i1, f)− T

...

af + (1−Bdinf)M ≥ din + Dinf
Pm + Tskew(in, f)− T

[Propagation-Earliest time]

(vi) Af ≥ Di1 + Di1f
PM + Tskew(i1, f)− T

...

Af ≥ Din + Dinf
PM + Tskew(in, f)− T

Af + (BDi1f − 1)M ≤ Di1 + Di1f
PM + Tskew(i1, f)− T

...

Af + (BDinf − 1)M ≤ Din + Dinf
PM + Tskew(in, f)− T

[Propagation-Latest time]

55

0

200

400

600

800

1000

1200

1400

s2
7

s2
08

.1

s2
98

s3

44

s3
49

s3

82

s3
86

s4

00

s4
20

.1

s4
44

s5

10

s5
26

s5

26
n

s6
41

s7

13

s8
20

s8

32

s8
38

.1

s9
38

s9

53

s9
67

s9

91

s1
19

6
s1

23
8

s1
42

3
s1

48
8

s1
49

4
s1

51
2

s3
27

1
s3

33
0

s3
38

4
s4

86
3

s5
37

8
s6

66
9

s9
23

4
s9

23
4.

s1

32
07

Se
co

nd
s

MIP

LP

Figure 20: Run times under 1500 seconds for the LP and MIP formulations.

In Figure 20, the ISCAS’89 benchmark circuits whose run times are below 1500 seconds

using CPLEX (v7.5) simplex solver on a 440MHz Sun Ultra-10 Workstation are shown.

For smaller circuits, both LP and MIP run times are below a few seconds, thus cannot be

visualized with the scale used in Figure 20. For s1423 and larger benchmark circuits, whose

number of paths exceed a thousand, a significant gap between the run times of the LP and

MIP problems is observed. For larger circuits, the MIP run times can get extremely worse

compared to the LP run times. For instance, the MIP problem run time for s38417 is

286496 seconds, while the LP problem run time is only 603 seconds.

The run time experiment results shown in Figure 20 demonstrate the advantages of using

the LP formulation versus the MIP formulation. It is demonstrated that the LP formulation

suggests a scalable alternative to the accurate MIP model. It is expected that the run times

for industry-size integrated circuit will benefit even more from the simplifications of the

LP formulation. The results of the LP formulation for the ISCAS’89 benchmark circuits

are empirically shown to be equal to the optimal results. These empirical results do not

56

guarantee the optimality of results for all circuits using the LP formulation. However, these

results suggest the general accuracy of the LP formulation for the clock skew scheduling

problem of level-sensitive circuits in leading to optimal or close to optimal results.

4.7 VERIFICATION AND INTERPRETATION OF RESULTS

Some edge-sensitive synchronous circuits are inoperable with level-sensitive latches as briefly

stated in Section 2.1. For such circuits, the clock skew scheduling problem is infeasible. The

presented timing analysis procedure detects the infeasibility of a such problem and provides

diagnostics messages. The slack and excess values associated with each constraint can be

examined in the sensitivity analysis output provided by an LP solver. Even though the

details will not be discussed here, careful interpretation of the sensitivity output leads to the

identification of the necessary modifications on the circuit topology to achieve the desired

operating frequency. The sensitivity analysis output of the LP solver CPLEX for the timing

analysis discussed in Appendices A and B is presented in Appendix C.

The interpretation of the timing schedule for a synchronous circuit presents a model to

investigate the effects of zero and non-zero clock skew scheduling on synchronous circuit

operation. In the rest of this section, the timing schedules generated for the synchronization

of the ISCAS’89 benchmark circuit s938 with zero and non-zero clock skew scheduling are

analyzed. The analyses include the data distributions for various parameters, which are

presented in Section 4.7.1. The verification of clock skew values is discussed in Section 4.7.2.

In Section 4.7.2, the skew constraints of Section 4.1.4 are used to derive lower and upper

bounds on clock skew.

4.7.1 Parameter Data Distributions

In Section 3.2, data propagation time Dif
P is defined as the period of time the data is processed

in the combinational logic block of a local data path Ri → Rf . Without loss of generality,

an empirical calculation method is used to calculate the data propagation times of each local

57

PropagationdelayDP in timeunits

N
um

be
ro

fp
at

hs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0

75

5
10
15
20
25
30
35
40
45
50
55
60
65
70

Figure 21: Data propagation times for s938 with 32 registers and 496 data paths.

data path of a circuit (a simple fan-out delay model is used as timing data is not included

in the ISCAS’89 benchmark circuits). The distribution of the calculated data propagation

times for the ISCAS’89 benchmark circuit s938 is illustrated in Figure 21. In this figure,

the height of each bar corresponds to the number of paths within a given delay range. For

example, there are nine (9) paths with delays between 4 and 5 time units.

Effective path delay [43] is defined as the time period between the departure of the data

signal from the initial register and the arrival of the same data signal at the final register.

The effective path delay of a local data path differs from data propagation delay, because

of the additional propagation time provided by clock skew and the time borrowing property

of level-sensitive synchronous circuits. Note that in level-sensitive synchronous circuits, the

effective path delay is defined within a permissible range instead of a fixed value, as the arrival

and departure times are indeterminate. The nominal effective path delay is determined when

the arrival and departure times are realized in run-time as certain values in the permissible

ranges [af , Af] and [di, Di], respectively. Specifically, the shortest effective path delay occurs

when the data signal departs at its latest time Di from the initial register Ri and arrives at

its earliest arrival time af at the final register Rf . The longest effective path delay is realized

58

Maximumeffectivepathdelayin timeunits

N
um

be
ro

fp
at

hs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0

5

10

15

20

25

30

35

40

45

50

55

60

Figure 22: Maximum effective path delays in data paths of s938 for zero clock skew.

by the earliest departure di of the data signal from Ri and latest arrival Af at Rf . Hence,

the interval for the effective path delay of level-sensitive synchronous circuits can be defined

as:

af −Di − Tskew(i, f) + T ≤ Effective path delay ≤ Af − di − Tskew(i, f) + T. (4.21)

In this work, the longest effective path delay is investigated in order to illustrate the

effects of clock skew and time borrowing on data propagation. The aim is to observe the

increase in the effective path delay of a circuit, which in turn leads to a higher operating

frequency, by replacement of flip-flops with latches and introducing non-zero clock skew.

Observe that the distribution of the propagation delays for the s938 benchmark circuit

presented in Figure 21 is exactly the same as the distribution of the effective path delay of

the same benchmark circuit s938, when operational with flip-flops (under zero clock skew).

In circuits with flip-flops, the effective path delays are determinate
[
Dif

P − Tskew(i, f)
]

as the

data departures occur at the active transition of the clock signal.

The distribution of the maximum effective path delays of the level-sensitive s938 circuit

with zero clock skew scheduling is shown in Figure 22. Note that the maximum effective path

59

delay is calculated by the expression [Af − di − Tskew(i, f) + T]. The target clock period is

T = 20.6. The height of each bar corresponds to the number of paths with an effective

path delay within a given range. It is observed by comparing Figures 21 and 22 that the

maximum effective path delays are increased in the level-sensitive circuit, as well as providing

a smaller minimum clock period
(
T noskew

FF = 24.4 v.s. T noskew
L = 20.6

)
. The increase in

the effective path delays is due to time borrowing. Accumulation of effective path delay

values slightly below or above the minimum operating clock period T = 20.6 is visible.

Note that the effective path delay having larger values than the minimum clock period is a

sufficient but not a necessary condition for time borrowing. Thus, local data paths where

the effective path delay is calculated to be smaller than T = 20.6 may still benefit from time

borrowing. Furthermore, it can be observed that certain data paths in the circuit benefit

more from time borrowing, realizing an effective path delay close to the theoretical limit of[
T + CL

W − Tskew(i, f)
]
.

4.7.2 Skew Analysis

As discussed throughout this chapter, non-zero clock skew scheduling in synchronous circuits

permits smaller clock periods. Note that in presence of non-zero clock skew, the effective path

delay for the data signal over a data path most likely gets smaller compared to its value

observed in zero clock skew scheduling. This fact is directed by (4.21) (T gets smaller).

However, as the minimum clock period T gets smaller, the percentage of the data paths, on

which the effective path delay exceeds the minimum clock period, significantly increases (see

Figure 23). The target clock period is T = 9.09. The height of each bar corresponds to the

number of paths with an effective path delay within a given range. The effect of clock skew

on improving the minimum clock period is visible by comparing the histograms presented in

Figures 22 and 23.

The skew constraints [(4.7), (4.8) and (4.9)] introduced in Section 4.1.4 can be included

in the LP model (Table 2) in order to ensure the correctness of the solution. The skew

constraints not only constitute an extra measure to check for the feasibility of the solution

but are also used in collecting statistical data on clock skew values. Interpretation of (4.11)

60

Maximumeffectivepathdelayin timeunits

N
um

be
ro

fp
at

hs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0

5

10

15

20

25

30

35

40

45

50

55

Figure 23: Maximum effective path delays for s938 for non-zero clock skew.

and (4.13) lead to the upper and lower bound definitions for the clock skew. In order to

generate an expression for the upper bound, (4.11) rewritten as:

Di + Dif
PM − T + Tskew(i, f) ≤ T − Sf . (4.22)

In (4.22), the earliest possible time is assigned to Di in order to realize the upper bound on

clock skew. The earliest possible time that a data signal departs from a latch is DCQ later

than the leading edge of the clock signal,
(
T − CL

W + DCQ

)
. Reordering the expression gives

the upper bound on clock skew:

Tskew(i, f) ≤ T + CL
W −Dif

PM −DCQ − Sf . (4.23)

The lower bound on the clock skew is derived similarly from (4.13), which leads to:

af + Dif
Pm ≥ T − Tskew(i, f) + Hf . (4.24)

In order to derive the lower bound, the data arrival time at Rf must be considered to occur

at its latest possible time. The latest data arrival time is the setup time Sf earlier than the

trailing edge of the clock signal, T − Sf . Thus, the lower bound on the clock skew is:

Tskew(i, f) ≥ T − T −Dif
Pm + Sf + Hf . (4.25)

61

Clockskew Tskew(i, f) in timeunits

N
um

be
ro

fp
at

hs

−20 −19 −18 −17 −16 −15 −14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70

Figure 24: Distribution of the clock skew values of the non-zero clock skew case for s938.

Combining (4.23) and (4.25), the theoretical limits on clock skew is expressed as follows:

−Dif
Pm + Sf + Hf ≤ Tskew(i, f) ≤ T + CL

W −Dif
PM −DCQ − Sf . (4.26)

Recall that in experimentation, the parameters DDQ, DCQ, Sf , Hf are considered zero

and 50% duty cycle is selected for the single-phase synchronization clock signal. In order to

evaluate the upper and lower bounds on clock skew in this simplified case, the parameters

are substituted in (4.26):

−Dif
Pm ≤ Tskew(i, f) ≤ 1.5T −Dif

PM . (4.27)

Specifically on the ISCAS’89 benchmark circuit s938, the clock skew bounds are verified

using the experimental values shown in Figure 21. For the benchmark circuit s938 with a

minimum clock period of 9.09, the minimum and maximum propagation delays are calculated

to be 5 and 24.4, respectively. Thus, the value set for the clock skew variable on the data

paths of s938 is constrained by −24.4 ≤ Tskew(i, f) ≤ 8.64.

The distribution of the clock skew values of s938, when operable with a minimum clock

period of 9.09, is presented in Figure 24. The target clock period is T = 9.09. The height of

62

Clockdelayti in timeunits

N
um

be
ro

fl
at

ch
es

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 25: Distribution of the clock delay values of the non-zero clock skew case for s938.

each bar corresponds to the number of paths formed by sequentially adjacent pair of registers

which have a clock skew within the given range. The calculated clock skew values are within

the derived limits, most of which are negative. Negative clock skew between registers help

improve the minimum clock period of the synchronous circuit due to the additional time it

provides for data signal propagation. The data paths, on which positive skew is recorded,

most likely occur due to two reasons. The first reason is the presence of data path loops

within the circuit. The second reason are the—faster—paths which provide extra time for

neighboring critical paths.

The distribution of the clock delays to each register presented in Figure 25. The target

clock period is T = 9.09. The height of each bar corresponds to the number of latches

being driven by a clock signal with a time delay within the given range.The distribution

is significantly wide-spread, ranging from 0 to 19 (time units), where the minimum clock

period is T = 9.09. If the clock tree network of the synchronous circuit is implemented to

accommodate for these nominal clock delays, operation at the target minimum clock period

is achieved.

63

4.8 FURTHER CONSIDERATIONS

The presented LP model formulation is demonstrated to be effective for the static timing

analysis of synchronous circuits. In the analyses, classical circuit implementations are inves-

tigated, such that, no additional timing dependencies between the registers of a synchronous

circuit, other than the dependencies leading to the predefined timing constraints, are pre-

scribed. As application-specific integrated circuit (ASIC) design becomes wide-spread, the

need for a timing analysis model, which can accommodate for application-specific constraints,

becomes essential. Unlike the previous work in [8, 74], the presented LP formulation is highly

amenable to such modifications, constituting a well-defined timing analysis framework.

The following describes a potential problem in the timing analysis of SOC designs. In

an ASIC/SOC implementation, the clock signal distribution between different IP blocks (or

clock domains) are subject to consideration as well as the distribution of the clock signal

within an IP block. The clock delays to the I/O registers of a synchronous IP block are

less flexible compared to the clock delays to the internal registers. It is likely that the

timing analysis will be performed on individual IP blocks by the vendors, without a priori

information of the application environment. Therefore, timing violations may occur on

outgoing (non-local, intra-block) data paths, as the clock skew on these data paths will be

unaccounted for in the initial computation. A simple solution to avoid timing violations

between the IP blocks is to equalize all I/O register clock delay values. This situation is

illustrated on a sample IP block in Figure 26. In the presented framework, additional timing

constraints enforcing the equality of the clock signal delays can easily be integrated into the

constraints set of the LP model problem presented in Table 2. Such modification is applied

to the formulation and the resulting problem is experimented on the ISCAS’89 benchmark

circuits. The results are presented in Table 3, under the columns T r
L and Ir

L for the minimum

clock period and improvement in minimum clock period (compared to zero clock skew, edge-

sensitive circuit), respectively. The restriction of the clock delays of the I/O registers leads to

24% improvement on average, down from the 27% average improvement for the unrestricted

case.

64

Intellectual Property (IP)

R1

Clock Pin

Clock Source

R2

R3

R4

R5

R6

Figure 26: Additional timing requirements of an IP block.

Another commonly encountered design constraint is to implement a predetermined—

possibly non-optimal—clock tree network for the synchronous circuit. If the clock tree

topology is predetermined, the minimum clock period problem must be solved with known

clock delays to each register. The LP model presented in Table 2 can easily be modified to

account for such changes, by assigning the given clock signal delays to the respective clock

delay variables.

65

4.9 SUMMARY

The timing analysis and optimization of synchronous circuits are subject to non-zero clock

skew (intentional or not) and other effects of process parameter variations. In this chapter,

novel design and timing analysis procedures are presented, where the application of clock

skew scheduling is considered simultaneously with time borrowing. The simultaneous appli-

cation is used to improve the performance of level-sensitive synchronous circuits in permitting

shorter clock periods. The described procedure is the first to integrate non-zero clock skew

scheduling in an automated fashion into the design and analysis level-sensitive circuits. The

procedure is based on a stand-alone LP model formulation (to be solved by any standard

LP solver) which constitutes a generic automated framework for the design and analysis of

level-sensitive synchronous circuits.

The optimality of the results generated by the novel LP model is empirically confirmed

against the optimal results of a precise MIP model. The LP model formulation is shown

to be highly generic and amenable to accommodate application-specific timing constraints.

Experiments on ISCAS’89 benchmark circuits demonstrate improvements of 27% shorter

clock periods on average.

The work presented in this chapter has been published in [75, 77, 78, 81]. In [75, 77, 78]

and this chapter, the synchronization of level-sensitive circuits with a single-phase clock is

considered due to its popularity and the simplicity of accompanying timing analysis. The

proposed formulation (Section 4.3) and solution (Section 4.4) procedures can be modified

such that these procedures are applied to multi-phase synchronized circuits. Enhancements

on the formulation of the timing analysis of synchronous circuits for multi-phase synchro-

nization are discussed in Chapter 6.

66

5.0 CLOCK SKEW SCHEDULING WITH DELAY INSERTION

In mainstream digital integrated circuit design flow, delay insertion is used as a post-

processing step in order to solve the short-path (hold time) timing violations of synchronous

circuits [65]. The drawbacks of delay insertion, such as increased circuit area and power

dissipation, are usually disregarded in favor of achieving a feasible timing schedule.

In this chapter, a delay insertion algorithm that improves the efficiency and results of

clock skew scheduling is presented. By systematic delay insertion performed simultaneously

with clock skew scheduling, a higher operating speed or improved reliability is achieved. It

is known that the minimum clock period of a synchronous circuit achievable through clock

skew scheduling is limited by the uncertainties of the data propagation times on local data

paths [21] and the total data propagation times on data path loops [56]. It is shown for

the first time in this work that the reconvergent local data paths introduce an additional

theoretical limit on the minimum clock period of a synchronous circuit achievable through

clock skew scheduling. This limitation caused by reconvergent paths is theoretically derived

and a novel delay insertion method is defined in order to mitigate this limitation. In the rest

of this chapter, it is assumed that reconvergent paths are the dominant limiting factor on

the minimum clock period of a synchronous circuit achievable through clock skew scheduling

over other limiting factors of delay uncertainty and data path cycles. This assumption does

not invalidate the generality of the work, it is adopted in order to simply the presentation

of the described limitation.

The limitation on the minimum clock period caused by reconvergent paths is derived for

both edge-triggered and level-sensitive circuit implementations. It is shown that through

systematic delay insertion, the limitation on the minimum clock period achievable through

clock skew scheduling can be mitigated. For a scalable, fully-automated application, the

67

proposed delay insertion method is implemented as a Linear Programming (LP) problem.

A topological analysis of a circuit (to identify the reconvergent paths) is not necessary in

the presented LP problem, as the problem constraints are generated on the individual local

data paths. The LP problem models the traditional clock period minimization problem

of synchronous circuits through clock skew scheduling simultaneously with calculating the

optimal delay values to be inserted on each local data path.

Note that a delay insertion method targeting the improvement of the operating frequency

of synchronous circuits has previously been offered in [68]. This method and its variants

are used in mainstream digital circuit design, where the circuits are designed to meet the

register setup time requirements, and the hold time requirements are satisfied post-analysis

by inserting appropriate delays. The delay insertion method presented in the chapter has

certain similarities with the method offered in [68], but is fundamentally different in the

following aspects:

1. The study in [68] is proposed for systems where the clock skews are pre-computed (post-

clock tree synthesis). This study is proposed for systems where the optimal clock skews

need to be computed (pre-clock tree synthesis),

2. The study in [68] is offered to mitigate short path constraint violations on local data

paths. This study is proposed to mitigate both short and long path constraint violations

that can occur with clock skew scheduling,

3. The study in [68] is offered to fix the timing violations on each local data path, where

the timing of one local data path is independent from its neighboring local data paths

(due to pre-computed clock skew). In this study, clock skew scheduling is considered,

which leads to the interdependence of the timing of adjacent local data paths (due to the

computation of optimal clock skew). Consequently, the topological orientation of local

data paths (such as reconvergent paths) are of importance for this study. On a larger

scale, the study in [68] is a delay insertion method at the combinational block level, while

this study is a delay insertion method at the sequential block level of design hierarchy.

This chapter is organized as follows. In Section 5.1, the clock skew scheduling algorithm

used in this chapter for edge-triggered circuits is reviewed. In Section 5.2, the optimal clock

68

skew scheduling results generated by the clock skew scheduling algorithms are analyzed. In

Section 5.3, the proposed delay insertion method to improve the minimum clock period is

introduced. In Section 5.4, main practical concerns in the modeling and application of the

delay insertion method are discussed. The experimental results for the application of the

proposed method on benchmark circuits are presented in Section 5.5. The delay insertion

method is summarized in Section 5.6.

5.1 CLOCK SKEW SCHEDULING METHODS

Two clock skew scheduling methods—one for edge-triggered and one for level-sensitive

circuits—are examined in the context of the proposed delay insertion method. The se-

lected clock skew scheduling method for edge-triggered circuits is shown in Table 6. This

simple and effective linear programming (LP) problem for the clock skew scheduling of edge-

triggered circuits is introduced in [21]. In the problem constraints, the permissible range [43]

for the clock skew values on each local data path are implied. The objective of the algorithm

is to minimize the clock period T of a circuit, given the set of permissible range constraints.

For the clock skew scheduling of level-sensitive circuits, the method presented in Table 2 of

Chapter 4 (on page 40) is selected.

Both clock skew scheduling methods presented in Table 2 and Table 6 are used as the

frameworks of formulation for the proposed delay insertion method. The modifications to

Table 6: LP model clock skew scheduling problem of edge-triggered circuits.

LP Model [21]

min T

s.t. Tskew(i, f) ≤ T −Dif
PM −Di

CQM

Tskew(i, f) ≥ −Dif
Pm −Di

CQm + Hf

69

these two methods necessary to incorporate the delay insertion method are discussed in

Section 5.3.

5.2 DELAY INSERTION METHOD

When clock skew scheduling is applied to a synchronous circuit, a set of optimal values

that satisfy the objective function (clock period minimization is considered in this work) are

assigned to the clock delays at each register. Certain data paths become critical timing paths

because of the distribution of these optimal clock delays. In this section, the consequences

of criticality to the short and long path constraints of a reconvergent path are analyzed. It

is demonstrated that when the short and long path constraints of a reconvergent path are

critical, the minimum clock period can be improved via delay insertion. Note that criticality

of the constraints of a reconvergent path adheres to the preliminary assumption that the

limitation caused by this reconvergent path system is dominant over other limitations. For

circuits where limitations caused by other factors are dominant, improvement through delay

insertion is not possible. In experimentation, such circuits are reported to be one of the two

cases where the delay insertion method is inapplicable (e.g. delay insertion method is not

beneficial).

A reconvergent data path system is defined by two or more series of local data paths

(reconvergent paths) with a common source register and a common sink register. The source

and sink registers are called the divergent register Rd and the convergent register Rc, re-

spectively. Let pd{i1...in}c define a reconvergent path starting from register Rd, continuing

through the intermediate registers {Ri1 , . . . , Rin} and ending at register Rc. The number of

intermediate registers rd{i1...in}c = n is a non-negative integer number (n ∈ Z+ ∪ {0}) and

the path is acyclic [∀in, im : Rd 6= Rin , Rin 6= Rim , Rd 6= Rc and Rin 6= Rc]. In the sample

circuit modeled in Figure 4 (page 13), for instance, there are two reconvergent paths between

v1 and v3, p123 and p13, where the numbers of intermediate registers for the two reconvergent

paths of this circuit are r123 = 1 and r13 = 0, respectively. The path delay PDd{i1...in}c

of a reconvergent path pd{i1...in}c is defined as the total data propagation time between the

70

divergent and convergent registers Rd and Rc, respectively, over the intermediate registers

{Ri1 , . . . , Rin}. The minimum and maximum path delays of this reconvergent data path are

given by PD
d{i1...in}c
m and PD

d{i1...in}c
M , respectively. The system delay SDdc of a reconvergent

data path system between divergent and convergent registers Rd and Rc is defined by the

conjuncture of all the (reconvergent) path delays between registers Rd and Rc. The maxi-

mum system delay SDdc
M of this reconvergent data path system is defined by the largest of

the maximum path delays between Rd and Rc. Similarly, the minimum system delay SDdc
m

is defined by the smallest of the minimum path delays between Rd and Rc. If there are k

number of reconvergent paths between Rd and Rc, labeled pA, pB, . . . , pK , then:

SDdc
m = min (PDpA

m , PDpB
m , . . . , PDpK

m) , (5.1)

SDdc
M = max (PDpA

M , PDpB

M , . . . , PDpK

M) . (5.2)

5.2.1 Example of Reconvergence

A simple reconvergent data path system formed by two reconvergent local data paths sharing

the divergent and convergent registers R1 and R2, respectively, is shown in Figure 27. Note

that as a special case, subscripts a and b are used to identify the two reconvergent local

data paths p12a and p12b . Registers R1 and R2 are the divergent and convergent registers,

respectively. The two reconvergent paths p12a and p12b form the reconvergent data path

R1 R2

[D12a
Pm,D12a

PM] = [PD12a
m ,PD12a

M] = [1.0,1.2]

→ p12a

[D12b
Pm,D12b

PM] = [PD12b
m ,PD12b

M] = [0.6,0.7]

→ p12b

Figure 27: A simple reconvergent data path system.

71

system. For this simple reconvergent data path system, the path delay of each reconvergent

path is the data propagation delay of the respective local data paths,
(
PD12a

m = D12a
Pm

= 1.0,

PD12a
M = D12a

PM = 1.2
)

and
(
PD12b

m = D12b
Pm

= 0.6, PD12b
M = D12b

PM = 0.7
)
. The minimum and

maximum system delays are driven by the reconvergent data paths p12b and p12a , respectively:

SD12
m = min (PD12a

m , PD12b
m) = PD12b

m = 0.6, (5.3)

SD12
M = max

(
PD12a

M , PD12b
M

)
= PD12a

M = 1.2. (5.4)

Two circuits with the topology presented in Figure 27 are analyzed in Sections 5.2.2 and 5.2.3–

the edge-triggered circuit SFF and the level-sensitive circuit SL, respectively.

5.2.2 Reconvergence in an Edge-Triggered Circuit

For edge triggered circuits, the data signals depart the registers clock-to-output delay (DCQ)

after the latching edge of the clock signal. Consequently in SFF , the signal Q1 (recall

Figure 2 on page 8) departs R1 clock-to-output delay DCQ time after the positive clock edge

and propagates along the reconvergent paths. In order to satisfy the short path constraints,

the arrival of data signals X2a and X2b
at R2 must occur H2 later than the positive edge of

the previous clock cycle at R2. Similarly, in order to satisfy the long path constraints, the

arrivals must occur S2 earlier that the positive edge of the current clock cycle at R2:

H2 ≤ a2 ≤ A2 ≤ T − S2. (5.5)

Next, suppose clock skew scheduling for clock period minimization is applied to an ar-

bitrary edge-triggered circuit which involves a reconvergent data path system. After clock

skew scheduling, if at least one of the reconvergent paths becomes a critical timing path,

the earliest and latest arrival times of the data signal at the critical convergent node are at

marginal values. Accordingly for SFF , the arrival times a2 and A2 satisfy

H2 = a2 ≤ A2 = Tmin − S2. (5.6)

The constraints in (5.6) are illustrated in Figure 28. C1 and C2 are the clock signals syn-

72

D1
CQ

H2 S2

Tmin

C1

C2

PD12b
m

(
= SD12

m

)
PD12b

M

PD12a
m PD12a

M

(
= SD12

M

)
a2 A2

Figure 28: Timing of the edge-sensitive reconvergent system in Figure 27 after CSS.

chronizing registers R1 and R2, respectively. Also illustrated on Figure 28 is the separation

between A2 + S2 and a2 −H2 defining the minimum clock period:

Tmin = A2 + S2 − (a2 −H2). (5.7)

Note that the data arrival times at R2 are given by the propagation constraints (4.5), (4.6):

a2 = min
(
d1 + D12a

Pm − Tmin, d1 + D12b
Pm − Tmin

)
= d1 + min

(
D12a

Pm, D12b
Pm

)
− Tmin,(5.8)

A2 = max
(
D1 + D12a

PM − Tmin, D1 + D12b
PM − Tmin

)
= D1 + max

(
D12a

PM , D12b
PM

)
− Tmin.(5.9)

Replacing the propagation constraints in (5.7) yields

Tmin = D1 + max
(
D12a

PM , D12b
PM

)
− Tmin + S2−

[
d1 + min

(
D12a

Pm, D12b
Pm

)
− Tmin + H2

]
. (5.10)

Eq. (5.10) is simplified to

Tmin = max
(
PD12a

M , PD12b
M

)
−min

(
PD12a

m , PD12b
m

)
+ S2 + H2. (5.11)

Following from (5.1) and (5.2), (5.11) is identical to

Tmin = SD12
M − SD12

m + S2 + H2. (5.12)

73

Substituting the numerical values and assuming zero internal register delays DCQ = DDQ =

S = H = 0, the minimum clock period Tmin of SFF after clock skew scheduling is computed

Tmin = 0.6 time units.

