
X =1.00

X =0.01
perf

lossSD
Software Design and Quality

QoS-Based Optimization of Runtime
Management of Sensing Cloud Applications

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Manuel Gotin

aus Sindel�ngen

Tag der mündlichen Prüfung: 30.04.2021

Erster Gutachter: Prof. Dr. Ralf Reussner

Zweiter Gutachter: Prof. Dr. Andreas Oberweis

Abstract

This thesis contributes to designing and operating IoT applications by introducing Quality-

of-Service (QoS) cost functions and time-driven �ow control approaches.

IoT applications perceive the environment via sensors of smart devices in order to

analyze the environment or interact with it. Smart devices are limited in terms of processing

and storage capabilities. Therefore, many IoT applications connect the smart devices to

elastic and scalable cloud services via IoT platforms. The load on the cloud service is

induced by the connected smart devices, which continuously transfer messages containing

data about the environmental state. The resource con�guration of the cloud service

in�uences its capacity. Therefore, a service operator, who operates an IoT application,

is faced with the challenge of con�guring the smart devices and the cloud service in a

manner, which achieves a high data quality at low operational costs.

To support the service operator at design time, we model cost functions for data qualities,

which are in�uenced by the interplay of smart device and cloud service con�gurations.

These cost functions enable a service operator to search for a cost minimal con�guration

for speci�c scenarios. Existing approaches for optimizing applications at design time focus

on traditional software architectures and therefore do not provide necessary concepts to

cost model qualities of IoT applications.

We also support the service operator with �ow control approaches that cope with

capacity shortages of cloud services by reducing the message rate of smart devices in a

controlled manner. While this can have a negative impact on the accuracy of measurements,

it stabilizes processing delays and ensures, that the IoT application remains available in

severe overload scenarios. Existing runtime approaches focus on an automatic resource

provisioning of cloud services by auto-scalers. Whereas they enable to cope with capacity

shortages and load variations by levering the elasticity of the cloud environment, the

achieved QoS can be associated with high operating costs. In contrast, the presented

�ow control approaches reduce the load on the cloud service and probe their capacity.

Therefore, they enable to e�ciently use the capacity of a cloud service and to cope with

capacity shortages. Existing approaches adapting smart devices focus on qualities such as

accuracy or energy e�ciency and are therefore unsuitable to cope with overload scenarios.

In summary, the thesis contributes the following:

• Evaluation of performance metrics for scaling decisions. We have evaluated

infrastructure- and application-level metrics in regard to their suitability for scaling

microservices with varying resource characteristics. Based on the results, a service

operator can make an educated decision to select a suitable performance metric for

an auto-scaler of a speci�c microservice.

• Design of QoS cost functions for IoT applications. We present a cost model

that captures the impact of smart device and resource con�gurations on the qualities

i

Abstract

of IoT applications. Based on these cost models, the con�guration of IoT applications

can be optimized at design time. Furthermore, the cost functions can be used to

evaluate QoS contributions of runtime management approaches.

• Design of �ow control approaches for IoT applications. The presented ap-

proaches o�er a complementary mechanism to auto-scaling to maintain the QoS in

overload scenarios. The overall load on the cloud service is reduced by adjusting

the message rate of the smart devices. This enables a service operator to counter a

cloud services’ capacity shortage by degrading data qualities.

• Coupling of �ow control approacheswith auto-scaling. We present rule-based

coupling mechanisms that activate �ow control or auto-scalers in a reactive manner.

The coupling aims improve the overall QoS conformance by managing capacity

shortages and load variations with a combination of resource provisioning and data

quality reductions.

• Design of a framework for developing self-adaptive systems. The self-adaptive

framework provides an application model for IoT applications and concepts for the

recon�guration of microservices and smart devices. It supports heterogeneous cloud

environments and accelerates the prototypical development of runtime management

approaches.

In order to empirically answer the research questions, we have instantiated the pre-

sented framework for self-adaptive IoT systems to implement and deploy �ow control and

auto-scaling approaches. For each case study system and application scenario, we have

instantiated the cost functions and integrated them into an optimization framework to

search for cost minimal runtime management con�gurations. We validated the approaches

using two case study systems of varying complexity. The �rst case study system consists

of a cloud service that processes messages from virtual smart devices via an IoT platform.

With this system we analyzed the characteristics of the presented �ow control approaches

in di�erent application scenarios and compared them to auto-scaling and a coupling of the

approaches. The results showed, that the �ow control approaches can address overload

scenarios as e�ciently as auto-scaling and that the emerging QoS is in a comparable range.

On average, the �ow control approaches achieved about 50 % lower total QoS costs in the

investigated scenarios. Both auto-scaling and �ow control had signi�cant disadvantages

in certain application scenarios, e.g. when data accuracy or resource costs are the primary

concern. In all cases, a coupling had resulted in lower QoS costs. In the second case study

we implemented an intelligent heating solution from the Robert Bosch GmbH to validate

the approaches on a multi-service IoT application. Again, a combination of �ow control

and auto-scaling has resulted in a high data quality at low resource costs. Overall, the

results showed that a runtime management with the presented �ow control approaches is

bene�cial for the QoS of IoT applications.

ii

Zusammenfassung

Die vorliegende Arbeit präsentiert Ansätze und Techniken zur qualitätsbewussten Verbes-

serung des Laufzeitmanagements von IoT-Anwendungen.

IoT-Anwendungen nehmen über die Sensorik von Smart Devices ihre Umgebung wahr,

um diese zu analysieren oder mit ihr zu interagieren. Smart Devices sind in der Rechen-

und Speicherleistung begrenzt, weshalb viele IoT-Anwendungen über eine IoT Plattform

mit elastischen und skalierbaren Cloud Services verbunden sind. Die Last auf dem Cloud

Service entsteht durch die verbundenen Smart Devices, die kontinuierlich Nachrichten

transferieren. Die Ressourcenkon�guration des Cloud Services beein�usst dessen Kapazität.

Ein Service Operator, der eine IoT-Anwendung betreibt, ist mit der Herausforderung

konfrontiert, die Smart Devices und den Cloud Service so zu kon�gurieren, dass eine hohe

Datenqualität bei niedrigen Betriebskosten erreicht wird.

Um hierbei den Service Operator zur Design Time zu unterstützen, modellieren wir

Kostenfunktionen für Datenqualitäten, die durch das Wechselspiel der Smart Device-

und Cloud Service-Kon�guration beein�usst werden. Mit Hilfe dieser Kostenfunktionen

kann ein Service Operator nach einer kostenminimalen Kon�guration für bestimmte

Szenarien suchen. Existierende Ansätze zur Optimierung von Anwendungen zur Design

Time fokussieren sich auf traditionelle Software-Architekturen und bieten daher nicht die

notwendigen Konzepte zur Kostenmodellierung von IoT-Anwendungen an.

Des Weiteren unterstützen wir den Service Operator durch Lastkontrollverfahren, die auf

Kapazitätsengpässe des Cloud Services durch eine kontrollierte Reduktion der Nachrichten-

rate reagieren. Während sich das auf die Genauigkeit der Messungen nachteilig auswirken

kann, stabilisieren sich zeitliche Verzögerungen und die IoT-Anwendung bleibt auch in

starken Überlastszenarien verfügbar. Existierende Laufzeittechniken fokussieren sich auf

die automatische Ressourcenprovisionierung von Cloud Services durch Auto-Scaler. Diese

ermöglichen zwar, auf Kapazitätsengpässe und Lastschwankungen zu reagieren, doch die

erreichte Quality-of-Service (QoS) kann dadurch mit hohen Betriebskosten verbunden

sein. Daher ermöglichen wir durch die Lastkontrollverfahren eine weitere Technik, mit

der einerseits dynamisch auf Kapazitätsengpässe reagiert werden und andererseits die zur

Verfügung stehende Kapazität eines Cloud Services e�zient genutzt werden kann. Außer-

dem präsentieren wir Kopplungstechniken, die Auto-Scaling und Lastkontrollverfahren

kombinieren. Bestehende Ansätze zur Rekon�guration von Smart Devices konzentrieren

sich auf Qualitäten wie Genauigkeit oder Energie-E�zienz und sind daher ungeeignet,

um auf Kapazitätsengpässe zu reagieren.

Zusammenfassend liefert die Dissertation die folgenden Beiträge:

• Untersuchung von Performance Metriken für Skalierentscheidungen. Wir

haben Infrastuktur- und Anwendungsebenen-Metriken daraufhin evaluiert, wie

geeignet sie für Skalierentscheidungen von Microservices sind, die variierende

iii

Zusammenfassung

Charakteristiken aufweisen. Auf Basis der Ergebnisse kann ein Service Operator eine

fundierte Entscheidung darüber tre�en, welche Performance Metrik zur Skalierung

eines bestimmten Microservices am geeignesten ist.

• Design vonQoSKostenfunktionen für IoT-Anwendungen. Wir haben ein QoS

Kostenmodell aufgestellt, dass das Wirken von Smart Device- und Cloud Service-

Kon�guration auf die Qualitäten einer IoT-Anwendung erfasst. Auf Grundlage dieser

Kostenmodelle kann die Kon�guration von IoT-Anwendungen zur Design Time

optimiert werden. Des Weiteren können mit den Kostenfunktionen Laufzeitverfahren

hinsichtlich ihrem Beitrag zur QoS für verschiedene Szenarien evaluiert werden.

• Entwicklung von Lastkontrollverfahren für IoT-Anwendungen. Die präsen-

tierten Verfahren bieten einen komplementären Mechanismus zu Auto-Scaling an,

um bei Kapazitätsengpässen die QoS aufrechtzuerhalten. Hierbei wird die Gesamtlast

auf dem Cloud Service durch Anpassungen der Nachrichtenrate der Smart Devices

reduziert. Ein Service Operator hat hiermit die Möglichkeit, Kapazitätsengpässen

über eine Degradierung der Datenqualität zu begegnen.

• Kopplung von Lastkontrollverfahrenmit Ressourcen-Provisionierung. Wir

präsentieren regelbasierte Kopplungsmechanismen, die reaktiv Lastkontrollver-

fahren oder Auto-Scaler aktivieren und diese damit koppeln. Das ermöglicht, auf

Kapazitätsengpässe über eine Kombination von Datenqualitätsreduzierungen und

Ressourcekostenerhöhungen zu reagieren.

• Design eines Frameworks zur Entwicklung selbst-adaptiver Systeme. Das

selbst-adaptive Framework bietet ein Anwendungsmodell für IoT-Anwendungen

und Konzepte für die Rekon�guration von Microservices und Smart Devices an. Es

kann in verschiedenen Cloud-Umgebungen aufgesetzt werden und beschleunigt die

prototypische Entwicklung von Laufzeitverfahren.

Wir validierten die Ansätze anhand zweier Case Study Systeme unterschiedlicher Kom-

plexität. Das erste Case Study System besteht aus einem Cloud Service, welcher über eine

IoT Plattform Nachrichten von virtuellen Smart Devices verarbeitet. Mit diesem System

haben wir für unterschiedliche Anwendungsszenarien die Charakteristiken der vorgestell-

ten Lastkontrollverfahren analysiert, um diese gegen Auto-Scaling und einer Kopplung

der Ansätze zu vergleichen. Hierbei stellte sich heraus, dass die Lastkontrollverfahren

ähnlich e�zient wie Auto-Scaler Überlastszenarien addressieren können und sich die

QoS in einem vergleichbaren Bereich bewegt. Im Schnitt erreichten die Lastkontrollver-

fahren in den untersuchten Szenarien etwa 50 % geringere QoS Gesamtkosten. Es zeigte

sich auch, dass sowohl Auto-Scaling als auch die Lastkontrollverfahren in bestimmten

Anwendungsszenarien deutliche Nachteile haben, so z. B. wenn die Datengenauigkeit

oder Ressourcenkosten im Vordergrund stehen. Es hat sich gezeigt, dass eine Kopplung

hierbei immer vorteilhaft ist, um die QoS beizubehalten. Im zweiten Case Study System

haben wir eine intelligente Heizungslösung der Robert Bosch GmbH implementiert, um

die Ansätze an einem komplexeren System zu validieren. Auch hier zeigte sich, dass eine

Kombination von Lastkontrolle und Auto-Scaling am vorteilhaftesten ist und zu einer

hohen Datenqualität bei geringen Ressourcenkosten beiträgt.

iv

Zusammenfassung

Die Ergebnisse zeigen, dass die vorgestellten Lastkontrollverfahren geeignet sind, die

QoS von IoT Anwendungen zu verbessern. Es bietet einem Service Operator damit ein

weiteres Werkzeug für das Laufzeitmanagement von IoT Anwendungen, dass einen zum

Auto-Scaling komplementären Mechanismus verwendet. Das hier vorgestellte Framework

zur Entwicklung selbst-adaptiver IoT Systeme haben wir zur empirischen Beantwortung

der Forschungsfragen instanziiert und damit dessen Eignung demonstriert. Wir zeigen

außerdem eine exemplarische Verwendung der vorgestellten Kostenfunktionen für ver-

schiedene Anwendungsszenarien und binden diese im Zuge der Validierung in einem

Optimierungs-Framework ein.

v

Danksagungen

Diese Dissertation wäre ohne die Unterstützung vieler Menschen nicht möglich gewesen.

Während meiner Doktorandenzeit beim Forschungscampus der Robert Bosch GmbH und

am Karlsruher Institut für Technologie (KIT) hatte ich die Möglichkeit, Forschung sowohl in

der Industrie als auch an der Universität kennenzulernen. Hierbei bin ich vielen Menschen

begegnet, die mich auf unterschiedlichste Weise während dieser herausfordernden Zeit

unterstützt haben, und denen ich an dieser Stelle danken möchte.

Zunächst einmal gilt mein herzlicher Dank meinem Doktorvater Prof. Dr. Ralf H. Reuss-

ner, der mich als Doktorand in seiner Forschungsgruppe aufgenommen hat. Hier konnte

ich in den Genuss einer hervorragenden Betreuung kommen und Teil einer harmonischen

und äußerst fruchtbaren Arbeitsatmosphäre werden. Ich danke auch herzlich Herrn Prof.

Dr. Andreas Oberweis für die Übernahme des Korreferats. Ebenso danke ich Frau Prof.

Dr. Anne Koziolek für die fachlichen Ratschläge und Herrn Dr. Robert Heinrich für die

Unterstützung bei Publikationen. Meinem Kollegen Dominik Werle vom KIT möchte ich

für die gute Zusammenarbeit danken, die stets sehr produktiv und zielführend war.

Mein herzliches Dank gilt ebenso meinem Betreuer bei der Robert Bosch GmbH, Herrn

Dr. Felix Lösch, der mir stets durch fachliche und methodische Ratschläge eine große

Unterstützung war. Ebenso danke ich meinem Gruppenleiter Herr Dr. Dirk Ziegenbein

für die personelle Betreuung. Ich danke meiner Arbeitskollegin Frau Dr. Julia Leibinger

für die fachlichen Diskussionen und die Unterstützung bei Promotionsfragen. Den Mit-

doktoranden bei der Robert Bosch GmbH danke ich für das Gemeinschaftsgefühl und die

Aktivitäten außerhalb der Forschung.

Als sehr positiv empfand ich die Zusammenarbeit mit der Uni Stuttgart und dem For-

schungszetrum für Informatik (FZI) im Rahmen eines ö�entlich geförderten Projekts.

Daher bedanke ich mich an dieser Stelle bei Herrn Prof. Dr. Ste�en Becker und Floriment

Klinaku aus der Uni Stuttgart sowie Jörg Henß und Martina Rapp vom FZI. Mein Dank

gilt ebenso allen Doktoranden von Herrn Prof. Reussner und Frau Prof. Koziolek, die

mich als externen Doktoranden in ihrer Gruppe stets willkommen geheißen haben. Die

gemeinsamen Klausurtagungen werde ich als lehrreich und schön in Erinnerung behalten.

Ich bedanke mich außerdem bei den von mir betreuten Studenten Philipp Lehr, Niko

Benkler und Daniel Handloser für die gute Zusammenarbeit.

