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Abstract

This dissertation proposes novel architectures and design techniques targeting
SoC building blocks for telecommunications and signal processing applications.

Hardware implementation of Low-Density Parity-Check decoders is approached
at both the algorithmic and the architecture level. Low-Density Parity-Check
codes are a promising coding scheme for future communication standards due to
their outstanding error correction performance.

This work proposes a methodology for analyzing effects of finite precision arith-
metic on error correction performance and hardware complexity. The methodol-
ogy is throughout employed for co-designing the decoder. First, a low-complexity
check node based on the P -output decoding principle is designed and character-
ized on a CMOS standard-cells library. Results demonstrate implementation loss
below 0.2 dB down to BER of 10−8 and a saving in complexity up to 59% with re-
spect to other works in recent literature. High-throughput and low-latency issues
are addressed with modified single-phase decoding schedules. A new “memory-
aware” schedule is proposed requiring down to 20% of memory with respect to
the traditional two-phase flooding decoding. Additionally, throughput is doubled
and logic complexity reduced of 12%. These advantages are traded-off with error
correction performance, thus making the solution attractive only for long codes,
as those adopted in the DVB-S2 standard. The “layered decoding” principle is
extended to those codes not specifically conceived for this technique. Proposed
architectures exhibit complexity savings in the order of 40% for both area and
power consumption figures, while implementation loss is smaller than 0.05 dB.

Most modern communication standards employ Orthogonal Frequency Divi-
sion Multiplexing as part of their physical layer. The core of OFDM is the Fast
Fourier Transform and its inverse in charge of symbols (de)modulation. Require-
ments on throughput and energy efficiency call for FFT hardware implementa-
tion, while ubiquity of FFT suggests the design of parametric, re-configurable
and re-usable IP hardware macrocells. In this context, this thesis describes an
FFT/IFFT core compiler particularly suited for implementation of OFDM com-
munication systems. The tool employs an accuracy-driven configuration engine
which automatically profiles the internal arithmetic and generates a core with
minimum operands bit-width and thus minimum circuit complexity. The engine
performs a closed-loop optimization over three different internal arithmetic mod-
els (fixed-point, block floating-point and convergent block floating-point) using
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the numerical accuracy budget given by the user as a reference point. The flex-
ibility and re-usability of the proposed macrocell are illustrated through several
case studies which encompass all current state-of-the-art OFDM communications
standards (WLAN, WMAN, xDSL, DVB-T/H, DAB and UWB). Implementa-
tions results are presented for two deep sub-micron standard-cells libraries (65
and 90 nm) and commercially available FPGA devices. Compared with other
FFT core compilers, the proposed environment produces macrocells with lower
circuit complexity and same system level performance (throughput, transform
size and numerical accuracy).

The final part of this dissertation focuses on the Network-on-Chip design
paradigm whose goal is building scalable communication infrastructures con-
necting hundreds of core. A low-complexity link architecture for mesochronous
on-chip communication is discussed. The link enables skew constraint looseness
in the clock tree synthesis, frequency speed-up, power consumption reduction
and faster back-end turnarounds. The proposed architecture reaches a maximum
clock frequency of 1 GHz on 65 nm low-leakage CMOS standard-cells library. In
a complex test case with a full-blown NoC infrastructure, the link overhead is
only 3% of chip area and 0.5% of leakage power consumption.

Finally, a new methodology, named metacoding, is proposed. Metacoding gen-
erates correct-by-construction technology independent RTL codebases for NoC
building blocks. The RTL coding phase is abstracted and modeled with an Ob-
ject Oriented framework, integrated within a commercial tool for IP packaging
(Synopsys CoreTools suite). Compared with traditional coding styles based on
pre-processor directives, metacoding produces 65% smaller codebases and reduces
the configurations to verify up to three orders of magnitude.

xii
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Chapter 1.

System-on-Chip: Concept and
Trends

Despite having been fixed during years to match market trends [1], Moore’s Law
[2, 3] still keeps its inherent meaning: complexity of digital integrated circuits
increases at an astonishing rate.

On the one hand, improvements in semiconductor manufacturing processes al-
low the fabrication of smaller transistors on wider wafers, thus boosting economies
of scale. On the other hand, advances in design technologies and shift of design
paradigms enable engineers to effectively handle multi-million transistor designs,
bridging the design/productivity gap. Taken together, more complex integrated
circuits at reduced cost open the way to more sophisticated applications, as in
the case of modern communication standards.