Consider (5.12), showing the dependence of Tmin on the algebraic difference between the

maximum system delay and the minimum system delay between Rd and Rc (summed with

the internal register delays Sf and Hf). The delay insertion method is proposed to modify

these maximum and minimum system delays between Rd and Rc. The modification, when

applicable, decreases the algebraic difference in (5.12). In SFF , for instance, the minimum

system delay between Rd and Rc is determined by PD12b
m of path p12b . By inserting a delay

element of 0.1 time units on p12b , the minimum and maximum path delays of this path

are changed to D12b
Pm = 0.7 and D12b

PM = 0.8, respectively. More importantly, the minimum

system delay between Rd and Rc is still determined by PD12b
m of path p12b , which is now 0.7

instead of the original 0.6 time units. Both before and after delay insertion, the maximum

system delay between Rd and Rc is determined by PD12a
M of path p12a , which is a constant 1.2

time units. Therefore, the algebraic difference between the maximum and minimum system

delays between Rd and Rc is improved from (1.2− 0.6 = 0.6) to (1.2− 0.7 = 0.5) time units.

This delay insertion procedure for the circuit shown in Figure 27 is illustrated in Figure 29.

The black circle in Figure 29 represents a delay element of [0.1,0.2] that is inserted on the

reconvergent path p12b .

R1 R2

[PD12a
m ,PD12a

M] = [1.0,1.2]

→ p12a

[PD12b
m ,PD12b

M] = [0.6,0.7]+ [0.1,0.2] = [0.7,0.9]

→ p12b

Figure 29: The simple reconvergent system in Figure 27 after delay insertion.

74

Note that for SFF , inserting a delay element with a value in range [0.4,0.5] on p12b gives

the minimum possible algebraic difference in (5.12), leading to the minimum clock period

obtainable through delay insertion T ∗
min. For SFF , T ∗

min evaluates to T ∗
min = 1.2− 1.0 = 0.2.

It is shown that this minimum clock period obtainable through delay insertion depends on

the maximum of the algebraic differences between the maximum and minimum path delays

of each reconvergent path (after delay insertion).

Proposition: Let there be k number of reconvergent paths between Rd and Rc, labeled

pA, pB, . . . , pK . The minimum possible algebraic difference between the maximum and min-

imum path delays of each reconvergent path between Rd and Rc after delay insertion is the

minimum clock period T ∗
min obtainable through delay insertion.

Let the minimum and maximum system delays define the real numbers interval Λ, such

that:

Λ = [SDdc
m , SDdc

M] (5.13)

By definition, the minimum possible algebraic difference between the maximum and min-

imum path delays of each reconvergent path after delay insertion (defining the minimum

possible clock period) is the minimum length of interval Λ (after delay insertion).

In order to compute the minimum length |Λ| of interval Λ achievable through delay

insertion, the difference [max(Λ)−min(Λ)] is computed. Recalling (5.1) and (5.2), the

following is derived:

min(Λ) = SDdc
m = min (PDpA

m , PDpB
m , . . . , PDpK

m) , (5.14)

max(Λ) = SDdc
M = max (PDpA

M , PDpB

M , . . . , PDpK

M) . (5.15)

Let the real number delay intervals formed by the minimum and maximum delay values of

the paths pA, pB, . . . , pK be represented by A, B, . . . ,K, respectively. In other words, a delay

interval L, associated with the path pL ∈ {pA, pB, . . . , pK} is formed by L = [PDpL
m , PDpL

M].

One of the following possibilities defining the expression [|Λ| = max(Λ)−min(Λ)] must hold:

P1. A delay interval M ∈ {A, . . . ,K} determines both the minimum min(Λ) and maximum

max(Λ) values of the interval Λ. Then, Λ = M and |Λ| = |M | = max(Λ) −min(Λ) =

max(M)−min(M),

75

P2. Otherwise, two non-identical delay intervals determine the minimum and maximum val-

ues of the interval Λ. Then, ∀L ∈ {A, . . . ,K}: |Λ| = max(Λ) − min(Λ) > max(L) −

min(L).

For systems satisfying (P1), the minimum length for Λ is already given by |Λ| = |M |.

The minimum interval length, thus the minimum clock period, cannot be changed by delay

insertion. For systems satisfying (P2), delay insertion method is used to modify one or

more of the delay intervals in Λ in order to promote one of the delay intervals to become

the interval M . In other words, systems satisfying (P2) are converted to systems satisfying

(P1) through delay insertion. Delay insertion is performed into the logic network, thus, the

systems delays and the interval Λ are modified with delay insertion. Note that both the

minimum and maximum system delays can be modified with delay insertion. Therefore, it

is not possible to predetermine which reconvergent path will be the determining path for the

interval Λ after delay insertion.

In case (i) of Figure 30, a sample system satisfying (P1) is illustrated, where the delay

interval D (associated with path pD) determines the minimum length for Λ. No modification

is necessary for such systems, as the minimum possible length for Λ is already observed.

In cases (ii) and (iii) of Figure 30, the application of the delay insertion method to a

sample system satisfying (P2) is illustrated. Note that in case (ii), the minimum value in the

Λ interval is determined identically by delay intervals C and D [min(Λ) = PDpC
m = PDpD

m],

while the maximum value is determined by delay interval B [max(Λ) = PDpB

M]. Delay inser-

tion on a reconvergent path is similar to adding an offset to the interval, while preserving the

interval length. If the optimal values of delay elements are inserted on each path, the min-

imum possible |Λ| is achieved by asserting that the biggest delay interval M ∈ {A, . . . ,K}

becomes the interval Λ. In the modification of the sample system shown in cases (ii) and

(iii) of Figure 30, the delay interval B is promoted to become this biggest delay interval M

such that both min(Λ) and max(Λ) are determined by delay interval B (i.e. delay interval

B becomes Λ). The intervals before and after delay insertion on the sample system are

demonstrated in cases (ii) and (iii) of Figure 30, respectively.

There are two important points to note here. First, the solution set of the inserted delay

values is not unique (remember similar discussions in Sections 4.3.2 and 4.5.1). For instance,

76

K

D

C

B

A

Λ

DelayIntervals

Delay0 2 14

(ii) |Λ|= max(B)−min(C) = 12

K

D

C

B

A

Λ

DelayIntervals

Delay0 7 16

(iii) |Λ|= |B|= max(B)−min(B) = 9 < 12

K

D

C

B

A

Λ

DelayIntervals

Delay0 3 12

(i) |Λ|= |D|= max(D)−min(D) = 9

K

D

C

B

A

Λ

UD

UC

UB

UA

DelayIntervals

Delay0 7 18

(iv) |Λ|= |B|= max(B)−min(B) = 11< 12

Figure 30: Two reconvergent data path systems satisfying (P1) and (P2), respectively.

the delay inserted on the path defining delay interval C in case (iii) of Figure 30 can be

any value between 6 and 12 time units (|C| = 3) to satisfy the computed minimum interval.

Similarly, the delay values inserted on all paths can simultaneously be increased by any

identical amount (e.g. x time units) to generate an alternative solution. This non-unique

solution set property provides a certain range of safety against any inherent uncertainty or

unavailability of exact values of the delay elements.

The second important point to note is that after delay insertion, the interval lengths are

preserved only if the inserted delay elements have no delay uncertainty. In demonstrating

case (ii) of Figure 30, delay values with no uncertainties are considered in order to sim-

plify the presentation of the delay insertion method. In reality, delay elements have delay

uncertainties just like any other circuit component. These delay uncertainties of the delay

77

elements are accrued over the associated delay intervals. Let the delay uncertainty of the

delay element inserted on path L be represented by UL. The application of delay insertion

to the sample system presented in case (ii) of Figure 30, where the delay uncertainties of the

delay elements are accounted for, is presented in case (iv) of Figure 30. Note that due to the

differences in the accrued delay uncertainties for each delay interval, the interval determin-

ing the minimum possible length for interval Λ can be different compared to the ideal case

presented in case (iii). Incidentally, for cases (iii) and (iv) of Figure 30, the delay intervals

determining the minimum possible length for Λ are B and A, respectively. Also, in a worst

case scenario, the accrued delay intervals can end up being larger compared to the minimum

length for Λ presented in case (ii). In the problem formulation presented later in Section 5.3,

delay elements are realistically modeled with uncertainties.

Reflecting the proposition on a general reconvergent circuit, there are two possibilities

in computing the minimum algebraic difference of (5.12):

P1*. The minimum and maximum system delays of the reconvergent data path system between

Rd and Rc are determined by the same reconvergent path,

P2*. The minimum and maximum system delays of the reconvergent data path system between

Rd and Rc are determined by two non-identical reconvergent paths.

For systems satisfying P1*, the minimum algebraic difference is already achieved. For sys-

tems satisfying P2*, delay insertion is used. By inserting delays in one or more of the

reconvergent paths, the path with the largest difference between its maximum and minimum

path delays after delay insertion becomes the determinant path for the minimum clock pe-

riod T ∗
min obtainable through delay insertion. Therefore, the minimum clock period of SFF

with clock skew scheduling and delay insertion is

T ∗
min = max

∀α∈{a,b}

(
PD12α

M − PD12α
m + U12α

)
+ S2 + H2. (5.16)

Assuming zero delay uncertainty and substituting the numerical values, the minimum clock

period T ∗
min of SFF after clock skew scheduling with delay insertion method is T ∗

min = 1.2−

1.0 = 0.2. The improvement achieved through delay insertion over circuits with clock skew

scheduling is computed with the formula [(Tmin − T ∗
min)/Tmin]100. Substituting the values,

the improvement is computed as [(0.6− 0.2)/0.6]100 = 66.7%.

78

D1
CQ

H2 S2

Tmin

C1

C2

PD12b
m

(
= SD12

m

)
PD12b

M

PD12a
m PD12a

M

(
= SD12

M

)
a2 A2

Figure 31: Timing of the simple level-sensitive reconvergent system in Figure 27 after CSS.

The computation of the amount of delays to be inserted on each path is integrated into

the clock skew scheduling algorithm. For simplicity, continuous delay models are considered

in here. The revised clock skew scheduling algorithm and initial insight for a general analysis

using discrete delay models are presented in Sections 5.3 and 5.4.

5.2.3 Reconvergence in a Level-Sensitive Circuit

For level-sensitive circuits, results similar to an edge-triggered circuit are obtained despite the

significant changes in circuit operation. The timing constraints are similar to the constraints

for the edge-triggered circuit:

H2 ≤ a2 ≤ A2 ≤ Tmin − S2. (5.17)

When clock skew scheduling is applied to SL, the earliest and latest arrival times at R2

satisfy

H2 = a2 ≤ A2 = Tmin − S2, (5.18)

as illustrated in Figure 31. Using the same derivation as (5.7) and (5.10) and assuming(
D1

CQ = D1
DQ, d1 = D1

)
for practical reasons:

Tmin = max
(
PD12a

M , PD12b
M

)
−min

(
PD12a

m , PD12b
m

)
+ S2 + H2. (5.19)

79

Substituting the numerical values and assuming zero internal register delays, the minimum

clock period Tmin of SL after clock skew scheduling is Tmin = 0.6.

The delay insertion method can also be used on level-sensitive circuits in order to improve

the minimum clock period. The minimum clock period of SL with clock skew scheduling and

delay insertion is given by

T ∗
min = max

∀α∈{a,b}

(
PD12α

M − PD12α
m + U12α

)
+ S2 + H2. (5.20)

The minimum clock period T ∗
min of SL after clock skew scheduling and delay insertion is

computed as T ∗
min = 1.2 − 1.0 = 0.2, leading to an improvement of 66.7% over circuit with

clock skew scheduling. The revised clock skew scheduling algorithm for level-sensitive circuits

is presented in Section 5.3.

Note that the earliest and latest data departure times d1 and D1, respectively, from a

register R1 can be non-identical in a level-sensitive circuit. Figure 31 illustrates one such

case, where d1 and D1 occur at the leading and trailing edges of the clock signal, respectively.

In such cases, the formulae in (5.19) and (5.20) do not hold true, however the minimum clock

period remains directly proportional to the algebraic difference between the maximum and

minimum path delays between R1 and R2. The delay insertion algorithm is fully applicable

to all level-sensitive circuits, as the referred algebraic difference can ultimately be modified

with delay insertion leading to improvements in the minimum clock period.

5.2.4 General Reconvergent Data Path Systems

The generalized case for a reconvergent data path system is presented in Figure 32. The

edge-triggered and level-sensitive circuits are analyzed on the same circuit graph. Let there

be k number of reconvergent paths between Rd and Rc, labeled pA, pB, . . . , pK . The gen-

eralized system contains rd{i1...im}c = m and rd{j1...jn}c = n intermediate registers on two

of its reconvergent paths, pI and pJ , respectively (pI , pJ ∈ {pA, pB, . . . , pK}). Assume that

the minimum and maximum system delays between Rd and Rc are determined by paths

pd{j1...jn}c = pJ and pd{i1...im}c = pI , respectively. Note that, if m 6= n, the number of clock

cycles for data propagation along the paths are different. After clock skew scheduling is

80

Rd Rc

Ri1 Rim

Rj1 Rjn

→ →

→ →

[
PDd{ j1... jn}c

m ,PDd{ j1... jn}c
M

]pd{ j1... jn}c

[
PDd{i1...im}c

m ,PDd{i1...im}c
M

]
pd{i1...im}c

Figure 32: A generalized reconvergent data path system.

applied, the earliest and latest data arrival times at the convergent node with respect to the

global zero time reference are

acglobal
= tc + nTmin + Hc (5.21)

Acglobal
= tc + (m + 1)Tmin − Sc. (5.22)

Following from (5.7), the minimum clock period after clock skew scheduling is bounded by

|m− n + 1|Tmin = Acglobal
+ Sc − (acglobal

−Hc), (5.23)

which leads to

Tmin =
PD

d{i1...im}c
M − PD

d{j1...jn}c
m + Sc + Hc

|m− n + 1|
=

SDdc
M − SDdc

m + Sc + Hc

|m− n + 1|
. (5.24)

81

Dd
CQ

Hc Sc

|m−n+1|Tmin

Cd

Cc

PDd{ j1... jn}c
m

(
= SDdc

m

)
PDd{ j1... jn}c

M

PDd{i1...im}c
m PDd{i1...im}c

M

(
= SDdc

M

)
ac Ac

Figure 33: Timing of the edge-triggered reconvergent system with m=3 and n=2.

Dd
CQ

Hc Sc

|m−n+1|Tmin

Cd

Cc

PDd{ j1... jn}c
m

(
= SDdc

m

)
PDd{ j1... jn}c

M
PDd{i1...im}c

m

PDd{i1...im}c
M

(
= SDdc

M

)
ac Ac

Figure 34: Timing of the level-sensitive reconvergent system with m=3 and n=2.

The identical lower bounds of the minimum clock period stated in (5.24) for both the

edge-triggered and level-sensitive circuits are demonstrated in Figure 33 and Figure 34,

respectively.

Similar to the simple reconvergence case analyzed in Section 5.2.1, if the minimum and

maximum path delays are determined by the same reconvergent path, the delay insertion

method is not beneficial. If these delays are determined by different reconvergent paths, the

82

delay insertion method is used to improve the minimum clock period. The minimum clock

period achieved through clock skew scheduling and delay insertion is

T ∗
min = max

∀pR,pS∈{pA,pB ,...,pK}

(
PDpR

M − PDpS
m + UpR − UpS

|m− n + 1|

)
+

Sc + Hc

|m− n + 1|
. (5.25)

Although the minimum path delay is not the total of the data propagation delays of the

local data paths on the reconvergent path, the path delay can ultimately be modified by

inserting delays on the local data paths. The amount of delay to be inserted is determined

at run time by the clock skew scheduling algorithm.

5.3 FORMULATION AND ANALYSIS

In Sections 5.2.2 and 5.2.3, the limitation on the minimum clock period of a synchronous

circuit with clock skew scheduling caused by a reconvergent system is shown for simple

edge-sensitive and level-sensitive circuits. In Section 5.2.4, the limitation is parametrically

calculated for a general representation of a reconvergent system. Note that the limitation

caused by a reconvergent system defines the minimum clock period of a circuit only when

this limitation is dominant over other limiting factors—the delay uncertainties of the data

propagation times [21] and the total data propagation times on the data path cycles [56].

In this work, the details of the limiting factors other than the reconvergent paths are not

analyzed in detail, as such limitations are well known.

A valid approach to computing the theoretical limitation caused by reconvergent paths

in a synchronous circuit is to identify the reconvergent systems on a circuit graph and evalu-

ate (5.25). Such an approach might not be trivial for certain circuit topologies (not discussed

in this work). As a more practical approach, two generalized LP problems are defined in

order to model the delay insertion method for level-sensitive and edge-sensitive synchronous

circuits. These LP problems not only model and solve the clock period minimization prob-

lems, but also compute the optimal delay values to be inserted on each local data path in

order to achieve the minimum possible clock period.

83

Table 7: CSS method for edge-sensitive circuits with the delay insertion method.

LP Model [21] LP Model [21] modified

min T min T

s.t. Tskew(i, f) ≤ T −Dif
PM −Di

CQM s.t. Tskew(i, f) ≤ T −Dif
PM −Di

CQM − I if
M

Tskew(i, f) ≥ −Dif
Pm −Di

CQm + Hf Tskew(i, f) ≥ −Dif
Pm −Di

CQm + Hf − I if
m

I if
M ≥ I if

m

Two clock skew scheduling algorithms presented in Table 2 and Table 6 for level-sensitive

and edge-triggered circuits, respectively, are modified in order to integrate the delay insertion

method. As reported in Chapter 4, LP models clock skew scheduling are highly amenable

to accommodating additional design constraints.

The modified clock skew scheduling algorithms using the delay insertion method, assum-

ing continuous delay models with uncertainty, are presented in Tables 7 and 8. The amount

of delay to be inserted is formulated as the minimum-amount and maximum-amount vari-

ables I if
m and I if

M , respectively. Obviously, the uncertainty U if of this delay element, defined

in Section 5.2.2, is U if = I if
M − I if

m . The delay variables are included in the propagation

constraints on each local data path, however, pruning of the paths such that only the prop-

agation constraints of the reconvergent paths are modified is also possible. For the former

case, the clock skew scheduling algorithm simply returns zero for the delay values on the

non-reconvergent paths.

5.4 PRACTICAL CONCERNS IN MODELING AND APPLICATION

In the problem formulation, continuous delay models have been used. Practically, however,

delay elements are available only in discrete values. There are two possible approaches to

solving the discrete valued delay insertion problem. The naive approach is to solve the clock

84

Table 8: CSS method for level-sensitive circuits with the delay insertion method.

LP Model LP Model modified
min T + M [

∑
∀j

(dj + Dj) +
∑

∀j:|FI(j)|≥1

(Aj − aj)] min T + M [
∑
∀j

(dj + Dj) +
∑

∀j:|FI(j)|≥1

(Aj − aj)]

s.t. af ≥ Hf s.t. af ≥ Hf

Af ≤ T − Sf Af ≤ T − Sf

di ≥ ai + Di
DQm di ≥ ai + Di

DQm

di ≥ T − CL
W + Di

CQm di ≥ T − CL
W + Di

CQm

Di ≥ Ai + Di
DQM Di ≥ Ai + Di

DQM

Di ≥ T − CL
W + Di

CQM Di ≥ T − CL
W + Di

CQM

af ≤ din
+ Dinf

Pm + Tskew(in, f)− T,∀n af ≤ din
+ Dinf

Pm + Iinf
m + Tskew(in, f)− T,∀n

Af ≥ Din
+ Dinf

PM + Tskew(in, f)− T,∀n Af ≥ Din
+ Dinf

PM + Iinf
M + Tskew(in, f)− T,∀n

Af ≥ af Af ≥ af

Df ≥ df Df ≥ df

Iif
M ≥ Iif

m

skew scheduling problem assuming continuous delays and approximating the optimal values

with the given set of discrete components. Although likely to produce reasonable results

for simple cases, such linear approximations to integer problems do not always guarantee

optimality [92]. As a more robust and ubiquitously valid approach, the problem can be

formulated as a mixed integer programming (MIP) problem. Evidently, the expected run

times for MIP problems are typically longer than LP problems of similar size (see Section 4.6).

Modeling and solving the problem with continuous delay models serve best to demon-

strate the two main purposes of this work; Identifying the limitation caused by the reconver-

gent paths and demonstrating how to mitigate these limitations through the delay insertion

method. By adapting continuous delay models, the theoretical limitations of reconvergent

paths and the level of improvement through mitigation of this limitation are analyzed in-

dependent of any cell library. For practical implementation, MIP-based solution approaches

discussed above, or similar methods, must be used.

Another practical concern for the delay insertion method is the area-aware delay insertion

method proposed in [68]. In order to reduce the total area increase due to inserted delays, a

delay buffer tree structure is proposed. In the buffer tree structure, a shared delay element is

placed between the fanouts—or fanins—of a register, if multiple fanouts of the same register

85

must be padded. Note that the delay buffer-tree construction is a post-timing analysis

process and is not integrated into the clock skew scheduling algorithms.

Similar to Chapter 4, the local data paths are modeled abstractly at a higher hierarchy

level than gate-level hierarchy. Such simplification is preferred in order to improve the

demonstration of the theoretical limitation of reconvergent paths and the mitigation of this

limitation by the delay insertion method. In practical implementation, the location of the

delay elements to be inserted into the logic must be identified at a lower level of abstraction—

most suitably at the gate-level of hierarchy. The modeling of local data paths at a higher

abstraction level as suggested in this work might lead to an ambiguous assignment of delays

to reconvergent paths. In an extreme case, it is plausible that three or more reconvergent

paths might share all of the logic paths that constitute a reconvergent system. For the

simplest case of four reconvergent paths, any two reconvergent paths might differ by one

logic path only, and all logic paths might be covered by the four reconvergent paths. For

such a reconvergent system, including delay elements anywhere on a reconvergent path (on

any logic path) would affect the path delay of more than one reconvergent path. Thus,

the optimal delay insertion values computed by the presented LP problem must be post-

processed for practical implementation.

The described concerns in the practical implementation of the delay insertion method

are not considered in the experimentation stage of this work. Simplicity is preserved in the

models used in formulation in order to improve the presentation of the limitation caused by

the reconvergent paths and the mitigation of this limitation by the delay insertion method.

Designers, however, must be wary of these practical requirements.

5.5 EXPERIMENTAL RESULTS

For experimentation, the clock skew scheduling algorithms with the delay insertion method

proposed for edge-triggered and level-sensitive circuits (Tables 7 and 8) are applied to the

ISCAS’89 benchmark circuits. Continuous delay models have been used in the experimen-

tation. The experimental setup in Chapter 4 is replicated for the proposed timing analyses.

86

The timing information for each circuit component is generated with the algorithm used in

the experimentation section of Chapter 4, where the number of fanouts from a component,

the size and the type of the component are considered effective on the computed delay. A

50% duty cycle single phase clock signal is selected. The internal register delays are as-

sumed to be zero
(
Sf = Hf = Di

CQ = Di
DQ = 0

)
. The results computed on a 440MHz Sun

Ultra-10 workstation with the barrier optimizer of the industrial LP solver CPLEX (version

7.5) [36] are presented in Tables 9 and 10. In Tables 9 and 10, the data shown are the

number of registers r and paths p, the clock period TFF for zero skew circuit with flip-flops,

TCSS
FF for non-zero skew circuit with flip-flops, and, TDICSS

FF for non-zero skew circuit using

delay insertion with flop-flops. Also listed are the calculation times tCSS
FF , tDICSS

FF , of TCSS
FF ,

TDICSS
FF , respectively, and the percentage clock period improvements ICSS

FF , IDICSS
FF and IDI

FF

for improvements from TFF to TCSS
FF , TFF to TDICSS

FF , TCSS
FF to TDICSS

FF , respectively.

The clock skew scheduling algorithms used in experimentation are targeting the clock

period minimization problem. Therefore the improvements achieved in the minimum clock

period through the application of clock skew scheduling and delay insertion methods are

reported in Tables 9 and 10. These improvements are computed with the formula {I(%) =

[(Told−Tnew)/Told]100}. The zero clock skew, edge-sensitive synchronous circuit is selected as

the common comparison mark due to its simplicity and popularity in digital circuit design.

Both for edge-triggered and level-sensitive circuits, the improvements through conventional

clock skew scheduling (ICSS
FF and ICSS

L , respectively) and through clock skew scheduling with

delay insertion (IDICSS
FF and IDICSS

L , respectively) are computed. Also shown in Tables 9

and 10 are the comparisons of the non-zero clock skew circuits scheduled with conven-

tional clock skew scheduling methods with non-zero clock skew circuits with delay inser-

tion. These comparisons (IDI
FF and IDI

L , respectively, for edge-triggered and level-sensitive

circuits) demonstrate the effectiveness of the delay insertion method in further improving

the performance of a conventional clock skew scheduled circuit.

For the ISCAS’89 benchmark circuits, the delay insertion method leads to 10% and 9%

improvements on average over the conventional clock skew scheduling algorithms for edge-

triggered and level-sensitive circuits, respectively. For better visualization, the performance

improvements in minimum clock period of edge-triggered and level-sensitive circuits achieved

87

Table 9: Delay insertion results for edge-sensitive ISCAS’89 benchmark circuits.

Edge-Triggered Circuits
Circuit Info Clock Periods (tu) Run Times (s) Improvements (%)

Circuit r p TFF TCSS
FF TDICSS

FF tCSS
FF tDICSS

FF ICSS
FF IDICSS

FF IDI
FF

s27 3 4 6.6 4.1 4.1 0 0 38 38 0
s208.1 8 28 12.4 4.9 1.6 0 0 60 87 67
s298 14 54 13.0 9.4 9.4 0 0 28 28 0
s344 15 68 27.0 18.4 18.4 0 0 32 32 0
s349 15 68 27.0 18.4 18.4 0 0 32 32 0
s382 21 113 14.2 8.5 6.0 0 0 40 58 29
s386 6 15 17.8 17.3 17.3 0 0 3 3 0
s400 21 113 14.2 8.6 6.0 0 0 39 58 30
s420.1 16 120 16.4 6.8 1.6 0 0 59 90 76
s444 16 113 16.8 9.9 7.9 0 0 41 53 20
s510 6 15 16.8 14.8 14.8 0 0 12 12 0
s526n 21 117 13.0 9.4 9.4 0 0 28 28 0
s641 19 81 83.6 61.9 57.8 0 0 26 31 7
s713 19 81 89.2 63.8 59.4 0 0 28 33 7
s820 5 10 18.6 18.3 18.3 0 0 2 2 0
s832 5 10 19.0 18.8 18.8 0 0 1 1 0
s953 29 135 23.2 18.3 18.3 0 0 21 21 0
s1196 18 20 20.8 10.8 7.8 0 0 48 63 28
s1423 74 1471 92.2 77.4 75.8 0 0 16 18 2
s1488 6 15 32.2 29.0 29.0 0 0 10 10 0
s1494 6 15 32.8 29.6 29.6 0 0 10 10 0
s5378 179 1147 28.4 22.0 22.0 0 0 23 23 0
s9234 228 247 75.8 54.2 54.2 1 1 28 28 0
s13207 669 3068 85.6 57.1 53.8 1 2 33 37 6
s15850 597 14257 116.0 83.6 83.6 5 19 28 28 0
s15850.1 534 10830 81.2 57.4 57.4 5 10 29 29 0
s35932 1728 4187 34.2 20.4 15.7 1 6 40 54 23
s38417 1636 28082 69.0 42.2 42.2 15 37 39 39 0
s38584 1452 15545 94.2 65.2 62.8 5 15 31 33 4
Average 28 34 10

88

Table 10: Delay insertion results for level-sensitive ISCAS’89 benchmark circuits.