Mein besonderer Dank gilt meinen Eltern, die meine Interessen von früher Kindheit an

gefördert haben. Ebenso möchte ich meiner Schwester Nathalie danken, die mir seit jeher

Rückhalt in allen Lebensbereichen bietet. Eure Unterstützung über all die Jahre hat mir

das alles ermöglicht.

vii

Contents

Abstract . i

Zusammenfassung . iii

Danksagungen . vii

1. Introduction . 1

1.1. Motivation . 1

1.2. Problem Statement . 2

1.3. State of the Art . 3

1.4. Challenges and Research Questions . 4

1.4.1. Understanding Performance Metrics for Auto-Scaling 4

1.4.2. Modeling and Optimization of the QoS of Sensing Cloud Applications 5

1.4.3. Flow Control Approaches for Smart Devices 5

1.4.4. Runtime Management of Sensing Cloud Applications 6

1.5. Contributions . 6

1.6. Outline . 7

2. Foundations . 9

2.1. The Cloud-IoT Paradigm . 9

2.1.1. Underlying Concepts . 9

2.1.2. IoT Platforms . 10

2.1.3. Microservice Architectural Style 11

2.2. Qualities of Sensing Cloud Applications 11

2.2.1. Terminology . 12

2.2.2. Data Qualities . 12

2.3. Elasticity in Cloud Computing . 13

2.3.1. Auto-Scaling . 13

2.3.2. Elasticity Evaluation . 13

2.4. Flow Control and Congestion Avoidance 14

2.4.1. TCP Flow Control & Congestion Avoidance 14

2.4.2. Jains Fairness Index . 15

2.5. Self-Adaptive Systems . 15

2.6. Optimization . 16

2.6.1. Di�erential Evolution . 16

2.6.2. Pareto Frontier . 17

ix

Contents

3. Evaluation of Performance Metrics for Scaling Decisions 19

3.1. Microservice Model . 20

3.2. Analytical model of infrastructure metrics 20

3.2.1. CPU Utilization . 20

3.2.2. Message Queue Metrics . 21

3.3. Simulation model . 21

3.3.1. Model for Cloud Applications . 22

3.3.2. Model for Sensing Cloud Applications 23

3.4. Discussion . 23

4. QoS Cost Optimization of Sensing Cloud Applications 25

4.1. Application Model . 25

4.2. Qualities of a Sensing Cloud Application 26

4.3. QoS Metrics . 28

4.4. QoS Cost Functions . 29

4.4.1. Quality Cost Functions . 29

4.4.2. QoS Cost Function Sets . 30

4.5. Optimization Goals . 30

4.5.1. Resource and Message Rate Con�guration 30

4.5.2. Runtime Management Con�guration 31

4.6. Optimization Framework . 31

4.7. Discussion . 32

5. Time-driven Flow Control of Smart Devices . 33

5.1. Underlying Concepts . 33

5.2. Integration into Sensing Cloud Applications 35

5.2.1. Architectural Integration . 35

5.2.2. Information Exchange Mechanism 35

5.2.3. Congestion Observer . 36

5.2.4. Transmission Rate Boundaries . 37

5.3. TCP-Inspired Flow Control . 37

5.3.1. Conceptual Di�erences . 37

5.3.2. Load Model Extension . 39

5.3.3. Overload Protection Mode . 40

5.3.4. Discussion . 40

5.4. Capacity-Estimating Flow Control . 40

5.4.1. Capacity Estimation . 40

5.4.2. Transmission Rate Calculation . 41

5.4.3. Phases . 41

5.4.4. Overload Protection Mode . 42

5.4.5. Discussion . 43

5.5. Discussion . 43

6. Coupling Mechanisms for Runtime Strategies . 45

6.1. Coupling Strategy Metamodel . 45

x

Contents

6.2. Strategy Classes . 46

6.3. Concurrent Coupling . 47

6.4. Rule-Based Coupling . 48

6.4.1. Metamodel . 48

6.4.2. Accuracy-driven Overload Protection 48

6.4.3. Cost-driven Overload Protection 49

6.4.4. QoS-based Coupling . 50

6.4.5. Discussion . 50

6.5. Fuzzy Rules-Based Coupling . 50

6.5.1. Fuzzi�cation . 51

6.5.2. Defuzzi�cation . 51

6.5.3. Fuzzy Rules Set . 52

6.6. Discussion . 53

7. SEIA – A Runtime Management Framework for Cloud Applications 55

7.1. Overview . 55

7.2. Cloud Application Meta-Model . 56

7.3. Cloud-IoT Concepts . 56

7.4. Probes and E�ectors . 57

7.4.1. Probes . 58

7.4.2. E�ectors . 58

7.5. Monitoring Concept . 59

7.6. Strategy Concept . 60

7.7. Binding Factory . 61

7.8. Mapping to the MAPE-K Framework . 61

7.9. Discussion . 62

8. Validation . 63

8.1. Validation Goals and Overview . 63

8.1.1. GQM Plan . 63

8.1.2. Case Study Systems . 69

8.1.3. Validation Coverage . 69

8.2. Experimental Setup . 71

8.2.1. Overview . 71

8.2.2. Optimization Framework . 72

8.2.3. Simulation Model . 72

8.3. Case Study Systems . 73

8.3.1. ShapeShifter . 73

8.3.2. Connected Heating . 75

8.4. Evaluation of Performance Metrics for Scaling Decisions 77

8.4.1. Experimental Design . 77

8.4.2. Q.1.1 – Impact of Resource Demand and Capacity Variations on

Infrastructure Metrics . 79

8.4.3. Q.1.2 – Infrastructure Metric Model Accuracy 81

xi

Contents

8.4.4. Q.1.3 – Impact of Resource Demand and Capacity Variations on

Scaling Decisions . 81

8.4.5. Q.1.4 – Simulation Model Accuracy 86

8.4.6. Threats to Validity . 86

8.4.7. Discussion . 87

8.5. Congestion Avoidance Characteristics of time-driven Flow Control . . . 87

8.5.1. Experimental Design . 88

8.5.2. Q.2.1 – Congestion Avoidance E�ciency in a Steady Capacity and

Connectivity Scenario . 91

8.5.3. Q.2.2 – Congestion Avoidance E�ciency in a Varying Capacity

Scenario . 92

8.5.4. Q.2.3 – Congestion Avoidance E�ciency in a Varying Connectivity

Scenario . 93

8.5.5. Q.2.4 – Simulation Model Accuracy 95

8.5.6. Threats to Validity . 97

8.5.7. Discussion . 98

8.6. QoS Characteristics of time-driven Flow Control 99

8.6.1. Experimental Design . 99

8.6.2. Q.3 QoS Characteristics of Overload Protection Approaches 105

8.6.3. Q.4 QoS Characteristics of Coupled Overload Protection Approaches 108

8.6.4. Q.5 Simulation Model Accuracy 112

8.6.5. Threats to Validity . 113

8.6.6. Discussion . 114

8.7. QoS Contributions of time-driven Flow Control in di�erent Application

Scenarios . 115

8.7.1. Experimental Design . 115

8.7.2. Q.6.1 – QoS conformance in mixed application scenarios 117

8.7.3. Q.6.2 – QoS conformance in time driven application scenarios . . 120

8.7.4. Q.6.3 – QoS conformance in accuracy driven application scenarios 123

8.7.5. Q.6.4 – QoS conformance in cost driven application scenarios . . . 125

8.7.6. Q.6.5 – Simulation Model Accuracy 127

8.7.7. Threats to Validity . 127

8.7.8. Discussion . 130

8.8. Connected Heating – Use Case ’Predictive Maintenance’ 130

8.8.1. Experimental Design . 131

8.8.2. Q.7 – QoS Contributions in Overload Situation on the Example of

an Industry-Based Cloud Application 137

8.8.3. Threats to Validity . 146

8.8.4. Discussion . 148

8.9. Characteristics of TCP-inspired Flow Control 148

8.9.1. Experimental Design . 148

8.9.2. Q.8.1 – How does varying load a�ect the fairness of adaptations in

a distributed setup? . 149

8.9.3. Q.8.2 – How does a distributed setup a�ect the adaptation quality? 151

8.9.4. Discussion . 152

xii

Contents

9. RelatedWork . 153

9.1. Performance Metrics for Scaling Decisions 153

9.1.1. Evaluation of Auto-Scalers . 153

9.1.2. Evaluation of Performance Metrics 153

9.1.3. Related Auto-Scalers . 154

9.2. Feedback Control of Smart Devices . 154

9.2.1. Congestion Control . 154

9.2.2. Collection Strategies . 155

9.3. QoS Optimization of Cloud Applications 156

9.4. Frameworks for Self-Adaptive Systems 156

10. Conclusion . 159

10.1. Summary . 159

10.2. Bene�ts . 161

10.3. Assumptions and Limitations . 161

10.4. Future Work . 162

Bibliography . 165

A. Appendix . 171

A.1. Publikationsliste . 171

xiii

List of Figures

2.1. IoT reference architecture [35]. 10

2.2. Conceptual model of a self-adaptive system [73]. 15

2.3. Illustration of a Pareto frontier marked as green line. The green boxes

represent allocations which are Pareto e�cient. The red boxes represent

Pareto ine�cient allocations. 17

3.1. A sensing cloud application consisting of a compute-intensive microservice

(data converter) and a I/O-intensive microservice (persistence service). 20

3.2. Illustration of a message queue. 21

3.3. Queueing Model for the cloud application with the probes and e�ectors of the

auto-scaling system. 22

3.4. Queueing Model for sensing IoT applications with smart devices as controlled

components. 23

4.1. Application model of a sensing cloud application consisting of smart devices,

an IoT platform and a cloud service. 26

4.2. Sensed, perceived and environment data on the example of temperature. The

sensed accuracy is 4.67 %, whereas the perceived accuracy by the cloud

service is 10.46 %, which is degraded because the data is delayed. 27

4.3. Framework for optimizing the QoS costs of a sensing cloud application. A

service operator has to provide a speci�c scenario and a set of QoS cos

functions, which maps QoS input metrics to costs. An optimization method

evaluates the cumulative QoS costs and provides new candidate solutions. . 31

5.1. Illustration of �ow control and congestion avoidance in TCP and for sensing

cloud applications. The �ow control of sensing cloud applications utilizes

end-to-end congestion avoidance techniques to ensure, that a cloud service is

not overwhelmed by smart devices. 34

5.2. Architectural integration of the �ow control system. (a) distributed: smart

devices utilize a strategy which relies on information provided by the �ow

control system. (b) centralized: smart device recon�gurations are based on

decisions of a global strategy. 35

5.3. Illustration of the conceptual di�erences of congestion avoidance in TCP and

for the time-driven �ow control of sensing cloud applications. The request

scheme is represented by AIMD. 38

5.4. Illustration of the TCP-inspired �ow control with and without load extension. 39

5.5. Illustration of the Capacity-Estimating Congestion Avoidance phases. 41

xv

List of Figures

5.6. Illustration of the capacity-estimating congestion avoidance re�ned and

extended phases. 42

6.1. Metamodel of a coupling strategy. 46

6.2. Metamodel of a the rule-based coupling strategy. 48

6.3. Fuzzy logic for the output of a given QoS cost function. 51

6.4. Defuzzi�cation logic. 52

7.1. Application meta model. 56

7.2. Meta model of cloud concepts. 57

7.3. Class diagram of SEIA probes. 58

7.4. Class diagram of SEIA e�ectors. 59

7.5. Class diagram of SEIA monitoring. 59

7.6. Strategy Model of SEIA. 60

7.7. Environment Factory Model of SEIA. 61

7.8. SEIA and the MAPE-K loop. 62

8.1. Experimental Setup. The system under test is a case study system. 72

8.2. Illustration of the ShapeShifter case study. The computation steps and the

wait time on the microservice can be adjusted to variate the microservices’

characteristics. 74

8.3. Connected Heating case study system. 75

8.4. Connected Heating case study system. 76

8.5. Sequence Diagram of the experimental design. 77

8.6. Measured and predicted CPU utilization and queue output rate for a varying

workload mix. 80

8.7. Measured and predicted CPU utilization and queue output rate for a varying

service time. 80

8.8. E�ect of service time variations on the elastic deviation. 84

8.9. E�ect of service time variations on the SLO. 84

8.10. E�ect of CPU share variations on the elastic deviation. 85

8.11. E�ect of CPU share variations on the SLO. 85

8.12. Connectivity and capacity variation scenarios to investigate the impact on the

congestion-avoiding �ow control strategies. 89

8.13. Pareto curve of the average utilization and queueing delay in a steady

capacity and connectivity scenario. 91

8.14. Pareto curve of the average utilization and queueing delay in a varying

capacity and steady connectivity scenario. 93

8.15. Pareto curve of the average utilization and queueing delay in a varying load

scenario. 95

8.16. Illustration of the overload quanti�cation. The overload intensity is based on

the deviation between supported and connected devices, whereas the overall

time spent in an overload state is quanti�ed by the overload share. 102

xvi

List of Figures

8.17. Illustration of obtaining the worst value points. In a baseline setup, the

overload situation results in a high queueing delay and peaking in gF>ABC . If

the overload situation is addressed by provisioning resources, it peaks in

%F>ABC . If the transmission rate is adjusted accordingly, it is degraded up to)F>ABC 103

8.18. Isolated Overload Protection Approaches – QoS Characteristics in

intensifying overload scenarios. 106

8.19. Concurrent Coupling – QoS Characteristics in intensifying overload scenarios. 108

8.20. QoS-Based Coupling Rules – QoS Characteristics in intensifying overload

scenarios. 110

8.21. Fuzzy Coupling Rules – QoS Characteristics in intensifying overload scenarios. 111

8.22. Time-varying connectivity pattern of the investigation. 117

8.23. Mixed Application Scenario. Cumulative QoS Costs of each approach in

intensifying overload scenarios. 118

8.24. Time driven Application Scenario. Cumulative QoS Costs of each approach in

intensifying overload scenarios. 121

8.25. Accuracy driven Application Scenario. Cumulative QoS Costs of each

approach in intensifying overload scenarios. 123

8.26. Cost-driven Application Scenario. Cumulative QoS Costs of each approach in

intensifying overload scenarios. 126

8.27. Extracted and prepared Environment Temperature Data from a weather

station in Großenkneten, Lower Saxony, during 31.05.2018 - 01.06.2018. . . . 133

8.28. Connectivity Scenario based on a recovery of the IoT system. 135

8.29. Baseline. Sensed and perceived environment and message processing delay

during the experiment. 138

8.30. Isolated Auto-Scaling. Measurements during the experiment. 139

8.31. Isolated CEF. Measurements during the experiment. 140

8.32. Isolated Accuracy-Driven. Measurements during the experiment. 142

8.33. CEF & Accuracy-Driven. Measurements during the experiment. 143

8.34. Auto-Scaling & Accuracy-Driven. Measurements during the experiment. . . 144

8.35. Auto-Scaling & Flow Control. Measurements during the experiment. 145

8.36. Auto-Scaling & Flow Control & Accuracy-Driven. Measurements during the

experiment. 147

8.37. Adaptation behavior for each smart device in a distributed setup. It achieves

fairness in a steady state and converges to the supported transmission rate. . 150

8.38. Average and current Jain’s Fairness Index. The fairness increases greatly for a

steady state with a �xed number of devices. The fairness is especially

vulnerable to a changing —and especially increasing— number of connected

devices. 150

8.39. Adaptation behavior and number of the connected devices during the

experimental run in a distributed setup. 151

8.40. Adaptation behavior and number of the connected devices during the

experimental run in a centralized setup. 152

xvii

List of Tables

6.1. Runtime strategy mechanisms a�ecting the load or capacity of the cloud

service and their aimed improvement on the QoS costs. 47

8.1. Elasticity and SLO metrics for auto-scalers using a speci�c performance

metric with optimized thresholds. 83

8.2. Prediction error of the simulation. 86

8.3. Results of the steady capacity and connectivity scenario. 92

8.4. Results of the varying capacity and steady connectivity scenario. 94

8.5. Results of the steady capacity and varying connectivity scenario. 94

8.6. Average and median prediction errors as percentage di�erence for the service

utilization, queue length and queueing delay in a steady scenario. 96

8.7. Average and median prediction errors as percentage di�erence for the service

utilization, queue length and queueing delay in a varying capacity scenario. 96

8.8. Average and median prediction errors as percentage di�erence for the service

utilization, queue length and queueing delay in a varying connectivity scenario. 97

8.9. Isolated Overload Protection Approaches – Average QoS costs and

measurements across all overload scenarios. 105

8.10. Concurrent Coupling – Average QoS costs and measurements across all

overload scenarios. 109

8.11. QoS-Based Coupling Rules – Average QoS costs and measurements across all

overload scenarios. 109

8.12. Fuzzy Coupling Rules – Average QoS costs and measurements across all

overload scenarios. 112

8.13. Average prediction errors of the QoS costs and the input metrics as

percentage di�erence (X) or absolute prediction errors (Δ) for the �ow control

and auto-scaling approaches. 112

8.14. Average prediction errors of the QoS costs and the input metrics as

percentage di�erence (X) or absolute prediction errors (Δ) for the coupling

approaches. 113

8.15. Mixed Application Scenario – Average QoS costs and measurements across

all overload scenarios. 119

8.16. Time driven Application Scenario – Average QoS costs and measurements

across all overload scenarios. 122

8.17. Accuracy driven Application Scenario – Average QoS costs and

measurements across all overload scenarios. 124

8.18. Cost driven Application Scenario – Average QoS costs and measurements

across all overload scenarios. 125

xix

List of Tables

8.19. Average prediction errors of the QoS costs and the input metrics as

percentage di�erence (X) or absolute prediction errors (Δ) for the isolated

approaches in each application scenario. 128

8.20. Average prediction errors of the QoS costs and the input metrics as

percentage di�erence (X) or absolute prediction errors (Δ) for the coupled

approaches in each application scenario. 129

8.21. Measurements and QoS Costs based on the cost function set j1 for each

strategy in the Connected Heating Case Study. 137

8.22. Measurements and QoS Costs based on the cost function set j2 for each

strategy in the Connected Heating Case Study. 137

xx

1. Introduction

With the uprising of Internet-of-Things (IoT) the Robert Bosch GmbH is in the process of

a large transformation in its application and infrastructure landscape. By o�ering many

products ranging from smart home, industry 4.0 to smart devices Bosch is faced with

the inherent challenges of operating sensing cloud applications, which provide ubiquitous

access to sensor data in order to analyze the environment or actuate with it.