This chapter lays the groundwork for the topics discussed in this dissertation,
by presenting current state of the art and future trends of design technologies.
The concept of abstraction layer is extensively analyzed and used as a consistent
framework for describing the evolution of design flows, tools, and paradigms. The
evolution from Application Specific Integrated Circuit (ASIC) to System-on-Chip
(SoC) is treated as the natural result of the design reuse approach climbing the
design hierarchy. An overview of the organization of the whole work closes the
chapter.

1.1. From ASIC to SoC: the Evolutionary Path

The ASIC paradigm dominated the scenes of high volume markets and mission
critical applications thanks to its outstanding performance in terms of processing
speed, power consumption and minimum area.

In the past, ASICs implemented selected functionalities of a system, while
the remaining part was developed at Printed Circuit Board (PCB) level, with
glue logic or analog circuits providing connectivity with the custom chip. With
technology scaling, more functionalities have been crammed in the same chip
area, giving light to the SoC concept. The elementary functions once mapped

3
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1.1 From ASIC to SoC: the Evolutionary Path
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Figure 1.1.: SoC-PE design-reuse trends. Source: [4]

on an entire ASIC (e.g. channel coding in a communication system) are now
building blocks of complex system integrated on a single chip (e.g. transceiver
baseband processing chain).

The International Technology Roadmap for Semiconductors (ITRS) [4] classi-
fies SoCs in two categories: SoC-CS and SoC-PE.

SoC-CS are consumer stationary SoCs found in applications such as high-
performance computing and videogames. SoC-CS constitutes the evolution of
the General Purpose Processor (GPP). While technology scaling reduces cost
of die area, upper bounds exist on power supply voltage and clock frequency,
thus processing power can only be increased by means of parallelization. Indeed,
SoC-CS are made of few kind of cores (even one) replicated a number of times.
Examples are the AMD Phenom, the Intel Core2 or the Cell Broadband Engine
Architecture developed by the STI (Sony, Toshiba, IBM) alliance. This class is
also known as homogeneous Multi Processor SoC (MPSoC).

SoC-PE refers to the power efficient SoCs used in portable and wireless appli-
cations. SoC-PE is directly evolved from the ASIC category since its principal
goal is higher levels of system integration. Due to the rapidly changing nature
of consumer markets across technology generations, this class of SoC aims at
maximizing reuse of existing cores (i.e. minimizing the amount of the chip that
is newly designed). Examples are Nomadik from STMicroelectronics, Nexperia
by NXP or Texas Instruments DaVinci. SoC-PE is also known as heterogeneous
MPSoC because it is the composition of several kind of cores (processors, hard-
ware accelerators, I/O peripherals, etc.). The remaining part of this chapter will
focus on SoC-PE, since the contribution of this work mostly applies to this class.
Moreover, it is expected that SoC-CS will eventually converge on SoC-PE due to

4
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Figure 1.2.: The SoC development process and its actors

low-power requirements now entering the domain of high performance comput-
ing [5]. SoC-PE are the heart of a wide range of consumer products with a very
short market life cycle, such as multimedia mobile phones, PDAs, pocket PCs,
Wi-Fi routers, etc.

Since design effort remains constant across market changes, while time-to-
market pressures demand rapid development, design-reuse is key for protecting
investments [6]. Figure 1.1 illustrates trends of design-reuse for SoC-PE. Projec-
tions show that in 2020 only 10 % of a new SoC will be designed from scratch.
The elementary SoC component, also known as macrocell or Intellectual Property
(IP) core, is designed in such a way that it can be easily integrated in a variety
of products. ASIC design, once carried on by a single team, is now the result of a
combined effort between IP core providers and SoC integrators. Figure 1.2 shows
with a UML-like use-case notation the different actors taking part into the SoC
development process. While the picture represents them as separate entities, big
semiconductor companies cover more than one task in the development flow.

1.2. Design once, Reuse many

To manage the billions of transistors complexity of today’s SoCs, designers use a
divide-and-conquer approach, assembling pre-designed and pre-verified IP cores.
The IP market received a significant boost in recent years and it features core of
different kinds and flavors [7].
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Hard macrocells are technology dependent cores fully designed, placed, and
routed by the IP supplier on a given technology and delivered to the SoC in-
tegrator as a GDSII file. Examples of hard macrocells are memories, I/O pe-
ripherals (USB, ethernet, etc.) and mixed-signal or analog components such as
DACs, ADCs, PLLs and others. However, because of dependency from technol-
ogy, hard macros are distributed in small markets and thus provide low return
on investments.

Actually, the IP core market is dominated by soft cores. Soft cores are technol-
ogy independent macrocells that are customized for a specific foundry process by
means of Electronic Design Automation (EDA) tools. Technology independence
ensures reuse of core with several technology libraries, including FPGA devices.
Only digital designs can become soft cores, because the use of abstraction layers
detaches technology aspects from design functionality (see Section 1.4).