Level-Sensitive Circuits
Circuit Info Clock Periods (tu) Run Times (s) Improvements (%)

Circuit r p TL TCSS
L TDICSS

L tCSS
L tDICSS

L IL ICSS
L IDICSS

L IDI
L

s27 3 4 5.4 4.1 4.1 0 0 18 38 38 0
s208.1 8 28 8.6 5.2 1.6 0 0 31 58 87 69
s298 14 54 10.6 9.4 9.4 0 0 18 28 28 0
s344 15 68 18.4 18.4 18.4 0 0 32 32 32 0
s349 15 68 18.4 18.4 18.4 0 0 32 32 32 0
s382 21 113 10.3 8.5 6.0 0 0 27 40 58 29
s386 6 15 17.3 17.3 17.3 0 0 3 3 3 0
s400 21 113 10.4 8.6 6.0 0 0 27 39 58 30
s420.1 16 120 12.6 7.2 1.6 0 0 23 56 90 78
s444 16 113 12.4 9.9 8.0 0 0 26 41 53 20
s510 6 15 14.8 14.3 14.3 0 0 12 15 15 0
s526n 21 117 10.6 9.4 9.4 0 0 18 28 28 0
s641 19 81 66.2 61.9 57.8 0 0 21 26 31 7
s713 19 81 71.2 63.8 59.4 0 0 20 28 33 7
s820 5 10 18.3 18.3 18.3 0 0 2 2 2 0
s832 5 10 18.8 18.8 18.8 0 0 1 1 1 0
s953 29 135 21.2 18.3 18.3 0 0 9 21 21 0
s1196 18 20 16.0 7.8 7.8 0 0 23 63 63 0
s1423 74 1471 86.4 75.8 75.8 1 2 6 18 18 0
s1488 6 15 29.0 29.0 29.0 0 0 10 10 10 0
s1494 6 15 29.6 29.6 29.6 0 0 10 10 10 0
s5378 179 1147 23.2 22.0 22.0 1 2 18 23 23 0
s9234 228 247 64.8 54.2 54.2 2 4 15 28 28 0
s13207 669 3068 67.4 57.1 53.8 4 7 21 33 37 6
s15850 597 14257 92.8 83.6 83.6 23 44 20 28 28 0
s15850.1 534 10830 71.4 57.4 57.4 23 34 12 29 29 0
s35932 1728 4187 34.1 20.4 15.7 7 16 0 40 54 23
s38417 1636 28082 54.8 42.2 42.2 41 101 21 39 39 0
s38584 1452 15545 76.4 65.2 62.8 31 51 19 31 33 4
Average 17 29 34 9

89

Improvements via Delay Insertion

0

20

40

60

80

100
s2

7
s2

08
.1

s2
98

s3

44

s3
49

s3
82

s3

86

s4
00

s4

20
.1

s4

44

s5
10

s5

26
n

s6
41

s7

13

s8
20

s8
32

s9

53

s1
19

6
s1

42
3

s1
48

8

s1
49

4
s5

37
8

s9
23

4
s1

32
07

s1

58
50

s1
58

50
.1

s3

59
32

s3
84

17

s3
85

84

A
ve

ra
ge

ISCAS'89 Benchmark Circuits

Im
pr

ov
em

en
t (

%
)

Edge-Triggered Circuits Level-Sensitive Circuits

Figure 35: Percentage improvements through delay insertion in Tables 9 and 10.

respectively over corresponding non-zero clock skew edge-triggered and level-sensitive circuits

are presented in Figure 35. Shown in Figure 35 are percentage improvements IDI
FF and

IDI
L presented in Tables 9 and 10, respectively. Two data points shown per benchmark

circuit from left-to-right are the improvements observed for edge-triggered and level-sensitive

circuits, respectively. Note that these improvements are due to delay insertion simultaneous

with clock skew scheduling.

The delay insertion method cannot be applied (not beneficial) to some circuits due to the

two reasons discussed in Sections 5.2 and 5.2.2. The first reason, discussed in Section 5.2,

is the fact that the minimum clock period of the circuit can be determined by a limitation

other than reconvergent paths, which cannot be mitigated by the delay insertion method.

The second reason, discussed in Section 5.2.2, is the fact that due to the uncertainty of the

delay elements inserted into the logic, the delay insertion might be ineffective in improving the

minimum clock period. In the LP formulations presented in Tables 7 and 8, the uncertainties

90

of the delay elements are modeled without lower (and upper) bounds (delay elements can

have zero uncertainty with Im = IM). Thus, the second reason for inapplicability is not

observed in the experimentation. Among the selected ISCAS’89 circuits, the delay insertion

method for edge-triggered circuits is applicable to 41% (12 circuits) of the total 29 circuits.

By excluding the circuits for which zero improvements are observed (for which the method

is not applicable due to the first reason stated above), the average improvement of the delay

insertion method for edge-triggered circuits is observed to be 26% over the conventional clock

skew scheduling algorithm of [21]. The delay insertion method on level-sensitive circuits was

applicable to 34% (10 circuits) of the total 29 circuits. By excluding the circuits for which

zero improvements are observed, the average improvement of the delay insertion method for

level-sensitive circuits is observed to be 27% on average over the conventional clock skew

scheduling algorithm (Chapter 4).

The experimental results in Figure 35 show that reconvergent paths—with a significant

probability (41% and 34% as observed on the ISCAS’89 circuits)—are the dominant limiting

factor on the minimum clock period after clock skew scheduling for a synchronous circuit.

The delay insertion method can effectively be used to mitigate these limitations, as shown

by 26% and 27% improvements in the minimum clock period. The proposed clock skew

scheduling method with delay insertion takes about twice as much time as the conventional

application of clock skew scheduling, however, the method is highly practical with total run

times below a few minutes with highly common computing resources.

The improvements in minimum clock period achieved through conventional clock skew

scheduling (ICSS
FF and ICSS

L), and through clock skew scheduling with delay insertion (IDICSS
FF

and IDICSS
L) for edge-triggered and level-sensitive circuits are visually presented for each

benchmark circuit in Figures 36 and 37, respectively.

Shown in Figure 36 are the percentage improvements (ICSS
FF and IDICSS

FF in Table 9,

respectively) in minimum clock period via clock skew scheduling and delay insertion for

edge-triggered ISCAS’89 benchmark circuits. Two data points shown per benchmark circuit

from left-to-right are the improvements observed for clock skew scheduling alone and delay

insertion with clock skew scheduling, respectively. Shown in Figure 37 are the percentage

improvements (ICSS
L and IDICSS

L in Table 10, respectively) in minimum clock period via clock

91

Edge-Triggered Circuits

0

20

40

60

80

100
s2

7
s2

08
.1

s2
98

s3

44

s3
49

s3
82

s3

86

s4
00

s4

20
.1

s4

44

s5
10

s5

26
n

s6
41

s7

13

s8
20

s8
32

s9

53

s1
19

6
s1

42
3

s1
48

8

s1
49

4
s5

37
8

s9
23

4
s1

32
07

s1

58
50

s1
58

50
.1

s3

59
32

s3
84

17

s3
85

84

A
ve

ra
ge

ISCAS'89 Benchmark Circuits

Im
pr

ov
em

en
t (

%
)

CSS DICSS

Figure 36: Percentage improvements on edge-triggered circuits in Table 9.

skew scheduling and delay insertion for level-sensitive ISCAS’89 benchmark circuits. Two

data points shown per benchmark circuit from left-to-right are the improvements observed

for clock skew scheduling alone and delay insertion with clock skew scheduling, respectively.

The average total improvement of non-zero clock skew, edge-triggered circuits with delay

insertion with respect to the zero clock skew, edge-triggered circuits is 34%. The average

total improvement of non-zero clock skew, level-sensitive circuits with delay insertion with

respect to the zero clock skew, edge-triggered circuits is also 34%. Note that the total

improvements are due to the simultaneous effects of the applications of delay insertion, clock

skew scheduling and consideration of time borrowing (for level-sensitive circuits only) in

the timing analysis. The improvement with delay insertion is equal to or greater than the

improvement with clock skew scheduling only, as delay insertion is only applied when it can

be used to mitigate the limitation of the reconvergent paths.

92

Level-Sensitive Circuits

0

20

40

60

80

100
s2

7
s2

08
.1

s2
98

s3

44

s3
49

s3
82

s3

86

s4
00

s4

20
.1

s4

44

s5
10

s5

26
n

s6
41

s7

13

s8
20

s8
32

s9

53

s1
19

6
s1

42
3

s1
48

8

s1
49

4
s5

37
8

s9
23

4
s1

32
07

s1

58
50

s1
58

50
.1

s3

59
32

s3
84

17

s3
85

84

A
ve

ra
ge

ISCAS'89 Benchmark Circuits

Im
pr

ov
em

en
t (

%
)

CSS DICSS

Figure 37: Percentage improvements on level-sensitive circuits in Table 10.

5.6 SUMMARY

In this chapter, the limitations of a reconvergent path on the improvements achievable

through clock skew scheduling is shown for the first time. These limitations are mitigated

with a novel delay insertion method. The delay insertion method is formulated as an LP

problem, proposing a highly-automated, versatile and efficient implementation.

In experimentation, the delay insertion method is demonstrated to improve the min-

imum clock period after clock skew scheduling by up to 78% (9% and 10% on average

for level-sensitive and edge-triggered circuits, respectively). The delay insertion method is

demonstrated to be applicable to both edge-triggered and level-sensitive circuits with equally

significant 34% (incidentally for the selected set of benchmarks, no theoretical conclusions

are drawn) improvements on average in the minimum clock period (over traditional zero

93

clock skew, edge-triggered circuits). The practicality of delay insertion is to be concluded

by circuit designers, considering the projected increases in the total power consumption and

circuit area, and the transformation in circuit placement due to delay insertion.

The results of this research are important for the design and high-performance operation

of non-zero clock skew circuits, especially due to the identification of the limitation caused

by reconvergent data paths. Consequently, this research has been published in [80, 83, 85].

94

6.0 MULTI-PHASE NON-ZERO CLOCK SKEW SYNCHRONIZATION

Single-phase synchronization has traditionally been used in the design and analysis of sys-

tems, mostly due to its simplicity. Recently, however, multi-phase clock synchronization

has become a necessity for larger and relatively complex integrated circuits. In order to

provide multi-phase synchronization, conventional clock distribution networks have to be

modified [33, 37, 44, 98]. Besides these conventional clock distribution networks modified for

multi-phase synchronization, emerging clocking technologies such as resonant clocking tech-

nologies (discussed in Chapter 7) also encompass multi-phase synchronization schemes [96].

Such necessity to design and analyze for multi-phase synchronization schemes requires ded-

icated design and analysis frameworks.

In this chapter, an enhancement to the Linear Programming (LP) framework presented

in Chapter 4 for non-zero clock skew, level-sensitive circuits is described in order to accom-

modate for multi-phase synchronization schemes. The enhanced framework is used to profile

the performance improvement of level-sensitive circuits subject to clock skew scheduling un-

der multi-phase synchronization. Time borrowing and clock skew scheduling are analyzed

in single, two, three and four phase synchronization schemes. The effects of multi-phase

synchronization schemes—independent of the clocking technology—on non-zero clock skew,

level-sensitive circuit performance are analyzed.

In Section 6.1, a literature survey on the integration of multi-phase synchronization with

non-zero clock skew circuit design is presented. The majority of the surveyed work is in

the areas of circuit retiming and two-phase clocking. In Sections 6.2 and 6.3, the modeling

and formulation of the timing analysis of a level-sensitive synchronous circuit are presented,

respectively. In Section 6.4, the results of the clock period minimization problem for multi-

phase synchronized circuits are analyzed. The chapter is summarized in Section 6.5.

95

6.1 PREVIOUS WORK

The advantages of level-sensitive design with multi-phase synchronization have previously

been investigated in different contexts. One line of research has concentrated on circuit

retiming, most notably in [56] and [18]. In [56], the advantages of two-phase, level sensitive

circuits (as opposed to edge-sensitive circuits) are explored. It is concluded in [56] that the

level of improvement in circuit performance is insignificant for such a circuit transformation,

when circuit retiming is performed. In [18], the results of [56] are examined from a wider

perspective, considering the depth of pipelining within a circuit—average improvements up

to 30% are shown to be possible by two-phase, level-sensitive clocking with circuit retiming.

This proposed line of research differs from [56] and [18] by expanding the multi-phase

synchronization concept to three, four and potentially higher number of phases (the studies

presented in [56] and [18] are performed only for two-phase, level-sensitive circuits). Further-

more, the proposed research considers the application of clock skew scheduling as opposed

to the application of circuit retiming in [56] and [18].

In [34], the authors advocate the use of a multi-phase clocking scheme for both edge-

triggered and level-sensitive synchronous circuits for increased circuit performance. In [60],

the number of clock phases constituting the multi-phase synchronization scheme and the

skew values are restricted to reflect the practical limitations of conventional clock distribu-

tion networks. Neither [60] nor [34] aim to exhaustively discuss the effects of multi-phase

synchronization on the level of improvement in circuit performance for non-zero clock skew,

level-sensitive circuits.

6.2 MULTI-PHASE LEVEL-SENSITIVE CIRCUIT TIMING

The operation of a synchronous circuit previously defined in Chapter 4 for a single-phase

synchronization scheme is redefined for a multi-phase synchronization scheme. In a general-

ized multi-phase synchronization scheme, the latches Ri and Rf of a local data path shown in

Figure 38 are synchronized by the clock signals Cpi

i and C
pf

f , respectively. The superscripts

96

RegisterRi RegisterRf

D

C

D

C

Q
Qi

Data
Q

Xf

Data
[
Di f

Pm,Di f
PM

]
CombinationalLogic

ClockCpi
i ClockC

pf

f

Xi

DataIn

Qf

DataOut

Figure 38: A local data path in a multi-phase synchronous circuit.

pi and pf describe the clock phases that synchronize Ri and Rf , respectively. The subscripts

i and f denote the clock signals of phase Cpi at Ri and phase Cpf at Rf , respectively.

The generalized n-phase clocking scheme was introduced in Section 2.3. For conve-

nience, the illustration of this generalized scheme is repeated in Figure 39(a). The set of

clock signals Cglobal = {C1, . . . , Cn} constitutes the n-phase clocking scheme. Note that

{Cpi , Cpf} ⊂ Cglobal. The increase in the number of clock phases can lead to inaccura-

cies in the pulse width and clock edges for conventional clock distribution systems. In this

work, there effects are disregarded under the assumption of the availability of improved or

next-generation clocking technologies (such as the resonant clocking technologies presented

in Chapter 7). Such an assumption is reasonable within CAD perspective adopted in this

dissertation (see Section 2.4). An analysis bearing the presence of clock jitter is possible,

yet does not marginally change the presented timing analysis framework. Practically, clock

jitter can be modeled without any changes to the proposed framework, by assigning higher

numerical values to the hold and setup-times of registers.

The multi-phase clock skew is defined as T
pipf

skew(i, f) = tpi

i − t
pf

f , where tpi

i and t
pf

f are the

delays of the clock signals Cpi

i and C
pf

f from the clock sources to the registers Ri and Rf ,

respectively. The multi-phase clock skew is illustrated in Figure 39(b). The common clock

period for all clock phases is denoted by T for consistency with the original formulation of

the single-phase synchronized circuits.

97

T

Cn
source

C(n−1)
source

C2
source

C1
source

CL
W

CL
W

CL
W

CL
W

φ1

φ2

φ(n−1)

φ(n)

T

C
pf
source

C
pf
f

Cpi
source

Cpi
i

t
pf
f

t pi
i

φpf

φpi

|φpi pf +T
pi pf

skew (i, f)|

Clock Phases Multi-Phase Clock Skew

(a) (b)

Figure 39: Multi-phase clock and multi-phase clock skew.

In Figure 40, two local data paths starting at the latches Ri1 and Ri2 , respectively, and

ending at Rf are considered. This figure is the multi-phase synchronization counterpart of

Figure 14 shown on page 30. The clock signals driving the initial latches Ri1 and Ri2 are

shown at the top and bottom, respectively. The middle clock signal corresponds to the final

latch Rf . The time intervals for the arrival and departure times of latch data are illustrated

by the upper and lower parallel dotted lines, respectively. Data delays are represented by

the lengths of white or black rectangular boxes. Similar to the analysis in Chapter 4, the

operational and constructional timing constraints of multi-phase, level-sensitive circuits are

formulated based on these data propagation rules.

The timing constraints governing the operation of a multi-phase, level-sensitive syn-

chronous system are summarized in Table 11. These constraints are valid for all varieties

of overlapping and non-overlapping clocking schemes, and for any feasible selection of duty

cycles per clock phase. Note the max and min functions in the synchronization and propa-

gation constraints in Table 11. The non-linearities of these constraints are similar to those

reported in Section 4.4 for single-phase circuits. Consequently, the multi-phase problem is

solved by linearizing the non-linear constraints with the MBM method (Section 4.4.1).

98

t
pi1 pi2
skew (i1, i2)+φpi1 pi2 < 0

t
pi1 pf

skew (i1, f)+φpi1 pf > 0

t
pi2 pf

skew (i2, f)+φpi2 pf > 0

ai1 Ai1
Di1di1

ai2 Ai2
Di2di2

af Af
D f

df

Di1 f
Pm

Di1 f
PM

Di2 f
Pm

Di2 f
PM

k-th clockcycle k+1-thclockcycle

k-th clockcycle k+1-thclockcycle

k-th clockcycle k+1-thclockcycle

t
pi1
i1

+(k−1)T +φpi1 t
pi1
i1

+kT +φpi1 t
pi1
i1

+(k+1)T +φpi1

t
pi2
i2

+(k−1)T +φpi2 t
pi2
i2

+kT +φpi2 t
pi2
i2

+(k+1)T +φpi2

t
pf

f +(k−1)T +φpf t
pf

f +kT +φpf t
pf

f +(k+1)T +φpf

C
pi1
i1

C
pf

f

C
pi2
i2

Figure 40: Propagation of the data signal in a simple multi-phase circuit.

Table 11: Operational timing constraints of a multi-phase level-sensitive circuit.

Latching af ≥ Hf

Af ≤ T − Sf

Synchronization di = max
(
ai + Di

DQm, T − CL
W + Di

CQm

)
Di = max

(
Ai + Di

DQM , T − CL
W + Di

CQM

)
Propagation af = min

∀in

(
din + Dinf

Pm + T
pinpf

skew (in, f) + φpinpf

)
Af = max

∀in

(
Din + Dinf

PM + T
pinpf

skew (in, f) + φpinpf

)

99

6.3 LINEARIZATION OF THE TIMING ANALYSIS

Similar to Section 4.4, an optimization problem is constructed, where the objective is to min-

imize the clock period T and the constraints are compiled from the operational constraints

in Table 11 and the constructional constraints (Section 4.3). The resulting optimization

problem is an NLP problem due to non-linearity of the synchronization and propagation

constraints. The modified big M method (MBM method) (Section 4.4.1) is used to generate

an efficient LP model formulation of this optimization problem. The LP model for the clock

period minimization problem of a level-sensitive circuit synchronized by a multi-phase syn-

chronization scheme is presented in Table 12. Similar to the discussion in Section 4.6, the

optimality of the results for the LP formulation is verified using the exact MIP formulation

with post-solution checks.

6.4 EXPERIMENTAL RESULTS

Experiments with the ISCAS’89 benchmark circuits are performed in order to observe and

quantify the level of improvement achieved through clock skew scheduling and time borrowing

on level-sensitive circuits with multi-phase synchronization. Multi-phase synchronization of

ISCAS’89 benchmark circuits are performed using the transformation shown in Figure 41.

This transformation is similar to the procedure used in the literature, particularly in [7, 8,

67, 73, 74]. The timing information of the benchmark circuits is generated with a similar

algorithm to the one used in Chapters 4 and 5, where the type, size and fanout of a gate are

considered in the computed delays.

The experiments are performed using two, three and four-phase clocking schemes rep-

resenting various degrees of multi-phase synchronization. For simplicity, non-overlapping

multi-phase clock signals with identical duty cycles, shown in Figure 42, are used in experi-

mentation. Due to the transformation shown in Figure 41, a new level of latches is required

for each additional clock phase. The latches are modeled with inherent delays in order to

capture these effects in formulation. Latches are modeled with a delay pair of [0.9, 1.1] time

100

Table 12: LP model clock skew scheduling problem of multi-phase level-sensitive circuits.

LP Model

min T + M [
∑
∀Rj

(dj + Dj) +
∑

∀Rk:|Fan−In(Rk)|≥1

(Ak − ak)]

subject to

Latching-Hold time af ≥ Hf

Latching-Setup time Af ≤ T − Sf

Synchronization-Earliest time di ≥ ai + Di
DQm

di ≥ T − CL
W + Di

CQm

Synchronization-Latest time Di ≥ Ai + Di
DQM

Di ≥ T − CL
W + Di

CQM

Propagation-Earliest time af ≤ din + Dinf
Pm + T

pinpf

skew (in, f) + φpinpf , ∀Rin

Propagation-Latest time Af ≥ Din + Dinf
PM + T

pinpf

skew (in, f) + φpinpf , ∀Rin

Validity-Arrival time Af ≥ af

Validity-Departure time Df ≥ df

Initialization Al = dl − (Dl
CQm or Dl

DQm), ∀Rl : |Fan− In(Rl)| = 0

units, corresponding to the minimum and maximum delays for a latch. For reference, a unity

delay (a delay of 1 time unit) is close to the delay value of an FO4 inverter in the proposed

delay generation algorithm.

For multi-phase synchronization, each additional clock phase requires a new level of

latches to be inserted into data paths, effectively increasing path delays. Thus, as the number

of clock phases increases, the performance of a zero clock skew system degrades. For non-zero

clock skew systems, however, this is not necessarily the case as shown by these experiments.

The solutions of clock period minimization problems computed with CPLEX (v7.5) barrier

optimizer [36] on a 440MHz Sun Ultra-10 workstation are presented in Tables 13, 14 and 15,

and Figures 43, 44 and 45. The number of registers r and paths p (before modification) of the

101

D Q

D Q D Q D Q D Q

C

φ1 φ2 φn−1 φn

C C C C

FF

Latch Latch Latch Latch

DP

1
nDP

1
nDP

1
nDP

1
nDP· · ·

Figure 41: Generation of an n-phase data path with latches.

ISCAS’89 benchmark circuits are shown in Tables 13, 14 and 15 (on pages 110, 111 and 112,

respectively). Minimum clock periods, improvements and calculation time are denoted by

T , I and t, respectively. Subscripts FF , nφ represent circuit topologies for flip-flop based

and n-phase level-sensitive circuits, respectively. Superscripts and titles TB, CSS, TBCSS

stand for time borrowing, clock skew scheduling and both, respectively. Minimum clock

periods (T) are measured in time units.

In the rest of this section, the experimental results and factors contributing to the im-

provements in these results are discussed in greater detail. In particular, the properties of

multi-phase synchronization which affect level-sensitive circuit performance are discussed in

Section 6.4.1. The effects of multi-phase synchronization on time borrowing are addressed

in Section 6.4.2. The effects of multi-phase synchronization on clock skew scheduling are ad-

dressed in Section 6.4.3. Finally, the effects of multi-phase synchronization on the simultane-

ous application of time borrowing and clock skew scheduling are addressed in Section 6.4.4.

102

T

Cn
source

C(n−1)
source

C2
source

C1
source

CL
W = T/n

CL
W = T/n

CL
W = T/n

CL
W = T/n

φ1 = 0

φ2 = T/n

φ(n−1) = T(n−2)/n

φ(n) = T(n−1)/n

Figure 42: Non-overlapping multi-phase synchronization clock.

6.4.1 Multi-Phase Clocking

Multi-phase clocking is superior to single phase clocking by better accommodating the trans-

parency periods of latches. Depending on the particular synchronization scheme, however,

the duration of the transparency periods can be short for each phase, thereby reducing the

advantages of multi-phase clocking. In single-phase clocking, the transparency periods of

latches have identical positions within their respective clock cycles. In multi-phase clocking,

the transparency periods of different clock phases are distributed over the clock cycle. In

a multi-phase circuit synchronized with the clock signal shown in Figure 42, for instance,

the transparency periods are located at different times within the clock cycle (e.g., clock

phases C1 and Cn are the first and last sections, respectively). Such variety in the locations

of transparency periods provides flexibility on the permissible data propagation times of a

103

local data path. The assorted assignment of clock phases to registers, achieved through clock

skew scheduling or any other methods, leads to improvements in the circuit performance.

As illustrated in the transformation procedure shown in Figure 41, an extra level of

latches is inserted within a logic data path for each clock phase. The delays of these inserted

latches can become significant for higher number of clock phases and degrade the circuit

performance of multi-phase circuits in the absence of clock skew scheduling. For non-zero

clock skew circuits, the negative effects of latch insertion are compensated for and offset,

often leading to an overall improvement in circuit performance.

The transformation procedure in Figure 41 leads to a certain bias in circuit operation,

such that, each sequentially adjacent latch pair is synchronized by consecutive clock phases.

Furthermore, the propagation delays of the combinational blocks are distributed evenly be-

tween clock phases according to the transformation procedure. In practical application of

the presented procedure, the particular clock phase and propagation delay information of a

circuit must be reflected in the formulation.

6.4.2 Multi-Phase Clocking Effects on Time Borrowing

In order to observe the effects of multi-phase clocking on time borrowing, each flip-flop in

the benchmark circuit is replaced with a latch (n latches in the case of n-phase clocking).

As shown in Table 14, an average improvement of 16.7% is achieved for single-phase cir-

cuits. Also, average improvements of 15.3%, 8.0% and 1.6% are achieved for two, three and

four phase clocking schemes, respectively. For a visual representation of these results, the

percentage improvements presented in Table 14 for each benchmark circuit are illustrated

in Figure 43. In Figure 43, four data points shown per benchmark circuit from left-to-right

are the percentage improvements observed for the single-phase, two-phase, three-phase and

four-phase synchronization schemes, respectively.

It is observed that the improvement achieved through time borrowing decreases as the

number of clock phases increases. This degradation is expected, because by definition, the

transparency period of latches shortens for higher number of clock phases. The degradation

is also caused by the increased significance of the inserted latch delays for higher number of

104

Performance Improvement via Time Borrowing per Clock Phase

-40

-20

0

20

40

60

80

100
s2

7
s2

08
.1

s2

98

s3
44

s3

49

s3
82

s3

86

s4
00

s4

20
.1

s4

44

s4
99

s5

10

s5
26

s5

26
n

s6

35

s6
41

s7

13

s8
20

s8

32

s8
38

s9

38

s9
53

s9

67

s9
91

s1

19
6

s1
23

8
s1

26
9

s1
42

3
s1

48
8

s1
49

4
s1

51
2

s3
27

1
s3

33
0

s3
38

4
s4

86
3

s5
37

8
s6

66
9

s9
23

4.
1

s9
23

4
.s

13
20

7
s1

32
07

.s

15
85

0
s1

58
50

s3

59
32

A

ve
ra

ge

ISCAS'89 Modified Circuits

1-Phase 2-Phase 3-Phase 4-Phase

Figure 43: Effects of multi-phase clocking on time borrowing.

clock phases in contributing to the total path delay. With shortened transparency periods

on latches, elongated path delays (quantitatively or relative to the transparency period)

reduce the slack time on data paths, suppressing the improvements achieved through time

borrowing.

It is also important to note that synchronization with a multi-phase clocking scheme

has similar effects with time borrowing on circuit operation. In other words, the slack

propagation time is shared between the multi-phase clocks, which would otherwise be utilized

by time borrowing. This fact also contributes to the degradation of improvement for multi-

phase synchronization.

105

Performance Improvement via CSS per Clock Phase

0

10

20

30

40

50
60

70

80

90

100
s2

7
s2

08
.1

s2

98

s3
44

s3

49

s3
82

s3

86

s4
00

s4

20
.1

s4

44

s4
99

s5

10

s5
26

s5

26
n

s6
35

s6

41

s7
13

s8

20

s8
32

s8

38

s9
38

s9

53

s9
67

s9

91

s1
19

6
s1

23
8

s1
26

9
s1

42
3

s1
48

8
s1

49
4

s1
51

2
s3

27
1

s3
33

0
s3

38
4

s4
86

3
s5

37
8

s6
66

9
s9

23
4.

1
s9

23
4

s1
32

07
.

s1
32

07

s1
58

50
.

s1
58

50

s3
59

32

A
ve

ra
ge

ISCAS'89 Modified Circuits

FF 1-Phase 2-Phase 3-Phase 4-Phase

Figure 44: Effects of multi-phase clocking on clock skew scheduling.

6.4.3 Multi-Phase Clocking and Clock Skew Scheduling

The results for edge-sensitive circuits display improvements of 30.3% on average due to clock

skew scheduling alone. For single, two, three and four-phase level-sensitive implementations,

clock skew scheduling results in 16.5%, 12.1%, 11.4% and 11.3% improvements on average,

respectively. The percentage improvements for each benchmark circuit are illustrated in

Figure 44. In Figure 44, five data points shown per benchmark circuit from left-to-right are

the percentage improvements observed for the edge-sensitive, single-phase, two-phase, three-

phase and four-phase synchronization schemes, respectively. The degradation in performance

(compared to non-zero clock skew, edge-sensitive circuits) is expected as the even distribution

106

of the transparency periods—due to the multi-phase clocking scheme of choice in this work—

potentially negates the effectiveness of clock skew scheduling.

Clock skew scheduling is more effective on circuits with certain characteristics. In partic-

ular, if the data propagation delays on the local data paths of a circuit are irregular, higher

improvements in the circuit performance are achievable through clock skew scheduling. The

transformation procedure shown in Figure 41 proposes an even distribution of data propaga-

tion delays for adjacent local data paths, increasing the regularity of the circuit for increasing

number of clock phases. Therefore, the high regularity of the multi-phase circuits—due to

the bias in the transformation procedure in Figure 41—also contributes to the degradation.

6.4.4 Simultaneous Time Borrowing and Clock Skew Scheduling

For non-zero clock skew circuits, total improvements of 30.3%, 24.8%, 17.7% and 12.0% on

average are observed for single, two, three and four phase clocking schemes, respectively.

These total improvements are due to the simultaneous application of clock skew scheduling

and time borrowing. The percentage improvements for each benchmark circuit are illustrated

in Figure 45. In Figure 45, four data points shown per benchmark circuit from left-to-right

are the percentage improvements observed for the single-phase, two-phase, three-phase and

four-phase synchronization schemes, respectively.

As discussed in Sections 6.4.2 and 6.4.3, the improvements achieved through time borrow-

ing and clock skew scheduling individually decrease as the number of clock phases increases.