This thesis contributes to designing and operating sensing cloud applications by intro-

ducing Quality-of-Service (QoS) cost functions and time-driven �ow control approaches.

The cost functions enable to make the resource con�guration of sensing cloud application

QoS cost optimal by applying optimization methods. The �ow control approaches aim to

maintain the QoS in overload situations on the expense of data accuracy by adjusting the

message transmission rate of smart devices.

This chapter illustrates why time-driven �ow control approaches are important in

managing sensing cloud applications. We identify a gap in state of the art that concerns

�ow control approaches for sensing cloud applications. We derive a set of challenges and

research questions. Furthermore, we elaborate the contributions of the thesis and conclude

it with an outline.

1.1. Motivation

The uprising of Cloud Computing and the IoT has resulted in a big shift in the software

landscape. Cloud computing o�ers a �exible infrastructure to provision resources on

demand with the illusion of unlimited computation and storage capabilities. The IoT aims

to interconnect everyday devices in order to sense the physical environment and to interact

with it. Since devices are limited in terms of computation and storage capabilities, cloud

computing complements the IoT.

Due to the complementary characteristics of IoT and cloud computing their integration

bene�ts many application scenarios and enables new smart services [13]. This thesis

focuses on Sensing-as-a-Service and Sensing-and-Actuation-as-a-Service, which are part of

many use cases, e.g. smart home or connected vehicles. Whereas the �rst aims to provide

ubiquitous access to sensor data, the second aims to enable automatic control logic in the

cloud. We refer to these applications as sensing cloud applications.

Sensing cloud applications can experience many dynamics. Resources of a cloud infras-

tructure are prone to capacity variations in computation [24] or network [60][59] resulting

in changes of the performance characteristics. The number of connected devices can vary

greatly, due to periodic and non-periodic �uctuations, e.g, weekend usage. Furthermore,

environmental changes may result in changes of the sensing interval. It is challenging

1

1. Introduction

to capture the dynamics in design time, which makes it di�cult to plan the resource

con�guration ahead.

Runtime management systems enable to cope with these dynamics by reacting to

changes with recon�gurations. A widespread method in cloud computing is auto-scaling,

which reacts to load by provisioning resources in an autonomous manner. They a�ect

the elasticity of cloud applications, which refers to the degree to which a system is able

to adapt to workload changes [37]. Therefore, they induce resource costs in order to

maintain the QoS. However, in some scenarios resource provisioning is not a feasible

option, based on operational or economical constraints. If the load produced by the smart

devices exceeds the processing rate of the cloud solution, messages accumulate in the

messaging infrastructure. Such an imbalance eventually results in an overload situation

which threatens the QoS by degrading the latency, jitter and availability of the services. In

the current state of the practice, a service provider has to carefully prepare the message

broker in order to cope with such situations, e.g. by discarding messages or halting message

producers if a threshold is exceeded, e.g. memory contention. However, both techniques

have a high impact on the QoS by potentially inducing a high latency, jitter or message

loss. Therefore, we identi�ed a lack of approaches, which control the load on sensing

cloud applications by recon�guring smart devices.

Runtime management approaches impact the QoS in multiple dimensions. Resource

provisioning might increases the costs of operating a system but avoids unacceptable

response times. Adjusting the sensing rate of smart devices might decreases the sensing

quality but avoids resource costs. Service operators have to decide which con�guration

meets contradictory QoS goals to an acceptable extent. Therefore it is important to

understand which qualities of sensing cloud applications are a�ected by the runtime

management approaches. Identifying the qualities enables a service operator to search for

optimal runtime management con�gurations for sensing cloud applications.

The goal of this thesis is to enable an optimization of runtime management of sens-

ing cloud applications based on QoS cost functions. Additionally, it aims to enable the

performance runtime management of sensing cloud applications by smart device recon�g-

urations.

1.2. Problem Statement

We identi�ed the following problem areas.

Insu�icient Consideration of Microservice Characteristics for Auto-Scaling. The elasticity

of cloud services is leveraged by auto-scaling. Threshold-based rules auto-scalers make

scaling decisions based on a performance metric and precon�gured thresholds. Many

implementations do not consider the resource requirements of the microservice and rely on

low-level system metrics, like the CPU. There is a lack of understanding which performance

metric and microservice combination achieves the highest elasticity. Existing approaches

to evaluate the elasticity of threshold-based auto-scalers lack a model which is able to

express resource characteristics of microservices [56] or do not provide message queues

as infrastructure components [10].

2

1.3. State of the Art

Lack of Flow Control Approaches for Smart Devices. The elasticity of a cloud service is

challenged by a varying load induced by smart devices. If the cloud service is underprovi-

sioned overload situations arise, which a�ects the performance and availability. Existing

�ow control approaches for smart devices focus on accuracy [67] or overload protection

on infrastructure layer [54]. There is a lack of approaches for adjusting the behavior of

smart devices to address overload situations.

Insu�icient Consideration of QoS E�ects of Runtime Management. Resource provisioning

and transmission rate adaptations impact both the QoS of a sensing cloud application. It

is important to understand the dimensions of a sensing cloud application and how they

can be quanti�ed. Such cost functions allow to reduce the con�guration e�ort for runtime

management systems, as they can be optimized by a search procedure.

High E�ort for Deploying Runtime Management Approaches. Existing approaches do not

target cloud environments [31] or miss representations for smart devices [3]. The lack

of a design model for runtime management approaches for sensing cloud applications

results in a high e�ort to prototypical develop them and to deploy them in heterogeneous

environments.

1.3. State of the Art

The analysis of qualities of IoT applications has recently become an area of interest to

many researchers [70].

There is currently a plethora of transport level protocols for wired and wireless net-

works. Approaches like [51] organize the network as multi-hop communication, in which

each device can relay packages, enabling a reliable message delivery by alternative paths.

Approaches like [27] enforce QoS by package forwarding and queue priority policies,

thus allowing to prioritize data based on the applications QoS demand. Despite the stan-

dardization of application layer protocols to interact with IoT devices, e.g. MQ Telemetry

Transport (MQTT), an enforcement of QoS requires explicit support from the application

protocols. In the current state of the art, they focus on a reliable delivery and orderliness

over the network without concepts for coping with cloud services experiences capacity

shortages.

Current approaches recon�guring the behavior of smart devices are focused on non-

performance related qualities, e.g. battery-e�ciency [52] or data quality [67]. Congestion

control approaches are either tailored to network communication [36] or include infras-

tructure components, like load balancers [36], which is not feasible to be managed by

a service operator. Existing auto-scaling approaches are able to maintain QoS guaran-

tees by sophisticated mechanisms as presented in [6]. However, they can be faced with

provisioning constraints based on economical or resource limitations.

Frameworks to develop and deploy runtime management approaches are mainly based

on application models which do not consider the microservice architectural style [31] or

smart devices [3]. Whereas this is mitigated by cloud platform providers by providing a

framework to de�ne custom logic and metrics for scaling decisions, it essentially locks

3

1. Introduction

a service operator to the technology stack and does not allow to reuse approaches on

di�erent cloud environments with minimal e�ort.

The analysis and optimization of applications has a long tradition in computer science.

Whereas approaches like the Palladio component model [11] and SimuLizar [10] are able

to analyze the qualities of a software system, both are insu�cient to analyze the qualities

of IoT applications. Whereas Palladio lacks support for self-adaptation rules, e.g. to model

auto-scalers, SimuLizar and Palladio lacks concepts to model infrastructure components

like message queues [47].

1.4. Challenges and Research Questions

A set of challenges have to be addressed to optimize the runtime management of sensing

cloud applications. This section introduces the Research Questions (RQ) which we have

addressed in this thesis.

1.4.1. Understanding Performance Metrics for Auto-Scaling

Threshold-based rules auto-scaling system are a popular auto-scaling technique provided

by many cloud platform providers. It de�nes a set of rules, which consist of a threshold

and the value of a performance metric. If the threshold is exceeded, a scale in or scale

out operation is executed. Microservice can experience capacity variations based on

the underlying cloud infrastructure or external systems, e.g. storage or cloud services.

Microservices communicate with each other using lightweight communication protocols

like REST or utilizing queues provided by a message broker. Whereas the performance

metric is often based on infrastructure metrics like the CPU utilization modern message

broker systems provide monitoring capabilities for message queue, allowing to leverage

them as performance metrics for scaling decisions. Therefore it is challenging for a service

operator to select performance metrics tailored to the characteristics of the microservice.

The thesis addresses the following questions to model and understand scaling decisions

based on the choice of the performance metric:

Research Question 1. How robust are infrastructure metrics for scaling microservice to
capacity and resource demand variations?

Research Question 1.1. How are the infrastructure metrics a�ected by capacity or resource
demand variations?

Research Question 1.2. How do capacity or resource demand variations a�ect the elasticity
of threshold-based auto-scaling systems?

4

1.4. Challenges and Research Questions

1.4.2. Modeling and Optimization of the QoS of Sensing Cloud Applications

The Cloud-IoT paradigms enables sensing cloud applications by combining the IoT with

cloud computing. From the viewpoint of a service operator it is important to maintain

data qualities in order to satisfy the customer but also to maintain the resource costs.

Whereas the data qualities are determined by time and accuracy aspects of smart device

streams, the resource costs are induced by leasing resources. In order to maintain the QoS

runtime management approaches can recon�gure the system, e.g. by (de-)provisioning

resources. IoT platforms which connect smart devices with cloud services provide the

capability to communicate with smart devices in order to recon�gure their behavior, e.g.

by transmission rate adjustments. In the current state there is no model of the QoS for

sensing cloud applications in terms of the impact of the resource con�guration and the

transmission rate of a sensing cloud application. Therefore, this thesis derives the following

RQ:

Research Question 2. How to model the QoS conformance in terms of the impact of the
resource con�guration and the transmission rate of a sensing cloud application to enable an
e�cient resource management?

Being able to quantify the QoS of a sensing cloud application enables to search for optimal

resource and transmission rate con�gurations. Furthermore, it allows to evaluate runtime

management approaches based on a speci�c scenario. Existing optimization approaches

for software systems lack the concepts of sensing cloud applications. Therefore, this thesis

discusses a design-time optimization framework:

Research Question 2.1. How to model the QoS costs of a sensing cloud application?

Research Question 2.2. What is a su�ciently fast approach for optimizing the QoS confor-
mance of a sensing cloud application?

1.4.3. Flow Control Approaches for Smart Devices

Auto-scalers are a popular mechanism to runtime manage sensing cloud applications. In

some scenarios resource provisioning is not a feasible option, based on operational or

economical constraints. If the load produced by the smart devices exceeds the processing

rate of the cloud solution, messages accumulate in the messaging infrastructure, degrading

the QoS. The state of the art is concerned with the collection rate based on accuracy

considerations. Therefore, �ow control approaches, which adjust the load based on the

available capacity can be feasible additional mechanism to maintain the QoS in overload

scenarios. Congestion avoidance mechanisms are a well-known concept of transport-layer

protocols. We deem it as a challenge to transfer these concepts to application-layer. We

introduce the following questions:

5

1. Introduction

Research Question 3. What are suitable �ow control approaches to improve the QoS confor-
mance of sensing cloud applications?

Runtime managing a sensing cloud application using only auto-scalers or �ow control

approaches, may degrade the QoS in terms of resource costs or data qualities too much.

Balancing the management of capacity shortages on both mechanisms may result in a

better QoS. Therefore, the thesis investigates the following research question:

Research Question 4. What are suitable coupling mechanisms to improve the QoS confor-
mance of sensing cloud applications by combining �ow control with auto-scaling?

1.4.4. Runtime Management of Sensing Cloud Applications

It can be challenging for a service operator to set up runtime management approaches.

Many cloud platform providers o�er auto-scalers but do not provide a general interface for

strategies beyond auto-scaling. Depending on the cloud provider, there is also a di�erently

powerful interface for con�guring the auto-scaler. The vendor lock-in makes it di�cult

to set up a uniform and reusable set of runtime strategies, especially for hybrid cloud

scenarios. Existing runtime management frameworks like Rainbow [31] mainly focus

on traditional software systems and therefore often do not have concepts such as smart

devices, message queues and microservices. Therefore, it is a challenge for the service

operator to set up runtime management approaches, which is addressed with the following

RQ:

Research Question 5. What is a good abstraction level for modeling sensing cloud applica-
tions for a self-adaptive platform? We consider a model abstraction good if it can be operated
on multiple cloud platforms and is conformant to existing architectural viewpoints.

1.5. Contributions

The contributions of this thesis are:

C1: Evaluation of the impact of capacity and resource demand variations on scal-
ing decisions. We obtained insight in selecting performance metrics by evaluating the

in�uence of microservice characteristic variations on the elasticity of threshold-based

rules auto-scaler. The elasticity of CPU-based auto-scalers is greatly decreased if the CPU

share of processing messages decreases, e.g. due to an increased wait time or computation

capacity. Queue-based auto-scalers outperforms CPU-based auto-scalers for scaling mi-

croservices with varying wait time. Additionally, the presented model allows to predict

the achieved elasticity of an auto-scaler based on the CPU or message queue metrics.

6

1.6. Outline

C2: Design of QoS cost functions for sensing cloud applications and a QoS opti-
mization framework. The proposed QoS cost functions are able to capture the e�ect of

resource and transmission rate recon�gurations on the qualities of sensing cloud appli-

cations. The presented optimization framework allows to integrate a simulation model

and optimization method to search for runtime or resource con�guration candidates to

minimize the cumulative QoS costs.

C3: Development of �ow control approaches to overload protect sensing cloud
applications. The developed �ow control approaches address overload situations by

adjusting the transmission rate. They aim to maintain the QoS by improving the timeliness

on the expense of accuracy. Therefore, they are a complementary runtime mechanism to

auto-scaling, which maintains the QoS on the expense of resource costs. The evaluation on

the example of a sensing cloud application shows, that the approaches are able to maintain

a QoS with varying overload intensities with a comparable performance to auto-scalers.

C4: Design of rule-based coupling approaches to combine �ow control with
auto-scaling. We present rule-based coupling approaches for coupling �ow control

approaches with auto-scaling. This allows to leverage the mechanisms of auto-scaling and

�ow control in managing sensing cloud applications. We evaluate, that a coupling is able

to improve the QoS conformance.

C5: Design of a sensing cloud application model for self-adaptive systems. We

present a sensing cloud application model for self-adaptive systems consisting of the

cloud topology, e�ectors and probes. This model enables to design runtime management

approaches and deploy them on sensing cloud applications in heterogeneous environments.

1.6. Outline

The thesis is structured as follows:

Chapter 2. This chapter introduces the foundations. It deals with the Cloud-IoT paradigm

to introduce the domain of sensing cloud applications. We introduce the basic concepts of

self-adaptive systems. We discuss auto-scaling and elasticity evaluation. We also introduce

the basics of performance modeling of software system optimization.

Chapter 3. Chapter 3 introduces an analytical model for predicting performance metrics

to scale microservices. It also introduces a simulation model that can be used to evaluate

the performance of auto-scalers.

Chapter 4. This chapter introduces QoS cost functions for sensing cloud applications.

These are suitable for measuring the impact of resource or transmission rate recon�gura-

tions. Furthermore, an optimization framework is described, which provides interfaces to

simulation engines and relevant concepts.

7

1. Introduction

Chapter 5. This chapter discusses �ow control approaches for sensing cloud applications,

which adapt the transmission rate in overload situations to utilize the cloud service capacity

without inducing time delays. The approaches are transferred and extended from existing

congestion control procedures from TCP to IoT platforms. It presents an approach which

utilizes request schemes which are well-known from TCP and introduces a capacity

prediction module, which leverages the messaging paradigm of cloud services.

Chapter 6. This chapter introduces coupling mechanisms to combine auto-scaling and

�ow control approaches. The presented approaches are based on activation control and

decide at runtime which strategies are activated.

Chapter 7. The SEIA Framework is introduced in this chapter, which is a framework for

the prototypical development of runtime management approaches. It de�nes concepts of

sensing cloud applications and can be instantiated on di�erent cloud platforms. It allows

to operate multiple strategies concurrently and supports smart device recon�gurations.