The IP core development cycle is illustrated in Figure 1.3. All reusable IPs,
either hard or soft, retain a set of fundamental characteristics [8]:

designed for use in multiple technologies : while this is implicit for soft macro-
cells, for hard macrocells this means having an effective porting strategy
for mapping the core onto new technologies;

independent from toolchain : integration of core should not depend on any
EDA tool vendor, since SoC integration flow is not standardized and it
changes between design centers;

verified and certified as stand-alone unit : the core should be fully verified be-
fore any integration takes place; the verification phase should be certified
by means of consistent metrics such as code and functional coverage;

fully documented : valid and illegal configurations should be clearly documented;
use cases of the core should be provided as reference for core integration;
interfacing requirements should be also reported;

6
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provided with standard interfaces : the core should be connected to the SoC
through well defined interfaces. Although there is no formal standard for
on-chip interfaces, de facto standards exist like the AMBA protocols set
(APB, AHB, AXI) developed by ARM, the OCP specification, proposed by
the OCP-IP Consortium, STbus by STMicroelectronics and CoreConnect
from IBM.

To address the complex trade-offs which occur during SoC design, several works
in literature suggest to decouple central aspects of the design, such that they can
be optimized independently from each other; this approach is known as orthogo-
nalization of concerns and is at the basis of platform based design [9].

For IP design, computation and communication aspects are separated when a
socket based approach is adopted. With this approach, IP core functionality is
implemented independently from interconnect properties (i.e. protocol, latency,
bandwidth). All interconnect-related stuff is relegated to the IP socket, which
can be fine-tuned to the interconnect without affecting the rest of the design.

Socket based design principles are taken to a greatest extent in the Network-
on-Chip design paradigm, where cores are connected to the communication in-
frastructure in a Plug & Play fashion (see Chapter 5 for details).

1.3. SoC Digital Building Blocks

As already pointed out in previous sections, an SoC should be flexible enough
to be employed in more than one product. An SoC platform is assembled using
both application specific and software programmable cores, where the former
are committed once and for all to a given functionality, while the latter can be
instructed at run-time to implement one among several functionalities.

Flexibility is directly related to the amount of software programmable cores
populating the platform, however performance favors application specific cores,
due to their superior timing and power consumption figures. The right SoC
platform is thus a trade-off choice between flexibility and performance driven by
application constraints.

Providing an in-depth description on how to design effective platforms is out of
the scope of this thesis. This section classifies platform building blocks according
to their flexibility and illustrates their advantages and drawbacks. Figure 1.4
proposes a qualitative comparison of SoC components with respect to the perfor-
mance/flexibility trade-off.

Application Specific IP Core

This class of core represents for SoCs what ASICs were for Systems-on-Board in
late 80’s: a system component tailored to a very specific function (e.g. Fourier

7
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Transform), and thus optimized for best timing, power consumption and area oc-
cupation performance. Application Specific IP Cores are selected each time the
target application imposes hard constraints on some system metric (i.e. through-
put, latency, etc.) and software programmable cores requires unacceptable over-
heads, such as power consumption in SoC-PE.

Today, application specific IP cores are experiencing a noticeable growth of the
synthesis-time configuration space. Although core functionality is static once in
silicon, the SoC integrator can fine tune an ever increasing number of parame-
ters during implementation to match his needs. From the IP provider point of
view, extreme IP flexibility guarantees the reuse in the largest possible number
of applications. Building blocks for on-chip communication infrastructures are a
good example of IP cores requiring extensive configuration capabilities.

Digital Signal Processor

A Digital Signal Processor (DSP) is a software programmable core designed to
elaborate highly regular algorithms, such as signal processing ones, with real-
time requirements up to few Msample/s. High-end DSP cores and entry-level
ones might differ for the number of computational units or the number of buses,
but will retain a common set of features listed hereafter:

Harvard architecture : program and application data are exchanged between
central memory and computational units through dedicated and indepen-
dent buses, this way instruction fetch does not affect system bandwidth;
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VLIW instruction set : Very Long Instruction Word (VLIW) approach is a form
of instruction level parallelism; the DSP controls multiple computational
units at the same time with a single instruction fetch;

single cycle execution : most DSP instructions execute in one clock cycle: this
ensures high throughput execution and eases software development as la-
tency can be estimated directly from (assembler) source code;

specialized ALUs : a DSP is equipped with enhanced Arithmetic Logic Unit
(ALU) featuring barrel shifter and Multiply and Accumulate (MAC) op-
erators; these operations are building blocks for most signal processing
algorithms e.g. the MAC unit is mainly intended for FIR filters implemen-
tation;

pipelined data path : computational units exchange data between them through
dedicated data paths to avoid data bus congestion;

zero-overhead looping : loop exit condition is managed with no extra clock
cycles;

enhanced address generator : provides indirect addressing capabilities; per-
forms automatic address modification such as modulo addressing for circu-
lar buffers (FIR filters) and bit-reverse addressing (FFT/IFFT algorithms);