Nevertheless, the observed improvements are generally superior compared to zero clock skew,

edge-sensitive circuits (exceptions are the benchmarks for which negative improvements are

reported—mostly due to inserted latch delays). Exemplifying the positive trend is the anal-

ysis of the benchmark circuit s1196, for instance, where an improvement of 68% is observed

for three-phase clocking through time borrowing and clock skew scheduling. For the same

circuit, the improvements are at 63%, 63% and 64% for single, two and four-phase clocking,

respectively.

It is observed in Tables 13 and 14 that no particular multi-phase approach is superior

to others in all cases. Investigation of various approaches is found mandatory in order to

107

Performance Improvement via TB and CSS per Clock Phase

-40

-20

0

20

40

60

80

100
s2

7
s2

08
.1

s2

98

s3
44

s3

49

s3
82

s3

86

s4
00

s4

20
.1

s4

44

s4
99

s5

10

s5
26

s5

26
n

s6
35

s6

41

s7
13

s8

20

s8
32

s8

38

s9
38

s9

53

s9
67

s9

91

s1
19

6
s1

23
8

s1
26

9
s1

42
3

s1
48

8
s1

49
4

s1
51

2
s3

27
1

s3
33

0
s3

38
4

s4
86

3
s5

37
8

s6
66

9
s9

23
4.

1
s9

23
4

s1
32

07
.

s1
32

07

s1
58

50
.

s1
58

50

s3
59

32

A
ve

ra
ge

ISCAS'89 Modified Circuits

1-Phase 2-Phase 3-Phase 4-Phase

Figure 45: Effects of multi-phase clocking on time borrowing and clock skew scheduling.

identify the optimal synchronization scheme for any particular circuit (optimal in achieving

an absolute minimum clock period).

6.5 SUMMARY

In this chapter, individual and simultaneous applications of clock skew scheduling and time

borrowing to multi-phase, level-sensitive circuits are examined. By solving the efficient LP

model formulations of the inherently non-linear clock period minimization problem, it is

observed that when compared to single-phase circuits, multi-phase circuits generally benefit

less from clock skew scheduling and time borrowing. Clock skew scheduling is more effective

108

on the improvement of edge-sensitive circuits due to the short on-time (transition edge) of

synchronizing clock signals.

It is concluded that in the design of a level-sensitive synchronous circuit, if clock skew

scheduling is applied and time borrowing is fully accounted for, multi-phase synchroniza-

tion might not be necessary to achieve maximum circuit speed. However, exploration of

all possible cases is mandatory in order to reach the optimal result because no particular

synchronization scheme (number of phases) is consistently superior to others.

For clocking technologies, including the technologies where multi-phase synchronization

and clock skew scheduling are essential (such as rotary clocking technology), a complete

assessment of circuit performance is usually performed by considering all relevant criteria, not

only clock speed. Among the most common criteria are total power dissipation, robustness

to process parameter variations, scalability and underlying design complexity. The trade-off

between the circuit performance and the implementation and analysis complexities arising

from different synchronization alternatives must be evaluated for each particular design.

The CAD framework presented in this chapter is the first to correctly model and analyze

the effects of multi-phase synchronization on non-zero clock skew circuit operation. In the

experiments, it is shown for the first time that multi-phase synchronization of static circuits

can actually be advantageous in terms of circuit speed, despite the increased path delays

due to latch insertion per each additional clock phase. Such a fact is contrary to common

wisdom, which has over the years been suggested for zero clock skew systems. The results

of this research have been published in [79, 82, 84].

109

Table 13: Minimum clock periods of multi-phase ISCAS’89 benchmark circuits.

Circuit Zero Clock Skew Non-Zero Clock Skew
Circuit TFF TTB

1φ TTB
2φ TTB

3φ TTB
4φ TCS

FF TTBCSS
1φ TTBCSS

2φ TTBCSS
3φ TTBCSS

4φ

s27 7.7 6.5 8.2 9.5 10.3 5.2 5.2 6.3 7.4 8.5
s208.1 13.5 9.0 11.8 13.9 15.4 5.8 6.3 9.8 11.1 11.4
s298 14.1 10.8 11.0 13.1 14.7 9.6 9.6 10.3 12.8 14.6
s344 28.1 19.5 22.4 24.5 26.1 19.5 19.5 22.4 24.5 26.1
s349 28.1 19.5 22.4 24.5 26.1 19.5 19.5 22.4 24.5 26.1
s382 15.3 11.0 14.4 15.0 16.7 9.2 9.2 12.2 14.8 16.5
s386 18.9 18.4 19.5 20.6 21.7 18.4 18.4 19.5 20.6 21.7
s400 15.3 11.1 14.4 15.0 16.7 9.3 9.3 12.3 14.8 16.5
s420.1 17.5 12.8 16.1 17.2 18.5 7.7 8.2 12.9 14.3 15.6
s444 17.9 12.6 16.1 17.6 19.3 10.6 10.6 14.5 17.2 19.0
s499 17.5 16.3 18.6 19.3 20.5 16.3 16.3 18.0 19.3 20.5
s510 17.9 15.9 18.2 19.2 20.1 15.9 15.9 17.4 18.8 20.0
s526 14.1 11.0 12.1 13.5 15.1 9.6 9.6 11.4 13.5 15.1
s526n 14.1 11.0 12.1 13.5 15.1 9.6 9.6 11.4 13.5 15.1
s635 165.9 157.4 113.3 127.9 135.4 4.8 4.9 78.8 97.1 102.6
s641 89.1 66.9 74.9 76.6 78.0 62.6 62.6 66.6 73.3 77.2
s713 90.3 71.9 75.8 77.4 78.7 64.5 64.5 67.5 74.2 78.1
s820 19.7 19.4 20.6 21.6 22.7 19.4 19.4 20.5 21.6 22.7
s832 20.1 19.9 21.1 22.1 23.2 19.9 19.9 21.0 22.1 23.2
s838 25.5 20.8 21.5 23.4 25.0 9.3 10.2 17.0 20.1 22.1
s938 25.5 20.8 21.5 23.4 25.0 9.3 10.2 17.0 20.1 22.1
s953 24.3 21.4 21.7 23.6 25.3 19.4 19.4 21.7 23.6 25.3
s967 21.7 18.6 19.6 21.4 22.8 17.3 17.7 19.6 21.4 22.8
s991 97.5 91.8 65.7 74.2 80.6 79.6 79.6 52.0 62.4 68.1
s1196 21.9 16.2 15.3 18.0 20.2 10.1 8.0 8.2 7.1 8.0
s1238 21.9 16.2 15.3 18.0 20.2 10.1 8.0 8.2 7.1 8.0
s1269 52.3 48.0 35.6 40.6 44.5 43.0 43.0 30.5 39.1 44.0
s1423 93.3 86.6 69.4 73.5 77.3 76.7 76.0 69.2 73.1 75.6
s1488 33.3 30.1 32.6 33.8 35.0 30.1 30.1 32.3 33.7 35.0
s1494 33.9 30.7 33.2 34.3 35.6 30.7 30.7 32.9 34.3 35.6
s1512 40.7 35.9 38.4 40.2 41.6 35.9 35.9 38.4 40.2 41.6
s3271 41.5 30.0 28.4 32.6 35.8 28.8 28.8 15.1 10.0 7.7
s3330 35.9 23.9 26.3 28.9 31.8 18.7 18.7 23.6 25.9 27.6
s3384 86.3 77.6 58.3 65.9 71.7 67.6 67.6 41.6 48.5 52.8
s4863 82.3 75.6 55.6 62.9 68.5 69.2 69.2 44.2 45.4 46.5
s5378 29.5 24.1 25.3 26.0 27.2 23.1 23.1 24.4 25.6 26.7
s6669 129.7 124.8 87.2 98.2 106.4 110.0 110.0 62.5 44.5 49.4
s9234.1 76.9 65.0 65.6 69.8 72.4 55.3 55.3 65.6 69.8 72.4
s9234 76.9 65.0 65.6 69.8 72.4 55.3 55.3 65.6 69.8 72.4
s13207.1 77.1 64.8 63.2 68.9 72.3 54.8 54.8 63.2 68.9 72.3
s13207 86.7 67.6 63.3 69.6 74.0 57.8 57.8 63.2 68.9 72.3
s15850.1 82.3 71.6 67.8 71.9 74.8 58.5 58.5 67.8 71.9 74.8
s15850 117.1 93.0 78.8 88.8 96.3 83.8 83.8 67.8 71.9 74.8
s35932 35.3 35.0 36.4 37.5 37.6 21.1 21.1 26.2 30.0 32.5

110

Table 14: Clock period improvements of multi-phase ISCAS’89 benchmark circuits.

Circuit Improvement TB (%) Improvement CSS (%) Improvement TBCSS (%)
Circuit ITB

1φ ITB
2φ ITB

3φ ITB
4φ ICSS

1φ ICSS
2φ ICSS

3φ ICSS
4φ ICSS

FF ITBCSS
1φ ITBCSS

2φ ITBCSS
3φ ITBCSS

4φ

s27 16 -6 -24 -34 20 23 22 18 32 32 18 3 -10
s208.1 33 13 -3 -14 30 17 20 26 57 53 27 18 16
s298 23 22 7 -4 11 6 3 1 32 32 27 9 -3
s344 31 20 13 7 0 0 0 0 31 31 20 13 7
s349 31 20 13 7 0 0 0 0 31 31 20 13 7
s382 28 6 2 -9 16 15 2 1 40 40 20 4 -8
s386 3 -3 -9 -15 0 0 0 0 3 3 -3 -9 -15
s400 28 6 2 -9 16 15 2 1 39 39 20 3 -8
s420.1 27 8 2 -6 36 20 17 15 56 53 26 18 11
s444 30 10 2 -8 16 10 3 1 41 41 19 4 -6
s499 7 -6 -10 -17 0 3 0 0 7 7 -3 -10 -17
s510 11 -2 -7 -12 0 5 2 1 11 11 3 -5 -12
s526 22 14 4 -7 12 6 0 0 32 32 20 4 -7
s526n 22 14 4 -7 12 6 0 0 32 32 20 4 -7
s635 5 32 23 18 97 30 24 24 97 97 53 41 38
s641 25 16 14 13 6 11 4 1 30 30 25 18 13
s713 20 16 14 13 10 11 4 1 29 29 25 18 14
s820 2 -5 -10 -15 0 0 0 0 2 2 -4 -10 -15
s832 1 -5 -10 -15 0 0 0 0 1 1 -4 -10 -15
s838 18 16 8 2 51 21 14 12 64 60 33 21 14
s938 18 16 8 2 51 21 14 12 64 60 33 21 14
s953 12 11 3 -4 9 0 0 0 20 20 11 3 -4
s967 15 10 2 -5 5 0 0 0 20 18 10 2 -5
s991 6 33 24 17 13 21 16 16 18 18 47 36 30
s1196 26 30 18 8 51 47 61 60 54 63 63 68 64
s1238 26 30 18 8 51 47 61 60 54 63 63 68 64
s1269 8 32 22 15 10 14 4 1 18 18 42 25 16
s1423 7 26 21 17 12 0 0 2 18 19 26 22 19
s1488 10 2 -1 -5 0 1 0 0 10 10 3 -1 -5
s1494 9 2 -1 -5 0 1 0 0 9 9 3 -1 -5
s1512 12 6 1 -2 0 0 0 0 12 12 6 1 -2
s3271 28 32 22 14 4 47 69 79 31 31 64 76 82
s3330 33 27 19 11 22 10 10 13 48 48 34 28 23
s3384 10 32 24 17 13 29 26 26 22 22 52 44 39
s4863 8 32 24 17 8 21 28 32 16 16 46 45 43
s5378 18 14 12 8 4 3 2 2 22 22 17 13 9
s6669 4 33 24 18 12 28 55 54 15 15 52 66 62
s9234.1 15 15 9 6 15 0 0 0 28 28 15 9 6
s9234 15 15 9 6 15 0 0 0 28 28 15 9 6
s13207.1 16 18 11 6 15 0 0 0 29 29 18 11 6
s13207 22 27 20 15 15 0 1 2 33 33 27 21 17
s15850.1 13 18 13 9 18 0 0 0 29 29 18 13 9
s15850 21 33 24 18 10 14 19 22 28 28 42 39 36
s35932 1 -3 -6 -6 40 28 20 14 40 40 26 15 8
Average 16.7 15.3 8.0 1.6 16.5 12.1 11.4 11.3 30.3 30.3 24.8 17.7 12.0

111

Table 15: Circuit info and run times for multi-phase ISCAS’89 benchmark circuits.

Circuit Info Time (sec)
Circuit r p tTB

1φ tTBCSS
1φ tTB

2φ tTBCSS
2φ tTB

3φ tTBCSS
3φ tTB

4φ tTBCSS
4φ

s27 3 4 0 0 0 0 0 0 0 0
s208.1 8 28 0 0 0 0 0 0 0 0
s298 14 54 0 0 0 0 0 0 0 0
s344 15 68 0 0 0 0 0 0 0 0
s349 15 68 0 0 0 0 0 0 0 0
s382 21 113 0 0 0 0 0 0 0 0
s386 6 15 0 0 0 0 0 0 0 0
s400 21 113 0 0 0 0 0 0 0 0
s420.1 16 120 0 0 0 0 0 0 0 0
s444 16 113 0 0 0 0 0 0 0 0
s499 22 462 0 0 0 0 0 0 1 1
s510 6 15 0 0 0 0 0 0 0 0
s526 21 117 0 0 0 0 0 0 0 0
s526n 21 117 0 0 0 0 0 0 0 0
s635 32 496 0 0 0 1 0 1 1 1
s641 19 81 0 0 0 0 0 0 0 0
s713 19 81 0 0 0 0 0 0 0 0
s820 5 10 0 0 0 0 0 0 0 0
s832 5 10 0 0 0 0 0 0 0 0
s838 32 496 0 0 0 0 0 1 1 0
s938 32 496 0 0 0 0 0 1 1 0
s953 29 135 0 0 0 0 1 0 0 0
s967 29 135 0 0 0 0 1 0 0 0
s991 19 51 0 0 0 0 0 0 0 0
s1196 18 20 0 0 0 0 0 0 0 0
s1238 18 20 0 0 0 0 0 0 0 0
s1269 37 1260 0 0 0 0 0 0 1 1
s1423 74 1471 1 1 1 2 2 2 2 3
s1488 6 15 0 0 0 0 0 0 0 0
s1494 6 15 0 0 0 0 0 0 0 0
s1512 57 415 0 0 0 1 1 1 1 1
s3271 116 789 1 1 1 1 1 1 2 2
s3330 132 514 0 0 1 1 1 1 2 2
s3384 183 1759 1 1 2 2 3 3 4 4
s4863 104 620 0 1 1 1 1 1 1 2
s5378 179 1147 1 1 1 2 2 2 3 3
s6669 239 2138 1 2 2 3 3 4 4 6
s9234.1 228 247 2 3 2 3 4 5 5 6
s9234 211 2342 2 3 3 4 4 5 5 7
s13207.1 669 3068 3 4 6 7 9 11 13 15
s13207 669 3068 3 5 6 8 9 13 13 19
s15850.1 534 10830 10 25 13 30 19 37 25 47
s15850 597 14257 15 26 19 32 24 42 30 46
s35932 1728 4187 6 8 16 17 21 28 27 39

112

7.0 APPLICATIONS TO RESONANT CLOCKING

Development of a low-jitter, low-skew (or controllable skew for clock skew scheduling) clock-

ing technology that has low power dissipation is one of the major research topics in the de-

velopment of next-generation synchronous integrated systems. Among the proposed clocking

technologies are wireless [22, 23, 47] and transmission line-based [4, 10, 11, 13, 17, 28, 54,

55, 62, 96, 97] approaches. These technologies must be supported by specific design flows

and CAD suites in order to be viable in semiconductor implementation. In this chapter, the

adaptability of design and analysis methods presented in Chapters 4, 5 and 6 to the physi-

cal design flow of circuits synchronized by a transmission line-based clocking technology is

described. The particular transmission line-based technology of interest, the rotary clocking

technology, is described in detail.

Resonant clocking technologies are described in Section 7.1. The operation of rotary

clocking technology published in [93, 94, 96, 97] is summarized in Section 7.2. The timing

of circuits synchronized with the rotary clocking technology is discussed in Section 7.3. The

chapter is summarized in Section 7.4.

7.1 RESONANT CLOCKING

In the last decade, the frequencies of the clock signals for the state-of-the-art digital inte-

grated circuits have surpassed the GHz milestone [63]. Historically, systems that operate at

clock frequencies in low MHz ranges have utilized off-chip quartz crystal oscillators [38, 59].

The oscillatory signal generated off-chip with the quartz crystal is input to the on-chip PLL,

where it is multiplied to the desired frequency on chip. The generated signal is distributed

113

to the synchronous components throughout the chip, typically using a tree topology, called

a clock tree network [26]. Especially in nano-scale CMOS, where signal integrity has become

a dominating problem, the distribution of the clock signal from a single clock source over a

clock tree network has become quite error-prone. The discrepancies in the arrival time of the

clock signal at the destination registers increase with each new technology. Also, the on-chip

PLL components occupy chip area and lead to problems with signal reflections, capacitive

loading and power dissipation that effectively limit the maximum operating frequency.

For high MHz ranges or GHz frequencies, the generation of the clock signal with an

off-chip oscillator has become a tedious task. The prevailing methodology to generate such

high-frequency clock signals is to use on-chip frequency multiplication by using phase-locked-

loop (PLL) components [14].

The resonant clocking technologies [4, 10, 11, 13, 17, 28, 54, 55, 62, 96, 97] present an

alternative to generating the synchronizing clock signal. The resonant clocking technologies

eliminate the necessity to use a complicated on-chip PLL component. The implementation of

resonant clocking technologies require long interconnects on the chip, which are modeled by

transmission lines. Instead of the lossy RC characteristics of long wires, LC characteristics

of transmission lines provide the physical medium for oscillation. A common signal is excited

and kept oscillating on the transmission lines, which constitutes the global clock signal.

Currently, there are three major types of resonant clocking technologies. These resonant

clocking technologies are categorized with respect to their oscillator types:

1. Coupled LC oscillator based resonant clocking technology [10, 11, 62],

2. Standing wave oscillator based resonant clocking technology [4, 13, 54, 55],

3. Traveling wave oscillator based resonant clocking technology [93, 94, 96, 97].

Coupled LC oscillator based resonant clocking technology provides a constant magnitude

clock signal with constant phase. A clock signal with constant magnitude and constant phase

is similar to the conventional clock signals that are delivered using conventional clock tree

networks. The main advantage of coupled LC oscillator based resonant clocking technology

114

Table 16: Categorization of the resonant clocking technologies.

Oscillator Type Phase Voltage

Coupled LC Constant Constant

Standing Wave Constant Variable

Traveling Wave Variable Constant

over other resonant clocking technologies is that coupled LC oscillator based clocking provides

the desired clock signal without any change to the conventional design flows. Higher circuit

performances are achievable solely by replacing the clock distribution network with the

coupled LC oscillator based resonant clocking technology distribution network.

Standing wave oscillator based resonant clocking technology provides a varying ampli-

tude clock signal with a constant phase. Similar to coupled LC oscillator based resonant

clocking technology, clock phase is constant, thus this technology does not require drastic

modifications to the conventional design flows.

Traveling wave oscillator based resonant clocking technology is the resonant clocking

technology of interest in this dissertation. Traveling wave oscillator based resonant clocking

technology, also called rotary clocking technology, provides a clock signal which has a constant

magnitude and varying phase. Varying phase (delay) of clock signal provides permits easy

implementation of non-zero clock skew systems. The design and analysis methods proposed

for non-zero clock skew systems in Chapters 4, 5 and 6 can be used to design circuits

synchronized with the rotary clocking technology.

Table 16 [61] summarizes the categorization of the presented resonant clocking technolo-

gies, based on the magnitude and phase properties of the generated clock signals.

115

= = = =

= = =

===

= = =

===

= = =

===

=

=

=

45o

225o

0o 90o270o

315o

135o

180o

(a)

(c)

(b)

Figure 46: Basic rotary clock architecture.

7.2 ROTARY TRAVELING WAVE OSCILLATORS

Rotary traveling-wave oscillators (RTWO’s) comprise a novel clock network implementation

technology providing controllable-skew, low-jitter, gigahertz range clocking with fast transi-

tion times and low power consumption [96]. The networks formed by RTWO’s are scalable

to any practical circuit dimension. RTWO’s are generated on cross-connected transmission

lines, constructing a differential LC transmission line oscillator. These oscillators generate

multi phase (360 degrees) square waves with low jitter. Multiple RTWO’s can be connected

together forming the rotary oscillator arrays (ROA) which distribute the synchronized square

wave over the whole chip. The basic ROA structure [96] is shown in Figure 46. This ar-

rangement produces a clock signal in each ring which sweeps around the ring in a frequency

116

+
+

_
_

0
0

0

0

0

0

0

0

0
0

0

0

(a)

0
0

0

0

+

+

+

+

+

+

+

_

_

_
_

_

_

_

(b)

WAVE

Figure 47: The RTWO theory.

dependent on the electrical length of the ring. Pulses on each ring are phase-locked via the

shared transmission line wires between the rings.

The current paths along the cross-connected transmission lines are terminated to each

other causing the switching energy to recirculate within the system as transmission line

energy. The energy circulation provides significant power savings over conventional, buffered

clock tree networks. The synchronization capability is enhanced, providing support for both

single and multi-phase clocking schemes. The frequency of the clock signal generated by

RTWO’s is limited only by the cutoff frequency of the integrated circuit technology used,

and can be manipulated by changing the length or adjusting the loading impedances of the

RTWO structures (ROA rings).

Figure 47 illustrates the operation of an individual RTWO [96]. Figure 47(a) shows

the open loop that conceptually occurs when the circuit is being excited for the first time.

Figure 47(b) shows the closed loop in steady state of operation where overlap of the traveling

waves causes signal negation.

117

(reinforces latch)

0V

+2.5V

.....+2.5V

.....0V

t0
t1 t2

Already
latched

Yet to
switch

Figure 48: The cross-section of the transmission line with shunt connected inverters.

When the transmission line is excited from one or more points, the traveling wave is

established on the cross-connected line. The traveling wave is inverted on the crossover

points, generating different phases of the square wave. Any odd number of crossovers are

allowed on the transmission line, where the number of crossovers determine the number of

clock phases for the multi-phase clock signal generated by the rotary clocking technology.

The duty cycles of the multiple clock phases are determined by the location of the crossovers

on the ring. Also, the relative phase and skew of any point on the ring is well known

due to the homogeneity of the traveling pattern around the ring. Note that anti-parallel

(shunt connected) inverter pairs are used between the cross-connected lines to save power,

initiate and maintain the traveling wave. After excitation, the anti-parallel inverters feed the

traveling wave in the stronger direction, up to a stable oscillation frequency. The transmission

line with anti-parallel connected inverters is shown in Figure 48 [96]. In Figure 48, the

traveling wave is traveling from left to right.

Each pair of anti-parallel inverters on the path of the traveling signal turns on after

some time, stimulating the same process at the neighboring pair of anti-parallel inverters in

the direction of the wave. The transmission line impedance is on the order of 10Ω and the

118

differential on-resistance of the anti-parallel connected inverters are in the 100Ω-1kΩ range

for a 0.25um technology [96].

Once a wave is established, it takes little power to sustain it. The dissipated power on

the ring is given by the I2R dissipation instead of the conventional CV 2f expression. Such

consideration of power is possible because the energy that goes into charging and discharging

MOS gate capacitance (of the inverters) becomes transmission line energy, which in turn

is circulated in the closed electromagnetic path. Such conservation of energy is enabled

by adiabatic switching [16, 40], in terminating the current path to the transmission line,

instead of ground. The coherent switching occurs only in the direction of the traveling

path. An equal amount of energy is launched in the reverse direction, however the latches in

this direction are already switched, thus this energy simply serves to reinforce the previous

switching events on these registers.

The frequency of the clock signal generated by the rotary clocking technology depends

on the length of the rotary wires [96]. On a typical RTWO loop, the oscillation frequency

of the signal is given by the equation:

fosc =
1

2
√

LtotalCtotal

(7.1)

Ltotal is the total loop inductance and is proportional to the length of the ring. Ltotal also

depends on the width of the wire that builds the ring, providing a design flexibility to generate

the desired frequency. Inductance variation on a typical silicon implementation is expected

to be small, because of the high quality of lithographic reproduction [96]. Ctotal is the total

capacitance that is driven by the RTWO ring. The majority of the driven capacitance is

the gate-oxide capacitance of the drive FETs and clock load FETs. Post-fabrication, the

projected variation in the targeted operating frequency is 5%, accounting for the sources of

variation and the dependence of the operating frequency on
√

C and
√

L [96].

A detailed analysis of the rotary clocking technology and the RTWO loops can be found

in [93, 94, 96, 97]. The point of interest in the work is mainly the timing requirements of

the rotary clocking technology, which are presented in Section 7.3.

119

7.3 TIMING REQUIREMENTS OF ROTARY CIRCUITS

As described in Section 7.2, rotary clocking technology provides a constant magnitude clock

signal with varying phase (clock skew and clock phase). The constant magnitude of the clock

signal is similar to the customary, however, varying clock phase is not popular in mainstream

circuit design flow. It is more common to use a zero clock skew, single-phase clock signal

in synchronous circuit design due to its simplicity in design and analysis. The majority of

the design automation tools for clock tree synthesis produce better results in generating a

clock distribution network that provides a zero clock skew, single phase clock distribution as

opposed to a non-zero clock skew tree. Non-zero clock skew and multi-phase synchronization,

although shown in Chapter 6 to be consistently superior over traditional zero clock skew,

single-phase design, is not very popular due to the lack of automation.

The characteristics of the clock signal generated by the rotary clocking technology are

investigated for the applicability of the advanced timing and synchronization methodologies

presented in the dissertation. It is shown that, the synchronization capabilities of the rotary

clocking technology are fully-compatible with the non-zero clock skew, multi-phase circuit

design methodology. Level-sensitive design techniques can also be flawlessly integrated into

the design flow.

Unlike traditional PLL-based clock sources, the generation of a multi-phase clock signal

is highly practical with rotary clocking. The number of phases in the clock signal generated

by the rotary clocking technology is determined by the number of cross-overs in the ROA

rings. It is reported [95] that two, four and eight phase synchronization schemes can be

implemented with rotary clocking technology, without loss of quality.

For traditional PLL-based clock sources and clock tree networks, excessive amount of

buffering can be necessary in order to deliver the clock signals to the synchronous component

with the desired delays. Remember from Section 5.4 that buffer elements are available only in

discrete values. In traditional clock tree networks, clock delays are generated with buffering,

thus, clock delays are available only in discrete values for such systems. For rotary clocking

technology, however, buffer elements are not necessary, as clock delays are provided with

the propagation of the clock signal on ROA rings. The clock phase driving a synchronous

120

Null: 0/360oC.W.

135o

90o

45o

315o

270o 225o

Null: 0/360oC.W.W.

225o

270o

315o

45o

90o 135o

180o 180o

= V
= I

Figure 49: The clock phase relationships on an ROA ring.

component is determined by the location of the connection point of the clock signal wire on

the ROA ring as shown in Figure 46(b) (page 116). Figure 49 also presents the different

phases of the clock signal available for a sample rotary implementation with one cross-over

point. Note that with this implementation, two corresponding points on the differential line

provides clock signals with are shifted by 180 degrees in time.

Rotary clocking technology readily supplies a fine grain of clock delays (phases). From

a CAD perspective, continuous delay models can be used to model clock delays available

in the network. From a circuit design perspective, the assignment of different clock delays

to the synchronous components of a rotary-clock synchronized circuit are essential for the

proper operation of the circuit. If a circuit previously designed to operate with zero clock

skew is synchronized with rotary clocking technology, synchronization problems may occur.

The most common problem is due to an unbalanced loading of the clock network. In order

to preserve the synchronization of the original zero clock skew circuit, all synchronous com-

ponents must be driven by the same location on the ROA ring. Such a load distribution

may affect the rotation of the oscillatory signal on the ring, thereby causing degradations

in the quality of synchronization. Also, due to simultaneous switching of synchronous com-

121

ponents, this type of distribution might lead to thermal hot spots on the chip area. In the

optimal scheduling scenario, the clock delays at the synchronous components are distributed

relatively evenly in time, leading to a relatively balanced distribution of the latching points

on the rotary ring. The required balanced loading of the ROA rings can be provided by

clock skew scheduling (see the distribution of clock delays for a sample circuit in Figure 25

on page 63).

The advanced timing methodology of using non-zero clock skew circuits with multi-phase

synchronization can easily be realized in circuits synchronized with rotary clocking technol-

ogy. Advantageously, implementation of circuits synchronized with the rotary clocking tech-

nology mutually requires the automated design and analysis methodologies for multi-phase,

non-zero clock skew synchronization schemes. Such integration of the design and analysis

methodologies into the physical design flow leads to circuits which benefit both from the

presented advanced timing methodologies and the rotary clocking technology.