Chapter 8. Chapter 8 deals with the validation of the presented approaches by means of

case study systems. These are used to cover the contributions in Chapter 3-6. One of the

case study systems is derived from a Smart Heating solution by Bosch.

Chapter 9. This chapter surveys related work to the presented approaches. It discusses

approaches from closely related �elds.

Chapter 10. This chapter outlooks future work and concludes the thesis with a summary.

8

2. Foundations

This chapter introduces foundations that the following chapters build upon and elaborates

how they relate to them. We introduce the context of this work in Section 2.1 by outlining

the Cloud-IoT paradigm. In Section 2.2 we introduce qualities of sensing cloud applications.

We summarize auto-scaling systems and elasticity evaluation in Section 2.3. Subsequently,

Section 2.4 introduces TCP �ow control concepts. In Section 2.5 we presents self-adaptive

systems. Finally, Section 2.6 introduces optimization methods.

2.1. The Cloud-IoT Paradigm

This section introduces the context of this work by presenting the foundations of the

Cloud-IoT paradigm. First, it presents the concepts of cloud computing and IoT. Then, it

introduces the architectural integration and the microservice architectural style. Both are

important for the evaluation of performance metrics in chapter 3 and the �ow control

approaches in chapter 5. Finally, we introduce qualities of sensing cloud applications,

which the QoS cost functions presented in chapter 4 are based on.

2.1.1. Underlying Concepts

The Internet-of-Things (IoT) is a disruptive technology [28] which aims to provide advanced

services by integrating physical and virtual things [57]. Based on the massive amount of

data produced by billions of connected devices, the IoT is part of the Big Data problem,

which is characterized by the practice of collecting and analyzing data sets with a high

volume, velocity and variety [50]. Therefore, IoT applications require many resources to

transport, process and persist the data. The data comprises of measured parameters of the

physical world as well as changes of it.

Cloud computing o�ers a �exible infrastructure to provision resources on demand

with the illusion of unlimited computation and storage capabilities. It allows customers

to dynamically use scalable computing or storage resources with a pay per use cost

model. The cloud environment is based on virtualization layers to enable a high resource

utilization and scaleability. There are three di�erent layer in cloud computing, which are

Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and Software-as-a-Service
(SaaS). IaaS provides a virtual infrastructure, enabling developers to use computing and

storage capabilities without requiring physical resources on their side. It mitigates the

need for a data center by providing an environment to deal with virtual machines, storage

or load balancers. PaaS enables developers to focus on higher levels of stack by providing

a runtime environment for applications. Therefore a PaaS platform includes resources

like operating systems or programming languages that automatically scales to meet the

9

2. Foundations

application demands. The PaaS is closely related to container platforms like Kubernetes,

which orchestrate applications within runtime containers. SaaS is the most abstract layer

and provides a multi-tenant architecture in which users access via the Internet a software

provided by SaaS provider. Therefore it needs no installation of the service and can be

accessed from anywhere. In the context of this thesis, we focus on operating cloud services

on a PaaS.

The Cloud-IoT paradigm emerges from the combination of IoT and Cloud Computing.

Whereas IoT devices are limited in terms of processing and storage capacity, cloud comput-

ing provides virtually unlimited storage and processing capabilities. Therefore, they are

complementary to each other and are expected to provide bene�ts in speci�c application

scenarios. According to [13] Cloud-IoT enables a range of paradigms which are centered

around sensing the environment and providing a service. Applications enabled by Cloud-

IoT which are expected to strongly impact everyday life are healthcare, smart home, smart

cities and smart mobility. Healthcare applications allow to increase the quality of medical

services, e.g. by collecting vital data. Smart home, cities and mobility interact strongly

with the surrounding environment to enable a smart actuation with the environment or

generate insights. The paradigm behind many of these applications is Sensing-as-a-Service
and Sensing-and-Actuation-as-a-Service. Whereas the �rst aims to provide ubiquitous

access to sensor data, the second aims to enable automatic control logic in the cloud. These

paradigms impose several challenges, e.g. in terms of the sensing accuracy, timeliness or

reliability. We refer to these applications as sensing cloud applications.

2.1.2. IoT Platforms

Figure 2.1 shows an IoT reference architecture as surveyed in [35].

Figure 2.1.: IoT reference architecture [35].

It consists of devices, IoT Integration middelware, application and optionally a gateway.

The devices are hardware components which are connected to sensors and actuators.

Sensors are able to perceive the environment and measure parameters. The actuator is

10

2.2. Qualities of Sensing Cloud Applications

able to interact with the environment. It relies on drivers to access sensor and actuators.

A device is connected to an application by an IoT integration middleware, which is also

labeled as IoT platform. The middleware is responsible to manage connected devices. It is

able to receive data from connected devices and provide it to applications. Additionally, it

enable applications to send commands to be executed by the actuators. Gateways enable

devices to overcome communication limitations, e.g. based on lacking a protocol, by

forwarding communication or translating data. Many IoT platforms, such as ThingsBoard
1

and FIESTA-IoT platform
2
, go beyond a mere gateway between the smart devices and

cloud services by o�ering functionalities for data collection and device control, which

could be leveraged at runtime.

2.1.3. Microservice Architectural Style

In order to leverage the capabilities of cloud computing in terms of scalability and main-

tainability the focus in software industry has shifted from monolithic architectures to the

microservice architectural style [5]. Whereas traditional applications exhibit a monolithic

architecture which tends to put multiple functionality into a single process the microservice

architectural style separates functionalities into self-contained services. Breaking down

software to loosely coupled and highly cohesive modules o�ers multiple bene�ts in terms

of �exibility and evolvability [26]. By supporting scaling operations on a �ne-granular

level infrastructure costs can be reduced up to 70 % compared to a traditional monolithic

architecture [72].

Microservices are typically connected to each other via a lightweight communication

protocol, most commonly REST or message queues [30]. In this thesis we focus on the

communication via message queues provided by a message broker system. There are many

message broker systems which di�er in their mechanism and feature set and a short survey

describing the most popular message broker systems can be found in [44]. However, most

process messages in a FIFO manner and provide a high degree of availability. The state

of a message queue can be a challenge in such a system if the rate of incoming messages

continuously exceeds the rate of outgoing messages eventually resulting in performance

and reliability degradations.

2.2. Qualities of Sensing Cloud Applications

The business case of sensing cloud applications is to sense the environment by multitude

of sensors in order to analyze it or actuate with it. Whereas some applications consume a

stream of data others need to store the sensor data [46]. However, in both cases the data

quality is critical. In this section, we introduce qualities of sensing cloud applications and

use them as foundation for constructing QoS cost functions in chapter 4.

1
https://thingsboard.io/

2
http://�esta-iot.eu

11

2. Foundations

2.2.1. Terminology

In cloud environments a Service-Level Agreement (SLA) is a contract which de�nes a

service based on the agreement between a provider and a customer [18]. Service-Level

Objectives (SLO) are part of a SLA and denote measurable characteristics of the SLA such

as availability or performance [62]. A SLO may be composed of one or more Quality-of-

Service (QoS) measurements. These measurements can be combined to determine the

achievement value, e.g. availability SLO may depend on multiple components, each of

which may have a QoS availability measurement.

2.2.2. Data Qualities

Academia and industry have discussed six data stream qualities extensively: accuracy,

completeness, timeliness, duplication, orderliness and consistency [74]:

• Accuracy. The accuracy describes the conformance of recorded value to actual

value. Smart devices sense the environment and transmit the collected values to

a processing cloud service. Decisions based on inaccurate data are likely to be

faulty, therefore accuracy is an important quality for sensing cloud applications.

The accuracy depends on the sensor quality, the sensing rate and the information

loss through pre-processing on a smart device.

• Completeness. Completeness is de�ned in terms of any missing value. As a lack

of accuracy, incomplete data can result in faulty decisions, thus impacting the data

quality to a great extent.

• Timeliness. Timeliness requires that values are up-to-date. The timeliness is

a�ected by the delay between transmitting and receiving sensor data. The processing

delay can impact the decision making of sensing cloud applications, since the sensed

environment can not be processed in time. The deployment decisions, network

bottlenecks or underprovisioning of the cloud service can cause delays which results

in timeliness violations.

• Duplication. Duplication refers to the existence of exactly the same records due to

errors. This can impact the decision making.

• Orderliness. Orderliness demands that the data is collected in chronological order.

• Consistency. Consistency demands that a di�erent value can only occur if there

is more than one state. It also refers that the structure of related data remains the

same.

Maintaining the qualities can be considered as responsibility of both transport and

application layer. Modern message broker like RabbitMQ provide delivery and processing

con�rmation mechanisms which aim to maintain duplication, completeness and orderliness.

Consistency is a quality which should be maintained by the application itself.

12

2.3. Elasticity in Cloud Computing

2.3. Elasticity in Cloud Computing

In this section, we introduce the foundations to auto-scaling and elasticity evaluation.

Elasticity is de�ned as a property of cloud systems by representing the degree to which a

system is able to adapt to workload changes by provisioning resources in an autonomous

manner [39]. Auto-Scalers are a method which aims to make cloud systems elastic by

autonomous resource provisioning based on performance metrics. The quality of auto-

scalers can be evaluated using elasticity metrics. The evaluation of performance metrics

introduced in chapter 3 and its validation in chapter 8.4 are build upon those.

2.3.1. Auto-Scaling

Auto-Scaling refers to a method to provision resources in an autonomous manner to

maintain the QoS. In recent years, it experience a widespread usage to runtime manage

cloud applications by leveraging their elasticity. There are many techniques to realize

auto-scaling, e.g. based on control theory, threshold-based rules or machine learning

as surveyed in [49] and [19]. More sophisticated approaches like [6] rely on workload

forecasting, online resource demand estimation and performance models to improve the

adaptation behavior. These techniques deeply rely on metrics which are able to represent

the condition of the cloud system.

Auto-Scalers follow the MAPE-K loop by collecting information from a cloud environ-

ment, analyzing the information, planning scale operations and executing them [66]. The

information usually contains a performance metric, which is used in decision making.

Popular performance metrics are infrastructure metrics like the CPU utilization or the

arrival rate. However, they may also be based on SLA violations or the response delay.

Threshold-based rules auto-scaling exhibits a widespread use in industry due to the

simplicity and high availability among cloud providers like Amazon EC2. Rules in this

context consist of a condition and an action to be executed. Usually they de�ne a lower

and upper threshold for a performance metric. If the current value of the metric exceeds a

threshold, the auto-scaling systems scales application instances in or out.

Typically, they are classi�ed into reactive, proactive or hybrid. A reactive auto-scaler

analyzes the current state of the system to plan scaling decisions. A proactive auto-scalers

analysis historical data to plan ahead. There are also hybrid approaches, which provide

both, a reactive and a proactive component [7]. In general, auto-scalers aim to minimize

the resource costs and at the same time maintain the QoS. In this work, we focus on

reactive, threshold-based auto-scalers.

2.3.2. Elasticity Evaluation

In this section we introduce the elastic speedup measure proposed by SPEC RG Cloud

[38] in order to quantify the elasticity achieved by auto-scalers. The measure quanti�es

the elasticity by re�ecting the supplied and demanded resources within the measurement

period regarding timing and accuracy aspects. Whereas the timing aspects are expressed by

the share of time in an under- or overprovisioned state the accuracy describes the absolute

deviation of each state in respect to the demanded resources. Both aspects are normalized

13

2. Foundations

over the measurement period and each aspect is aggregated to a single 022DA02~ and

C8<4Bℎ0A4 metric using a custom weight for under- and overprovisioning. The elastic

speedup measure is based on a speedup vector B: for a benchmarked platform : . The

speedup vector B: is computed with the accuracy and timing aspects of the benchmarked

platform : and a baseline platform 10B4:

B: = (
022DA02~10B4

022DA02~:
,
C8<4Bℎ0A410B4

C8<4Bℎ0A4:
) = (022DA02~, C8<4Bℎ0A4)

The elastic speedup measure for a benchmarked platform : is the geometric mean of its

speedup vector B: :

4;0BC82B?443D?<40BDA4 =
√
B:022DA02~ + B:C8<4Bℎ0A4

2.4. Flow Control and Congestion Avoidance

In this section, we introduce �ow control and congestion avoidance mechanisms of TCP

which are the foundations of the �ow control approaches for sensing cloud applications

presented in chapter 5. Furthermore, we introduce a fairness measure which is used to

validate the performance of a TCP-inspired �ow control approach in chapter 8.9.

2.4.1. TCP Flow Control & Congestion Avoidance

The Transmission Control Protocol (TCP) is a transport layer protocol used for the majority

of the Internet data tra�c. It provides a reliable transmission of data between applications.

TCP has two key concepts to enable a reliable transfer of data: �ow control and congestion

avoidance.

Flow Control limits the rate of a sender to ensure that it sends only as much data as the

receiver can process. A receiver actively manages a receive window to state how many

bytes it can bu�er.

Congestion avoidance ensures that the network link is fairly shared across multiple

senders and able to handle the load. One of its main components is an increase and

decrease algorithm to adjust the transmission rate in respect to the state of the network.

Each sender manages its own request scheme and receives a congestion feedback by

observing acknowledgments or timeouts, which also indicate, if a network congestion has

occurred. If a sender notices a congestion, it decreases the transmission rate. If there is no

congestion, the sender increases it. Request schemes can consists of di�erent additive and

multiplicative increase/decrease combination [22]. Each combination exhibits di�erent

characteristics in terms of e�ciency or fairness. Most TCP variants utilize an Additive

Increase/Multiplicate Decrease (AIMD) scheme [2], which allows senders to fairly share a

bottleneck.

14

2.5. Self-Adaptive Systems

2.4.2. Jains Fairness Index

In distributed systems, in which a set of resources is shared by a number of users, fairness

is an important consideration. Especially for TCP as the dominant transport protocol

on the Internet it is important to achieve fairness to avoid congestions. In this regard, a

scheme is considered as fair, if the throughput of each user is at least as large as that of

the others sharing a bottleneck. Jain’s Fairness Index [43] allows to quantify the fairness

of a scheme and bounds the index between 0 and 1, whereas 1 means absolute fairness. It

enables to identify underutilized connections. Based on = users and G8 as the throughput

of the 8th connection the fairness measure Z can be computed as follows:

Z (G1, ..., G=) =
(∑=

8=1 G8)2

= ∗∑=
8=1 G

2

8

2.5. Self-Adaptive Systems

This section introduces the concept of self-adaptive systems and the MAPE-K autonomous

loop. These are the foundations of the framework for runtime management framework

for cloud applications presented in chapter 7.

Self-adaptive systems are able to adjust their behavior in response to their perception

of the environment and the system itself [73]. Therefore, it is a system, which can handle

changes in its environment, the system itself and its goals autonomously. Figure 2.2

illustrates the conceptual model of a self-adaptive system.

Figure 2.2.: Conceptual model of a self-adaptive system [73].

A self-adaptive system comprises of an environment, a managed system, adaptation

goals and a managing system. The environment refers to the external world, which the self-

adaptive system interacts with. The e�ects of the self-adaptive system on the environment

are observed and evaluated. The environment can be sensed and e�ected through e�ectors

15

2. Foundations

and sensors. The managed system refers to application which realizes the systems domain

functionality. In case of a sensing cloud application, sensing and processing sensor data

is done by the managed system. The adaptation goals are the concerns of the managing

system over the managed system and usually relate to software qualities. In case of cloud

applications, it may be concerned with resource recon�guration goals to maintain the

performance of the managed system. The managing system manages the managed system

and therefore utilizes adaption logic that is associated with the adaptation goals.

One of the most common structure to model managing systems is the MAPE-K control

loop [41]. Conceptually it consists of a monitoring, analyzing, planning and execution

phase which share a common knowledge base. The managed system is observed within

the monitoring phase by sensor. Planned adaptations are executed by using the e�ectors

of the managed system. Decisions are made based on the knowledge, which contains

information on the system structure and state. Therefore, a managing system may utilize

knowledge about the architecture of the managing systems, as proposed for the Rainbow

framework [31].

2.6. Optimization

In this section, we brie�y present Di�erential Evolution (DE) and Pareto optimality. The

optimization framework for sensing cloud applications presented in chapter 4 is instanti-

ated with DE as optimization method in section 8.2 of the validation. In section 8.5 we

create Pareto curves in order to capture the characteristics of �ow control approaches for

sensing cloud applications.

2.6.1. Di�erential Evolution

Di�erential Evolution (DE) is a heuristic, multi-dimensional genetic optimization method

[69]. It optimizes a problem by maintaining a population of candidate solutions which

are combined to existing ones and �ltered in terms of the best �tness. DE is an algorithm

for black-box optimization and addresses problems with minimal knowledge about its

structure [65].

Formally it aims to minimize a function j : R= → R. The function takes a candidate

solution with = dimensions as vector of real number R= as argument and outputs a real

number R expressing their �tness. Let a candidate solution be G ∈ R= . A solution< is a

global minimum if 5 (<) ≤ 5 (?) with ? as the overall search space.