The main advantage of DSP is the possibility to develop applications using the
C language, thus gaining access to a wide choice of efficient mathematical and
signal processing libraries. Since the effort of exploiting algorithm parallelism is
left to the compiler, the designer has not to worry about the DSP architecture
and the source code can be easily retargeted to other platforms by means of
source code recompilation. For this reason, an efficient compiler is a must to take
fully advantage of the DSP resources.

As a major drawback, design optimization is constrained by the DSP architec-
ture itself: algorithm must be re-scheduled to take into account available process-
ing units and resulting data flow not necessarily matches the original one. Data
buses can either incur congestion or waste of bandwidth, as there is no way to
modify bus width according to exchanged data type.

Field Programmable Gate Array

A Field Programmable Gate Array (FPGA) [10] can be seen as a fair amount of
uncommitted logical and interconnect resources, programmable by the designer
when the device is already inserted in the final system, that is to say on the field.
FPGAs entered the SoC worlds as target prototyping platforms, but they are
founding their way as SoC building blocks (embedded FPGA cores).
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1.3 SoC Digital Building Blocks

The FPGA paradigm is much more application specific than the DSP one.
The designer chooses what kind of computational units implement, how they
will internally work and which way they will communicate. Increased customiza-
tion respect to a DSP architecture enables real-time data processing up to few
Gsample/s with reasonable power consumption (hundreds of mW). Nonetheless,
a DSP is an off-the-shelf architecture that must be instructed by the designer
through software programming, while for FPGA the designer is responsible for
committing low-level logical resources to build a dedicated architecture: one says
that a FPGAs have finer, or bit-level, granularity with respect to DSPs.

Embedded FPGA cores provide SoCs with reconfigurability (Reconfigurable
SoCs). The same chip area is committed to different tasks in a time multiplexed
way. Technology independent application specific cores can be fully reused in
this context, the limit being the total capacity of the embedded array and the
level of concurrency required between tasks.

General Purpose Processor

The general purpose processor (GPP) is the most widespread platform in the
market. The GPP can virtually address any application and can be programmed
with a variety of low and high level languages. Its greatest drawback is the lack
of optimality in terms of computational performance and power consumption
which is a direct consequence of its general purpose nature. GPP cores are
usually employed in SoCs for control-intensive tasks either by using or not an
operating system. GPP are also used for executing power-management policies
or for scheduling reconfiguration of embedded FPGAs. Examples of GPP cores
are the ARM7 and ARM9 families, integrated in a high number of SoC-PE and
IBM POWER Architecture derivatives, used as the controller for the eight dsp-
like cores in the Cell Broadband Engine and integrated as hard macro in Xilinx
Virtex FPGAs.

Application Specific Instruction Set Processor

The Application Specific Instruction Set Processor (ASIP) is a design paradigm
which is halfway between ASIC and GPP: the basic idea is to decompose the ap-
plication into kernel functions and then build up a processor architecture whose
instruction set is based on these kernel functions. Resulting architecture is ap-
plication specific, but it is also software programmable, because it must be in-
structed with ad-hoc software.

It is clear that such approach could be optimal if a family of applications,
rather than a single application, has to be implemented. It is also assumed that
elements of the family share a common set of algorithmic features, in order to
better exploit instruction set decomposition of the application. The resulting
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architecture is then general purpose for the considered family of applications,
but gives the user the ability to choose a specific application through simple
software programming. An example of commercially available ASIPs are network
processors [11].

1.4. Abstraction Layers: Complexity Under the Hood

Digital electronics is built on abstraction layers. Indeed its own definition, i.e.
mapping of boolean logic levels onto voltage ranges, abstracts digital circuit de-
sign by separating technology aspects (type of components, power supply voltage,
noise margins, etc.) from gate functionality (AND, OR, NOT, etc.).

Generally speaking, an abstraction layer encapsulates implementation details
of lower layers into design entities that are, in turn, composed into more complex
designs. Composed designs are fully independent from and do not change if
the underlying layers are modified. Since lower level implementation details are
hidden, the design space is reduced, thus the exploration can be conducted more
efficiently.

