5,065 research outputs found

    Antifragility = Elasticity + Resilience + Machine Learning: Models and Algorithms for Open System Fidelity

    Full text link
    We introduce a model of the fidelity of open systems - fidelity being interpreted here as the compliance between corresponding figures of interest in two separate but communicating domains. A special case of fidelity is given by real-timeliness and synchrony, in which the figure of interest is the physical and the system's notion of time. Our model covers two orthogonal aspects of fidelity, the first one focusing on a system's steady state and the second one capturing that system's dynamic and behavioural characteristics. We discuss how the two aspects correspond respectively to elasticity and resilience and we highlight each aspect's qualities and limitations. Finally we sketch the elements of a new model coupling both of the first model's aspects and complementing them with machine learning. Finally, a conjecture is put forward that the new model may represent a first step towards compositional criteria for antifragile systems.Comment: Preliminary version submitted to the 1st International Workshop "From Dependable to Resilient, from Resilient to Antifragile Ambients and Systems" (ANTIFRAGILE 2014), https://sites.google.com/site/resilience2antifragile

    QoS-Based Optimization of Runtime Management of Sensing Cloud Applications

    Get PDF
    Die vorliegende Arbeit präsentiert Ansätze und Techniken zur qualitätsbewussten Verbesserung des Laufzeitmanagements von IoT-Anwendungen. IoT-Anwendungen nehmen über die Sensorik von Smart Devices ihre Umgebung wahr, um diese zu analysieren oder mit ihr zu interagieren. Smart Devices sind in der Rechen- und Speicherleistung begrenzt, weshalb viele IoT-Anwendungen über eine IoT Plattform mit elastischen und skalierbaren Cloud Services verbunden sind. Die Last auf dem Cloud Service entsteht durch die verbundenen Smart Devices, die kontinuierlich Nachrichten transferieren. Die Ressourcenkonfiguration des Cloud Services beeinflusst dessen Kapazität. Ein Service Operator, der eine IoT-Anwendung betreibt, ist mit der Herausforderung konfrontiert, die Smart Devices und den Cloud Service so zu konfigurieren, dass eine hohe Datenqualität bei niedrigen Betriebskosten erreicht wird. Um hierbei den Service Operator zur Design Time zu unterstützen, modellieren wir Kostenfunktionen für Datenqualitäten, die durch das Wechselspiel der Smart Device- und Cloud Service-Konfiguration beeinflusst werden. Mit Hilfe dieser Kostenfunktionen kann ein Service Operator nach einer kostenminimalen Konfiguration für bestimmte Szenarien suchen. Existierende Ansätze zur Optimierung von Anwendungen zur Design Time fokussieren sich auf traditionelle Software-Architekturen und bieten daher nicht die notwendigen Konzepte zur Kostenmodellierung von IoT-Anwendungen an. Des Weiteren unterstützen wir den Service Operator durch Lastkontrollverfahren, die auf Kapazitätsengpässe des Cloud Services durch eine kontrollierte Reduktion der Nachrichtenrate reagieren. Während sich das auf die Genauigkeit der Messungen nachteilig auswirken kann, stabilisieren sich zeitliche Verzögerungen und die IoT-Anwendung bleibt auch in starken Überlastszenarien verfügbar. Existierende Laufzeittechniken fokussieren sich auf die automatische Ressourcenprovisionierung von Cloud Services durch Auto-Scaler. Diese ermöglichen zwar, auf Kapazitätsengpässe und Lastschwankungen zu reagieren, doch die erreichte Quality-of-Service (QoS) kann dadurch mit hohen Betriebskosten verbunden sein. Daher ermöglichen wir durch die Lastkontrollverfahren eine weitere Technik, mit der einerseits dynamisch auf Kapazitätsengpässe reagiert werden und andererseits die zur Verfügung stehende Kapazität eines Cloud Services effizient genutzt werden kann. Außerdem präsentieren wir Kopplungstechniken, die Auto-Scaling und Lastkontrollverfahren kombinieren. Bestehende Ansätze zur Rekonfiguration von Smart Devices konzentrieren sich auf Qualitäten wie Genauigkeit oder Energie-Effizienz und sind daher ungeeignet, um auf Kapazitätsengpässe zu reagieren. Zusammenfassend liefert die Dissertation die