7.4 SUMMARY

In this chapter, a family of next-generation clocking technologies, resonant clocking technolo-

gies, is reviewed. It is shown that resonant rotary clocking technology inherently supports

multi-phase and non-zero clock skew synchronization. The integration of the design and

analysis methods presented in this dissertation to the physical design flow of circuits syn-

chronized with the rotary clocking technology are proposed. This integration is described in

detail in Chapter 8.

122

8.0 PHYSICAL DESIGN USING RESONANT CLOCKING

This chapter describes a physical design methodology for circuits synchronized with a reso-

nant clocking technology (a general discussion of resonant clocking technologies is presented

in Chapter 7). In particular, synchronization with the resonant rotary clocking technol-

ogy [93, 94, 96, 97] is analyzed. Rotary clocking technology provides a controllable-skew,

low-jitter clock signal with fast transition times and low power consumption. As discussed

in Section 7.3, the availability of the full spectrum of clock phases (delays) promotes rotary

clocking technology as an excellent candidate for the synchronization of high-performance,

non-zero clock skew circuits.

The physical design methodology for rotary clocking technology is presented in order to

demonstrate the practical application of the advanced timing and synchronization method-

ologies discussed in this dissertation. The effects of nano-scale CMOS design to this appli-

cation are considered at various steps of the described physical design methodology.

The three major steps of the presented physical design methodology are the partitioning,

clock skew scheduling and placement steps. The partitioning step is proposed in order to

generate logic partitions that are implementable within the ROA ring regions of a rotary

clocking network. The clock skew scheduling step is required to improve the scalability of

conventional clock skew scheduling techniques by benefiting from the results of partitioning.

The placement step is proposed in order to provide a practical implementation alternative

for the mapping of the circuit logic and registers to the ROA rings. These steps are required

to increase the feasibility of the rotary clocking technology as the infrastructure of choice

for the advanced timing methodologies discussed in previous chapters (such as clock skew

scheduling and multi-phase synchronization).

123

This chapter is organized as follows. In Section 8.1, an outline of the physical design flow

is presented. In Section 8.2, the CAD implementation of the physical design flow is described

in detail. In Section 8.3, experimental results of various stages of the design methodology

are presented. A summary is offered in Section 8.4.

8.1 PHYSICAL DESIGN FLOW

Synchronization of digital VLSI circuits with the rotary clocking technology and the integra-

tion of clock skew scheduling into the circuit design flow require methodical introduction. In

this section, these new design paradigms are outlined from the physical design and electronic

design automation points of view.

The design flow is illustrated with the flow chart shown in Figure 50. The flow includes

processing the design entry to investigate the complexity and requirements of the circuit,

partitioning the netlist, performing clock skew scheduling and performing register and logic

placement.

The design entry is provided in industry standard file formats, such as DEF, LEF and

SDF file formats [72]. An initial timing information of the circuit is necessary for the ap-

plication of clock skew scheduling. This information can be obtained by performing static

timing analysis to a preliminary placement and routing or from a silicon virtual prototype [9]

of the circuit.

The implementation of the ROA rings and netlist partitioning are dependent on each

other as illustrated in the Partitioning step in the flow chart. The size and number of

rings in the ROA structures depend on several factors such as the complexity of the design,

the availability of clock network design resources, the computational resources for timing

analysis, and the availability of silicon area. Despite these dependencies, the number and

dimensions of ROA rings in a circuit are quite flexible. The number of ROA rings is usually

held sufficiently high in order to limit the total wire length. The shapes of ROA rings

are not necessarily regular (e.g., rectangles) as implied by the mesh structure presented

124

CSS FEASIBLE?

DESIGN ENTRY

ROA SIZE

PARTITIONING

REGISTER INSERTION

CSS on PARTITION I CSS on PARTITION N

CSS on TOP BLOCK

REGISTER MAPPING

LOGIC PLACEMENT

YESNO

CLOCK SKEW SCHEDULING

ROA FEASIBLE?
YESNO

PARTITIONING

PLACEMENT

Figure 50: The physical design flow of VLSI circuits with RTWO clock synchronization.

125

in Section 7.2. Such flexibility in the physical implementation of the ROA rings enables

reconciliation of the non-routable blocks of the chip area.

Partitioning is performed on a gate-level or a register-transfer level netlist. For the

former case, it is often necessary to insert extra registers in the logic network as part of the

timing-driven partitioning process. This process is represented by the “Register Insertion”

block in the flow chart. These inserted registers are level-sensitive latches operating in the

transparent phases of operation (Chapter 3) in order to preserve the functionality of the

original circuit. The feasibility of the partitioning result is checked at the next validation

step. If the current result is not feasible, the partitioning step of the design flow is repeated

until feasibility is satisfied.

In the clock skew scheduling step, the rotary clock network is constructed. Data paths

that are local to each partition are identified and the corresponding timing constraints are

included in the clock skew scheduling problem for that partition. Similarly, the timing

constraints of local data paths which span different partitions are included in the clock skew

scheduling problem of the top block. A heuristic method is proposed to solve the partition

and top block LP problems. The clock skew scheduling problems of each partition are

independent of each other, so these analyses can be parallelized.

After the clock skew scheduling block is completed, the optimal clock signal delays re-

quired at each synchronous component are known. Depending on the number of clock phases

and the number of registers for a given clock phase, the mapping of synchronous components

to the registers within an ROA ring is performed. This is an automated design step called

“Register Mapping” in the flow chart. Following register mapping, the rest of the logic

within a partition is placed in the area available within the ROA rings for this partition.

This placement is performed using conventional logic placement techniques.

The partitioning and clock skew scheduling steps of the physical design flow are presented

in detail in Sections 8.1.1 through 8.1.4. The placement step is discussed in Section 8.1.5.

126

8.1.1 Timing-Driven Partitioning

Timing-driven partitioning refers to the partitioning process during the placement and rout-

ing steps of conventional physical design flow of integrated circuits. The objective of the

conventional timing-driven partitioning process is to generate circuit placements that are

more likely to meet a particular timing budget. Path-based and net-based partitioners [1]

are the two most widely used kinds of partitioners in current state-of-the-art physical design.

Both path-based and net-based partitioners are used to limit the lengths of selected critical

paths in a circuit. Such limitation in the number of analyzed paths significantly reduces the

processing time for partitioning (and static timing analysis) while generally preserving the

accuracy of the analyses.

In clock skew scheduling, the local data paths in an entire circuit (or circuit partition)

are equally important and analyzed together. Thus, an alternative partitioning approach

is proposed in this work using selection criteria that lead to partitions which are amenable

to clock skew scheduling. Traditional path-based and net-based timing-driven partitioning

methods are not used. Instead, a hypergraph partitioning tool is used to generate partitions

that are amenable to clock skew scheduling and easily implementable with the rotary clocking

technology. Principally, timing-driven partitioning is performed within the proposed design

methodology subject to the following considerations:

1. To construct the logic network partitions that will be synchronized by individual ROA

rings of the rotary clocking technology.

2. To enable the completion of path enumeration on large scale circuits.

3. To enable the completion of clock skew scheduling algorithms on large scale circuits.

The first of the three factors listed above is directly related to the implementation of

the rotary clocking technology. If clock tree synthesis is performed completely independent

from logic synthesis, the assignment of synchronous components to individual ROA rings can

be inefficient for physical implementation. As discussed in Section 7.3, a relatively balanced

distribution of clock phases is necessary for the quality of synchronization with a rotary clock

signal. An unbalanced loading of synchronous components to ROA rings may also cause hot

spots in the circuit or significantly increase the clock load on one side of the chip compared to

127

another (thereby causing performance degradation). To prevent such negative effects where

a fraction of the registers must be connected to ROA rings outside the close proximity of

the register location, logic and clock tree synthesis need to be performed interdependently.

The partitioning procedure presented here achieves this goal by generating balanced logic

partitions to be synchronized by each ROA ring. Advantageously, the clock phases at the

synchronous components within each partition are well distributed after the application of

clock skew scheduling (see Figure 25 on page 63) to the logic partitions.

The second and third factors that drive the timing-driven partitioning process are related

to the design and analysis methodologies of large-scale circuits. Although discussed here

within the context of rotary clock synchronization, the partitioning procedures presented in

this dissertation can also be applied to circuits synchronized with traditional clocking tech-

nologies. From a CAD perspective, the generality of the partitioning procedure to improving

the scalability of clock skew scheduling (independent of the particular clocking technology)

is discussed next.

As reported earlier in Chapter 4, scalability of clock skew scheduling is an important

criteria for its widespread acceptance in mainstream design. Most industrial-strength timing

tools or circuit designers that implement variations of clock skew scheduling perform these

tasks only on certain portions of the circuit, without analyzing the circuit in its entirety.

Analysis of the entire circuit in order to implement a full-scale application of clock skew

scheduling can be computationally intensive for very large-scale circuits. Two main obstacles

for the application of clock skew scheduling to the entire circuit are path enumeration and

run times of LP model problems.

With increased logic depth and complexity in state-of-the-art integrated circuits, path

enumeration becomes highly costly and intractable. In practice, hierarchical timing mod-

els [71] are used in order to simplify the enumeration of paths in the circuit. In a flattened

circuit, however, path enumeration can not always be completed within reasonable time and

computation resources. Partitioning, as proposed in this work, remedies this shortcoming.

Generally, very long paths are split with a cut and a level-sensitive latch in the transparent

phase is inserted on the cut. The transparent phase latch has no effect on the functionality

128

of the circuit because the data signal immediately propagates through the latch. This latch,

however, simplifies path enumeration by shortening the logic depth of the original path.

Once path enumeration is complete, the LP problem for the application of clock skew

scheduling is formulated as described in Chapter 4. The LP problems generated for an

integrated circuit with millions of paths and hundreds of thousands or more synchronous

components can be very large. The run times of such large LP problems are usually rea-

sonable within the typically long IC design cycles (up to a few days with industrial strength

LP solvers and common computing resources). However, very large models might not be

solvable at all within the memory limits of common computing resources. In several industry

applications, for instance, LP model problems for the clock skew scheduling of large-scale

circuits are observed to exceed the practical limits of standard industrial strength computing

resources (e.g. 4 gigabytes of memory for 32-bit systems) [50].

8.1.2 Partitioning with Chaco

In the development of the partitioning step of the physical design flow, the partitioning tool

Chaco [31] from Sandia National Laboratories is used. Chaco is a hypergraph partitioning

tool that is primarily developed for the parallelization of tasks on special architectures.

Nevertheless, Chaco has been proven to be applicable to a wide range of areas. Chaco offers

various methods (spectral bisectioning [57], the inertial method [91], the Kernighan-Lin [39],

Fiduccia-Mattheyses [20] algorithms and multilevel partitioners [32]) for partitioning, each

fine tuned for a specific purpose.

Among the multiple criteria for partitioning a synchronous circuit for clock skew schedul-

ing are the weight, number and location of the cuts amongst partitions, the weight of each

partition, the relative mapping of sequentially-adjacent registers to partitions and the num-

ber of internal vertices per partition. Chaco tracks the quality of these partitioning perfor-

mance metrics with user-defined priorities. In order to generate partitions amenable to clock

skew scheduling, the number of cuts between partitions must be minimal and the number

of internal vertices (vertices that do not have edges between partitions) must be maximal.

129

Depending on particular design budgets, the priority of the performance metrics, or the

weights of particular nets or vertices can be fine tuned.

In the computer-aided design (CAD) tool implementation, the application of partitioning

to two types of netlists are supported. These netlists, categorized by the hierarchical level

of input data, are:

1. Gate level netlists,

2. Register-transfer level netlists.

If the input to the CAD tool is a register-transfer level netlist, identifying local data

paths (register-to-register timing paths) is inherently simple. The local data paths in the

register-transfer level netlist already form a circuit graph such as the one shown in Figure 4

(page 13), where each vertex is a register or a synchronous component and each edge is a

local data path. If the input to the CAD tool is a gate-level netlist, one of two methods is

applied. If the input is small enough such that explicit path enumeration can be performed

to generate the circuit graph, the enumeration is performed. For large inputs, where explicit

path enumeration cannot be completed, the partitioner is tuned such that registered-input,

registered-output partitions are generated. To encourage the generation of such partitions,

the following rules are applied in weight assignment to edges:

1. If the edge is between two registers, assign low edge weight.

2. If the edge is a fanout from the data output terminal of a synchronous component to a

combinational component, assign high edge weight.

3. If the edge is a fanout from a combinational component to the data input terminal of a

synchronous component, assign low edge weight.

4. If the edge is between two combinational components, assign high edge weight.

The Chaco partitioning tool minimizes the weight cuts, leading the cuts to pass through

the data inputs terminals of synchronous components. In case of single input synchronous

components, like flip-flops, a data input net is singlefold, while a data output net can have

multiple fanouts. Hence, the cuts are directed to occur at the data input terminal of a

synchronous component as opposed to a data output terminal. A synchronous component on

the boundary of two partitions is shared between two partitions, structuring the registered-

130

input and registered-output partitions. The enforcement of the edge weights only on data

I/O terminals (as opposed to all terminals) are to avoid forcing artificial constraints on

irrelevant I/O terminals, such as synchronization and scan-path I/O terminals.

The Chaco partitioning tool is operated with different priorities assigned to the parti-

tioning objectives. Experimentally, a balanced priority assignment between minimizing the

total cut weight and maximizing the number of internal vertices was found to be sufficiently

effective.

8.1.3 Register Insertion for Partitioning

As discussed in Section 8.1.2, partitioning can be performed on netlists at two different

hierarchy levels. The application of partitioning on a register-transfer level netlist is simpler

compared to its application on a gate-level netlist. On a partitioned register-transfer level

netlist, a cut is assumed to pass through an arbitrary location on the cut local data path.

The final register of the cut local data path is called a boundary register. Timing constraints

for the local data paths, where the boundary register is either the initial or the final register

of the path and the other register is within the same partition with the boundary register are

grouped into a partition LP problem. Timing constraints of the local data paths between

the boundary register and registers in other partitions are grouped into the top block LP

problem.

When a gate-level netlist is used, the heuristic described in Section 8.1.2 is used to bolster

cuts on the input of synchronous components. Unlike its treatment for a register-transfer

netlist, a final register of the local data path must be in the same partition with the cut local

data path. This objective suggests registered-input, registered-output partitions, simplifying

the timing analysis. The slight variation in the weight (or load) balance of the partitions

is insignificant and eventually balances out as the transfer of registers between partitions

occurs in all directions.

For instances where the partitioner validates a cut on a net that is between two combina-

tional components, register insertion is used to satisfy the registered-input, registered-output

scheme. The number of inserted registers depends on the quality of the partitioner and the

131

complexity of the design. In the performed experiments, the number of inserted registers has

been observed to be directly proportional to the number of partitions. For higher number

of total partitions, the number of inserted registers can get even higher than the number of

original registers. This requires the partitioning step to be applied with caution in designs

where die area is a scarce resource.

The registers inserted into the logic network in the register insertion step of the physical

design flow can affect the functionality of the circuit. In order to preserve the function-

ality of the circuit, level-sensitive latches are used. The inserted registers are selected as

level-sensitive latches operating in their transparent phases of operation (Chapter 3). The

propagation of the data signals on the inter-partition paths are not disrupted, as these sig-

nals are immediately propagated through the level-sensitive latches during the transparent

phases. Constraints similar to the linearized timing constraints presented in Chapter 4 are

used in this step in order to drive the inserted registers with proper clock phases (delays).

The general partitioning process is illustrated in Figure 51. In this figure, the black dots

represent registers and the lines represent the data paths. The paths from partition (4,1) are

demonstrated. Note that only some of the registers and paths are shown. The data paths

which are on a cut are identified and the timing constraints of these paths are included

within the top block LP.

8.1.4 Clock Skew Scheduling of Partitions

In this section, the application of clock skew scheduling on the partitions generated by the

timing-driven partitioner is described. A heuristic method is presented in order to perform

the referred application. It is shown that this heuristic method, although simplifying clock

skew scheduling, is not guaranteed to reach an optimal solution. The heuristic method is

described explicitly for circuits synchronized by the rotary clock technology in this chapter,

however, it can be generally applied to any synchronous circuit.

The heuristic method to solve the clock skew scheduling of partitions is as follows. As-

sume that there are n partitions. The partition LP problems (LP1, LP2, . . . LPn) are gener-

ated for these n circuit partitions. Each partition LPi is solved (sequentially or in parallel)

132

PARTITION (3)

PARTITION (2)

PARTITION (4,3) PARTITION (4,4)

PARTITION (4,2)PARTITION (4,1)

PARTITION (1)

Figure 51: Partitioning a circuit for timing analysis.

in order to compute the minimum clock period permitted by that partition. For proper

operation of the circuit, all partitions must operate at the same clock period. The partitions

can freely operate at any clock period higher than the minimum clock periods computed for

their partition LP problems. Thus, the maximum of the minimum clock periods reported

from each partition LP is selected as the principal clock period at which all the partitions

are operable. This maximum value corresponds to the frequency at which at least one of

the partitions is operating at its maximum frequency, while the rest of the partitions are

operating at frequencies lower than their capacities. After solving the partition LP problems,

the maximum of the minimum clock periods computed for the partitions is used to further

constrain the top block LP. Consequently, a constraint in the form

T ≥ max(T1, T2, . . . Tn) (8.1)

133

is added to the top block LP, where T1, T2, . . . Tn denote the minimum clock periods computed

for partitions LP1, LP2, . . . LPn, respectively. If the top block LP problem is less constraining

on the minimum clock period compared to the partition LP problems (smaller minimum clock

period), then the maximum of the minimum clock periods of the partition LP problems

is assigned as the clock period of the top block. Otherwise, the top block LP problem

determines the actual minimum operating clock period of the circuit (partitions and top

block).

The top block LP problem is solved after the partition LP problems are solved, because

the top block has the most number of boundary vertices implied in its constraints. Actually,

all boundary vertices are implied in the constraints that make up the top block LP problem.

Each partition LP problem only has a fraction of the boundary vertices implied in their

constraints. The solution of the clock delays to all boundary vertices, as computed by each

partition LP and the top block LP problems, must match in order to verify the validity

of the computed minimum clock period. In order to match these clock delays of boundary

vertices, the solutions computed for the top block LP problem are enforced on the partition

LP problems with equalities such as:

ti = xi, (8.2)

where the clock delay computed for register Ri in the top block LP problem is xi time units.

If the partition LP problems return feasibility, the computation is complete.

There are two points to note here. First, note that the minimum clock periods computed

for partition LP problems are lower limits on the minimum clock period of the complete

circuit as each partition LP problem is a subproblem of the original LP problem. The

constraints that make up the subproblems are subsets of the LP problem of the complete

(original) circuit. As the solution of one of the subproblems (the top block LP problem in

this case) is enforced on the remaining LP problems, the convex solution space of the original

problem is not violated. Intuitively, therefore, if the presented heuristic method produces a

feasible result, this result is optimal.

The second point to note is the fact that the presented heuristic method does not guar-

antee a feasible solution. The percentage (65%) of ISCAS’89 benchmark circuits for which

134

the presented heuristic method is feasible are shown in Section 8.3. The following alterna-

tive approaches are proposed to solve for cases where the presented heuristic method is not

feasible:

• Reiteration: The infeasibility diagnostics of an LP solver can be used to resolve the

infeasibility problem by changing one or more clock delays that appear in a contradic-

tory constraint. Even if any infeasibility information is not available, iterations can be

performed on the infeasible subproblems to search for a feasible answer. The clock de-

lays whose values are changed from the optimal solution of the top block LP are tracked

such that the feasibility of the remaining LP problems are not violated. Iterations are

performed either until a feasible solution is found or a time limit is reached.

• Constraining boundary vertices: As an alternative procedure, the clock delays of all

boundary registers can be fixed to a particular value. Synchronous circuits are typically

built to operate at zero clock skew, thereby, constraining the clock delays of the boundary

vertices to a particular value will guarantee proper circuit operation. The minimum

operational clock period for the restricted circuit will be larger than or equal to the

minimum clock period of the original circuit due to the additional constraints on the

convex solution space. Remember from Section 4.8 that a similar clock delay restriction

procedure is applied to the timing of Intellectual Property (IP) blocks. In the experiments

performed on ISCAS’89 benchmark circuits for IP blocks, restricting the clock delays of

boundary vertices leads to the 27% improvement of conventional clock skew scheduling

reduced to 24%, as shown in Table 3 on page 50.

• Delay padding: Implementation of clock skew scheduling requires modification of the

clock distribution network. If the designers can modify the logic network as well as the

clock distribution network, the infeasibility of one or more partition LP problems can be

mitigated by delay padding. In this alternative procedure, the data propagation delays

of all paths of the infeasible LP problems are formulated as variables. To this end, the

minimum Dif
Pm and maximum Dif

PM data propagation delays of a local data path can be

formulated with additional slack variables Sif
m and Sif

M , respectively, specific to each local

data path. The summation of all the slack variables is added to the minimization type

objective function (min T). The coefficient of the minimum clock period T is increased

135

as appropriate in the LP formulation in order to increase the priority of minimizing T

in optimization. In the LP problem solution, the non-zero slack values reported on each

local data path are the amounts of delay that must be inserted to the logic paths. The

clock delays of the boundary registers must be fixed prior to the solution, such that, the

solutions of the remaining LP problems are not violated. The practical concerns of delay

padding discussed in Chapter 5 are also valid for this alternative procedure.

8.1.5 Timing-Driven Register Placement

A register placement methodology is presented for the physical design of circuits synchronized

with the rotary clocking technology. In this methodology, designated areas for register

placement are reserved underneath the ROA rings. Highly populated register banks are

stacked inside these designated regions, available for use with the full spectrum of clock

phases. Upon synthesis of the circuit and the computation of optimal clock phases, each

register in the synthesized netlist is physically mapped to a register underneath the ROA

ring. To complete the placement step, the synthesized blocks of combinational circuitry are

distributed in the free space inside the region, outside the designated areas.

In Figure 52, an ROA ring of a typical circuit designed with a 0.13 µm technology on a

2mm x 2mm circuit die is illustrated. Note that the figure is not drawn to scale. The die

area is evenly divided into 16 regions in a four by four setting, each of which is synchronized

with an ROA ring. The dimensions of each ROA ring is 500µm by 500µm. Assuming a

single row of registers is placed underneath each ring, the maximum number of registers

that are realizable on this die can be easily be obtained using the dimensions of a typical

register. In the 0.13um technology, a size of a register is considered to be 4µm by 4µm, with

a minimal spacing of 2µm between two instances. Therefore, there is enough space to place

approximately 80 registers on each ROA ring edge [(500 + 2)/(4 + 2) ≈ 80]. For 4 sides of

an ROA ring and 16 rings, a total of 5120 registers are available for mapping against the

synthesized logic. This number is adequate for most state-of-the-art digital circuit designs

of similar die size. The dimensions of the designated area for register placement and the

number of register bank rows are the determining factors for the number of registers in

136

4 um

2 um

500 um

50
0

um

Figure 52: An ROA ring in a chip layout illustrated in 0.13 um technology.

a design, which can be altered for particular design budget requirements. Availability of

registers in the register bank enables a good distribution and mapping of clock phases.

The register placement methodology is discussed to demonstrate a viable mechanism to

deliver the required clock delays to registers. The implementation of the described register

placement methodology is not complete, and they are not an integral part of the advanced

timing and synchronization methodologies presented in the dissertation. Thus, the imple-

mentation discussion is only included as a direction for future work in this dissertation

(Chapter 10).

137

8.2 COMPUTER-AIDED DESIGN TOOL IMPLEMENTATION

The development of a computer-aided design tool called hpictiming following the guidelines

of the presented design methodology is in progress in an open source environment [76]. The

timing analysis portion of the tool, which is the context of this dissertation, is complete.

In this section, the timing portion of the hpictiming tool is presented. The details of the

partitioning step implementation with Chaco [31] and clock skew scheduling implementation

step with Xgrid parallel computing system are presented. The logic flow of the hpictiming

program is presented in Figure 53. This flow is similar to the physical design flow shown in

Figure 50 (note that the specific design decisions made in various stages of the implementa-

tion of the physical design flow are indicated in detail on Figure 53). In Figure 53, the grid

size for partitioning is set to 2x2 for simplicity.

Hpictiming is mainly written in C++ using the standard template library (STL). The

code is approximately 250,000 lines. Some of the parsers are written in lex/yacc and the

partitioning tool (Chaco software used to implement timing-aware partitioning) is written

in ansi C. The program compiles on Gnu/Linux (Debian 3.1), Solaris Unix (Sun OS 9) and

Mac OS X 10.3.8 operating systems with the gcc 3.0 (and up) compiler.

The input design data must be in one of two supported formats, either industry standard

LEF, DEF and SDF formats or the “bench” format for the ISCAS’89 benchmark circuits.

There are two outputs of hpictiming. The first output is the assignment of clock delays to

all the synchronous components of an integrated circuit. The second output is the minimum

clock period of the circuit, for which the assignment of the clock delays are performed.

Several run time input parameters are requested from the user, in order to provide flexibility

in run time to perform alternative solution routines (for instance parallel execution of clock

skew scheduling on partitions v.s. sequential application on single computing resource). The

following are the execution steps of the hpictiming tool:

• Step 1 of 8 – Reading SDF file

• Step 2 of 8 – Reading LEF and DEF files

• Step 3 of 8 – Checking LEF/DEF file consistency

• Step 4 of 8 – Checking SDF file consistency

138

CSS FEASIBLE?

DEF
LEF
SDF

2x2 GRID

CHACO

REGISTER INSERTION

REGISTER MAPPING

LOGIC PLACEMENT

YESNO

CLOCK SKEW SCHEDULING

PARTITIONING

PLACEMENT

BENCH

LP1
GLPK

LP2
GLPK

LP3
GLPK

LP4
GLPK

T4T3T2T1

Choose max (T1, T2, T3, T4)

TOP BLOCK LP
T >= max (T1, T2, T3, T4)

GLPK

LP1
T = min T

ti = optimal ti
GLPK

min T
optimal ti

LP2
T = min T

ti = optimal ti
GLPK

LP3
T = min T

ti = optimal ti
GLPK

LP4
T = min T

ti = optimal ti
GLPK

1) Re-Iteration
2) Constraining Boundary Vertices
3) Delay Padding

XGRID

XGRID

Figure 53: CAD tool flow.

139

• Step 5 of 8 – Finding directions for each component pin

• Step 6 of 8 – Building connectivity netlist

• Step 7 of 8 – Generating delay information

• Step 8 of 8 – Building register to register paths and output

These 8 steps are manifested for a design input in the industry standard LEF, DEF and

SDF formats. After Step 5, the user is prompted to make a selection about partitioning

the circuit. If positive answer is received, a fine-tuned partitioning tool Chaco is executed.

The primary partitioning method used within the partitioner is a multi-level Kernighan-

Lin method [32]. Many parameters provided to the partitioner are not discussed here, but

interested readers are referred to Appendix D for a sample execution routine displaying some

of these values. After Step 8, the timing of local data paths (register-to-register paths) are

obtained, with partitioning information. The user is prompted to make a selection for the

solution of the clock skew scheduling problem between a solution on a single computer or a

cluster of computers. The application of clock skew scheduling on a single computing resource

is straight-forward. Various computing cluster and software alternatives are possible for the

parallel implementation of clock skew scheduling. In this work, Apple’s Xgrid distributed

computing software is selected for implementation.

8.2.1 Parallelization of Clock Skew Scheduling with Xgrid

The popularity of the personal computers in the consumer market over the last few decades

has significantly lowered the costs of computing systems. Consequently, the costs associated

with setting up a distributed computing system have become relatively affordable. Processes,

previously requiring very complex architectures to be executed, can be executed on a cluster

of standard computing systems.

Xgrid [5] is a distributed computing software provided by Apple Computers Inc. permit-

ting the operation of a cluster of popular desktop machines as a supercomputer. The Xgrid

system aggregates an ad hoc network of Macintosh desktop computers into a multi-agent

computing cluster, where each agent is called a computation grid. Xgrid is typically bene-

ficial for highly parallelized problems that can be broken up into smaller pieces and each

140

piece executed separately and relatively independent from each other. One of the computers

in the cluster is set up as the client for Xgrid and other computers are used as distributed

agents. The Xgrid software is installed on all computers, enabling the agents to perform

grid calculation. The computations can be submitted when the agents are idle or it can be

used as the master task. The Xgrid software is run with a controller, which regulates the

assignment of computing processes to grids and manages the outputs as they are returned to

the server. Xgrid software serves as a simple distributed computing infrastructure and does

not support message passing between independent agents as is the case for typical Message

Passing Interface (MPI) [52] systems.

The parallelization of the application of clock skew scheduling is implemented for the

Xgrid distributed computing system. The LP problems for each partition are submitted as

individual tasks to the Xgrid computing cluster and solved simultaneously on specific agents.

The generated system not only exhibits the pre-described advantages of implementing a

parallel execution scheme for clock skew scheduling, it also exemplifies the implementation

of a complex VLSI design application on the Xgrid software architecture.