It is worth noting that, the layer is barely useful by itself if not coupled with
a methodology for synthesizing lower layers starting from higher ones. Further-
more, design abstraction implies degradation of the optimal solution space, since
the designer loses control over abstracted features. To counterbalance this draw-
back, the methodology should provide automatic or semi-automatic procedures
for exploring the solution space and, even better, should be supported by opti-
mization algorithms to ensure design closure with respect to user supplied con-
straints.

Figure 1.5 compares the trends of digital integrated circuits complexity with
the number of transistors an expert engineer can cope with in one month, that
is his productivity. Complexity increases 68 % per year due to improvements in
semiconductor manufacturing technologies and can be considered as an experi-
mental representation of the “mythological” Moore’s Law. Increase in produc-
tivity (21 %) is due to shifts in design methodologies thanks to new abstraction
layers and EDA tools. The distance between the two curves is widely known in
literature as the design/productivity gap. Design productivity is a concern con-
tinuously and specifically addressed by the ITRS [4], since full exploitation of
deep sub-micron technology nodes can be achieved only with streamlined design
methodologies.

Historically, new abstraction layers and methodologies did not find industrial
exploitation if the they did not provide substantial improvements over previous
design approaches and consolidated best practices. A remarkable example is
the Register Transfer Level (RTL) methodology based on Hardware Description
Languages (HDLs), which increased designer productivity from 20 Kgates in 1986
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Figure 1.5.: The design/productivity gap. Source: [12]

to 250 Kgates in the mid-1990 [13]. The success of the RTL methodology is due
to logic synthesis tools which brought together automatic mapping of RTL code
onto logic primitives and optimization of chip area and timing, i.e. design aspects
which are not directly captured by the register transfer abstraction layer.

When breaking the million gates complexity barrier, verification becomes as
challenging as design, up to the point that a verification-first approach is consid-
ered the only viable solution to tackle the increasing costs of SoC manufacturing
due to Engineering Change Order (ECO) and mask respins. By using higher
levels of abstraction, specific design aspects can be verified earlier [14], limiting
full-blown simulation to abstraction layers where execution speed is tolerable.
Close-to-physical layers rely on regression tests with respect to reference models
on static verification approaches, such as logic equivalence and Static Timing
Analysis (STA). Hardware Verification Languages (HVL) can work at multiple
levels of abstraction and effective verification environment are designed in such
a way that verification components can be reused throughout the design cycle.
Figure 1.6 is a coarse representation of abstraction layers used for designing and
verifying today SoCs. Simulation accuracy varies inversely with the number of
simulated gates per clock cycle. In the following a short summary for each design
aspect is provided:

Algorithm : Many digital circuits implement signal processing algorithms (e.g.
Discrete Fourier Transform, JPEG image compression, channel encoding
and decoding, etc.). High level programming languages such as Matlab,
Java or C++ are used to model algorithm data flow and finite precision
arithmetic effects.
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Figure 1.6.: Abstraction Layers in SoC design

Communication : Today SoCs are composed of several cores continuously ex-
changing data. As the number of cores increase, the interconnect as well as
the protocols should be carefully designed to avoid communication dead-
locks which degrade single core performance. Transaction-Level Modeling
(TLM) [15] is the preferred abstraction layer for exploring this design as-
pect using languages such as SystemC [16], SystemVerilog [17] or bare
C++. Accuracy of transaction-level simulators can be improved down to
clock cycle by using timed models.

Hardware Logic : hardware behavior is defined down to the bit level. RTL is
the preferred abstraction layer. Functionality is described as registers con-
nected each others with boxes implementing Finite State Machines (FSMs)
and boolean logic equations. Timing accuracy does not got beyond the
clock cycle. Preferred languages are Verilog and VHDL.

Back-end : back-end refers to all intermediate design views between gate-level
netlists and GDSII geometries, going through SPICE netlist. These views
contain all design’s technology related aspects such as logic and intercon-
nect delays, clock skew, effects of parasitics and so on. Verification of
back-end design aspects is mainly based on static techniques. Regression
tests are used to verify Design Rule Check (DRC) fixes that might occur.
Full circuit simulations are rarely perfomed, unless targeted to very specific
corner cases.

Abstraction is not limited to the layers described in this section. Operating
systems running on GPP cores introduce further layers which extend in the soft-
ware domain. Platform based design principles state that platform functionalities
should be defined in such a way that the actual implementation, either hardware
or software, is irrelevant to the application designer. Some authors [18] even
suggest to stop calling circuits hardware, since this distinction belongs to the
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1.5 Organization of this Work

old days of transistor-level design: design patterns such as concurrency are com-
mon to both world and should be treated in a consistent and unified way when
designing compound platforms.