folgenden Beiträge: 1. Untersuchung von Performance Metriken für Skalierentscheidungen: Wir haben Infrastuktur- und Anwendungsebenen-Metriken daraufhin evaluiert, wie geeignet sie für Skalierentscheidungen von Microservices sind, die variierende Charakteristiken aufweisen. Auf Basis der Ergebnisse kann ein Service Operator eine fundierte Entscheidung darüber treffen, welche Performance Metrik zur Skalierung eines bestimmten Microservices am geeignesten ist. 2. Design von QoS Kostenfunktionen für IoT-Anwendungen: Wir haben ein QoS Kostenmodell aufgestellt, dass das Wirken von Smart Device- und Cloud Service-Konfiguration auf die Qualitäten einer IoT-Anwendung erfasst. Auf Grundlage dieser Kostenmodelle kann die Konfiguration von IoT-Anwendungen zur Design Time optimiert werden. Des Weiteren können mit den Kostenfunktionen Laufzeitverfahren hinsichtlich ihrem Beitrag zur QoS für verschiedene Szenarien evaluiert werden. 3. Entwicklung von Lastkontrollverfahren für IoT-Anwendungen: Die präsentierten Verfahren bieten einen komplementären Mechanismus zu Auto-Scaling an, um bei Kapazitätsengpässen die QoS aufrechtzuerhalten. Hierbei wird die Gesamtlast auf dem Cloud Service durch Anpassungen der Nachrichtenrate der Smart Devices reduziert. Ein Service Operator hat hiermit die Möglichkeit, Kapazitätsengpässen über eine Degradierung der Datenqualität zu begegnen. 4. Kopplung von Lastkontrollverfahren mit Ressourcen-Provisionierung: Wir präsentieren regelbasierte Kopplungsmechanismen, die reaktiv Lastkontrollverfahren oder Auto-Scaler aktivieren und diese damit koppeln. Das ermöglicht, auf Kapazitätsengpässe über eine Kombination von Datenqualitätsreduzierungen und Ressourcekostenerhöhungen zu reagieren. 5. Design eines Frameworks zur Entwicklung selbst-adaptiver Systeme: Das selbst-adaptive Framework bietet ein Anwendungsmodell für IoT-Anwendungen und Konzepte für die Rekonfiguration von Microservices und Smart Devices an. Es kann in verschiedenen Cloud-Umgebungen aufgesetzt werden und beschleunigt die prototypische Entwicklung von Laufzeitverfahren. Wir validierten die Ansätze anhand zweier Case Study Systeme unterschiedlicher Komplexität. Das erste Case Study System besteht aus einem Cloud Service, welcher über eine IoT Plattform Nachrichten von virtuellen Smart Devices verarbeitet. Mit diesem System haben wir für unterschiedliche Anwendungsszenarien die Charakteristiken der vorgestellten Lastkontrollverfahren analysiert, um diese gegen Auto-Scaling und einer Kopplung der Ansätze zu vergleichen. Hierbei stellte sich heraus, dass die Lastkontrollverfahren ähnlich effizient wie Auto-Scaler Überlastszenarien addressieren können und sich die QoS in einem vergleichbaren Bereich bewegt. Im Schnitt erreichten die Lastkontrollverfahren in den untersuchten Szenarien etwa 50 % geringere QoS Gesamtkosten. Es zeigte sich auch, dass sowohl Auto-Scaling als auch die Lastkontrollverfahren in bestimmten Anwendungsszenarien deutliche Nachteile haben, so z. B. wenn die Datengenauigkeit oder Ressourcenkosten im Vordergrund stehen. Es hat sich gezeigt, dass eine Kopplung hierbei immer vorteilhaft ist, um die QoS beizubehalten. Im zweiten Case Study System haben wir eine intelligente Heizungslösung der Robert Bosch GmbH implementiert, um die Ansätze an einem komplexeren System zu validieren. Auch hier zeigte sich, dass eine Kombination von Lastkontrolle und Auto-Scaling am vorteilhaftesten ist und zu einer hohen Datenqualität bei geringen Ressourcenkosten beiträgt. Die Ergebnisse zeigen, dass die vorgestellten Lastkontrollverfahren geeignet sind, die QoS von IoT Anwendungen zu verbessern. Es bietet einem Service Operator damit ein weiteres Werkzeug für das Laufzeitmanagement von IoT Anwendungen, dass einen zum Auto-Scaling komplementären Mechanismus verwendet. Das hier vorgestellte Framework zur Entwicklung selbst-adaptiver IoT Systeme haben wir zur empirischen Beantwortung der Forschungsfragen instanziiert und damit dessen Eignung demonstriert. Wir zeigen außerdem eine exemplarische Verwendung der vorgestellten Kostenfunktionen für verschiedene Anwendungsszenarien und binden diese im Zuge der Validierung in einem Optimierungs-Framework ein