The algorithm is based on an initial population size ? , a crossover probability�' ∈ [0, 1]
and a di�erential weight � ∈ [0, 2]. The crossover probability expresses the probability of

recombining each dimension. The di�erential weight impacts the magnitude of change.

Until a termination condition is reached, e.g. by a su�cient �tness, it does the following

for each candidate solution G in the population:

1. Pick three candidate solutions 0, 1, 2 , which are distinct to G .

2. Randomly pick a dimension ' ∈ 1, ..., = which will be recombined.

16

2.6. Optimization

3. Then, compute a new candidate solution ~ = [~1, ..., ~=] by picking for each 8 ∈ 1, ..., =
a random number A8 ∈ [0, 1].

4. If A8 < �' or 8 = ' compute ~8 = 08 + � ∗ (18 − 28). Else, do not recombine and set

~8 = G8 .

5. If the candidate solution ~ results in a better �tness such that 5 (~) < 5 (G), replace G

with it.

The optimization performance is impacted to a great extent by the DE parameters � ,

�' and '. However, it is well-studied with adaptation rules devised in [23] and [69].

2.6.2. Pareto Frontier

The Pareto e�ciency describes when a set of parametrizations or allocations is optimal

[17]. The optimality means, that there are no other alternative allocations which could

improve a criterion without worsening another. In this regard, a Pareto frontier is a set of

allocations that are Pareto e�cient.

Figure 2.3 illustrates a Pareto frontier on the example of resource costs and QoS of

a cloud application. Each allocation A, B, C and D represents a resource con�guration,

e.g. the provisioning of each microservice. That means, that there is no other resource

con�guration, which results in a higher QoS without increasing the resource costs. The

Pareto frontier allows a service operator to make decisions based on the trade-o�s.

Figure 2.3.: Illustration of a Pareto frontier marked as green line. The green boxes represent

allocations which are Pareto e�cient. The red boxes represent Pareto ine�cient

allocations.

17

3. Evaluation of Performance Metrics for
Scaling Decisions

This chapter introduces a microservice model, which is used to evaluate state of the

practice auto-scalers relying on the CPU utilization for di�erent microservice performance

characteristics. Based on the widespread asychronous communication in microservice

architectures via message queues, we extend the evaluation by investigating the suitability

of message queue metrics.

Threshold-based rules auto-scaling is one of the most common techniques to scale

resources in an autonomous manner. Scaling decisions are based on a threshold and

recurring measurements of an application- or infrastructure-layer metric. The evaluation

focuses on the CPU utilization of the microservice and performance and load metrics

from the messaging middleware. Resources of a cloud infrastructure are prone to capacity

variations in computation [24] or network [60][59] resulting in a changes of the service

time. Since thresholds are con�gured in an ad hoc manner and are typically not adjusted

during runtime, the thesis analyzes the e�ect of capacity and resource demand variations

on the performance metrics:

Research Question 1. How robust are infrastructure metrics for scaling microservice to
capacity and resource demand variations?

The research question is divided into the two sub questions, to investigate both: the

impact of capacity or resource demand variations on the infrastructure metrics and its

impact on the elasticity. The contribution are two-fold: �rst, by evaluating the quality of

scaling decisions based on a popular performance metrics when faced with microservice

characteristic variations, and second, by evaluating the suitability of queueing metrics.

The results of this evaluation have been published in [33].

Research Question 1.1. How are the infrastructure metrics a�ected by capacity or resource
demand variations?

Research Question 1.2. How do capacity or resource demand variations a�ect the elasticity
of threshold-based auto-scaling systems?

19

3. Evaluation of Performance Metrics for Scaling Decisions

3.1. Microservice Model

Sensing cloud applications receive and process sensor data using highly specialized mi-

croservices. The concern of the microservice can a�ect its resource characteristics to a

great extent, e.g. a microservice which converts sensor data is more compute-intensive

than a microservice storing data in a storage system. Figure 3.1 illustrates this on the

example of a smart health application composed of microservices with varying resource

characteristic communicating via messages queues.

Figure 3.1.: A sensing cloud application consisting of a compute-intensive microservice

(data converter) and a I/O-intensive microservice (persistence service).

We focus the evaluation on stateless microservices which are I/O- or CPU-bound. We

use Kendall’s notation [45] to model the microservice as a G/G/N stable queue, in which #

describes the number of service replicas. Each message" is retrieved via a message queue

before being processed. However, we neglect the impact of the communication protocol

and model the resource demand for each " as �" = (��%* , ��$). Using the microservices

capacity � = (��%* ,��$), we calculate the service time () for a message " as follows:

() (",�) = ��%*= ∗��%* + ��$< ∗��$<

3.2. Analytical model of infrastructuremetrics

This section proposes an analytical model for a set of infrastructure metrics based on

resource demand and capacity variations.

3.2.1. CPU Utilization

We model the CPU utilization as the ratio of time spent on the CPU to wait operations

during serving a message " :

�%* (�" ,�) =
��%* ∗��%*

��%* ∗��%* + ��$ ∗��$
Based on this model, the CPU utilization is strongly a�ected by variations in both, the

computation and I/O capacity and by the resource demand of the message. The CPU

20

3.3. Simulation model

utilization is not a�ected by changes in the overall service time, but by changes in the

ratio of compute and I/O-operations.

3.2.2. Message Queue Metrics

Let @ be a queue, ; the number of messages in the queue, ? the production rate and 2 the

consumption rate. Let the service policy of @ be �rst-come, �rst-served (FCFS). This queue

is illustrated in Figure 3.2.

Figure 3.2.: Illustration of a message queue.

We model the consumption rate based on the service time () for a message " of

the microservice. Therefore, the consumption rate capacity 2<0G depends on number of

replicas #� of the cloud application:

2<0G (C) =
1

#� (C) ∗ ()" (C)
We model the absolute growth of a message queue Δ;@ at a point of time C as follows:

Δ;@ (C) =
{(? (C) ∗ ΔC + ; (C)) − 2<0G (C) ∗ ΔC, if 2<0G (C) ∗ ΔC ≤ (? (C) ∗ ΔC + ; (C))
− 1 ∗<8=((? (C) ∗ ΔC + ; (C)), 2<0G (C) ∗ ΔC), otherwise

The queue length ; (C) is therefore the integral over the queue growth:

; (C) =
∫ C

0

Δ;@ (C) dC

Based on this model, capacity and resource demand changes a�ect the consumption

rate, which in�uences the queue growth, queue length and the queueing delay. Queueing

metrics are a�ected by changes in the service time, but not by the ratio of compute and

I/O-operations.

3.3. Simulationmodel

In this section, we propose a simulation models for cloud applications, in order to investi-

gate the e�ect of resource demand and capacity variations on scaling decisions. Whereas

the simulation model for cloud applications is based on a single service state of the art

approach presented in [56], we extend it to simulate the in�uence of the environment on

21

3. Evaluation of Performance Metrics for Scaling Decisions

the service measurements and the recon�guration delay of scaling decisions. Furthermore,

we extend the simulation model to include smart devices as controlled components, as

suggested in [64] in order to represent sensing cloud applications.

3.3.1. Model for Cloud Applications

In this section, we propose a simulation model to investigate the e�ect of resource demand

and capacity variations on a threshold, as shown in �gure 3.3. We derive the queueing

model from [56]. We re�ne it by adding measurement providers to re�ect di�erent

monitoring policies. We solve the service time and the CPU utilization of the queueing

model analytically based on the models proposed in section 3.2. We denote : ∈ N slotted

time, in which the arrival rate and decisions of the auto-scaler are counted. Furthermore,

we model a scaling delay)(20;8=6 for provisioning microservice replicas.

Figure 3.3.: Queueing Model for the cloud application with the probes and e�ectors of the

auto-scaling system.

The simulation framework provides a CPU utilization which is calculated based on the

I/O- and computation-time mix of processing messages.

The messaging middleware is an entity provided by the simulation framework. We

provide a FIFO queue, which resembles the messaging paradigm of the AMQP, implemented

by many popular message brokers. The rate of outgoing messages is determined by the

processing rate of the queueing model and the rate of ingoing messages is determined by

the load intensity. The state of the message queue is updated at each simulation step : .

Scaling decision are based on measured metrics of the infrastructure. Since monitoring is

associated with costs, the measurements are typically repeated within an interval, which is

large enough to capture changes with a speci�c accuracy. Furthermore, the measurements

are processed with a speci�c policy, e.g. moving average to smooth them. To include these

in the simulation, we model a measurement provider "% as a tuple of an update interval

)- and a moving average of size # .

22

3.4. Discussion

3.3.2. Model for Sensing Cloud Applications

Figure 3.4 illustrates the extension of the simulation model to represent sensing cloud

applications.

Figure 3.4.: Queueing Model for sensing IoT applications with smart devices as controlled

components.

We introduce smart devices which are associated with a single data stream. The trans-

mission rate of the smart devices contributes to the overall arrival rate for each simulation

time step : . Smart devices include a latency distribution, in order to simulate the network

based latency due to the distributed setup. Recon�guring decisions are delayed by the

latency at minimum and only done after transmitting the next sensor data if the informa-

tion exchange policy is piggybacking. In order to adjust the number of connected devices,

we introduce a connectivity controller. The number of connected devices is based on the

experimental setup. The simulation model can be used to evaluate auto-scalers or �ow

control strategies in a sensing cloud application context.

3.4. Discussion

In this chapter we proposed an analytical model to describe the impact of resource demand

and capacity variations on the infrastructure metrics. Furthermore we introduced a

simulation model to predict auto-scaling decisions for a time-varying workload. The

analytical model shows, that variations in the workload mix a�ect the CPU utilization

greatly, whereas message queue metrics are not a�ect. However, message queue metrics

are a�ected by the overall service time, whereas the CPU utilization is una�ected. The

presented simulation model is able to simulate single-service cloud applications in a typical

IoT setup, consisting of smart devices, a messaging middleware and the cloud solution.

The simulation framework provides a concept of measurement providers, which degrade

measurements according to an aggregation policy, usually a moving average. Furthermore

it provides controllable smart devices and a connectivity controller to simulate sensing IoT

scenarios. The simulation model can be used to evaluate auto-scalers but can be extended

to evaluate any strategy, which a�ects the load or capacity of the cloud application, e.g.

23

3. Evaluation of Performance Metrics for Scaling Decisions

auto-scaling or �ow control of smart devices. Due to its simplicity its not able to simulate

multi-service cloud applications or complex work�ows and assumes homogeneous service

instances.

24

4. QoS Cost Optimization of Sensing Cloud
Applications

IoT platforms enable the Internet-of-Things by providing a platform, which allows smart

devices to connect with cloud services [35]. Many IoT platforms go beyond a mere gateway

between the smart devices and cloud services by o�ering functionalities for data collection

and device control. This enables a runtime management of sensing cloud applications,

which is able to dynamically recon�gure the cloud service by resource provisioning and

the smart devices by adjusting the collection strategy, which determines the rate of which

sensor messages are collected. Since the resolution and timeliness of sensor data a�ects

the data quality, which is in turn important for analyzing the environment and actuating

with it, it is important to �nd a trade-o� in resource provisioning and collection rate

in order to maximize the applications QoS. Therefore, we introduce QoS cost functions,

which capture the impact of resource and message rate con�gurations. Additionally,

we present an optimization framework to maximize the QoS conformance of sensing

cloud applications by searching for an optimal con�guration of the resources or runtime

management approaches. Therefore, we address the following research question:

Research Question 2. How to model the QoS conformance in terms of the impact of the
resource con�guration and the transmission rate of a sensing cloud application to enable an
e�cient resource management?

The research question is divided into two sub questions:

Research Question 2.1. How to model the QoS costs of a sensing cloud application?

Research Question 2.2. What is a su�ciently fast approach for optimizing the QoS confor-
mance of a sensing cloud application?

4.1. Application Model

Let a sensing cloud application consists of # smart devices, an IoT platform and a cloud

service consisting of " microservices. Let the microservices be managed by an elastic

cloud platform, which enables to scale each service horizontally on demand. Let the

smart devices be managed by the IoT platform, which allows the smart devices to connect

25

4. QoS Cost Optimization of Sensing Cloud Applications

and to adjust the collection behavior. Let each smart device sense an environment �"
and collect environment data with an internal sensing rate. Let the collected data be

subsequently processed on-device to reduce the data volume and overhead for data transfer

and management [46]. Based on the applications need, the on-device processing policy

may combine or �lter sensed data. Whereas combining describes the combination of

multiple sensor values to a single value, e.g. by aggregation, filtering is about discarding

sensor values, e.g. to capture the latest value. Let the IoT platform be able to con�gure

the rate of which pre-processed sensor data is collected. The collection may take place by

being requested from the smart devices by the IoT platform or by being pushed to the IoT

platform by the smart devices. Let the IoT platform dispatch collected data to the cloud

application via a messaging middleware. Figure 4.1 illustrates the application model.

Figure 4.1.: Application model of a sensing cloud application consisting of smart devices,

an IoT platform and a cloud service.

4.2. Qualities of a Sensing Cloud Application

In this section we select a subset of qualities introduced in chapter 2.2 which are a�ected

by the resource provisioning of the cloud service and the message rate of the smart devices.

In the following, we reason, why we deem each quality as relevant:

• Timeliness. The message rate con�guration of smart devices collectively induce

the load on the cloud service. The resource con�guration of the cloud service a�ects

its capacity. If the load exceeds the capacity the messaging middleware eventually

accumulates messages, hence inducing processing delays. Therefore the timeliness

is a�ected by an interplay of both con�gurations.

• Accuracy. The message rate con�guration of smart devices a�ects the sensing

rate of the environment. The time series of sensor data represent the state of the

environment. If it does not capture changes in the environment it degrades the

accuracy. Therefore, the accuracy is a�ected by the message rate. We also refer to

the accuracy as sensed accuracy.

26

4.2. Qualities of a Sensing Cloud Application

• Resource Costs. Based on the cost model of cloud environments the resource

con�guration determines the resource costs.

Qualities of data stream consider timeliness and accuracy as separated dimensions.

The separation of the dimensions holds true for applications which aim to �rst collect

everything and analyse it at a later point of time. However, on the viewpoint of time-critical

cloud services, e.g. infrastructure management, the timeliness does a�ect the accuracy.

Such cloud services use the received data to actuate with the environment or to enable

decisions, therefore delayed data may impact the accuracy of its environmental model. In

order to capture the interplay of timeliness and accuracy on the QoS of a sensing cloud

application, we extend it with perceived accuracy, which is illustrated in �gure 4.2:

• Perceived Accuracy. The perceived accuracy is a function of the accuracy of

measured values at the time of arrival at the cloud application and the state of

the environment, i.e. it becomes minimal if there is no processing delay and no

measurement inaccuracy.

Figure 4.2.: Sensed, perceived and environment data on the example of temperature. The

sensed accuracy is 4.67 %, whereas the perceived accuracy by the cloud service

is 10.46 %, which is degraded because the data is delayed.

We do not consider duplication, consistency and orderliness as a�ected qualities by the

resource and message rate con�guration. Instead, we consider duplication and orderliness

as responsibilities of the messaging middleware and consistency as responsibility of the

application layer. We also consider completeness as the responsibility of modern message

brokers since they support delivery and processing con�rmation mechanisms.

27

4. QoS Cost Optimization of Sensing Cloud Applications

4.3. QoS Metrics

This section introduces for each quality QoS metrics, which are used as input for QoS cost

functions to express the conformance to the quality. Furthermore, we discuss, how they

can be obtained in design- and runtime:

• Timeliness. In design- and runtime, the delay can be obtained by measuring

the end-to-end latency of transmitted sensor data. Based on the rich monitoring

capabilities of modern message brokers, the queueing delay can be selected as a

proxy metric. Relying on the queueing delay has the bene�t that is able to re�ect an

imbalance of the arrival and processing rate of messages without including delays by

the communication link. This can be a valuable feedback for a runtime management

system, which recon�gures the provisioning of a cloud service or the transmission

rate of smart devices.

• Accuracy. The accuracy of sensed data can be expressed as the average measure-

ment error. A sensing cloud application may demand a target accuracy expressed as

a percentage of error, based on the sensed smart device time series and the actual

environment model. Let the function to compute the achieved accuracy for a smart

device = be 022B4=B43 (=) for a time span X) . In order to obtain the accuracy 022B4=B43 it

should be di�erentiated between design- and runtime. In design-time, the accuracy

can be exactly expressed by relying on an environment model for each smart device

in order to quantify the sensed accuracy. In runtime, a quanti�cation can be done

heuristically by determining the change between the current and the last collected

value, as in [67]. Since each smart device senses a di�erent part of the environment,

the resulting accuracy di�ers for each. Therefore, we propose the average sensed

accuracy 022 as an input metric for an accuracy cost function:

022 =
1

#

#∑
==0

022B4=B43 (B<0AC34E824=)

The SLA of a sensing cloud application may impose a speci�c collection interval

2>;;42C on smart devices instead of demanding a target accuracy. The interval can be

based on considerations of dynamics in the environment and the average interval,

which is necessary to achieve a demanded accuracy. The collection interval is then

set for all smart devices. Quantifying accuracy costs based on collection interval

degradations may not be suitable in many cases, since it is unable to re�ect the actual

sensed accuracy, which depends on the changes in the environment in-between the

interval. However, by being obtainable at runtime and declared as a target in SLAs

it is a feasible input metric.