1.5. Organization of this Work

This dissertation deals with both computing and communication aspects of SoC
platforms with emphasis on telecommunications and signal processing applica-
tions. The focus is on hardware architectures for baseband processing, par-
ticularly Low-Density Parity-Check (LDPC) channel decoders and Fast Fourier
Transform (FFT) processors for multi-band modulation schemes.

LDPC codes were first introduced by Gallager in 1963 [19], but soon abandoned
because their implementation complexity was far exceeding the capabilities of
the microelectronic design technologies of that times. Today, the increasing de-
mand of high data rate and reliability in modern communication systems is push-
ing next-generation standards, such as DVB-S2, WLAN (802.11n) and WMAN
(802.16e), toward error correction schemes featuring high throughput decoding
at near Shannon limit performance [20]: both LDPC and Turbo codes [21] are
remarkable examples of this class of error correction codes.

However, peculiarities of the LDPC decoding algorithm (iterative processing,
transcendental operators, pseudo-random message exchange) strongly affect tra-
ditional hardware design metrics (area, speed, power) making it difficult to meet
feasible implementation requirements without spoiling communication perfor-
mance [22]. To this aim, Chapter 2 presents a bit-true simulator specifically
conceived for profiling LDPC communication performance under finite-precision
arithmetic and sub-optimal decoding algorithms. In Chapter 3 the simulator is
used to prove the effectiveness of (i) an original decoding schedule with low-
memory requirements, (ii) a modified decoding schedule for high-throughput
decoding, and (iii) an approximated transcendental operator for implementing
LDPC computing kernels with minimum area. These results are then projected
onto lower levels of abstraction presenting the implementation of a whole decoder
on a 0.18µm CMOS standard-cells library.

Chapter 4 presents an FFT/IFFT core compiler particularly suited for the
hardware implementation of communication systems based on Orthogonal Fre-
quency Division Multiplexing (OFDM). OFDM has been adopted in modern
communication standards to provide enhanced system performance and better
deployment of available bandwidth. The compiler is a toolchain made of three
parts: a system-level profiler, an RTL architectural template and a codebase
generator. The system-level profiler explores the design space automatically and
feeds the codebase generator with configuration data for the architectural tem-
plate. The accuracy-driven configuration engine minimizes operands bit-width
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(and thus minimum circuit complexity) within budgets provided by the user.
The flexibility and re-usability of the toolchain is demonstrated through several
case studies which encompass all current state-of-the-art OFDM communications
standards (WLAN, WMAN, xDSL, DVB-T/H, DAB and UWB) and top-class
silicon technologies such as deep sub-micron standard-cells libraries (CMOS 65
and 90 nm) and commercially available SRAM FPGA devices implemented with
90 nm process. The implementation flow for the deep sub-micron libraries em-
ploys leakage power minimization techniques mixing up library cells with different
threshold voltages.

In Chapter 5 the focus shifts on communication aspects of SoC design. The
Network-on-Chip (NoC) paradigm [23,24] is explained and its benefits and draw-
backs discussed. NoCs takes the idea of orthogonalization of concerns to its
greatest extent, by adopting ISO/OSI-like [25] abstraction layers for the design
of on-chip micronetworks. Thanks to the abstraction layers (physical, data-link,
network, transport, application) of the ISO/OSI stack, NoCs provide a methodol-
ogy for designing an interconnect architecture independently from the attached IP
cores. Design flow parallelization, scalability and reusability all benefit from this
approach; furthermore, NoCs allow IP macrocells to be connected to the network
in a Plug & Play fashion, which represents a powerful advantage for system-level
design exploration and performance analysis thus reducing time-to-market and
development costs.

Chapter 6 discusses a low-complexity link microarchitecture for reliable com-
munication across mesochronous clock domains. With respect to a fully syn-
chronous paradigm, in a mesochronous scheme IP macrocells are clocked by sig-
nals with the same frequency but with a time-invariant phase offset. In modern
SoCs, this is a consistent scenario since the clock signal is generated from a single
source and distributed across the chip floorplan with a space-dependent time-
invariant phase offset known as clock skew. The proposed link easily integrates
in a standard-cells design flow without requiring special custom components or
any specific EDA tool.

Chapter 7 presents advanced and innovative techniques for streamlining the
design and the configuration of building blocks for NoC platforms. A novel
methodology, named metacoding, is used for generating correct-by-construction
technology independent RTL codebases. Metacoding is exemplified with the
building blocks of the STMicroelectronics Spidergon Network-on-Chip intercon-
nect, jointly developed with the Advanced System Technology Laboratories of
STMicroelectronics Grenoble, France.