    Working out a common task: design and evaluation of user-intelligent system collaboration

    Get PDF
    This paper describes the design and user evaluation of an intelligent user interface intended to mediate between users and an Adaptive Information Extraction (AIE) system. The design goal was to support a synergistic and cooperative work. Laboratory tests showed the approach was efficient and effective; focus groups were run to assess its ease of use. Logs, user satisfaction questionnaires, and interviews were exploited to investigate the interaction experience. We found that user’ attitude is mainly hierarchical with the user wishing to control and check the system’s initiatives. However when confidence in the system capabilities rises, a more cooperative interaction is adopted

    Lifeguard: Local Health Awareness for More Accurate Failure Detection

    Full text link
    SWIM is a peer-to-peer group membership protocol with attractive scaling and robustness properties. However, slow message processing can cause SWIM to mark healthy members as failed (so called false positive failure detection), despite inclusion of a mechanism to avoid this. We identify the properties of SWIM that lead to the problem, and propose Lifeguard, a set of extensions to SWIM which consider that the local failure detector module may be at fault, via the concept of local health. We evaluate this approach in a precisely controlled environment and validate it in a real-world scenario, showing that it drastically reduces the rate of false positives. The false positive rate and detection time for true failures can be reduced simultaneously, compared to the baseline levels of SWIM

    Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud

    Full text link
    With the advent of cloud computing, organizations are nowadays able to react rapidly to changing demands for computational resources. Not only individual applications can be hosted on virtual cloud infrastructures, but also complete business processes. This allows the realization of so-called elastic processes, i.e., processes which are carried out using elastic cloud resources. Despite the manifold benefits of elastic processes, there is still a lack of solutions supporting them. In this paper, we identify the state of the art of elastic Business Process Management with a focus on infrastructural challenges. We conceptualize an architecture for an elastic Business Process Management System and discuss existing work on scheduling, resource allocation, monitoring, decentralized coordination, and state management for elastic processes. Furthermore, we present two representative elastic Business Process Management Systems which are intended to counter these challenges. Based on our findings, we identify open issues and outline possible research directions for the realization of elastic processes and elastic Business Process Management.Comment: Please cite as: S. Schulte, C. Janiesch, S. Venugopal, I. Weber, and P. Hoenisch (2015). Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud. Future Generation Computer Systems, Volume NN, Number N, NN-NN., http://dx.doi.org/10.1016/j.future.2014.09.00

    Improving the prediction accuracy of recurrent neural network by a PID controller.

    No full text
    International audienceIn maintenance field, prognostic is recognized as a key feature as the prediction of the remaining useful life of a system which allows avoiding inopportune maintenance spending. Assuming that it can be difficult to provide models for that purpose, artificial neural networks appear to be well suited. In this paper, an approach combining a Recurrent Radial Basis Function network (RRBF) and a proportional integral derivative controller (PID) is proposed in order to improve the accuracy of predictions. The PID controller attempts to correct the error between the real process variable and the neural network predictions

    Context-aware adaptation in DySCAS

    Get PDF
    DySCAS is a dynamically self-configuring middleware for automotive control systems. The addition of autonomic, context-aware dynamic configuration to automotive control systems brings a potential for a wide range of benefits in terms of robustness, flexibility, upgrading etc. However, the automotive systems represent a particularly challenging domain for the deployment of autonomics concepts, having a combination of real-time performance constraints, severe resource limitations, safety-critical aspects and cost pressures. For these reasons current systems are statically configured. This paper describes the dynamic run-time configuration aspects of DySCAS and focuses on the extent to which context-aware adaptation has been achieved in DySCAS, and the ways in which the various design and implementation challenges are met
    • …
    corecore