• Perceived Accuracy. The perceived accuracy describes a viewpoint of an appli-

cation, in which it assumes that received sensor data represents the current envi-

ronment state. Therefore the perceived accuracy is based on the interplay of the

accuracy and timeliness of sensed data and demands a trade-o� between the two

28

4.4. QoS Cost Functions

dimensions. It can be obtained in design-time by comparing the environment state

over the time with the state perceived by the cloud service. Let the accuracy be

declared as ?4A2 .

• Resource Costs. Based on the pay-as-you-go cost model of many cloud platforms,

resource cost functions require the amount of provisioned resources over the time to

quantify the costs. By assuming homogeneous resource costs for each provisioned

microservice, we provide the overall amount of provisioned resources A4B as an input

metric for a resource cost function:

A4B8B =
1

X)

<∑
==0

8=BC0=24B (<82A>B4AE824=)

4.4. QoS Cost Functions

In order to quantify the qualities demanded by sensing cloud applications, we discuss

accuracy, timeliness and resource cost functions. Furthermore we introduce a perceived

accuracy cost function, which quanti�es the accuracy based on the interplay of accuracy

and timeliness. The cost functions enable a search for an optimal resource and message

rate con�guration.

4.4.1. Quality Cost Functions

Based on the multitude of applications with di�erent quality demands, the concrete

quanti�cation of the costs should be done by a service operator. In the following we

discuss for each quality how a service operator could set up the cost functions. The

following cost functions assumes but are not limited to a target and worse value, as an

input to a dedicated error function. The error functions are not de�ned here, but should

be carefully selected by the service operator:

• Timeliness. SLAs may impose an acceptable delay 34;0~F>ABC , often expressed as

a percentile. This value can be compared to the processing delay 34;0~ in order to

quantify the costs of timeliness degradations. Additionally, the acceptable delay

may be motivated by availability demands based on the SLA, which may require the

data to be available within a certain frame of time. Let a timeliness cost function

&)8<4;8=4BB quantify the resource costs based on the di�erence of 34;0~ and 34;0~F>ABC ,

e.g. by mapping the absolute or relative deviation to costs.

• Accuracy. Based on the use case of a sensing cloud application it demands a speci�c

accuracy of sensing the environment, e.g. 10 %, which is hereby declared as target

accuracy 022C0A64C . Let &
′
�22DA02~

be a cost function, which quanti�es the QoS costs

based on the measured accuracy 022 and the target accuracy 022C0A64C . For SLAs

with a target collection interval 2>;;42CC0A64C , we propose an accuracy cost function

&
′′
�22DA02~

, which is based on 2>;;42CC0A64C and 2>;;42C .

29

4. QoS Cost Optimization of Sensing Cloud Applications

• Perceived Accuracy. Let &%4A248E43 be a cost function, which quanti�es the costs

based on the perceived accuracy ?4A2 and a target accuracy ?4A2C0A64C .

• Resource Costs. Let the acceptable amount of provisioned resources be A4BF>ABC .

Let the resource cost function &'4B>DA24B rely on A4BF>ABC and A4B in order to quantify

the costs. Note, that A4B is a non zero value, since a cloud service requires at least one

active resource in order to be available. The cost function can include cost models

based on the cloud provider, since many provide transparent pricing per leasing

hour.

4.4.2. QoS Cost Function Sets

We propose two di�erent sets of QoS functions, which can be selected based on the prefer-

ence of the cloud service operator. The �rst QoS cost function set j1 considers accuracy

and timeliness as separate dimensions. Thus, emphasizing the ability to reconstruct the

environment based on the sensed values with a speci�c accuracy. In this regard, timeliness

only a�ects the delay at which data is available at the processing cloud application. There-

fore, we construct the QoS cost function set j1 with &�22DA02~ ∈ {&
′
�22DA02~

, &
′′
�22DA02~

} as

follows:

j1 = &�22DA02~ +&)8<4;8=4BB +&'4B>DA24B
The second QoS cost function set j2 includes the perceived accuracy, which uni�es

timeliness and accuracy to a single dimension to express the accuracy of data received by

processing application:

j2 = &%4A248E43 +&'4B>DA24B

4.5. Optimization Goals

In this section, we brie�y introduce optimization goals. The �rst optimization goal aims

to optimize the resource con�guration of the cloud service and the message rate of the

smart devices to minimize the QoS. The second aims to optimize the con�guration and

selection of runtime management approaches which adjust the message rate and resource

con�guration.

4.5.1. Resource and Message Rate Configuration

Let the message processing capacity of a cloud service be a function of the resource

con�guration % , which holds the number of provisioned resources per (micro-)service. Let

the transmission rate con�guration) describe the transmission rate of each smart devices.

By transmission rate, we mean either the send rate of smart devices to the IoT platform or

the collection rate of messages by the IoT platform.

Let each of the QoS cost function sets j1 and j2 contain the objectives, which are

to be minimized. What is an optimal mapping � : %G) → <j
for a transmission rate

30

4.6. Optimization Framework

con�guration) and a resource con�guration % such that the �tness of j ∈ {j1, j2} is

minimized collectively in weighting?

4.5.2. Runtime Management Configuration

Let the runtime management ' of a sensing cloud application consists of # runtime man-

agement approaches. Let each runtime management approach a�ect a cloud application

by recon�guring the transmission rate of smart devices and/or the resource con�guration

of microservices. Let ' consists of = parameters, with = as the sum of parameters over #

approaches. The optimization problem is to �nd a candidate solution, which minimizes

the QoS costs: j : R= → R with j ∈ {j1, j2}.

4.6. Optimization Framework

In this section we introduce a framework for optimizing the con�guration or runtime

management of sensing cloud applications. Figure 4.3 illustrates the components of the

framework.

Figure 4.3.: Framework for optimizing the QoS costs of a sensing cloud application. A

service operator has to provide a speci�c scenario and a set of QoS cos functions,

which maps QoS input metrics to costs. An optimization method evaluates the

cumulative QoS costs and provides new candidate solutions.

A service operator has to provide a set of QoS cost functions, which are able to quantify

the QoS metrics to costs. The QoS cost functions are based on the demanded qualities

31

4. QoS Cost Optimization of Sensing Cloud Applications

of the sensing cloud application and constructed based on the trade-o� of these. The

cumulative QoS costs are used as a feedback for an optimization method. Based on the

achieved costs, an optimization method provides candidates. Since the optimization goals

are multi-dimensional and the systems non-trivial, we assume that it is not feasible to

solve the optimization problem analytically. Instead, to improve the e�ciency, a heuristical

optimization method should be selected. The candidates provided by the optimization

method aim to select con�guration parameters as candidate solutions, which minimize the

cumulative QoS costs. The optimization process demands a simulation engine, which is able

to simulate cloud applications in conformance to the application model presented in this

chapter. Additionally it has to support a dynamic recon�guration of the resources in order

to enable the simulation of runtime management approaches. The service operator has

to provide a scenario, which contains the connectivity pattern of smart devices, scenario

duration and provides, if applicable, environmental models, which are sensed by the smart

devices. Based on these inputs, the simulation engine performs measurements to provide

the QoS input metrics, which have been introduced in this chapter. They are subsequently

used as an input for the provided QoS cost functions. A service operator can introduce a

stopping criterion, if a target QoS cost, iteration depth or duration is reached.

4.7. Discussion

In this chapter we have identi�ed qualities for sensing cloud applications which are a�ected

by the transmission rate and resource con�guration. Based on the set of qualities and

the complex interplay of transmission rate and resource con�guration we consider the

search for cost optimal con�gurations as a multi-dimensional optimization problem. We

discussed design- and runtime input metrics for the QoS cost functions, which enable to

quantify the QoS costs of a speci�c dimension based on cost functions. Additionally, we

presented an optimization framework, which can be instantiated to search for optimal

resource con�gurations. The resource cost function assumes, that the resources of the

microservices are equally expensive. This may not hold true on a practical perspective,

since many cloud providers, e.g. Amazon AWS, o�er di�erent pricing in respect to the

machine type. The presented set of QoS cost functions assume that the smart devices

perceive the environment with one sensor, whereas many IoT applications require the

input of multiple sensors on the smart devices. Additionally, the presented approach does

not consider energy consumption, which is an important quality since many IoT devices

are battery constrained. An extension of this work can consider battery power of IoT

smart devices as an additional trade-o� to accuracy and timeliness. Overall, we deem

the QoS cost functions and the presented approach as essential to optimize the QoS of

sensing cloud applications. We instantiate the presented framework and cost functions in

the validation chapter.

32

5. Time-driven Flow Control of Smart
Devices

This chapter presents �ow control approaches which adjust smart devices at runtime

in order to improve the QoS conformance. We transfer congestion control mechanisms

of transport layer and re�ne it to be applicable for sensing cloud applications and take

advantage of their architectural design decisions. The presented �ow control approaches

are time-driven by aiming to avoid congestion-induced delays and to utilize the available

cloud services capacity. We discuss the integration of these approaches into sensing cloud

applications. In contrast to a static message rate and resource con�guration as discussed

in chapter 4 runtime approaches are able to cope with performance uncertainties due to

capacity and resource demand variations. We address the following research question:

Research Question 3. What are suitable �ow control approaches to improve the QoS confor-
mance of sensing cloud applications?

The chapter is structured as follows: �rst, we clarify the concepts by emphasizing on the

di�erences to transport layer �ow control. Then, we discuss the architectural integration

into an IoT application. Finally, approaches are presented and concluded in a discussion.

5.1. Underlying Concepts

In this section, we introduce �ow control for sensing cloud applications. The term �ow

control is derived from distributed systems and a well-known concept of TCP. Therefore,

we �rst brie�y recapitulate �ow control in TCP and then discuss how we distinguish its

concepts to the �ow control of sensing cloud applications. Figure 5.1 illustrates the relation

of both to each other.

Flow control in TCP ensures, that a sender is not overwhelmed by a receiver by sending

more packages than it can consume. A receiver actively manages a receive window to state

how many bytes it can bu�er. In contrast, congestion avoidance ensure that the network

link is fairly shared across multiple senders and able to handle the load by adjusting the

transmission rate based on a congestion feedback. In many TCP implementations a sender

assumes a network congestion, if messages could not be delivered. The transmission rate

of a sender is in�uenced by both mechanisms.

In sensing cloud applications smart devices sense the environment and transmit mes-

sages which are processed by a cloud service. The capacity of a cloud service emerges

from the performance characteristics of its components. Therefore, the capacity may

33

5. Time-driven Flow Control of Smart Devices

Figure 5.1.: Illustration of �ow control and congestion avoidance in TCP and for sensing

cloud applications. The �ow control of sensing cloud applications utilizes

end-to-end congestion avoidance techniques to ensure, that a cloud service is

not overwhelmed by smart devices.

be unknown or subject to variations. The smart devices of a sensing cloud application

transmit sensor data with a speci�c rate which is based on accuracy considerations. The

overall load can exceed the capacity of the cloud service which degrades the timeliness

by inducing congestions. We focus on avoiding overloading the cloud application with

messages and exclude network limitations.

Based on the conceptual di�erences the terminology of TCP congestion avoidance and

�ow control does not result in an exact �t. Instead, we introduce them as �ow control for

sensing cloud applications which utilizes congestion avoidance mechanisms to satisfy QoS

goals. Applying congestion avoidance mechanisms to sensing cloud applications enables

to maintain the timeliness demand of the cloud service by adjusting the transmission rate

of smart devices. By adjusting the transmission rate to a value which utilizes the capacity

of a cloud service to a high degree, they maintain the timeliness but eventually degrade the

accuracy. Since they prioritize timeliness over accuracy, we classify them as time-driven

�ow control approaches. We distinguish between two closely related modes:

• Congestion-Avoidance Mode. The goal is to maximize the accuracy without

timeliness degradations. Therefore, the �ow control aims to fully utilizes the capacity

of the cloud service without inducing congestions.

• Overload-Protection Mode. The goal is to overload protect a sensing cloud ap-

plication by maintaining the timeliness on the expense of accuracy when faced

with resource constraints. If the load does not exceed the capacity, the �ow control

utilizes the capacity to a degree which satis�es the accuracy demands.

34

5.2. Integration into Sensing Cloud Applications

Figure 5.2.: Architectural integration of the �ow control system. (a) distributed: smart

devices utilize a strategy which relies on information provided by the �ow

control system. (b) centralized: smart device recon�gurations are based on

decisions of a global strategy.

5.2. Integration into Sensing Cloud Applications

In this section, we discuss the integration of time-driven �ow control approaches into a

sensing cloud application.

5.2.1. Architectural Integration

Figure 5.2 illustrates the architectural integration of a �ow control system to an IoT

platform. The IoT platform manages connected devices and provides received sensor data

to corresponding cloud applications. Therefore, it acts as a communication link to devices,

which provides probing and adaption interfaces to a �ow control system. A �ow control

strategy can be deployed in a distributed or centralized manner. In a distributed setup, the

�ow control system provides feedback to the adaptation engines of the smart devices in

order to let them adjust the data stream. In a centralized setup, the �ow control system

determines and provides the adjustments to the smart devices. The �ow control system

observes the cloud application and the IoT platform, in order to obtain measurement data

used to recognize congestions and recon�guration decisions.

5.2.2. Information Exchange Mechanism

Information exchange between smart device and the �ow control system should leverage

the communication link of the IoT platform to smart devices. Since many IoT platforms

o�er a REST-API for smart devices to connect and to receive data, piggybacking can be

realized by enriching the HTTP response with information. Piggybacking aims to reduce

the amount of communication overhead required for transmitting information to smart

devices by utilizing the acknowledgment of received sensor data to inject the feedback.

35

5. Time-driven Flow Control of Smart Devices

However, the information exchange �ow is degraded, if a smart device stops or slow

downs transmitting. IoT platforms utilizing MQTT could deploy control channels. Control

channels may induce a higher network overhead but are not a�ected by the interval

between requests.

5.2.3. Congestion Observer

A congestion observer is an integral element of time-driven �ow control since the transmis-

sion rate adjustments are based on a binary congestion feedback. We de�ne a congestion

observer $ as a tuple of a metric " , a threshold) and a window size # , such that

$ = (",), #).

5.2.3.1. Metric Selection

A congestion occurs if the cloud application’s capacity can not cope with the load thus

inducing a processing delay which degrades the QoS. Based on the cloud applications

topology, there are multiple possibilities to use a measured metric as a proxy for a conges-

tion. A popular metric to re�ect the services’ utilization is the CPU. Another possibility

could be a package loss, e.g. by message discarding, or a high response time. Since we

focus on sensing cloud applications, which retrieve sensor data of a message queue pro-

vided by the IoT platform, we propose to use message queue metrics. Since messages are

processed in a FCFS manner, an imbalance of the production and consumption rate results

eventually in a non-zero queue length or queueing delay. Furthermore it excludes delays

due to network congestions, which are out of the operational scope of the time-driven

�ow control approaches.

5.2.3.2. Configuration

By providing the congestion feedback to the �ow control strategies, the congestion observer

impacts the adaptation behavior to a great extent. Whereas the congestion-avoiding �ow

control strategies may not require any application-speci�c knowledge, an application-

aware con�guration of the congestion observer can improve the quality of those. Therefore,

a queue length or queueing delay threshold should be selected based on the SLA, to avoid

a too eager or too sluggish observer.

We propose, to con�gure the adaptation interval of �ow control strategies in respect to

the reactivity of the congestion observer. The reason is that a �ow control strategy can

consider the e�ects of previous adaptations before deciding to adjust the transmission

rate. An adaptation interval that is too short to capture the e�ect of a recon�guration

decisions may results in unnecessary adaptations which degrade the adaptation quality.

If the adaptation interval is too large, the �ow control system reacts sluggish. Therefore

the con�guration should consider the behavior of the congestion observer and the time it

needs to adjust smart devices.

36

5.3. TCP-Inspired Flow Control

5.2.4. Transmission Rate Boundaries

The accuracy sensed by smart devices emerges from environmental changes and the

resolution of sensor data. By sensing the environment cloud applications demand a

speci�c accuracy. Flow control approaches may enforce boundaries to control the degree

to which a transmission rate can be adjusted. The boundaries should be based on implicit

or explicit accuracy considerations, such that a transmission rate adjustment is capped by

an upper boundary and a lower boundary. In practice, a SLO may state a transmission

interval required for the cloud service. This can be transferred as upper boundary, since a

shorter interval does not contribute to the SLO ful�llment. If a SLO state a target accuracy,

the �ow control approach may enforce an upper boundary for the transmission rate, at

which the target accuracy is met. We deem a lower boundary as optional. It may limit the

congestion avoidance e�ciency by capping the degree to which the load can be a�ected.