Chapter 8 summarizes the contribution and main results of this thesis and
provides indications on future research activities.
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Chapter 8.

Conclusions

This dissertation proposed engineering solutions to compelling design aspects of
SoC for telecommunications and signal processing. Problems have been tackled
at different levels of abstraction, from algorithm down to gate-level synthesis, to
guarantee low complexity hardware implementation with top-class system level
performance. Design reuse and automation have been a primary concern through-
out the work, being key factors to keep the fast pace of semiconductor industry.

All proposed solutions have been evaluated from the hardware complexity point
of view, considering standard-cells libraries on three CMOS technology nodes:
0.18µm, 90 nm and 65 nm. The characterization took into into account critical
problems of deep submicron technologies like leakage power minimization. The
design flow developed during this thesis can manage multi-Vt libraries at 90 and
65 nm and is ready-to-go on 45 nm standard-cells libraries.

8.1. Algorithms and Architectures for LDPC
Decoders

The hardware design of an LDPC decoder is a challenging task, due to the strong
non-linear interactions existing among the variables of the design space: BER per-
formance, code structure, decoding throughput and latency, number of iterations,
architectural parallelism, approximation of CN processing, hardware complexity
(timing, area and power). In this respect the novel solutions discussed in this
dissertation have been co-designed at the algorithmic and the architectural level.

Regarding approximations of CN functions, a ultra low complexity approx-
imation named P -output decoding was proposed. P -output decoding reduces
the messages computed by the CN processor to only P + 1 different values and
employs a Modified Min-Sum algorithm. The approximation demonstrated no
appreciable loss in performance compared to the exact message passing algo-
rithm, even with P = 1. Using only 5 bits for representing extrinsic messages,
the IL is below 0.2 dB down to BER of 10−8.
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8.1 Algorithms and Architectures for LDPC Decoders

Logic synthesis on 0.18µm CMOS technology showed that the proposed ar-
chitecture compares favorably with other state-of-the-art implementations. De-
pending on the code in use, the VNP can even dominate the complexity of the
whole decoder. For instance, this is the case of a decoder for DVB-S2, where the
adoption of the approximation described here would save about 59% of the com-
plexity of the node processors (VN and CN, together) declared by other works
in literature.

Single phase decoding schedules short the iteration time, thus doubling the
decoding throughput of belief propagation, or halving the clock frequency if
throughput is not a primary concern for the target application. In this respect,
the layered decoding schedules, widely treated in literature, was extended and
generalized to “non-layered” codes and a new decoding schedules, named adap-
tive single phase decoding, was proposed.

Non-layered codes are those structured LDPC codes whose parity-check matrix
does not allow support of layered decoding in time-multiplexed architectures,
unless a layer width of one row is chosen, which is impractical for any given
application.

Starting from the original formulation, the rearrangement of the decoding oper-
ations led to specify two different but similar architectures, one directly producing
the new estimate of the soft output (SO-based decoding), the other computing its
incremental variation with respect to the previous estimate (δ-based decoding).
Although the former is suitable for true layered codes, it can be also used with
non-layered codes when the last update of the SO in common overwrites previ-
ous in-layer updates. On the other hand, the second architecture exploits all the
contributes of a certain layer to the shared SO, by summing deltas together.

For profiling purpose, a metric η was defined for measuring how much a struc-
tured code is non-layered (ratio of overlapping blocks over total number of blocks).
The δ mechanism exhibited an IL smaller than 0.05 dB with η up to 34%. At the
same time, the average number of iterations is one half that of a flooding decoder.
Reordering the sequence of layers further relaxes the problem by minimizing η:
in this case, the same speed of exact layered is achieved. Conversely, SO-based
approximation suffers from impairments in the BER of about 0.1 dB, and must
rely on layers reordering to support high-speed decoding.

Logic synthesis on 0.18µm CMOS technology showed that the complexity over-
head of the ancillary circuitry to perform layered decoding is about 22-24% of the
original check node processor, while the overall saving for not implementing the
variable node processor is about 41-43% in terms of area and power consumption.

Adaptive Single Phase Decoding adaptively updates a single metric for each
variable node in the codeword, by means of a single-phase processor fed with the
channel a priori LLRs. The single-phase processor outputs refined approxima-
tions of the SO in the transmitted codeword, which are continuously cumulated
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to the node metric in a running sum with leakage. This makes the proposed
solution very attractive from the performance-complexity trade-off point of view:
for a reduction of the message memory of about 70-80% and of chip complexity of
about 12%, only few tenths of dB are paid in the transmission SNR with respect
to the traditional message passing decoding.