The computing cluster is constructed with eight PowerMac computers with dual G5

1.8GHz microprocessors and 3GB RAM operating Mac OS X 10.3.8. The cluster has one

dedicated client, one dedicated controller and six distributed computing agents. The agents

are configured to process Xgrid tasks as the master task. This grid computing cluster setup

is illustrated in Figure 54.

In order to effectively harness the distributed computing potential, the benchmark cir-

cuits are partitioned into four partitions. Note that four partitions emulate a 2x2 grid clock

distribution for the rotary clocking technology. The analysis of a 3x3 or a larger grid size

is possible, however, perfect parallelization for such grid size can not be achieved with six

distributed agents. For the 2x2 grid, four partition LP problems are solved in parallel on

four computing agents. The information from the solution of each partition LP is collected

on the client computer through writing solutions onto the disk. The following lists the order

of execution with collection and distribution of data by the client computer:

• Step 1 – The client executing the hpictiming program passes partition LP problems to

the controller.

141

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Agent 6

Controller

Client

6

? ? ? ? ? ?

?

6

Figure 54: Xgrid computing cluster.

• Step 2 – The controller assigns tasks (solving partition LP problems) to four of the six

available agents.

• Step 3 – The agents, which are assigned tasks, complete their tasks. The minimum clock

period computed for each task is written to disk and transferred back to the controller.

• Step 4 – Once all agents complete their processes, the data are returned to the client.

• Step 5 – The client processes the data collection, computes the maximum of the minimum

clock periods.

• Step 6 – The client appends the constraint to set clock period greater than or equal to

the maximum of the minimum clock delays (8.1) to the top partition LP and solves it.

The computed clock delays of the form (8.2) and max clock period of (8.1) are appended

to the partition LP problems. The client passes the modified partition LP problems to

the controller.

• Step 7 – The controller assigns tasks (solving modified partition LP problems) to four of

the six available agents.

142

• Step 8 – The agents, which are assigned tasks, complete their tasks. The solutions are

written to disk and returned to the controller.

• Step 9 – Once all agents complete their processes, the data are returned to the client.

• Step 10 – The client, executing hpictiming, processes the data collection to identify

feasibility.

8.2.2 Speedup of Computation

The primary advantage gained from the parallelization of the application of clock skew

scheduling is the speedup in computation time. The speedup is gained not only from par-

allelization but also from partitioning the LP problems. In this section, Amdahl’s law [3]

is used to compute the speedups achieved through partitioning and parallelization in the

application of clock skew scheduling. Amdahl’s law states that, the performance gain that

can be obtained by improving some fraction of a task depends on the following formula:

Speedup =
1

(1− f) + f
s

(8.3)

where, f is the fraction of a task that is enhanced, and s is the speedup of the enhanced

portion.

In the physical design flow shown in Figure 50, the clock skew scheduling step can be

parallelized. However, parallelization requires at least two stages of execution due to the

required iterations between the top block and partition LP problems (Figure 53). The

two stages of execution inhibits the derivation of a simple mathematical expression for the

speedup of the enhanced portion s. Thus, instead of identifying the portions which can be

parallelized and computing the speedups offered in each iteration, the following simpler form

of Amdahl’s law is used:

Speedup =
Run time for entire task without using enhancement

Run time for entire task using the enhancement when possible
. (8.4)

The formula given in (8.3) is used in the evaluation of results in Section 8.3.

143

The simple and intuitive formula of (8.4) is used to compute the speedups achieved

through partitioning and parallelization. The formula adapted to the parallel application of

clock skew scheduling to partitions is:

Speedup =
Run time of physical design flow without partitioning

Run time of physical design flow with partitioning and parallelization
. (8.5)

In a distributed computing environment, communication overhead is often of concern.

In the Xgrid environment, because of the simple (practically non-existent) interface between

independent computing agents, the communication overhead is reduced to a minimum. The

bulk of the required communication occurs in distributing the tasks to agents. The com-

munication times are included in the run times. However, the communication times are not

explicitly reported because of their insignificance compared to total computation times.

8.3 EXPERIMENTAL RESULTS

In this section, the experimental results for the operation of rotary clocking technology and

the application of hpictiming CAD tool are presented. The technical details in the implemen-

tation and operation of rotary clocking technology [96, 97] are outlined here for completeness

of the discussion of rotary clocking technology. The main focus in experimentation in this

section is on the effectiveness of the application of clock skew scheduling with partitioning

(sequentially and in parallel). Towards this goal, the quality of the partitioning process, the

run times for the parallelized application of clock skew scheduling on the parallel computing

clusters and final circuit performances are analyzed.

8.3.1 Rotary Clocking Results

The operation of the ROA structure in providing a gigahertz frequency, low jitter, low power

clock signal with fast transition times is confirmed by simulating the ring shown in Figure 46

at 965MHz and 3.4GHz. The ring designed at 2.5V 0.25 µm CMOS technology has 25

interconnected RTWO rings on a 7x7 array grid. The simulation result presented in [96] for

144

Figure 55: Line voltage and line current for the 3.4GHz clock example.

the 3.4GHz ring is shown in Figure 55. Very promising results of a clock jitter of 5.5ps and

34-dB power supply rejection ratio (PSRR) are measured [96].

Two other important metrics for an oscillator are the sensitivity to changes in tempera-

ture and supply voltage. It has been shown that the frequency deviation with temperature

change between −50oC and 150oC is only 1% while the change with VDD deviation between

1.5 and 3.5V is around 2% [96]. The immunity of the RTWO signals to process variations

while allowing full skew control over 360 degree phases on the ring proves very valuable for

deep sub micrometer applications.

145

8.3.2 Circuit Partitioning Results

The Chaco partitioning tool is tested on real and artificially generated circuits with various

netlist sizes. A moderate size circuit of over 80000 gates and 4000 registers is artificially

created in order to test the effectiveness of Chaco. Partitioning of this circuit into a 10x10

grid of 100 ROA rings is completed under 5 seconds on a 2.4GHz AMD processor workstation

with 1GB RAM. The resulting partitions have 60% of nodes as internal vertices and an even

distribution of approximately 800 nodes per partition.

More detailed results are reported for the ISCAS’89 benchmark circuits and for one

industrial circuit after processing these circuits with the hpictiming tool. The largest of these

real circuits is the industrial circuit industrial1 with 107875 circuit components, including

14031 synchronous registers. Path enumeration of industrial1 cannot be completed within

the available computing resources. Thus, gate-level partitioning is performed as discussed in

Section 8.1.2. The ISCAS’89 benchmark circuits are sufficiently large, yet, path enumeration

can be successfully performed on these circuits. Thus, partitioning is applied to the register-

transfer level netlist for these circuits. The partitioning results for

• ISCAS’89 benchmark circuits, with register-transfer level netlist partitioning,

• Industrial1 circuit, with gate level netlist partitioning,

are reported as computed on an PowerMac computer with dual G5 1.8GHz microprocessors

and 3GB RAM running Mac OS X 10.3.8.

As discussed in Section 8.1.2, register insertion is necessary for gate level netlist parti-

tioning. In order to profile the number of the inserted registers for different partitioning grid

sizes, experiments are performed on industrial1. The circuit statistics for industrial1

are as follows:

Number of Components : 107875

Number of Synchronous Components : 14031

Note that the number of paths in this circuit are not known because of the failure of path

enumeration. It is known, however, that the number of paths exceed 12 million, before the

process execution of path enumeration terminates.

146

Table 17: Number of inserted registers for Industrial1 after partitioning.

Grid (Partition) Size 2x2 4x4 5x5 6x6 10x10

Number of Inserted Registers 3011 9751 13903 16172 32131

The circuit statistics after partitioning industrial1 into grid sizes of 2x2, 4x4, 5x5, 6x6

and 10x10 are presented in Table 17. In Table 17, the entry “Number of Inserted Registers”

is the number of level-sensitive latches operating in the transparent phase of operation that

are inserted on cut edges. It is observed that as the number of partitions increases, the

number of registers that need to be inserted on edges (for non-register input cuts) increases.

For a 5x5 sized partition, the number of inserted registers (13903) approaches the number

of registers already present in the circuit (14031). This increase in the number of inserted

registers makes implementation with higher number of partitions impractical in most cases.

As described in Section 8.1.2, the selection of parameters for Chaco favors the interval

vertices to be high and boundary vertices and edge cuts to be low. For proper synchroniza-

tion, the set sizes must not be extremely unbalanced. Listed in Figure 56 are results of the

Chaco partitioner for industrial1. In Figure 56, the entry “Set Size” refers to the number

of vertices in a partition. The set sizes are less than the number of total components because

the test circuitry are not considered in the partitioning process. The entry “Edge Cuts”

is the number of cuts over data paths. Edge cuts include the encouraged cuts on register

inputs and the cuts between two logic gates, which require register insertion. The entries

“Boundary Vertices” and “Internal Vertices” refer to components that communicate and

do not communicate with other partitions, respectively (Section 8.1.3). The minimum and

maximum value columns report the minimum and maximum value over all partitions for the

corresponding row.

Note that the number of vertices is not the number of unique boundary vertices as the

name may imply. The number of vertices reflects the total weight of vertices. In Chaco,

each vertex is weighed identically with unity weight. During partitioning, the weight of a

147

Total Max/Set Min/Set
----- ------- -------

Set Size: 65908 16486 16470
Edge Cuts: 255516 136769 113643
Boundary Vertices: 7900 2178 1786 Partition Size: 2x2
Internal Vertices: 59393 14859 14838

Run Time: 15.29 secs

Total Max/Set Min/Set
----- ------- -------

Set Size: 65908 4314 4049
Edge Cuts: 674371 193668 10924
Boundary Vertices: 21541 1719 555 Partition Size: 4x4
Internal Vertices: 49385 3647 2896

Run Time: 22.85 secs

Total Max/Set Min/Set
----- ------- -------

Set Size: 65908 2744 2554
Edge Cuts: 999657 136127 7603
Boundary Vertices: 27752 1478 418 Partition Size: 5x5
Internal Vertices: 45616 2252 1659

Run Time: 27.78 secs

Total Max/Set Min/Set
----- ------- -------

Set Size: 65908 1898 1817
Edge Cuts: 1.21005e+06 177341 6303
Boundary Vertices: 34141 1474 138 Partition Size: 6x6
Internal Vertices: 42857 1710 1051

Run Time: 32.14 secs

Total Max/Set Min/Set
----- ------- -------

Set Size: 65908 693 583
Edge Cuts: 2.28313e+06 146214 2808
Boundary Vertices: 63686 1110 143 Partition Size: 10x10
Internal Vertices: 27787 583 170

Run Time: 54.08 secs

Figure 56: Chaco outputs for circuit Industrial1.

148

vertex is re-evaluated depending on the number of edge cuts. For instance, if a boundary

vertex has two inter-partition paths, the weight of that boundary vertex is set to two. Such

definition of the number of “Boundary Vertices” is suitable for timing-driven partitioning.

However, the users must be aware that the reported numbers are not the total number of

boundary vertices of a partition. The actual number of boundary numbers is smaller than

the “Boundary Vertices” reported by Chaco. Note that the number of boundary vertices

must match “Set Size - Internal Vertices”.

Chaco partitioner is applied to ISCAS’89 benchmark circuits, at the register-transfer

level. Partitioning on this level is preferred (where applicable) because register insertion is

not necessary. The run times and partitioning results are presented in Table 18. The run

times are reported only for the execution of Chaco, and are almost negligible when com-

pared to actual path enumeration or hpictiming total run times. Overall, Chaco generates

partitions that are well suited for clock skew scheduling and require reasonable run times

even for large-scale circuits.

8.3.3 Clock Skew Scheduling of Partitions Results

Clock skew scheduling is applied in parallel to the partitions of ISCAS’89 benchmark circuits

and the industrial circuit industrial1. The partitioning results, presented in Section 8.3.2,

are utilized within hpictiming in generating the top block and the partition LP problems.

The LP problem [21] shown in Table 6 (page 69) is used for clock skew scheduling of edge-

sensitive synchronous circuits. For industrial1, where register insertion is performed, linear

constraints described in Chapter 4 for level-sensitive local data paths are added to the LP

problem constraints. The feasibility of the parallel application of clock skew scheduling is

analyzed. The speedups achievable through parallel clock skew scheduling are computed.

The experimental setup of Chapters 4 and 5 is replicated for experimentation. The

timing information for each circuit component is generated with a pre-determined algorithm,

accounting for fanouts of a component, and the size and the type of the component. A 50%

duty cycle single phase clock signal is selected. The internal register delays are assumed to

be zero
(
Sf = Hf = Di

CQ = Di
DQ = 0

)
. The experiments are performed on an Xgrid cluster

149

Table 18: Chaco 2x2 partitioning results on ISCAS’89 benchmark circuits.

Circuit Set Size Edge Cuts Boundary Vertices Internal Vertices Run Time (secs)
s27 3 3 6 0 0.03
s208.1 8 24 24 0 0.02
s298 14 43 35 1 0.04
s344 15 50 36 0 0.04
s349 15 50 36 0 0.04
s382 21 78 46 0 0.04
s386 6 13 18 0 0.02
s400 21 78 46 0 0.03
s420.1 16 96 48 0 0.02
s444 21 74 51 1 0.02
s510 6 13 18 0 0.03
s526 21 81 47 0 0.03
s526n 21 81 47 0 0.04
s641 19 56 38 2 0.03
s713 19 56 38 2 0.04
s820 5 9 15 0 0.03
s832 5 9 15 0 0.02
s838.1 32 384 96 0 0.05
s938 32 384 96 0 0.06
s953 29 114 37 4 0.04
s967 29 114 37 4 0.03
s991 19 42 23 2 0.04
s1196 18 11 12 7 0.03
s1238 18 11 12 7 0.01
s1423 74 1003 185 7 0.10
s1488 6 13 18 0 0.02
s1494 6 13 18 0 0.01
s1512 57 196 124 1 0.05
s3271 116 358 141 22 0.08
s3330 132 156 96 48 0.08
s3384 183 660 174 50 0.13
s4863 104 380 161 17 0.06
s5378 179 542 271 36 0.12
s6669 239 455 237 56 0.13
s9234 228 824 319 34 0.18
s9234.1 211 684 248 55 0.16
s13207 669 652 447 348 0.13
s15850 597 7025 858 153 0.41
s15850.1 534 5787 773 140 0.64
s35932 1728 167 258 1506 0.41
s38417 1636 1692 688 997 1.28
s38584 1452 2935 1414 524 1.07

150

built with eight PowerMac computers with dual G5 1.8GHz microprocessors and 3GB RAM

running Mac OS X 10.3.8 (Section 8.2.1). The simplex optimizer of the GNU LP solver

GLPK (version 4.8) [25] is used to solve the LP problems. The results are presented on

Table 19. In Table 19, the number of registers r and the number of paths p are shown

for each analyzed circuit. Run times of various clock skew scheduling methods are shown.

Run times of the conventional method of Table 6 are denoted by tconven, the run times

of the sequential solution of partitions method are denoted by tsequen and the run times

of the parallel solution of partitions method are denoted by tparal. The feasibility of each

circuit when solved with the presented heuristic method is shown on the column labeled

“Feasibility”.

The minimum clock periods computed via each of the three methods (when feasible)

are identical, and equal to the values reported in Tables 3 and 9 under columns TCSS
FF .

These minimum clock periods, as presented in [43] (and repeated in Tables 3 and 9) provide

an average of 30% improvement over conventional zero clock skew, edge-triggered circuits.

In this section, the target is to improve the run times of clock skew scheduling without

deteriorating these clock period improvements. Accordingly, the run times in Table 19 are

reported in order to demonstrate the speedups achievable through partitioning and parallel

application of clock skew scheduling.

The selected suite of ISCAS’89 benchmark circuits and industrial1 are partitioned

into a 2x2 partition using Chaco. The partition and top block LP problems are generated.

First, the generated LP problems are solved on a single workstation in a sequential order.

The observed run times tsequen record speedups over conventional clock skew scheduling

application due to partitioning. Second, the generated LP problems are solved on the Xgrid

computing cluster in parallel as described in Section 8.2.1. The observed run times tparal

record speedups over the conventional clock skew scheduling application due to partitioning

and parallelization of the application. Note that the application of clock skew scheduling to

industrial1 using the conventional clock skew scheduling method is not possible, thus run

times are not reported.

It is observed from Table 19 that tparal is consistently and significantly (especially for

large scale circuits) superior to tsequen and tconven. Similarly, tsequen is consistently superior

151

Table 19: Clock skew scheduling results on 2x2 partitioned ISCAS’89 circuits.

Circuit Info Run Time CSS (sec) RTI (%) Feasibility
Circuit r p tconven tsequen tparal RTIsequen RTIparal Feasibility
s27 3 4 0 0 0 0 0 yes
s208.1 8 28 0 0 0 0 0 yes
s298 14 54 0 0 0 0 0 yes
s344 15 68 0 0 0 0 0 yes
s349 15 68 0 0 0 0 0 yes
s382 21 113 0 0 0 0 0 yes
s386 6 15 0 0 0 0 0 yes
s400 21 113 0 0 0 0 0 yes
s420.1 16 120 0 0 0 0 0 no
s444 16 113 0 0 0 0 0 yes
s510 6 15 0 0 0 0 0 yes
s526 21 117 0 0 0 0 0 yes
s526n 21 117 0 0 0 0 0 yes
s641 19 81 0 0 0 0 0 no
s713 19 81 0 0 0 0 0 no
s820 5 10 1 1 1 0 0 yes
s832 5 10 0 0 0 0 0 yes
s838.1 32 496 2 0 0 0 100 no
s938 32 496 1 1 1 0 0 no
s953 29 135 0 0 0 0 0 yes
s967 29 135 0 0 0 0 0 yes
s991 19 51 0 0 0 0 0 yes
s1196 18 20 0 0 0 0 0 no
s1238 18 20 0 0 0 0 0 no
s1423 74 1471 21 6 3 71 86 yes
s1488 6 15 0 0 0 0 0 yes
s1494 6 15 0 0 0 0 0 yes
s1512 57 415 1 0 0 100 100 yes
s3271 116 789 4 2 1 50 75 no
s3330 132 514 2 2 1 0 50 no
s3384 183 1759 22 4 3 82 86 yes
s4863 104 620 2 0 0 100 100 yes
s5378 179 1147 9 5 2 44 78 no
s6669 239 2138 33 10 7 30 79 no
s9234 228 247 52 15 8 71 85 no
s9234.1 211 2342 47 12 5 74 89 yes
s13207 669 3068 86 17 10 80 88 yes
s15850 597 14257 3545 735 447 79 87 no
s15850.1 534 10830 1358 156 110 89 92 yes
s35932 1728 4187 101 38 13 62 87 no
s38417 1636 28082 7707 3780 1845 51 76 yes
s38584 1452 15545 1394 749 339 46 76 yes
Industrial1 14031 3692878 n/a 34680 25680 n/a n/a no
Average 25 28

152

to tconven. The run time improvement from tconven to tsequen and from tconven to tparal are

listed under RTIsequen and RTIparal, respectively. The improvements are computed with the

formula [100(told − tnew)/told]. On the ISCAS’89 benchmark circuits, the average run time

improvement via partitioning (RTIsequen) is 25%. The average run time improvement via

partitioning and parallel application of clock skew scheduling RTIparal is 28%. The circuits,

for which the method is infeasible, are not considered in the computations of the average

improvement. Overall, the application of clock skew scheduling to partitions is feasible for

28 (65%) of the total 43 circuits, whereas this method is not applicable to the remaining 15

circuits (35%). For these 15 circuits, the alternative methods described in Section 8.1.4 can

be used.

8.3.4 Overall CAD Tool Results

In this section, the run times of hpictiming on the benchmark circuits are analyzed to profile

the speedups gained in overall program execution due to partitioning and parallelization. In

particular, the speedups available through solving the partition problems sequentially and

in parallel are computed using Amdahl’s Law presented in (8.5).

Table 20 presents the speedup results of hpictiming tool on ISCAS’89 benchmark and

Industrial1 circuits. In Table 20, the number of registers and paths of each circuit are

shown with r and p, respectively. Run times of the hpictiming tool operated with various

clock skew scheduling methods on the ISCAS’89 benchmark circuits are shown. Run times

of hpictiming with the conventional clock skew scheduling method of Table 6 are denoted

by thpictiming
conven , the run times with the sequential solution of partitions method are denoted by

thpictiming
sequen and the run times with the parallel solution of partitions method are denoted by

thpictiming
paral . In Table 20, the speedups due to partitioning and sequential application of clock

skew scheduling to 2x2 partitions of the circuits are denoted by speedupsequen. The speedup

speedupsequen is computed with the following formula:

speedupsequen =
thpictiming
conven

thpictiming
sequen

. (8.6)

153

Table 20: Speedup of hpictiming on 2x2 partitioned ISCAS’89 circuits.

Circuit Info Run Time hpictiming (sec) Speedup (X)
Circuit r p thpictiming

conven thpictiming
sequen thpictiming

paral speedupsequen speedupparal

s27 3 4 0 0 0 n/a n/a
s208.1 8 28 0 0 0 n/a n/a
s298 14 54 0 0 0 n/a n/a
s344 15 68 0 0 0 n/a n/a
s349 15 68 1 1 1 1.0x 1.0x
s382 21 113 0 0 0 n/a n/a
s386 6 15 0 0 0 n/a n/a
s400 21 113 0 0 0 n/a n/a
s420.1 16 120 0 0 0 n/a n/a
s444 16 113 1 1 1 1.0x 1.0x
s510 6 15 1 1 1 1.0x 1.0x
s526 21 117 0 0 0 n/a n/a
s526n 21 117 1 1 1 1.0x 1.0x
s641 19 81 1 1 1 1.0x 1.0x
s713 19 81 0 0 0 n/a n/a
s820 5 10 1 1 1 1.0x 1.0x
s832 5 10 0 0 0 n/a n/a
s838.1 32 496 3 1 1 3.0x 3.0x
s938 32 496 1 1 1 1.0x 1.0x
s953 29 135 1 1 1 1.0x 1.0x
s967 29 135 1 1 1 1.0x 1.0x
s991 19 51 1 1 1 1.0x 1.0x
s1196 18 20 0 0 0 n/a n/a
s1238 18 20 1 1 1 1.0x 1.0x
s1423 74 1471 22 7 4 3.1x 5.5x
s1488 6 15 1 1 1 1.0x 1.0x
s1494 6 15 1 1 1 1.0x 1.0x
s1512 57 415 2 1 1 2.0x 2.0x
s3271 116 789 6 4 3 2.5x 2.0x
s3330 132 514 2 2 1 1.0x 2.0x
s3384 183 1759 25 7 6 3.6x 4.2x
s4863 104 620 6 4 4 2.5x 2.5x
s5378 179 1147 15 11 8 1.4x 1.9x
s6669 239 2138 40 17 14 2.4x 2.9x
s9234 228 247 60 23 16 2.6x 3.8x
s9234.1 211 2342 53 18 11 2.9x 4.8x
s13207 669 3068 105 36 29 2.9x 3.6x
s15850 597 14257 3757 947 659 4.0x 5.7x
s15850.1 534 10830 1385 185 138 7.5x 10.0x
s35932 1728 4187 313 250 225 1.3x 1.4x
s38417 1636 28082 7881 3958 2021 2.0x 3.9x
s38584 1452 15545 1615 1022 611 1.6x 2.6x
Industrial1 14031 3692878 n/a 36062 27046 n/a n/a
Average 2.1x 2.6x

154

The speedups due to partitioning and application of clock skew scheduling in parallel are

denoted by speedupparal. The speedup speedupparallel is computed with the following formula:

speedupparal =
thpictiming
conven

thpictiming
paral

. (8.7)

Remember from Section 8.3.3 that the application of clock skew scheduling with parti-

tioning is not feasible for some of the ISCAS’89 benchmark circuits and the industrial circuit

industrial1. The circuits for which the method is not applicable are not considered in the

computation of average speedups. Still, the speedup numbers are presented individually for

all the ISCAS’89 benchmark circuits and the industrial circuit industrial1 in Table 20.

It is observed from Table 20 that on average 2.1x speedup is observed in hpictiming

run time due to partitioning. If the partitioned LP problems are solved in parallel, the

average speedup is 2.6x. It is intuitive that as the size of a circuit increases, the clock

skew scheduling step of hpictiming, which is the fraction of the task that is enhanced with

partitioning and parallelization, increases as well. So, for larger size circuits, higher values

of speedup are expected through partitioning and parallelization. Indeed, such a trend is

observed in Table 20.

Amdahl’s law of (8.3) is further investigated on several of the benchmark circuits. The

execution of hpictiming is divided into three main steps, Read-in, Partitioning and Schedul-

ing. The Read-in step consists of reading the input data and identifying the local data

paths. Steps 1 through 8 presented in Section 8.2 constitute the read-in step. Partitioning

step consists of the timing-driven partitioning procedure implemented with Chaco, discussed

in Section 8.1.2. Scheduling step consists of the application of clock skew scheduling to gen-

erated partitions.

Figure 57 illustrates the relative run time lengths of each step for several ISCAS’89

benchmark circuits and the industrial circuit industrial1 for the parallel application of

clock skew scheduling. The ISCAS’89 benchmark circuits, whose total run times are below a

certain limit, are not included in the analysis. The selectivity about the ISCAS’89 benchmark

circuits is to eliminate the inaccuracies due to the rounding off errors in run times, most

prominent for circuits with a run time below a few seconds. Although the solution for

industrial1 is infeasible, the reported run times are believed to be a good approximation

155

0

5000

10000

15000

20000

25000

30000

s1
58

50
.1

s3
84

17

s3
85

84

In
du

st
ri

al
1

Se
co

nd
s Scheduling

Partitioning

Read-In

Figure 57: The run times of hpictiming with Xgrid on large circuits.

of what they would have been, if all the subpartitions had been feasible. Note that run

times illustrated in Figure 57 for partitioning and scheduling steps are presented in Tables 18

and 19. In particular, partitioning step run time is presented in Tables 18 under column

“Run Time” and scheduling step run time is presented in Table 19 under column tparal. The

total run time of the hpictiming program (with parallel application of clock skew scheduling)

is reported in Table 20 under the column thpictiming
paral .

The breakdown of run times to the three steps of hpictiming is shown for the three largest

circuits, s38584, s38417 and Industrial1. The run times are shown in Figure 58, 59 and 60

for s38584, s38417 and Industrial1, respectively.

The run times for three application methods—conventional, sequential and parallel ap-

plication of clock skew scheduling—are shown for each circuit. The run times for each step

of hpictiming is shown with color codes, listed as read-in, partitioning and scheduling steps

from bottom to top for each data bar.

Partitioning step is not required in the conventional application method, thus is not

shown on the run time bar in the figures for the conventional application cases. Even

for methods where partitioning is necessary, the partitioning stage of the run time bar is

156

0

500

1000

1500

2000

Conventional Sequential Parallel

Se
co

nd
s

Scheduling

Partitioning

Read-In

Figure 58: Run time breakdown of hpictiming program steps for s38584.

0

2000

4000

6000

8000

10000

Conventional Sequential Parallel

Se
co

nd
s Scheduling

Partitioning

Read-In

Figure 59: Run time breakdown of hpictiming program steps for s38417.

157

0
5000

10000
15000
20000

25000
30000

35000
40000

Sequential Parallel

Se
co

nd
s Scheduling

Partitioning

Read-In

Figure 60: Run time breakdown of hpictiming program steps for industrial1.

not visible, because the run times for the partitioning process with Chaco are very small

compared to the rest of the execution time.

Note that the run time of the read-in and partitioning (where applied) steps are identical

in all three application methods. Through partitioning and application of clock skew schedul-

ing in parallel, the run time of the clock skew scheduling step of the hpictiming program is

improved. This improvement speeds up the hpictiming program according to Amdahl’s law,

the results of which are presented in Table 20.

8.4 SUMMARY

In this chapter, a design methodology for the physical design of digital VLSI circuits syn-

chronized with the resonant rotary clocking technology is described. The presented physical

design flow is similar to conventional physical design flows, in that, it has partitioning, timing

and placement steps. The implementation of a CAD tool based on the presented physical

design flow is described. The CAD tool is demonstrated to be functional and efficient, lead-

158

ing to improvements in the performance of the designed circuits and the software run time.

The scalability of the application of clock skew scheduling is particularly improved through

partitioning and parallelization. The finalized CAD tool can be used as a blueprint of future

CAD tools used for industrial-strength applications.

The preliminary results of this work are published in [86]. The hpictiming CAD tool is

available under general public license (GPL) [76].

159

9.0 CONCLUSIONS

The design challenges of nano-scale CMOS and emerging nano-electronics structures lead to

a different set of paradigms for circuit designers. The challenges stemming from the neces-

sity to design, analyze and verify complex giga-scale systems with increasingly significant

manufacturing variations create multi-disciplinary research areas. Systems are designed with

more awareness towards the physical laws and stochastic modeling, while the design budgets

are becoming critically narrow. Design techniques are shifting to yield intelligent fault de-

tection and design for manufacturing techniques, while the application areas are constantly

spreading over to new disciplines.