However, we propose to set the lower boundary to a non-zero value, if the �ow control

information exchange relies on piggybacking, in order to maintain the control �ow to the

smart devices.

5.3. TCP-Inspired Flow Control

In this section, we introduce the TCP-inspired �ow control for sensing cloud applications

which is based on the congestion avoidance mechanisms of TCP. The results have been

published in [32].

5.3.1. Conceptual Di�erences

In the following, we describe conceptual di�erences to the TCP congestion avoidance

mechanisms.

Figure 5.3a illustrates the congestion avoidance in TCP. Each sender utilizes an increase

and decrease algorithm to adjust the transmission rate based on a binary congestion

feedback. Most TCP variants utilize an Additive Increase/Multiplicate Decrease (AIMD)

scheme [2], which allows senders to fairly share a bottleneck.

In contrast, the �ow control of sensing cloud applications considers the capacity of the

cloud service as the bottleneck. Therefore, all smart devices share the same bottleneck.

As illustrated in �gure 5.3b, this allows to perform adaptations with two paradigms:

distributed and global. Distributed request schemes are similar to TCP, since each smart

device utilizes its own request scheme and adjust its transmission rate based on the

congestion feedback. A global request scheme allows to adjust the transmission rate of all

smart devices, such that adjustments are inherently fair. Therefore, fairness remains only

a criteria for a distributed operation. In order to recognize congestions, we propose to

rely on the congestion observers described in section 5.2.3 of this chapter and to adapt the

transmission rate) after a speci�c interval g�30?C0C8>= . Based on the conceptual di�erence

to TCP in terms of the adaptation paradigm and its fairness implications we propose to

extend the request schemes by the following candidates:

• AIMD. Additive increase and multiplicative decrease, with 0 > 0 and 0 < 1 < 1:

37

5. Time-driven Flow Control of Smart Devices

(a) Congestion Avoidance in TCP with senders sharing a

network link bottleneck. Based on congestion feedback,

each sender adjusts the transmission rate on its own.

(b) Adaptation paradigms in the TCP-inspired �ow control

for sensing cloud applications. In a distributed mode

each smart devices utilizes a request scheme on its own.

In a global mode a request scheme is used to adapt all

smart devices.

Figure 5.3.: Illustration of the conceptual di�erences of congestion avoidance in TCP and

for the time-driven �ow control of sensing cloud applications. The request

scheme is represented by AIMD.

) (C + 1) =
{
) (C) + 0, if no congestion

) (C) ∗ 1, if congestion

• AIAD. Additive increase and additive decrease, with 0 > 0 and 1 < 0:

) (C + 1) =
{
) (C) + 0, if no congestion

) (C) + 1, if congestion

• MIAD. Multiplicative increase and additive decrease, with 0 > 1 and 1 < 0:

) (C + 1) =
{
) (C) ∗ 0, if no congestion

) (C) + 1, if congestion

• MIMD. Multiplicative increase and multiplicative decrease, with 0 > 1 and 0 < 1 <

1.

38

5.3. TCP-Inspired Flow Control

) (C + 1) =
{
) (C) ∗ 0, if no congestion

) (C) ∗ 1, if congestion

5.3.2. Load Model Extension

Figure 5.4a illustrates the approach without load extension. The request scheme controls

the transmission rate of each device. Therefore, the impact of an adaptation step a�ects

the overall load on the cloud service in dependency to the number of active devices. In

order to maintain a proportionality of adjustments, such that each change a�ects the load

independently to the number of connected devices, we propose to control a load model 8

in the global request scheme instead of the transmission rate) . Then, we calculate the

transmission rate of each smart device with) (C + 1) = 8 (C)
#�

. Figure 5.4b illustrates the load

extension, in which the the control scheme holds the current load on the cloud service and

shares it fairly across #34E connected devices. This results in the need to obtain the number

of connected devices, e.g. from IoT platform, in order to use it in adaptation decisions.

(a) Without load extension, the approach controls the trans-

mission rate of each device.

(b) With load extension, the approach controls the overall

load and shares it fairly across all devices.

Figure 5.4.: Illustration of the TCP-inspired �ow control with and without load extension.

39

5. Time-driven Flow Control of Smart Devices

5.3.3. Overload Protection Mode

In the following we describe how to integrate boundaries into the TCP-inspired �ow

control. As discussed in section 5.2.4 the reason is to not utilize the cloud capacity to a

greater extent as demanded by accuracy considerations. Therefore, the transmission rate

adaptations are capped by a minimal transmission rate);>F4A and a maximal transmission

rate)D??4A . In between, the adaptations are based on the request scheme. We re�ne the

request scheme adaptations as follows:

) (C + 1) =<0G (<8=() (C + 1),)D??4A),);>F4A)

5.3.4. Discussion

In this section, we presented a transfer of congestion avoidance mechanisms of TCP to

�ow control smart devices. It adapts the transmission rate of sensor data streams of smart

devices, to achieve a high throughput and low processing delay. We have proposed a global

and distributed setup of which a global setup enables to use request schemes which are

not fair in a distributed setup. We proposed a load model extension, which aims to make

the change by adaptations independently to the number of connect devices. We expect,

that the the load model extension does not behave di�erently in a static connectivity

scenario. However, in scenarios, in which the number of devices varies, we assume, that

the extension results in a more consistent adaptation behavior. We deem the congestion

avoidance mechanisms of TCP as suitable to cope with the challenge of maintaining the

QoS of sensing cloud applications. An advantage of this approach is, that it is able to cope

with a varying processing rate or a changing number of connected devices without relying

on a performance model. However, we recommend to rely on application knowledge to

properly con�gure the approach in terms of congestion recognition and request scheme

parameters. The underlying increase/decrease algorithms have been shown to result in

a high resource utilization and low delays. Overall, we expect this to translate to a high

timeliness conformance but accuracy degradations in overload scenarios. This can be a

bene�cial addition to runtime manage time-driven sensing cloud applications.

5.4. Capacity-Estimating Flow Control

In this section, we present a congestion avoidance approach, which estimates the cloud

applications’ capacity at runtime. It aims to improve the TCP-inspired congestion avoid-

ance by using an estimation to adjust the transmission rate instead of probing the capacity.

We assume, that it results in a speed up in coping with dynamics, e.g. variations in the

capacity or the number of connected devices. The results have been published in [34].

5.4.1. Capacity Estimation

Many sensing cloud applications retrieve sensor data of a message queue. The departure

rate of messages is limited by the consuming cloud applications capacity. In overload

40

5.4. Capacity-Estimating Flow Control

situations, which eventually result in a congestion, the cloud capacity is insu�cient to

cope with the rate of arriving messages. This result in a non-zero queue length.

We introduce a moving average "4BC of size # , which is updated with measured rate

of outgoing messages. However, it is only updated in overload situations, in which the

measured queue length exceeds a threshold)&!4=6Cℎ. This threshold has to exceed the

estimated capacity rate �4BC , such that)&!4=6Cℎ ≥ �4BCΔC . This aims to avoid to degrade

the estimated capacity, if the total number of remaining messages is not enough to fully

utilize the cloud applications’ capacity.

The service operator has to provide an initial capacity estimation �8=8C80; in order to let

the approach work.

5.4.2. Transmission Rate Calculation

Based on the assumption that each sensor data demands the same amount of resources on

the cloud application, we predict the currently supported transmission rate) ′estimation of each

device at a time C using the cloud application’s estimated processing rate �CloudApplication
and the number of connected devices #Devices such that:

) ′estimation(C) :=
�4BC (C)

#Devices (C)

5.4.3. Phases

The congestion avoidance approach consists of two phases: a congestion avoidance phase
and a congestion protection phase, as illustrated in �gure 5.5.

Figure 5.5.: Illustration of the Capacity-Estimating Congestion Avoidance phases.

Congestion Protection. During the congestion protection phase, the goal is to mitigate

or resolve an overload situation. This is done by calculating a suitable transmission rate

based on the number of connected devices and the estimated cloud capacity, such that the

application is fully utilized. Since a congestion is characterized by a non-zero message

queue, it induces a message processing delay. In order to let the message queue recover,

we reduce the applications’ utilization by a factor :?A>C42C8>= < 1, therefore ensuring that

the queue size decreases over time.

) ′protect (C) :=) ′estimation(C) · :?A>C42C8>=

41

5. Time-driven Flow Control of Smart Devices

If the congestion has been resolved, the approach transits to the Congestion Avoidance

phase.

Congestion Avoidance. During a congestion, the cloud applications’ capacity is estimated.

If there is no congestion, the estimation may not re�ect the current capacity of the cloud

application, since it is based on previous measurements. A decreased capacity eventually

result in a congestion, which re�nes the capacity estimation. However, with an increased

capacity, the estimation will not be re�ned, which results in an underutilized service.

Therefore, we probe the current capacity by introducing a factor :0E>830=24 > 1 to increase

the load on the application. We adapt the transmission rate in each adaptation interval

g�30?C0C8>=:

) ′recover (C) :=) ′estimation(C − g�30?C0C8>=) · :0E>830=24
If this results in a congestion, it transits to the Congestion Protection phase, in order

to re�ne the capacity and resolve the congestion.

5.4.4. Overload Protection Mode

We re�ne the phases as illustrated in �gure 5.6. Now, they have a di�erent semantic,

since the the Congestion Avoidance phase is replaced by the Congestion Recovery phase,

which tries to restore an adjusted transmission rate to the provided upper boundary.

Figure 5.6.: Illustration of the capacity-estimating congestion avoidance re�ned and ex-

tended phases.

Idle. During the idle phase, the �ow control system does not make any operation since

the transmission rate is at the saturation point and there is no congestion.

Congestion Protection. During a congestion, we enforce the lower transmission rate limit

as follows:

) ′protect (C) :=<0G () ′cap (C) · :protect,);>F4A)

42

5.5. Discussion

If the congestion has been resolved, the approach transits to the Congestion Recovery

phase.

Congestion Recovery. During the congestion recovery phase, the �ow control systems

aims to restore the transmission rate to the original value. Therefore, we limit the trans-

mission rate adaptation as follows:

) ′recover (C) :=<8=() ′recover (C −)) · :recover,)D??4A)
If this results in a congestion, it transits to the Congestion Protection phase, in order

to re�ne the capacity and resolve the congestion. If the transmission rate is restored and it

has not result in a congestion, it transit to the Idle phase.

5.4.5. Discussion

The presented approach supports cloud applications, which receive sensor data by a

message queue, to create a capacity estimation of the cloud application during runtime.

This induces an architectural constraint which can be mitigated, if an online resource

demand estimating approach is used, e.g. LibReDe [68].

The approach aims to improve the TCP-inspired congestion avoidance by introducing a

runtime capacity estimation. By continuously probing the available capacity by inducing

non-severe congestions, it results in an oscillating transmission rate. However, we assume

that the capacity estimation contributes to a higher QoS conformance by reducing the

convergence time to the capacity.

5.5. Discussion

We presented in this chapter �ow control approaches, which aim to fully utilize the cloud

applications’ capacity with a low message processing delay, to improve the QoS confor-

mance. Whereas the �rst approach is a TCP-inspired congestion-avoiding �ow control, the

second re�nes it by estimating the cloud applications’ capacity at runtime. The presented

approaches can be operated in an overload protection mode, in which they utilize an

upper boundary for the transmission rate based on accuracy considerations. In congestion

avoidance mode, they enable to utilize the capacity of the cloud service without inducing

congestions, therefore a�ecting timeliness and accuracy. The presented approaches re-

quire application knowledge, which should be used to con�gure the congestion observer,

the adaptation interval and their parameters. Overall, they aim to contribute to the QoS

conformance by improving timeliness and degrading accuracy. Therefore, we expect them

to complement the runtime management mechanism of auto-scaling, which improves

timeliness on the expense of resources.

43

6. Coupling Mechanisms for Runtime
Strategies

Cloud applications are usually operated with auto-scaling systems, which aim for pro-

visioning resources to cope with the current resource demand. Therefore, they improve

timeliness on the expense of resource costs. In contrast, the time-driven �ow control

approaches presented in chapter 5 adapts the transmission rate of devices to improve

timeliness on the expense of accuracy. Using auto-scaling or �ow control in isolation may

result in a strong degradation of the QoS conformance. We aim to improve the overall QoS

conformance by coupling both types of runtime management. We address the following

Research Question:

Research Question 4. What are suitable coupling mechanisms to improve the QoS confor-
mance of sensing cloud applications by combining �ow control with auto-scaling?

We propose rule-based activation control mechanisms, which enable to set each strategy

as active or inactive. This enables coupling approaches to be agnostic to the internals of

the strategies. Based on activation rules, the mechanisms decide which strategy to enable,

aiming to improve the overall QoS conformance. We introduce the following coupling

mechanisms:

• Concurrent Coupling: A mechanism to deploy multiple runtime strategies on a

service without any coordination.

• Threshold-based Rules Coupling: A mechanism, which decides based on a

threshold-based rule set, which strategy to activate. We propose rule sets tied

to the qualities of sensing cloud applications.

• Fuzzy Rules-based Coupling: A mechanism, which utilizes fuzzy rules to decide,

which strategy to activate.

6.1. Coupling Strategy Metamodel

A coupling strategy requires e�ectors to control the life cycle of the coupled strategies.

Based on its goals, it decides at runtime, which strategy to activate. Therefore, a coupling

strategy may not be involved with the internals of the coupled strategies. Figure 6.1 shows

the metamodel of coupling strategies.

45

6. Coupling Mechanisms for Runtime Strategies

Figure 6.1.: Metamodel of a coupling strategy.

Since a coupled strategy contains strategies, it can also contain instances of itself,

allowing, e.g., to enable or disable multiple provisioning strategies at once.

6.2. Strategy Classes

In this section we select strategy classes which recon�gure the transmission rate of smart

devices or the resource con�guration of cloud services at runtime. We consider the

following as feasible candidates for a coupled runtime management:

• Time-driven Flow Control (Congestion Avoidance). Introduced in chapter 5,

it aims to fully utilize the available capacity by adjusting the transmission rate.

Therefore it enables to balance timeliness and accuracy.

• Time-driven Flow Control (Overload Protection). This class aims to minimize

processing delays in overload situations by transmission rate adjustments. Therefore

it aims to improve the timeliness of a sensing cloud application on the expense of

accuracy. It caps the load on the cloud service in non-congestion scenarios based on

accuracy considerations.

• Accuracy-driven Flow Control. An IoT data collection presented in [67], which

adjust the transmission frequency based on measured changes in the environment

in order to maintain a target accuracy.

• Auto-Scaling. By (de-)provisioning resources to meet the resource demand, auto-

scalers aim to maintain the timeliness on the expense of resource costs. It reduces

resources costs in non-underprovisioned scenarios.

Table 6.1 provides an overview of the strategies and a�ected qualities.

46

6.3. Concurrent Coupling

Strategy Capacity Load Accuracy Timeliness Resources
Time-driven Flow Control (Congestion Avoidance) o o o

Time-driven Flow Control (Overload Protection) o o o

Accuracy-driven Flow Control o o

Auto-Scaling o o o

Table 6.1.: Runtime strategy mechanisms a�ecting the load or capacity of the cloud service

and their aimed improvement on the QoS costs.

6.3. Concurrent Coupling

Let a concurrent coupling activates each coupled strategy at every point of time. Therefore,

this mechanisms does not involve any decision making. Instead, the contribution to the

QoS conformance is based on the emerging behavior of the coupled strategies. This may

result in the need to tune the parameters of each for a given application scenario. In the

following, we discuss conceptual synergies and challenges of coupling auto-scaling with

the presented �ow control strategies:

• Time-driven Flow Control (Congestion Avoidance). A coupling with resource

provisioning and congestion-avoiding �ow control is conceptually not feasible, since

this class aims to fully utilize the available capacity. Since auto-scalers usually

operate on a load metric, they are triggered by the high service utilization, resulting

in a windup of provisioned resources.

• Time-driven Flow Control (Overload Protection). This class of strategies, aims

to reduce the timeliness costs by adjusting the transmission rate and thus a�ecting

the accuracy in situations, in which the timeliness is violated. Whereas it adjust the

load, resource provisioning approaches adjust the capacity. Therefore, both aim to

improve the timeliness but on the expense of di�erent qualities. Therefore, they are

able to harmonize by sharing the expense of timeliness on accuracy and resource

costs. However, in order to avoid a domination of one approach over the other, they

need to be carefully con�gured and selected under consideration of the application

scenario. Furthermore, they may rely on the same metric to identify congestions

or service utilization, e.g. the message queue length, which emphasize the need to

carefully tune their e�ciency.