8.2. Processing Core for OFDM transceivers

Chapter 4 presented an automated environment for fast design space exploration
and automatic generation of low-complexity stream-oriented FFT/IFFT IP cores
in the context of VLSI implementation of OFDM systems. A custom software
tool has been developed to explore the design space at system level using either
open or closed-loop analysis. The software profiles FFT numerical accuracy with
respect to three arithmetic approaches (fixed-point, BFP and CBFP) by means
of Monte Carlo simulations. In closed-loop analysis, the internal arithmetic is
automatically configured to minimize data bit-widths within the SQNR budget
specified by the user.

The arithmetic configuration is used to generate a VHDL database starting
from a fully configurable RTL macrocell featuring:

• fully-pipelined radix-4 cascade architecture with optional radix-2 stage for
power-of-two FFT/IFFT lengths;

• FFT length programmable at run-time for multi mode systems such as
xDSL, DVB-T/H or WLAN;

• both FFT/IFFT operations implemented in the same core for half-duplex
transceiver (e.g. WLAN and UWB);

• maximum throughput of 1 complex sample/cycle with controllable pipeline
(freeze/flush);

• support for three types of internal arithmetics for optimal trade-off between
hardware complexity and numerical accuracy.

The effectiveness of the tool has been proved by configuring and generating
several IFFT/FFT cores each dedicated to multi-band OFDM modulation and
demodulation in a different communication standard: WLAN, WMAN, xDSL,
DVB-T/H, DAB and UWB. The test cases covered a wide design space in terms of
transform length (64 to 8192), throughput (8 to 528 Msample/s) and processing
accuracy (SQNR from 29 to 94 dB).

The generated FFT/IFFT cores have been synthesized and characterized on a
65 nm CMOS technology with multi-Vt library versions. The same cores have also

109



This file is an extract of the whole work.
For more information contact the author at: nico.linsalata@computer.org

8.3 Network-on-Chip Components

been synthesized on SRAM-based FPGA devices and 90 nm CMOS standard-
cells library to demonstrate ease of re-targeting and to compare power figures
between different implementation technologies. Synthesis results showed a low
complexity in terms of gate count and RAM/ROM bits when compared with
other works in recent literature that consider the same system level performance
(throughput, transform sizes and numerical accuracy).

8.3. Network-on-Chip Components

Network-on-Chip is a new paradigm for designing scalable and reusable on-chip
interconnection networks that will eventually replace traditional shared-bus in-
terconnects. This thesis considered issues related to the design and the imple-
mentation of the building blocks of a NoC platform: link, router and network
interface.

Chapter 6 proposed a mesochronous physical link micro architecture named
SIM-L. The mesochronous paradigm is a way to model fully synchronous systems
affected by clock skew issues, which are limiting timing performance of today fully
synchronous systems. SIM-L enables skew constraint looseness in the clock tree
synthesis, frequency speed-up, power consumption reduction and faster back-end
turnarounds. With respect to the state of the art, SIM-L architecture can be
easily integrated in a conventional digital design flow since it is implemented by
means of standard cells.

Experiments on a 65 nm CMOS standard-cells library demonstrated a maxi-
mum operating frequency of 1 GHz by using only low-leakage cells. SIM-L has
been also integrated in an eight-tile MPSoC based on the STMicroelectronics
Spidergon platform, featuring eight routers and eight NIs using 72 bit wide data
packet bus. In this test-case SIM-L exhibited area and leakage penalties of only
3% and 0.5% respectively vs. NoC components.

A patent application for SIM-L architecture has been filed in both Europe and
the United States.

Chapter 7 discussed the implementation of a router for hierarchical networks
based on Spidergon-like topologies. To cope with the extremely wide configura-
tion space, a new methodology, named metacoding, was proposed for generating
correct-by-construction technology independent RTL codebases. The RTL coding
itself is abstracted and modeled with an Object Oriented framework, integrated
within a commercial tool for IP packaging (Synopsys CoreTools suite).

Compared with traditional coding styles based on pre-processor directives, the
proposed methodology produced 65% smaller codebases and reduced the config-
urations to verify of three orders of magnitude. Similar techniques have also been
applied to the design of the network interface. Particularly, metacoding gener-
ated the HDL files describing the whole set of network features: network and
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transport packet formats, routing and QoS tables, network access policy. The
approach ensured consistency among all instances of network components and re-
duced harmful mismatches between the configuration and the verification phases
by generating configuration files for the verification environment. The whole set
of metacoding plug-ins has been integrated in the proprietary STMicroelectronics
system level flow for generating NoC platforms.
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