The increasingly important consequences of the dominance of the physical phenomena

in nano-scale CMOS design have affected the integrated circuit design flow. Engineers are

required to carefully investigate the physical behavior of materials and use sophisticated

techniques to design products in these ultra large scales. Some previously ignored material

behavior leads to a design altering phenomena at these larger scales. However, these material

behavior can also be used to derive novel design techniques. The oscillatory properties of

signals over long wires of interconnect, for instance, are used in designing the resonant

clocking technologies.

Within such a dynamic and resourceful environment, where design techniques are evolv-

ing to adapt to nano-scale silicon implementations, Computer-Aided Design (CAD) tools

are crucial to the successful development and integration of novel design techniques. The

adaptation to the shifts in the design paradigms will be realizable only through advances in

CAD. In this dissertation, novel approaches in the CAD development for the advanced tim-

ing and synchronization of complex giga-scale systems are presented. The proposed design

automation approaches are used as an integral part of the physical design flow for a set of

160

next-generation integrated circuits, which are synchronized by the rotary clocking technol-

ogy. The clock skew scheduling and rotary clocking technologies, which do not seamlessly

blend with the traditional design flow of integrated circuits, are shown to constitute a very

efficient circuit implementation alternative for next-generation circuits. Experimental results

project significantly superior circuit implementations for non-zero clock skew, rotary clocking

synchronized circuits—demonstrating lower power consumption, higher operating speed and

increased tolerance to process parameter variations. The integration of the proposed CAD

algorithms and the clocking technology for nano-scale CMOS circuits are instrumental to

demonstrate how the CAD tools potentially enable and propel the technological development

of integrated circuit design.

In Chapter 4, a linear programming formulation for the static timing analysis of level-

sensitive circuits is described. This LP formulation is the first stand-alone formulation

offered for the timing analysis of non-zero clock skew, level-sensitive circuits. The majority

of the current static timing analyzers utilize iteration-based approaches to analyze the timing

behavior of systems with latches. These iteration-based approaches are shown to converge to

solutions relatively quickly for most circuits, however, they require algorithmic extensions for

complex circuit topologies. The LP formulation presented in this dissertation is topologically

independent and shown to operate with reasonable run times.

The LP formulation presented in Chapter 4 is also used to automate the application of

clock skew scheduling to level-sensitive circuits for the first time. The clock skew scheduling

of edge-sensitive circuits has previously been exhaustively investigated by researchers. How-

ever, clock skew scheduling of level-sensitive circuits has not been successfully addressed.

The relatively higher complexity of the analysis of level-sensitive circuits and the lack of

an elegant automation framework (iterative solution procedures are less flexible) for such

circuits have inhibited the automation of clock skew scheduling. The clock skew scheduling

problem of level-sensitive circuits is formulated on the presented LP framework. Performance

improvements of 27% shorter clock periods on average are obtained for non-zero clock skew,

level-sensitive circuits over traditionally used zero clock skew, edge-sensitive circuits. The

solutions of the LP problems are empirically shown to be optimal with experiments on the

ISCAS’89 suite of benchmark circuits.

161

In Chapter 5, the optimal clock schedules and data propagation times of a circuit are ana-

lyzed after clock skew scheduling. With these analyses, the theoretical limits of improvement

in the minimum clock period achievable through clock skew scheduling are identified. Prior

to this study, it has been considered that the data path cycles and delay uncertainties are the

only limiting factors on the minimum clock period achievable through clock skew schedul-

ing. Many static timing analysis tools and algorithms proposed in the last two decades

have been operating on this principle. In this research, it is shown that the reconvergent

data paths also introduce theoretical limits on the minimum achievable clock period through

clock skew scheduling. This limitation is mitigated by the delay insertion method, leading to

improvements of 10% and 9% shorter clock periods on average over conventional clock skew

scheduling techniques for edge-sensitive and level-sensitive circuits, respectively. In main-

stream digital circuit design flow, delay insertion is commonly used as a post-processing step

in order to solve the short-path (hold time) violations. The drawbacks of delay insertion,

such as increased circuit area and power consumption, are mainly disregarded in favor of

the feasibility of the timing schedules. Similarly in this research, the drawbacks of delay

insertion are considered tolerable in favor of the improvement in the circuit performance.

In Chapter 6, the LP automation framework of Chapter 4 is used to analyze an ad-

vanced multi-phase synchronization methodology with non-zero clock skew. This analysis is

performed in order to provide design and analysis methods to address synchronous circuit

design with emerging clocking technologies, some of which entail multi-phase synchroniza-

tion schemes. For instance, the resonant rotary clocking technology provides an improved

clock distribution network which satisfies the complex synchronization requirements of high-

performance synchronous circuits by using multi-phase, non-zero clock skew clocking. The

presented timing analysis method is the first to correctly capture the behavior of multi-phase,

non-zero clock skew circuits in a fully-automated fashion. The experiments performed on

ISCAS’89 benchmark circuits demonstrate that multi-phase synchronization can actually

be advantageous in terms of circuit speed, despite the increased path delays due to latch

insertion per each clock phase. Such a fact is contrary to common wisdom, which has over

the years been suggested for zero clock skew systems. Approximately 17.7% and 12.0%

162

shorter clock periods are obtained on average over zero clock skew, edge-sensitive circuits

for three-phase and four-phase synchronization schemes, respectively.

In Chapters 7 and 8, the integration of the presented timing and synchronization method-

ologies into the physical design flow of circuits synchronized with rotary clocking technology

is described. Rotary clocking technology is a type of resonant clocking technology, which

provides controllable skew, low-jitter, giga-hertz range clocking with fast transition times

and low power consumption. Rotary clocking technology also permits non-zero clock skew

operation and multi-phase synchronization of systems. In the presented research, the devel-

opment of the physical design flow for rotary clock synchronized circuits is described. The

physical design flow consists of a novel partitioning step in order to generate partitions of

the circuit netlist on which clock skew scheduling can be applied individually. The poten-

tial to parallelize the application of clock skew scheduling is explored. Partitioning and the

parallelization of the application of clock skew scheduling are shown to provide significant

speedups in run times of the timing analysis. Over the ISCAS’89 benchmark circuits, a av-

erage speedup of 2.6x is observed. The speedup is shown to be directly proportional to the

size of the circuit. Thus, when applicable, clock skew scheduling of partitions significantly

improves the scalability of clock skew scheduling.

In summary, this work presents valuable timing and synchronization methodologies and

their automation methods. The timing and synchronization methodologies are proposed es-

pecially for the non-zero clock skew operation of high-performance digital VLSI integrated

circuits. The presented design automation algorithms are successfully integrated in the phys-

ical design flow of circuits synchronized with the rotary clocking technology. Conventional

physical design flow steps are modified and alternative steps are described for the implemen-

tation of the proposed set of next-generation synchronous circuits. A CAD tool (hpictiming)

is developed in order to implement this novel physical design flow.

163

10.0 FUTURE WORK

In this chapter, potential directions for future work are discussed. The discussion of ad-

vanced timing and synchronization of high performance integrated circuits presented in this

dissertation are only a fraction of the current state-of-the-art. The potential directions for

future research presented here are those, which are believed to have immediate and direct

impact on the methodologies presented in this dissertation.

Two main directions of future research are presented. In Section 10.1, possible extensions

to the hpictiming CAD tool are discussed. In Section 10.2, the adoptability of LP decom-

position techniques to solving the clock skew scheduling problem of partitions is described.

10.1 EXTENSIONS TO THE CAD TOOL

As indicated in Chapter 8, the development of the hpictiming CAD tool is currently under

progress. The road map for the development of the CAD tool suggests the integration of

partitioning, clock skew scheduling and placement in one tool. The partitioning and clock

skew scheduling portions of the tool are completed and discussed in detail in this dissertation.

In order to complete the automation flow, the placement step must be completed.

The partitioning step of the hpictiming tool encompasses the placement of registers and

logic network underneath and inside the ROA rings, respectively. This logic flow of the

placement step is discussed in Section 8.1.5. In this flow, the registers are pre-placed in

register banks underneath the ROA rings, designating multiple registers for each grain of

clock delay. After partitioning and clock skew scheduling are performed, the registers in the

netlist are mapped onto register banks. The mapping process is to be completed iteratively,

164

however, alternative methodical treatments are also possible. The size of register banks, in

providing sufficient number of registers per phase and sufficient space for logic placement, is

paramount to the success the mapping process.

The placement of logic network in the space inside the ROA rings also requires method-

ical treatment. The implementation of this phase is under development, and is a major

milestone in the electronic design automation for circuits synchronized with the resonant

rotary clocking technology.

Computation of the timing information of an integrated circuit is a feature that is cur-

rently not implemented in the hpictiming tool. In order to perform timing-driven parti-

tioning or conventional clock skew scheduling, an accurate timing information of the circuit

is required. As discussed in Chapter 8, the CAD tool is supplied with the initial timing

information of a design through an SDF file generated by an external timing analysis pro-

gram. For the analysis of ISCAS’89 benchmark circuits in experimentation (Section 8.3), for

instance, the timing information is generated with an approximation algorithm and supplied

to hpictiming. A very valuable extension to the hpictiming tool would be the capability to

extract and compute the interconnect and gate delays of an integrated circuit. Such capabil-

ity will not only enable hpictiming to be independent of third party tools, it will also enable

hpictiming to be used as a stand alone static timing analysis tool.

Finally, the development of hpictiming can be unified. Currently, hpictiming is developed

across multiple platforms, and is composed of multiple modules. The overall execution speed

and accuracy (due to external timing information) of hpictiming depend partially on third

party tools. The development of all hpictiming modules can be completed within the open

source project, leading to a coherent, high-performance design and analysis tool. Such

improvement will provide industry-strength capability to handle multi-million gate designs

within shorter execution times.

In summary, potential directions for the timing-driven physical design research include:

• Developing the CAD module to perform the placement of register banks and synthesized

logic,

165

• Enhancing the current CAD tool to handle interconnect and gate delay modeling and

computation,

• Integrating the design tools in an open source development environment where the final

tool can handle multi-million gate designs in reasonable amounts of run time.

10.2 LP DECOMPOSITION FOR CLOCK SKEW SCHEDULING

As discussed in Section 8.1.2, the partitioning of circuits in the presented physical design flow

is performed to address a series of factors. Partitioning a circuit is primarily a design decision

that enables the development of a dedicated design flow for circuits which are synchronized

by the rotary clocking technology. Advantageously, partitioning enables the application of

clock skew scheduling on smaller circuit areas and bolsters its parallelized application. The

application of clock skew scheduling on circuit partitions (sequentially or in parallel) using

the heuristic method presented in Section 8.1.1 is discussed.

In this section, the similarities of an LP decomposition technique to the presented heuris-

tic method are exploited. As a more robust solution technique, the application of Dantzig-

Wolfe LP decomposition technique [19, 92] to solve the clock slew scheduling problem of a

circuit is proposed as a potential direction for future work.

Clock skew scheduling is performed on circuit partitions that are built up of local data

paths (register-to-register timing paths). Remember from Section 8.1.2 that the LP problems

for the partitions are called partition LP and the LP problem containing the constraints for

inter-partition local data paths is called the top block LP.

Dantzig-Wolfe LP decomposition suggests the decomposition of a large-scale LP problem

into:

• A master problem, which is composed of constraints that involve any variable,

• One or more subproblems, which are composed of constraints that involve a subset of

variables.

166

The decomposition is used to solve the subproblems independently (sequentially or in paral-

lel). The results of each subproblem are reflected on the master problem to find an optimal

solution for the original LP. The propagation of results between the master and subproblems

are performed repetitively until a solution is found. A complete discussion of Dantzig-Wolfe

LP decomposition can be found in most linear programming text books, such as [19, 92].

It is immediately obvious that, the partition LP problems are analogous to subproblems

and the top block LP problem is analogous to the master problem of Dantzig-Wolfe LP

decomposition. This feature can be used to solve the partition LP problems in the pre-

sented physical design flow. This application will enable the guaranteed feasibility of the

clock skew scheduling problem. Remember that in experimentation, 65% of the ISCAS ’89

benchmark circuits were feasible after the first iteration of the presented heuristic method

(Section 8.3.3). Alternative solution techniques are proposed in Section 8.1.4 in order to

address the remaining 35% infeasible circuits. The first of the alternative procedures, the

reiteration procedure, is conceptually similar to the Dantzig-Wolfe decomposition. It is pro-

jected that, the heuristic method presented in this dissertation will be faster compared to

the Dantzig-Wolfe decomposition, however, the feasibility of solution is guaranteed with the

latter, provided sufficient time is allotted for its execution.

The application of clock skew scheduling in parallel is discussed implicitly within the

development of the physical design flow for rotary clock synchronized circuits. However,

the partitioning and application of clock skew scheduling in parallel can be performed for

circuits that are synchronized with traditional clocking technologies, as well. Dantzig-Wolfe

LP decomposition can be further explored in this context in future research.

167

APPENDIX A

NONLINEAR PROBLEM FORMULATION

This appendix demonstrates the Nonlinear Programming (NLP) model problem formulation

of the clock period minimization problem. The circuit network shown in Figure 16 is inves-

tigated for the clock period minimization problem and the NLP model problem formulation

is demonstrated. The circuit network in Figure 16 is presented in Figure 61 for convenience.

R1 R2 R3

R4

[2.9,3]
→

[5,7]
←

[3,4]← [2.
5,

5]

←

[3,4]
→

Figure 61: The simple synchronous circuit in Figure 16 (repeated).

(Obj) Min T

such that

(i) Latching Constraints - Hold Time

168

a1 ≥ 0 a2 ≥ 0

a3 ≥ 0 a4 ≥ 0

(ii) Latching Constraints - Setup Time

A1 − T ≤ 0 A2 − T ≤ 0

A3 − T ≤ 0 A4 − T ≤ 0

(iii) Synchronization Constraints - Earliest Time

d1 = max(a1, 0.5T) d2 = max(a2, 0.5T)

d3 = max(a3, 0.5T) d4 = max(a4, 0.5T)

(iv) Synchronization Constraints - Latest Time

D1 = max(A1, 0.5T) D2 = max(A2, 0.5T)

D3 = max(A3, 0.5T) D4 = max(A4, 0.5T)

(v) Propagation Constraints - Earliest Time

a2 = min [(d1 + 2.9 + t1 − t2 − T) , (d3 + 5 + t3 − t2 − T) , (d4 + 3 + t4 − t2 − T)]

a3 = d1 + 3 + t1 − t3 − T

a4 = d3 + 2.5 + t3 − t4 − T

(vi) Propagation Constraints - Latest Time

A2 = max [(D1 + 3 + t1 − t2 − T) , (D3 + 7 + t3 − t2 − T) , (D4 + 4 + t4 − t2 − T)]

A3 = D1 + 4 + t1 − t3 − T

A4 = D3 + 5 + t3 − t4 − T

(vii) Validity Constraints - Arrival Time

A1 − a1 ≥ 0 A2 − a2 ≥ 0

A3 − a3 ≥ 0 A4 − a4 ≥ 0

(viii) Validity Constraints - Departure Time

D1 − d1 ≥ 0 D2 − d2 ≥ 0

D3 − d3 ≥ 0 D4 − d4 ≥ 0

(ix) Initialization Constraints

A1 = d1

169

APPENDIX B

LP PROBLEM FORMULATION

This appendix demonstrates the Linear Programming (LP) model problem formulation of the

clock period minimization problem. The circuit network shown in Figure 16 is investigated

for the clock period minimization problem and the LP model problem formulation1 is derived.

The circuit network in Figure 16 is presented in Figure 62 for convenience.

R1 R2 R3

R4

[2.9,3]
→

[5,7]
←

[3,4]← [2.
5,

5]

←

[3,4]
→

Figure 62: The simple synchronous circuit in Figure 16 (repeated).

(Obj) Min T +1000d1 +1000d2 +1000d3 +1000d4 +1000D1 +1000D2 +1000D3 +1000D4 +

1000A2 + 1000A3 + 1000A4 − 1000a2 − 1000a3 − 1000a4

such that

1The constraints are labeled c1–c43 in order to improve the output readability.

170

(i) Latching Constraints - Hold Time

c1 : a1 ≥ 0 c2 : a2 ≥ 0

c3 : a3 ≥ 0 c4 : a4 ≥ 0

(ii) Latching Constraints - Setup Time

c5 : A1 − T ≤ 0 c6 : A2 − T ≤ 0

c7 : A3 − T ≤ 0 c8 : A4 − T ≤ 0

(iii) Synchronization Constraints - Earliest Time

c9 : d1 − a1 ≥ 0 c10 : d1 − 0.5T ≥ 0

c11 : d2 − a2 ≥ 0 c12 : d2 − 0.5T ≥ 0

c13 : d3 − a3 ≥ 0 c14 : d3 − 0.5T ≥ 0

c15 : d4 − a4 ≥ 0 c16 : d4 − 0.5T ≥ 0

(iv) Synchronization Constraints - Latest Time

c17 : D1 − A1 ≥ 0 c18 : D1 − 0.5T ≥ 0

c19 : D2 − A2 ≥ 0 c20 : D2 − 0.5T ≥ 0

c21 : D3 − A3 ≥ 0 c22 : D3 − 0.5T ≥ 0

c23 : D4 − A4 ≥ 0 c24 : D4 − 0.5T ≥ 0

(v) Propagation Constraints - Earliest Time

c25 : a2 − d1 − t1 + t2 + T ≤ 2.9 c26 : a3 − d1 − t1 + t3 + T ≤ 3

c27 : a2 − d3 − t3 + t2 + T ≤ 5 c28 : a4 − d3 − t3 + t4 + T ≤ 2.5

c29 : a2 − d4 − t4 + t2 + T ≤ 3

(vi) Propagation Constraints - Latest Time

c30 : A2 −D1 − t1 + t2 + T ≥ 3 c31 : A3 −D1 − t1 + t3 + T ≥ 4

c32 : A2 −D3 − t3 + t2 + T ≥ 7 c33 : A4 −D3 − t3 + t4 + T ≥ 5

c34 : A2 −D4 − t4 + t2 + T ≥ 4

(vii) Validity Constraints - Arrival Time

c35 : A1 − a1 ≥ 0 c36 : A2 − a2 ≥ 0

c37 : A3 − a3 ≥ 0 c38 : A4 − a4 ≥ 0

(viii) Validity Constraints - Departure Time

c39 : D1 − d1 ≥ 0 c40 : D2 − d2 ≥ 0

c41 : D3 − d3 ≥ 0 c42 : D4 − d4 ≥ 0

171

(ix) Initialization Constraints

c43 : A1 − d1 = 0

172

APPENDIX C

LP PROBLEM SOLUTION - CPLEX OUTPUT

This appendix includes the solution of the LP model problem describing the clock period

minimization problem of the circuit network shown in Figure 62. The LP model problem

shown in Appendix B is solved using the industrial solver CPLEX [36] and the results are

shown below. In the results, SECTION 1 - ROWS section presents the optimal solution for

each constraint and SECTION 2 - COLUMNS section presents the optimal results for each

variable.

Note that the optimal objective function value is not completely relevant to the clock

period minimization problem. Obtaining the minimum value for the clock signal period is the

main objective of the clock period minimization problem and the minimum clock period is

presented in SECTION 2 (T = 4.05). Likewise, the optimal values for the data signal arrival

and departure times are presented in SECTION 2, constituting the optimal clocking and

timing schedules for the synchronous circuit under investigation. For detailed information

about CPLEX operation and output formatting, see [36].

PROBLEM NAME fig7.lp

DATA NAME

OBJECTIVE VALUE 26254.05

STATUS OPTIMAL SOLN

ITERATION 27

OBJECTIVE obj (MIN)

RHS

RANGES

BOUNDS

SECTION 1 - ROWS

NUMBER .ROW... AT .ACTIVITY... SLACK ACTIVITY .LOWER LIMIT. .UPPER LIMIT. .DUAL ACTIVITY

173

1 obj BS 26254.05 -26254.05 NONE NONE 1

2 c43 EQ 0 0 0 0 -0

3 c1 BS 0 0 0 NONE 0

4 c5 BS -2.025 2.025 NONE 0 -0

5 c9 BS 2.025 -2.025 0 NONE 0

6 c10 BS 0 -0 0 NONE 0

7 c17 BS 0 -0 0 NONE 0

8 c18 LL 0 0 0 NONE -2000

9 c35 BS 2.025 -2.025 0 NONE 0

10 c39 LL 0 0 0 NONE -2500.5

11 c26 UL 3 0 NONE 3 1000

12 c31 LL 4 0 4 NONE -3500.5

13 c25 UL 2.9 0 NONE 2.9 2500.5

14 c32 BS 6.95 -3.95 3 NONE 0

15 c4 BS 0 0 0 NONE 0

16 c8 BS -1.55 1.55 NONE 0 -0

17 c15 BS 2.025 -2.025 0 NONE 0

18 c16 LL 0 0 0 NONE -1000

19 c23 LL 0 0 0 NONE -1000

20 c24 BS 0.475 -0.475 0 NONE 0

21 c38 BS 2.5 -2.5 0 NONE 0

22 c23 BS 0.475 -0.475 0 NONE 0

23 c29 BS 2.475 0.525 NONE 3 -0

24 c34 BS 6.05 -2.05 4 NONE 0

25 c2 BS 0 0 0 NONE 0

26 c6 UL 0 0 NONE 0 500.5

27 c11 BS 2.025 -2.025 0 NONE 0

28 c12 LL 0 0 0 NONE -1000

29 c19 LL 0 0 0 NONE -1000

30 c20 BS 2.025 -2.025 0 NONE 0

31 c36 BS 4.05 -4.05 0 NONE 0

32 c40 BS 2.025 -2.025 0 NONE 0

33 c3 BS 1.025 -1.025 0 NONE 0

34 c7 BS -2.025 2.025 NONE 0 -0

35 c13 BS 1 -1 0 NONE 0

36 c14 BS 0 -0 0 NONE 0

37 c21 LL 0 0 0 NONE -2500.5

38 c22 LL 0 0 0 NONE -2000

39 c37 BS 1 -1 0 NONE 0

40 c41 LL 0 0 0 NONE -1000

41 c27 BS 2.95 2.05 NONE 5 -0

42 c28 UL 2.5 0 NONE 2.5 2000

43 c32 LL 7 0 7 NONE -2500.5

44 c33 LL 5 0 5 NONE -2000

SECTION 2 - COLUMNS

NUMBER .COLUMN. AT .ACTIVITY... ..INPUT COST.. .LOWER LIMIT. .UPPER LIMIT. .REDUCED COST.

45 T BS 4.05 1 0 NONE 0

46 D1 BS 2.025 1000 0 NONE 0

47 BD1 BS 2.025 1000 0 NONE 0

48 A4 LL 0 -1000 0 NONE 1000

49 BA4 BS 2.5 1000 0 NONE 0

50 D4 BS 2.025 1000 0 NONE 0

51 BD4 BS 2.5 1000 0 NONE 0

52 A2 LL 0 -1000 0 NONE 1500.5

53 BA2 BS 4.05 1000 0 NONE 0

54 D2 BS 2.025 1000 0 NONE 0

55 BD2 BS 4.05 1000 0 NONE 0

56 A3 BS 1.025 -1000 0 NONE 0

57 BA3 BS 2.025 1000 0 NONE 0

58 D3 BS 2.025 1000 0 NONE 0

59 BD3 BS 2.025 1000 0 NONE 0

60 BA1 BS 2.025 0 0 NONE 0

61 A1 LL 0 0 0 NONE 0

62 T1 BS 0.05 0 0 NONE 0

174

63 T3 LL 0 0 0 NONE 0

64 T2 BS 0.925 0 0 NONE 0

65 T4 BS 0.475 0 0 NONE 0

175

APPENDIX D

CHACO RUN SAMPLE

The following is a sample run output from hpictiming, specifically demonstrating the execu-

tion of the partitioning tool Chaco. In the run, the circuit netlist information is written to

file dabble.graph file in the graph input file format required by Chaco. Chaco is provided

by a set of user parameters from an input file Users Params. Details about these parameters

can be found in the Chaco User’s Guide [31]. In the following excerpt, hpictiming is run on

a very small sample circuit, with 11 circuit components.

Generate the graph file for partitioning? <y/n/h> [or <h> for help] : y

The selected option will write a graph file in the CHACO format for this circuit

**

The chaco graph file is written to file "dabble.graph".

**

Run Chaco to complete partitioning <y/n> : y

=== CHACO OUTPUT START ===

Chaco 2.0

Sandia National Laboratories

Reading parameter modification file ‘User_Params’

Parameter ‘OUTPUT_ASSIGN’ reset to True

Parameter ‘ARCHITECTURE’ reset to 2

Parameter ‘TERM_PROP’ reset to True

Parameter ‘CUT_TO_HOP_COST’ reset to 0.1

Parameter ‘COARSE_NLEVEL_KL’ reset to 1

Parameter ‘KL_BAD_MOVES’ reset to 2000

Parameter ‘KL_NTRIES_BAD’ reset to 5

Parameter ‘KL_IMBALANCE’ reset to 0.1

Parameter ‘MATCH_TYPE’ reset to 3

Parameter ‘COARSEN_VWGTS’ reset to True

Parameter ‘HEAVY_MATCH’ reset to True

Parameter ‘REFINE_PARTITION’ reset to 2

Parameter ‘INTERNAL_VERTICES’ reset to 1

176

Graph input file: Assignment output file: Global partitioning method:

(1) Multilevel-KL

(2) Spectral

(3) Inertial

(4) Linear

(5) Random

(6) Scattered

(7) Read-from-file

Number of vertices to coarsen down to: X and Y extent of of 2-D mesh: Partitioning dimension:

(1) Bisection

(2) Quadrisection

Input and Parameter Values

Graph file: ‘dabble.graph’, # vertices = 11, # edges = 13

Global method: Multilevel-KL

Number of vertices to coarsen down to: 4

Eigen tolerance: 0.001

Local method: Kernighan-Lin

Partitioning target: 2-dimensional mesh of size 2x2

Partitioning mode: Bisection

Random seed: 7654321

Assignment output file: ‘dabble.out’ (normal format)

Active Parameters:

CHECK_INPUT = True

LANCZOS_TYPE: Selective orthogonalization OR extended

EIGEN_TOLERANCE = 0.001

SRESTOL = -1 ... autoset to square of eigen tolerance

LANCZOS_MAXITNS = -1 ... autoset to twice # vertices

LANCZOS_SO_PRECISION = 2 ... double precision

LANCZOS_SO_INTERVAL = 10

LANCZOS_CONVERGENCE_MODE = 0 ... residual tolerance

BISECTION_SAFETY = 10

LANCZOS_TIME = 0 ... no detailed timing

WARNING_EVECS = 2

MAPPING_TYPE = 1 ... min-cost assignment

MAKE_CONNECTED = True

PERTURB = False

COARSEN_RATIO_MIN = 0.7

COARSE_NLEVEL_KL = 1

MATCH_TYPE = 3

HEAVY_MATCH = True

COARSE_KL_BOTTOM = True

COARSEN_VWGTS = True

COARSEN_EWGTS = True

KL_ONLY_BNDY = True

KL_RANDOM = True

KL_METRIC = Hops

KL_NTRIES_BAD = 5

KL_BAD_MOVES = 2000

KL_UNDO_LIST = True

KL_IMBALANCE = 0.1

TERM_PROP = True

CUT_TO_HOP_COST = 0.1

OUTPUT_METRICS = 2

MAKE_VWGTS = False

REFINE_MAP = False

REFINE_PARTITION = 2

INTERNAL_VERTICES = True

DEBUG_PARAMS = 2

Starting to partition ...

WARNING: Coarsening not making enough progress, nvtxs = 7, cnvtxs = 5.

Recursive coarsening being stopped prematurely.

177

Partitioning Results

After full partitioning (nsets = 4)

Total Max/Set Min/Set

----- ------- -------

Set Size: 11 3 2

Edge Cuts: 402 202 200

Mesh Hops: 403 203 200

Boundary Vertices: 12 4 2

Boundary Vertex Hops: 14 5 2

Adjacent Sets: 10 3 2

Internal Vertices: 4 1 1

Total time: 0.04 sec.

partitioning 0.01

other 0.03

KL time: 0.03 sec.

nway refinement 0.03

bucket sorting 0.01

Run Another Problem?

=== CHACO OUTPUT END ===

Chaco executed, now reading back the results file.

Reading the chaco output can be done by two methods :

1) Speed efficient

2) Memory efficient

Which method do you prefer? <1/2> : 1

Results read back succesfully.

178

BIBLIOGRAPHY

[1] C. Ababei, S. Navaratnasothie, K. Bazargan, and G. Karypis. Multi-objective cir-
cuit partitioning for cutsize and path-based delay minimization. In Proceedings of the
IEEE/ACM International Conference on Computer Aided Design, pages 181–185, 2002.

[2] C. Albrecht, B. Korte, J. Schietke, and J. Vygen. Cycle time and slack optimization
for vlsi-chips. In Digest of Technical Papers, IEEE/ACM International Conference on
Computer-Aided Design, pages 232–238, November 1999.

[3] G. Amdahl. Validity of the single processor approach to achieving large-scale computing
capabilities. In AFIPS Conference Proceedings, volume 30, pages 483 –485, 1967.

[4] W. Andress and D. Ham. Standing wave oscillators utilizing wave-adaptive tapered
transmission lines. In Digest of Technical Papers, 2004 Symposium on VLSI Circuits,
pages 50–53, June 2004.

[5] Apple Inc., Advanced Computing Group. Xgrid Guide, 2004.

[6] H. B. Bakoglu. Circuits, Interconnections, and Packaging for VLSI. Addison-Wesley
Publishing Company, Reading, MA, 1990.

[7] T. M. Burks and K. Sakallah. Optimization of critical paths in circuits with level-
sensitive latches. In Proceedings of ACM International Conference on Computer-Aided
Design, pages 468–473, 1994.

[8] T. M. Burks, K. A. Sakallah, and T. N. Mudge. Critical paths in circuits with level-
sensitive latches. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
3(2):273–291, June 1995.

[9] Cadence Inc. SOC Encounter v4.1 Manual, May 2004.

[10] S. C. Chan, P. J. Restle, N. K. James, and R. L. Franch. A 4.6 ghz resonant global
clock distribution network. In IEEE ISSCC Digest of Technical Papers, pages 341–343,
February 2004.

[11] S. C. Chan, K. L. Shepard, and P. J. Restle. Design of resonant global clock distributions.
In Proceedings of the International Conference on Computer Design, pages 238–243,
2003.

179

[12] W. K. Chen, editor. The VLSI Handbook. CRC Press, 1999.

[13] V. L. Chi. Salphasic distribution of clock signals for synchronous systems. IEEE Trans-
actions on Computers, 43(5):597–602, May 1994.

[14] H. G. Chyun and J. Hung. Phase-locked loop techniques. a survey. IEEE Transactions
on Industrial Electronics, 43(6):609–615, December 1996.

[15] M. R. Dagenais and N. C. Rumin. On the calculation of optimal clocking parameters in
synchronous circuits with level-sensitive latches. IEEE Transactions on Computer-Aided
Design, CAD-8(3):268–278, March 1989.

[16] J. Denker. A review of adiabatic computing. In Proceedings of the 1994 Symposium on
Low Power Electronics, pages 94–97, October 1994.

[17] A. Drake, K. Nowka, T. Nguyen, J. Burns, and R. Brown. Resonant clocking using
distributed parasitic capacitance. IEEE Journal of Solid-State Circuits, 39(9):1520–
1528, September 2004.

[18] C. Ebeling and B. Lockyear. On the performance of level-clocked circuits. In Proceedings
of the Sixteenth Conference on Advanced Research in VLSI, pages 342–356, March 1995.

[19] S.-C. Fang and S. Puthenpura. Linear Optimization and Extensions: Theory and Algo-
rithms. AT&T. Prentice Hall, 1993.

[20] C. M. Fiduccia and R. Mattheyses. A linear heuristic for improving network partitions.
In Proceedings of 19th IEEE Design Automation Conference, pages 175–181, 1982.

[21] J. P. Fishburn. Clock skew optimization. IEEE Transactions on Computers, C–
39(7):945–951, July 1990.

[22] B. Floyd, X. Guo, J. Caserta, T. Dickson, C.-M. Hung, K. Kim, and K. O. Wireless
interconnects for clock distribution. In Proceedings of the 8th ACM/IEEE Intl. Work-
shop on Timing Issues in the Specification and Synthesis of Digital Systems,, December
2002.

[23] B. Floyd, C. Hung, and K.K.O. Intra-chip wireless interconnect for clock distribution
implemented with integrated antennas, receivers, and transmitters. IEEE Journal of
Solid-State Circuits, 37(5):522–543, May 2002.

[24] W. Ford and W. Topp. Data Structures with C++. Prentice Hall, 1996.

[25] Free Software Foundation (FSF), http://www.gnu.org/software/glpk/glpk.html. GLPK
(GNU Linear Programming Kit), 2005. version 4.8.

[26] E. G. Friedman. Clock Distribution Networks in VLSI Circuits and Systems. IEEE
Press, 1995.

180

[27] P. Gronowski and W. Bowhill. Dynamic logic and latches ii. IEEE VLSI Circuits
Workshop, 1996.

[28] L. Hall, M.Clemens, W. Liu, and G. Bilbro. Clock distribution using cooperative ring
oscillators. In Proceedings of the 1997 Conference on Advanced Research in VLSI, pages
15–16, September 1997.

[29] D. Harris and M. Horowitz. Skew-tolerant domino circuits. IEEE Journal of Solid-State
Circuits, 32(11):1702–1711, November 1997.

[30] S. Held, B. Korte, J. Massberg, M. Ringe, and J. Vygen. Clock scheduling and clocktree
construction for high performance asics. In Proceedings of the International Conference
on Computer Aided Design, pages 232–239, November 2003.

[31] B. Hendrickson and R. Leland. The chaco user’s guide: Version 2.0. Technical report,
Sandia National Laboratories, Albuquerque, NM, Jul 1995.

[32] B. Hendrickson and R. W. Leland. A multi-level algorithm for partitioning graphs. In
Supercomputing, 1995.

[33] P. Hofstee, N. Aoki, D. Boerstler, P. Coulman, S. Dhong, B. Flachs, N. Kojima,
O. Kwon, K. Lee, D. Meltzer, K. Nowka, J. Park, J. Peter, S. Posluszny, M. Shapiro,
J. Silberman, O. Takahashi, and B. Weinberger. A 1 ghz single-issue 64 b powerpc
processor. In Digest of Technical Papers of Solid-State Circuits Conference (ISSCC),
pages 92–93, February 2000.

[34] Y. C. Hsu, S. Sun, D. Du, and X. Chu. Enhancing circuit performance under a multiple-
phase clocking scheme. In Proceedings of the 1998 IEEE International Symposium on
Circuits and Systems, pages 219–222, June 1998.

[35] http://public.itrs.net/. International technology roadmap for semiconductors. Technical
report, ITRS, 2002.

[36] ILOG, France. CPLEX 7.1 User’s Manual, 2001.

[37] K. K. Nose and M. Mizuno. Parallel clocking: a multi-phase clock-network for 10ghz
soc. In Digest of Technical Papers. ISSCC. 2004 IEEE International Solid-State Circuits
Conference, volume 1, pages 344–531, February 2004.

[38] S. M. Kang and Y. Leblebici. CMOS Digital Integrated Circuits: Analysis and Design.
The McGraw-Hill Companies, Inc., 1996.

[39] B. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. Bell
System Technical Journal, 29:291–307, 1970.

[40] K. S. Kim and M. Papaefthymiou. Single-phase source-coupled adiabatic logic. In Pro-
ceedings of the International Symposium on Low Power Electronics and Design, pages
97–99, 1999.

181

[41] J. T. Kong. Cad for nanometer silicon design challenges and success. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 12(11):1132–1147, November 2004.

[42] I. S. Kourtev and E. G. Friedman. A quadratic programming approach to clock skew
scheduling for reduced sensitivity to process parameter variations. In Proceedings of the
1999 IEEE ASIC/SOC Conference, 1999.

[43] I. S. Kourtev and E. G. Friedman. Timing Optimization Through Clock Skew Scheduling.
Kluwer Academic Publishers, 2000.

[44] N. Kurd, J. Barkarullah, R. Dizon, T. Fletcher, and P. Madland. A multigigahertz clock-
ing scheme for the pentium(r) 4 microprocessor. IEEE Journal of Solid-State Circuits,
36(11):1647–1653, November 2001.

[45] J. Lee, D. T. Tang, and C. K. Wong. A timing analysis algorithm for circuits with level-
sensitive latches. IEEE Transactions on Computer-Aided Design, CAD-15(5):535–543,
May 1996.

[46] C. Leiserson and J. Saxe. Retiming synchronous circuitry. Algorithmica, 6(1), 1991.

[47] R. Li, X. Guo, and K. O. A technique for incorporation of a heatsink for a system utiliz-
ing integrated circuits with wireless connections to an off-chip antenna. In Proceedings of
the IEEE 2004 International Interconnect Technology Conference, pages 160–162, June
2004.

[48] I. Lin, J. A. Ludwig, and K. Eng. Analyzing cycle stealing on synchronous circuits
with level-sensitive latches. Proceedings of the 29th ACM/IEEE Design Automation
Conference, pages 393–398, June 1992.

[49] B. Lockyear and C. Ebeling. Optimal retiming of level-clocked circuits using symmetric
clock schedules. IEEE Transactions on Computer-Aided Design, CAD-13(9):1097–1109,
Sep 1994.

[50] I. Lustig. Private communication, 2004. ILOG Inc.

[51] N. Maheshwari and S. Sapatnekar. A practical algorithm for retiming level-clocked cir-
cuits. In Proceedings of International Conference on VLSI in Computers and Processors,
pages 440–445, October 1996.

[52] MPI Standard Forum, http://www-unix.mcs.anl.gov/mpi/standard.html. Message
Passing Interface Standard v 2.0, 1997.

[53] S. Naffziger, G. Colon-Bonet, T. Fischer, R. Riedlinger, T. Sullivan, and T. Grutkowski.
The implementation of the itanium 2 microprocessor. IEEE Journal of Solid-State
Circuits, 37(11):1448–1460, November 2002.

182

[54] F. O’Mahony, C. Yue, M. Horowitz, and S. Wong. A 10-ghz global clock distribu-
tion using coupled standing-wave oscillators. IEEE Journal of Solid-State Circuits,
38(11):1813–1820, November 2003.

[55] F. O’Mahony, C. P. Yue, M. Horowitz, and S. Wong. Design of a 10ghz clock distri-
bution network using coupled standing wave oscillators. In Proceesings of IEEE/ACM
International Design Automation Conference, pages 682–687, Anaheim, CA, June 2003.

[56] M. C. Papaefthymiou and K. Randall. Edge-triggering vs. two-phase level-clocking. In
Proceedings of the 1993 in Research in Integrated Systems, March 1993.

[57] A. Pothen, H. Simon, and K. Liou. Partitioning sparse matrices eigenvectors of graphs.
SIAM Journal of Matrix Analysis, 11:430–452, 1990.

[58] D. A. Pucknell and K. Eshraghian. Basic VLSI Design. Prentice Hall, 1994.

[59] J. M. Rabaey, A. Chadrakasan, and B. Nikolic. Digital Integrated Circuits: A Design
Perspective. Prentice-Hall, Inc., Upper Saddle River, NJ, second edition, 2003.

[60] K. Ravindran, A. Kuehlmann, and E. Sentovich. Multi-domain clock skew scheduling. In
Proceedings of the International Conference on Computer Aided Design, pages 801–808,
November 2003.

[61] P. Restle. Resonant clock networks. http://www.research.ibm.com/, 2005. IBM Re-
search, Computer Science, Innovative Matters, VLSI Design.

[62] P. J. Restle, T. G. McNamara, P. J. Camporese, K. F. Eng, K. A. Jenkins, D. H. Allen,
M. J. Rohn, M. P. Quaranta, D. W. Boerstler, C. J. Alpert, C. A. Carter, R. N. Bailey,
J. G. Petrovik, B. L. Krauter, , and B. D. McCredie. A clock distribution network for
microprocessors. IEEE Journal of Solid-State Circuits, 36:792–799, May 2001.

[63] M. Saint-Laurent, M. Swaminathoan, and J. Meindl. On the micro-architectural im-
pact of clock distribution using multiple plls. In Proceedings of IEEE International
Conference on Computer Design, pages 214–220, September 2001.

[64] K. A. Sakallah, T. N. Mudge, and O. A. Olukotun. checkTc and minTc : Timing verifica-
tion and optimal clocking of synchronous digital circuits. Proceedings of the IEEE/ACM
International Conference on Computer–Aided Design, pages 552–555, November 1990.

[65] K. A. Sakallah, T. N. Mudge, and O. A. Olukotun. Analysis and design of latch-
controlled synchronous digital circuits. IEEE Transactions on Computer-Aided Design,
CAD-11(3):322–333, March 1992.

[66] A. S. Sedra and K. C. Smith. Microelectronic Circuits. Oxford University Press, 1998.

[67] N. Shenoy, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Graph algorithms for
clock schedule optimization. Proceedings of the IEEE/ACM International Conference
on Computer–Aided Design, pages 132–136, November 1992.

183

[68] N. Shenoy, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Minimum padding to
satisfy short path constaints. In Proceedings of the IEEE/ACM International Conference
on Computer–Aided Design, pages 156–161, November 1993.

[69] N. Shenoy and R. Rudell. Efficient implementation of retiming. In Proceedings of
IEEE/ACM International Conference on Computer-Aided Design, pages 226–233, 1994.

[70] B. Stroustrup. The C++ Programming Language. Addison Wesley, 2000.

[71] Synopsys Inc. Primetime Manual, 2002.

[72] Synopsys Inc. Synopsys Online Documentation, 2002.

[73] T. G. Syzmanski and N. Shenoy. Verifying clock schedules. Proceedings of the
IEEE/ACM International Conference on Computer–Aided Design, pages 124–131,
November 1992.

[74] T. G. Szymanski. Computing optimal clock schedules. Proceedings of the 29th
ACM/IEEE Design Automation Conference, pages 399–404, June 1992.

[75] B. Taskin. Linearization of the timing analysis and optimization of level-sensitive syn-
chronous circuits. Master’s thesis, University of Pittsburgh, Pittsburgh, PA, May 2003.

[76] B. Taskin. High performance integrated circuit (hpic) timing software package v1.9.
http://sourceforge.net/projects/hpictiming/, 2004.

[77] B. Taskin and I. S. Kourtev. Linear timing analysis of soc synchronous circuits with
level-sensitive latches. In Proceedings of the 2002 IEEE ASIC/SOC Conference, pages
358–362, September 2002.

[78] B. Taskin and I. S. Kourtev. Performance optimization of single-phase level-sensitive
circuits using time borrowing and clock skew scheduling. In ACM/IEEE International
Workshop on Timing Issues in the Specification and Synthesis of Digital Systems, pages
111–118, 2002.

[79] B. Taskin and I. S. Kourtev. Advanced timing of level-sensitive sequential circuits.
In 11th Annual IEEE International Conference on Electronics, Circuits and Systems
(ICECS), Tel-Aviv, Israel, December 2004.

[80] B. Taskin and I. S. Kourtev. Delay insertion method in clock skew scheduling. IEEE
Transactions in Computer-Aided Design, 2004. (in submission).

[81] B. Taskin and I. S. Kourtev. Linearization of the timing analysis and optimization
of level-sensitive digital synchronous circuits. IEEE Transantions on Very Large Scale
Integration (VLSI) Systems, 12(1):12–27, January 2004.

[82] B. Taskin and I. S. Kourtev. Multi-phase synchronization of level-sensitive circuits - a
cad perspective. IEEE Transactions on Computer-Aided Design, 2004. (in revision).

184

[83] B. Taskin and I. S. Kourtev. Performance improvement of edge-triggered sequential
circuits. In 11th Annual IEEE International Conference on Electronics, Circuits and
Systems (ICECS), Tel-Aviv, Israel, December 2004.

[84] B. Taskin and I. S. Kourtev. Time borrowing and clock skew scheduling effects on multi-
phase level-sensitive circuits. In Proceedings of the 2004 IEEE International Symposium
on Circuits and Systems (ISCAS), volume II, pages 617–620, Vancouver, Canada, May
2004.

[85] B. Taskin and I. S. Kourtev. Delay insertion in clock skew scheduling. In ACM Inter-
national Symposium on Physical Design (ISPD), San Francisco, CA, April 2005.

[86] B. Taskin, J. Wood, and I. S. Kourtev. Timing-driven physical design for digital syn-
chronous vlsi circuits using resonant clocking. In ACM/IEEE International Workshop
on Timing Issues in the Specification and Synthesis of Digital Systems, pages 53–59,
San Francisco, CA, February–March 2005.

[87] J. P. Uyemura. Introduction to VLSI Circuits and Systems. John Wiley & Sons, Inc.,
2002.

[88] J. Warnock. Circuit design issues for the power4 chip. In Proceedings of the 2003
International Symposium on VLSI Technology, Systems, and Applications, pages 125–
128, October 2003.

[89] C. Webb, C. Anderson, L. Sigal, K. Shepard, J. Liptay, J.D.Warnock, B. Curran,
B. Krumm, M. Mayo, P. Camporese, E. Schwarz, M. Farrell, P. Restle, R. A. III,
T. Slegel, W. Houtt, Y. Chan, B. Wile, T. Nguyen, P. Emma, D. Beece, C. Ching-Te,
and C. Price. A 400-mhz s/390 microprocessor. IEEE Journal of Solid-State Circuits,
32(11):1665–1675, November 1997.

[90] N. H. E. Weste and D. Harris. CMOS VLSI Design: A Circuits and Systems Perspective.
Addison-Wesley Publishing Company, Reading, MA, third edition, 2004.

[91] R. Williams. Performance of dynamic lod balancing algorithms for unstructured mesh
calculations. Concurrency, 3:457–481, 1991.

[92] W. L. Winston. Operations Research Application and Algorithms. PWS-Kent Publishing
Company, second edition, 1991.

[93] J. Wood. Electronic circuitry. United States Patent Number 6,556,089, April 2003.

[94] J. Wood. Electronic circuitry. United States Patent Number 6,816,020, November 2004.

[95] J. Wood. Private communication, 2005. MultiGiG Inc.

[96] J. Wood, T. Edwards, and S. Lipa. Rotary traveling-wave oscillator arrays: a new clock
technology. IEEE Journal of Solid-State Circuits, 36(11):1654–1665, November 2001.

185

[97] J. Wood, S. Lipa, P. Franzon, and M. Steer. Multi-gigahertz low-power low-skew rotary
clock scheme. In IEEE International Solid-State Circuits Conference, 2001. Digest of
Technical Papers. ISSCC. 2001, pages 400–401, February 2001.

[98] T. Xanthopoulos, D. Bailey, A. Gangwar, M. Gowan, A. Jain, and B. Prewitt. The
design and analysis of the clock distribution network for a 1.2 ghz alpha microprocessor.
In Digest of Technical Papers. ISSCC. 2001 IEEE International Solid-State Circuits
Conference, pages 402–403, February 2001.

[99] H. Zhou. Clock schedule verification crosstalk. In ACM/IEEE International Workshop
on Timing Issues in the Specification and Synthesis of Digital Systems, pages 78–83,
2002.

186

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Modified Big M transformations.
	2. LP model clock skew scheduling problem of level-sensitive circuits.
	3. Clock skew scheduling results for level-sensitive ISCAS'89 benchmark circuits.
	4. MIP modeling of a constraint with a max or a min function.
	5. MIP model clock skew scheduling problem of level-sensitive circuits.
	6. LP model clock skew scheduling problem of edge-triggered circuits.
	7. CSS method for edge-sensitive circuits with the delay insertion method.
	8. CSS method for level-sensitive circuits with the delay insertion method.
	9. Delay insertion results for edge-sensitive ISCAS'89 benchmark circuits.
	10. Delay insertion results for level-sensitive ISCAS'89 benchmark circuits.
	11. Operational timing constraints of a multi-phase level-sensitive circuit.
	12. LP model clock skew scheduling problem of multi-phase level-sensitive circuits.
	13. Minimum clock periods of multi-phase ISCAS'89 benchmark circuits.
	14. Clock period improvements of multi-phase ISCAS'89 benchmark circuits.
	15. Circuit info and run times for multi-phase ISCAS'89 benchmark circuits.
	16. Categorization of the resonant clocking technologies.
	17. Number of inserted registers for Industrial1 after partitioning.
	18. Chaco 2x2 partitioning results on ISCAS'89 benchmark circuits.
	19. Clock skew scheduling results on 2x2 partitioned ISCAS'89 circuits.
	20. Speedup of hpictiming on 2x2 partitioned ISCAS'89 circuits.

	LIST OF FIGURES
	1. Finite state machine model of a synchronous system.
	2. A local data path in a globally clocked synchronous circuit network.
	3. Effects of time borrowing on circuit operation.
	4. Circuit graph of a synchronous system with four registers and five data paths.
	5. A generic single-phase synchronization clock.
	6. A generic multi-phase synchronization clock.
	7. An edge-triggered flip-flop or register symbol.
	8. Typical operation of an edge-triggered flip-flop shown in Figure 7.
	9. Timing properties of a flip-flop in a circuit with a clock period T.
	10. A level-sensitive latch or register symbol.
	11. Typical operation of a level-sensitive latch shown in Figure 10.
	12. Timing properties of a level-sensitive latch in a circuit with a clock period T.
	13. Possible cases for the arrival and departure times of data at the initial latch.
	14. Propagation of the data signal in a simple circuit.
	15. The iterative algorithm for static timing analysis of level-sensitive circuits.
	16. A simple synchronous circuit.
	17. A single-phase synchronization clock with a 50% duty cycle.
	18. Zero and non-zero clock skew timing schedules for the circuit in Figure 16.
	19. The optimized timing schedule for s27 operable with T = 4.1.
	20. Run times under 1500 seconds for the LP and MIP formulations.
	21. Data propagation times for s938 with 32 registers and 496 data paths.
	22. Maximum effective path delays in data paths of s938 for zero clock skew.
	23. Maximum effective path delays for s938 for non-zero clock skew.
	24. Distribution of the clock skew values of the non-zero clock skew case for s938.
	25. Distribution of the clock delay values of the non-zero clock skew case for s938.
	26. Additional timing requirements of an IP block.
	27. A simple reconvergent data path system.
	28. Timing of the edge-sensitive reconvergent system in Figure 27 after CSS.
	29. The simple reconvergent system in Figure 27 after delay insertion.
	30. Two reconvergent data path systems satisfying (P1) and (P2), respectively.
	31. Timing of the simple level-sensitive reconvergent system in Figure 27 after CSS.
	32. A generalized reconvergent data path system.
	33. Timing of the edge-triggered reconvergent system with m=3 and n=2.
	34. Timing of the level-sensitive reconvergent system with m=3 and n=2.
	35. Percentage improvements through delay insertion in Tables 9 and 10.
	36. Percentage improvements on edge-triggered circuits in Table 9.
	37. Percentage improvements on level-sensitive circuits in Table 10.
	38. A local data path in a multi-phase synchronous circuit.
	39. Multi-phase clock and multi-phase clock skew.
	40. Propagation of the data signal in a simple multi-phase circuit.
	41. Generation of an n-phase data path with latches.
	42. Non-overlapping multi-phase synchronization clock.
	43. Effects of multi-phase clocking on time borrowing.
	44. Effects of multi-phase clocking on clock skew scheduling.
	45. Effects of multi-phase clocking on time borrowing and clock skew scheduling.
	46. Basic rotary clock architecture.
	47. The RTWO theory.
	48. The cross-section of the transmission line with shunt connected inverters.
	49. The clock phase relationships on an ROA ring.
	50. The physical design flow of VLSI circuits with RTWO clock synchronization.
	51. Partitioning a circuit for timing analysis.
	52. An ROA ring in a chip layout illustrated in 0.13 um technology.
	53. CAD tool flow.
	54. Xgrid computing cluster.
	55. Line voltage and line current for the 3.4GHz clock example.
	56. Chaco outputs for circuit Industrial1.
	57. The run times of hpictiming with Xgrid on large circuits.
	58. Run time breakdown of hpictiming program steps for s38584.
	59. Run time breakdown of hpictiming program steps for s38417.
	60. Run time breakdown of hpictiming program steps for industrial1.
	61. The simple synchronous circuit in Figure 16 (repeated).
	62. The simple synchronous circuit in Figure 16 (repeated).

	1.0 INTRODUCTION
	1.1 MOTIVATION
	1.2 PROBLEM STATEMENT
	1.3 RESEARCH PLAN
	1.4 ORGANIZATION OF THE DISSERTATION

	2.0 SYNCHRONOUS DIGITAL VLSI SYSTEMS
	2.1 OPERATION OF A SYNCHRONOUS SYSTEM
	2.2 GRAPH MODEL OF A SYNCHRONOUS SYSTEM
	2.3 SYNCHRONIZATION SCHEMES
	2.3.1 Single-Phase Clock Synchronization
	2.3.2 Multi-Phase Clock Synchronization

	2.4 COMPUTER-AIDED DESIGN PERSPECTIVE

	3.0 TIMING PROPERTIES OF REGISTERS
	3.1 PARAMETERS OF AN EDGE-TRIGGERED FLIP-FLOP
	3.2 PARAMETERS OF A LEVEL-SENSITIVE LATCH

	4.0 STATIC TIMING ANALYSIS OF LEVEL-SENSITIVE CIRCUITS
	4.1 OPERATIONAL TIMING CONSTRAINTS
	4.1.1 Latching Constraints
	4.1.2 Synchronization Constraints
	4.1.3 Propagation Constraints
	4.1.4 Skew Constraints

	4.2 ITERATIVE APPROACH TO STATIC TIMING ANALYSIS
	4.3 CONSTRUCTIONAL TIMING CONSTRAINTS
	4.3.1 Validity Constraints
	4.3.2 Initialization Constraints

	4.4 LINEARIZATION OF THE TIMING ANALYSIS
	4.4.1 Modified Big M (MBM) Method
	4.4.2 Linear Programming (LP) Model

	4.5 AN EXAMPLE AND EXPERIMENTAL RESULTS
	4.5.1 Level-Sensitive Synchronous Circuit State of Operation
	4.5.2 Experimental Results on ISCAS'89 Benchmark Circuits

	4.6 OPTIMALITY OF THE LP FORMULATION
	4.7 VERIFICATION AND INTERPRETATION OF RESULTS
	4.7.1 Parameter Data Distributions
	4.7.2 Skew Analysis

	4.8 FURTHER CONSIDERATIONS
	4.9 SUMMARY

	5.0 CLOCK SKEW SCHEDULING WITH DELAY INSERTION
	5.1 CLOCK SKEW SCHEDULING METHODS
	5.2 DELAY INSERTION METHOD
	5.2.1 Example of Reconvergence
	5.2.2 Reconvergence in an Edge-Triggered Circuit
	5.2.3 Reconvergence in a Level-Sensitive Circuit
	5.2.4 General Reconvergent Data Path Systems

	5.3 FORMULATION AND ANALYSIS
	5.4 PRACTICAL CONCERNS IN MODELING AND APPLICATION
	5.5 EXPERIMENTAL RESULTS
	5.6 SUMMARY

	6.0 MULTI-PHASE NON-ZERO CLOCK SKEW SYNCHRONIZATION
	6.1 PREVIOUS WORK
	6.2 MULTI-PHASE LEVEL-SENSITIVE CIRCUIT TIMING
	6.3 LINEARIZATION OF THE TIMING ANALYSIS
	6.4 EXPERIMENTAL RESULTS
	6.4.1 Multi-Phase Clocking
	6.4.2 Multi-Phase Clocking Effects on Time Borrowing
	6.4.3 Multi-Phase Clocking and Clock Skew Scheduling
	6.4.4 Simultaneous Time Borrowing and Clock Skew Scheduling

	6.5 SUMMARY

	7.0 APPLICATIONS TO RESONANT CLOCKING
	7.1 RESONANT CLOCKING
	7.2 ROTARY TRAVELING WAVE OSCILLATORS
	7.3 TIMING REQUIREMENTS OF ROTARY CIRCUITS
	7.4 SUMMARY

	8.0 PHYSICAL DESIGN USING RESONANT CLOCKING
	8.1 PHYSICAL DESIGN FLOW
	8.1.1 Timing-Driven Partitioning
	8.1.2 Partitioning with Chaco
	8.1.3 Register Insertion for Partitioning
	8.1.4 Clock Skew Scheduling of Partitions
	8.1.5 Timing-Driven Register Placement

	8.2 COMPUTER-AIDED DESIGN TOOL IMPLEMENTATION
	8.2.1 Parallelization of Clock Skew Scheduling with Xgrid
	8.2.2 Speedup of Computation

	8.3 EXPERIMENTAL RESULTS
	8.3.1 Rotary Clocking Results
	8.3.2 Circuit Partitioning Results
	8.3.3 Clock Skew Scheduling of Partitions Results
	8.3.4 Overall CAD Tool Results

	8.4 SUMMARY

	9.0 CONCLUSIONS
	10.0 FUTURE WORK
	10.1 EXTENSIONS TO THE CAD TOOL
	10.2 LP DECOMPOSITION FOR CLOCK SKEW SCHEDULING

	APPENDIX A. NONLINEAR PROBLEM FORMULATION
	APPENDIX B. LP PROBLEM FORMULATION
	APPENDIX C. LP PROBLEM SOLUTION - CPLEX OUTPUT
	APPENDIX D. CHACO RUN SAMPLE
	BIBLIOGRAPHY