• Accuracy-driven Flow Control. This class of strategies aims to adjust the trans-

mission rate in accordance to the current accuracy demands of the application

considering changes in the measurements. Therefore, it results in a high frequency,

if there are many changes in the environment and in a low frequency, if there are

only minor changes. It can be coupled with resource provisioning, since the current

capacity demand is determined by the required accuracy.

Overall, concurrent coupling is a straightforward mechanism to combine two or more

strategies with each other. Note, that it has not to be managed by a global runtime

management system but can be the consequence of deploying two or more runtime

management approaches which are not aware of each other. The limitations of a concurrent

47

6. Coupling Mechanisms for Runtime Strategies

coupling are mainly based on the non-existent coordination of strategies. Therefore, we

assume, that a higher degree of QoS conformance can be reached, by coordinating strategies

based on QoS metrics.

6.4. Rule-Based Coupling

In the following section we present threshold-based rule sets, which activate strategies

based on boolean expressions. We introduce three di�erent rule sets, motivated by main-

taining di�erent qualities.

6.4.1. Metamodel

Figure 6.2 shows the meta model of the rules-based coupling strategy.

Figure 6.2.: Metamodel of a the rule-based coupling strategy.

StrategyTrigger For each managed strategy, the rule-based coupling strategy utilizes a

strategy trigger in order to decide, when to activate it. The strategy trigger itself utilizes a

set of binary feedback rule evaluators, which are evaluated altogether using a provided

boolean expression.

RuleEvaluator The rule evaluator consist of a provided threshold and a metric. It allows

to evaluate, if the value exceeds the threshold.

6.4.2. Accuracy-driven Overload Protection

Goal. State of the practice runtime management utilizes auto-scalers to cope with load

variations. However, if faced with overload situations, auto-scalers may not react fast

48

6.4. Rule-Based Coupling

enough, such that the system experience periods of underprovisioning resulting in time-

liness violations. In practice, auto-scalers are limited in the number of provisionable

resources based on economical or resource constraints. Furthermore, cloud service may

face bottlenecks, which are out of the operational scope of the service provider, which

threaten both, the timeliness and the availability. For this reason, we propose a coupling,

which aims to maintain a high accuracy and only degrades it in severe overload situations

as a fallback option.

Rule Set. Based on threshold-based violations of the timeliness and accuracy QoS cost

function, we active the auto-scaler(s) or the �ow control as follows:

02C8E0C40DC>−B20;4AB = CAD4

02C8E0C4 5 ;>F−2>=CA>; = 022DA02~ ∨ C8<4;8=4BB

The auto-scaling system is always activated, which is expressed by a rule, which eval-

uates as true. The overload protection �ow control is activated, if the timeliness has

exceeded a threshold, or the accuracy is degraded. Whereas the timeliness trigger allows

to reduce the timeliness violations by the overload protection mechanism of the �ow

control strategy, the accuracy trigger allows the transmission rate to be recovered, when

the overload situation has been resolved.

Timeliness and accuracy metrics may be obtained by utilizing QoS cost functions or

by relying on proxy metrics, e.g. queue length or queueing delay as timeliness and an

absolute deviation of the transmission rate to the demanded value as accuracy. In either

case, the threshold has to be selected carefully in order to enable a fallback mechanism,

which does not eagerly degrade the accuracy.

Discussion. The presented rule set allows to deploy a runtime management system,

which does not interfere with the usual auto-scaling but complements it with an overload

protection �ow control mechanism. It provides a fallback mechanism to maintain the

timeliness and availability of a cloud service in severe overload situations. Since it activates

auto-scaling all the time, it does not need to interact with these systems, such that the

coupling strategy is transparent for existing auto-scalers.

6.4.3. Cost-driven Overload Protection

Goal. In contrast to the accuracy driven overload protection, this coupling strategy aims

to reduce resource costs by degrading the accuracy in overload situations.

Rule Set. Based on threshold-based violations of the timeliness and accuracy QoS cost

function, we active the auto-scaler(s) or the �ow control as follows:

02C8E0C40DC>−B20;4AB = 022DA02~ ∨ A4B>DA24B

02C8E0C4 5 ;>F−2>=CA>; = CAD4

49

6. Coupling Mechanisms for Runtime Strategies

The overload protection �ow control is always activated, which is expressed by a

rule, which evaluates as true. Auto-scaling is activated, if the accuracy degradation has

exceeded a provided threshold. However, the auto-scaler(s) are also activated, if resources

induce costs, since it indicates, that the overload situations has not been resolved or the

auto-scalers have not deprovisioned resources.

Resource costs can be obtained using a QoS cost functions or by relying on proxy metrics,

e.g. the number of provisioned resources compared to a target provisioning.

Discussion. The presented coupling allows to use auto-scaling systems in severe overload

situations, in which a further accuracy degradation is more expensive than provisioning

resources. It needs to interact with the auto-scaling approaches, but not with the overload

protecting �ow control. For this reason, the strategy is transparent to the �ow control

systems.

6.4.4. QoS-based Coupling

Goal. The QoS-based coupling strategy aims to improve the QoS conformance by utilizing

a set of QoS cost functions for each strategy. Therefore, the provided thresholds for each

QoS cost function decides how the coupling system behaves and allow, based on their

granularity, a �ne tuning for speci�c application scenarios.

Rule Set. Each strategy 8 relies on the following rule set:

02C8E0C4BCA0C46~8 = 022DA02~) 1

8
∨ C8<4;8=4BB) 2

8
∨ A4B>DA24B) 3

8

Each strategy is activated, if any cost functions evaluates as true, when the cost value

exceeds the provided threshold) G8 .

Discussion. The QoS-based coupling allows to couple any strategy, based on activation

rules on the QoS cost functions. In contrast to the previous presented approaches, it allows

to de�ne complex rules, which are not constrained by letting a strategy be activated all the

time. However, based on the number of thresholds, it is complex to con�gure the threshold

properly and should therefore be subject to a search approach.

6.4.5. Discussion

In this section, we have presented a metamodel of rule-based coupling strategies, which

utilize a boolean algebra evaluation engine and a rule set in order to (de-)activate strategies

on runtime based on QoS cost functions. Therefore, the presented mechanism is able to

observe the e�ect of activated strategies and use it for coupling decisions.

6.5. Fuzzy Rules-Based Coupling

In this section, we present a fuzzy rules-based coupling, which aims to improve the QoS

conformance by applying a set of rules. In contrast to the rules-based coupling, which

50

6.5. Fuzzy Rules-Based Coupling

relies on boolean logic, the fuzzy rules assign truth values between 0 and 1 and enable

to hold a partial truth. Furthermore, it relies on set of rules, which fuzzify the QoS cost

functions presented in chapter 4. Therefore, this approach aims to provide a mechanism for

coupling mechanisms based on a set of reusable rules. The presented coupling mechanism

aims to combine auto-scaling with overload protection �ow control using a set of provided

rules and QoS cost functions.

6.5.1. Fuzzification

Let a service operator provide a QoS cost function set consisting of normalized cost

functions in the range of 0 to 1. For each QoS cost function, we propose a fuzzi�cation

based on three states: good, ok and bad. Figure 6.3 shows the fuzzy logic.

Figure 6.3.: Fuzzy logic for the output of a given QoS cost function.

Let timeliness, accuracy and resource costs be input variables. Based on these vari-

ables, we aim to express a set of reusable rules. Note, that the QoS cost functions needs to

be linearly in this case, in order to maintain the linguistic semantics. Therefore, QoS cost

functions needs to be constructed in a manner, which re�ects the linguistic categorization.

6.5.2. Defuzzification

Figure 6.4 illustrates the defuzzi�cation in order to decide, which strategy to activate.

It either operates �ow control, auto-scaling or both simultaneously. The states have a

logical continuity in order to allow a logical transition between the membership functions.

The G-value is determined by the center of gravity which is driven by the input metrics,

e.g. the QoS costs, and the provided set of rules.

51

6. Coupling Mechanisms for Runtime Strategies

Figure 6.4.: Defuzzi�cation logic.

A no operation state is not intended, since there is no clear transitional logic between

the states. However, it could replace the coupled operation. In this setup, the fuzzy logic

would decide to operate either auto-scaling, �ow control or doing nothing.

6.5.3. Fuzzy Rules Set

The rule set is the engine of the fuzzy controller. In this section, we present a rule set

which we obtain by reasoning.

The rule set should be provided by the service operator to be tailored to his needs.

However, in the following, we present a simple mechanism, which decides to address an

overload situation only with �ow control or auto-scaling if the a�ected recon�guration is

too costly. With this, the burden of stabilizing the system is shared across both strategies

in dependency to their resulting costs.

The �rst rule aims to activate the auto-scaler only, if the resources is good and the

accuracy is bad, since this indicates, that the �ow control mechanism has degraded the

transmission rate to a wide degree in an overload situation, without having the auto-scaler

provision resources:

RULE 1 : I F r e s o u r c e s I S good and a c c u r a c y I S bad

THEN d e c i s i o n I S a u t o _ s c a l i n g ;

The second rules aims to activate �ow control, if the accuracy is not degraded but

the resources are bad, since this indicates, that the auto-scaler has already exhausted its

options:

RULE 2 : I F a c c u r a c y I S good and r e s o u r c e s I S bad

THEN d e c i s i o n I S f l o w _ c o n t r o l ;

52

6.6. Discussion

The presented rule set is only an example, which demonstrates, how to share the burden

of runtime management on two di�erent strategy classes, such that the capabilities of

each are promoted.

6.6. Discussion

In this section we have presented three coupling mechanisms, with di�erent goals in mind.

Whereas the concurrent coupling aims to combine runtime strategies in a transparent

manner, the rule-based coupling utilizes a boolean algebra engine in order to support

arbitrary thresholds based on binary evaluators. However, it requires a �ne tuning of the

thresholds in order to contribute to the QoS conformance. The fuzzy logic coupling allows

to de�ne linguistic rules which support blurry decisions. Therefore it is not limited to

expressions, which evaluate as true, as the rule-based evaluator. Since we tailored the

fuzzy rules coupling with QoS cost functions, we assume, that it is reusable for many

applications, given, that the QoS cost functions are created in a similar manner.

53

7. SEIA – A Runtime Management
Framework for Cloud Applications

In this chapter we introduce the SElf-adaptive management framework for Cloud-IoT

Applications (SEIA)
1
.

The objective is to provide a framework for researchers and service operators to create

and deploy runtime strategies for Cloud-IoT applications across multiple cloud platforms

including simulation environments. Therefore it provides abstract cloud and IoT concepts

which can be instantiated for speci�c cloud technologies. Furthermore it o�ers a strategy

manager to deploy and operate runtime strategies. It allows to be integrated into existing

cloud environments. SEIA has been heavily used to conduct controlled experiments and

case studies to empirically answer research questions in multiple publications [32], [33],

[34].

The main contribution of SEIA is an architectural representation of Cloud-IoT applica-

tions with probes and e�ectors.

7.1. Overview

SEIA consists of three packages:

• Managed System: This package provides software architecture representations for

Cloud-IoT applications. The abstractions are pragmatic and consider only cloud

components, which are manageable by a runtime strategy in terms of observation

or adaptation.

• Managing System: This package provides concepts to probe or recon�gure cloud

nodes. Each representation of the managed system is associated with a prede�ned

e�ector or probe. Furthermore, it contains core parts of self-adaptive systems, e.g. a

continuous and discrete MAPE-K loop or a strategy controller for operating runtime

strategies.

• Technologies: This package provides technology-speci�c implementations of the

presented cloud concepts. In this context a technology is a (third-party) solution

in the Cloud-IoT domain, e.g. RabbitMQ for message queues, or CloudFoundry as

PaaS. Therefore, the package provides technology-speci�c implementations of node

e�ectors or probes based on the API of the managed system.

1 SEIA shares the name with a roman goddess, who protects the seeds once sown in the earth — instead of

protecting the seeds once sown in the earth, it manages the Cloud-IoT Applications once deployed on the

cloud.

55

7. SEIA – A Runtime Management Framework for Cloud Applications

7.2. Cloud Application Meta-Model

We adopt the representation of software architecture as a graph of interacting components

presented in [31] and re�ne it to represent Cloud-IoT applications. Figure 7.1 illustrates

the application meta-model. A cloud application consists of a set of cloud nodes with

each node as a manageable component, e.g. a microservice. A cloud node is characterized

by properties, which are either observable or adaptable. Probes and e�ectors of the

framework bind to these properties. Cloud edges are the connectors and represent the

interaction pathway between cloud nodes.

Figure 7.1.: Application meta model.

7.3. Cloud-IoT Concepts

The framework is tailored to support the application management in the Cloud-IoT domain.

Conceptually, an IoT solution consists of three parts: the smart devices, which are sensing

and e�ecting the environment, the IoT platform, which manages connected devices, and

the cloud solution, which contains business logic and processes the data of smart devices

[35]. SEIA provides a set of prede�ned classes for reoccurring components in this domain.

These classes have to be extended to represent technology-speci�c entities and enriched

with information needed to instantiate a concrete binding to the component. As illustrated

in �gure 7.2 we focus on the following components:

• Smart Devices: Sensor data from smart devices are the main driver of workload in

this domain. In order to enable �ow control approaches SEIA provides concepts for

56

7.4. Probes and E�ectors

observable and adaptable smart devices. The node providing these functionalities is

an IoT platform or an IoT data collection platform, since it manages connected smart

devices. Therefore it is responsible to provide the capability to publish application-

speci�c smart device statistics or to apply recon�guration decisions.

• Microservices: Cloud solutions are typically realized using a set of interacting

microservices. For this reason SEIA provides concepts for nodes, which provide

system stats or are horizontal replicable.

• Message Queues: Message queues are modeled as a �rst class entity in SEIA since

modern message brokers provide detailed statistics about the message queue state,

which can be used by strategies to analyze the application state. Additionally,

runtime approaches as presented in [29] are capable of scaling queues in a dynamic

manner.

Figure 7.2.: Meta model of cloud concepts.

The presented concepts are not exhaustive and based on the requirements of the use

cases managed by SEIA presented in chapter 8.3.

7.4. Probes and E�ectors

Reusable probes and e�ectors are part of the managing system package and are associated

with the presented node properties. SEIA strategies rely on observers or e�ectors on this

abstraction level to manage the cloud application.

57

7. SEIA – A Runtime Management Framework for Cloud Applications

7.4.1. Probes

Figure 7.3 illustrates the model of probes. For each observable node one or more node

observer are associated. The node observer references a speci�c observable node type and

de�nes the data structure of measurements.

Figure 7.3.: Class diagram of SEIA probes.

Whereas the entities contain the following �elds:

• SmartDeviceStats: Number of active devices, average transmission rate.

• MessageQueueStats: Queue length, queueing delay (wait time), arrival and depar-

ture rate, growth, number of consumers.

• AppSystemStats: Number of active and planned replicas, aggreggated and per

instance system metrics (CPU, memory, disk).

The managing system can be extended by further node observers which may rely on

another data structure.

7.4.2. E�ectors

Figure 7.4 illustrates the model of e�ectors. An e�ector is associated to an adaptable node

property and provides a method to recon�gure it. SEIA provides an adaptation engine for

smart devices to recon�gure the transmission rate and a scaler of horizontal provisionable

nodes, which can be used to create auto-scalers.

58

7.5. Monitoring Concept

Figure 7.4.: Class diagram of SEIA e�ectors.

7.5. Monitoring Concept

SEIA provides a lightweight monitoring concept, which consists of a monitoring loop

and # monitoring tasks, whereas # is the number of observed components. Figure 7.5

illustrates the monitoring model.

Figure 7.5.: Class diagram of SEIA monitoring.

Measurements from observable nodes are usually obtained using external calls. External

calls can be expensive in terms of response time or contract based expenses. Therefore,

SEIA introduces monitoring tasks, which embed a node observer in order to retrieve

59

7. SEIA – A Runtime Management Framework for Cloud Applications

current measurements once within �xed intervals. Runtime strategies should attach as

listeners to the monitoring tasks to receive measurements. Monitoring tasks provide the

possibility to attach listener and processors to it. A processor is a component, which is

able to manipulate raw measurement data, e.g. to smooth or aggregate data. Attached

listeners are called sequentially and receive the processed measurements.

Monitoring tasks are appended to a monitoring loop. The monitoring loop calls the

monitoring task in a speci�c interval. The monitoring tasks are called asynchronously and

the monitoring loop guarantees, that each task is called at max once during the speci�ed

monitoring interval. If the execution of a monitoring task exceeds the monitoring interval,

it transits to the subsequent interval without any further delay.

7.6. Strategy Concept

Figure 7.6 illustrates the strategy model of SEIA, which provides a loose framework for

strategies without imposing many design choices on it. A strategy is a reusable, technology-

agnostic component, which provides life cycle methods for its creation and graceful

deconstruction. Furthermore, it provides an update method, which is called by a strategy

controller in certain intervals. It can be used as a heartbeat for the strategy, such that it

triggers an analysis of the applications’ state and the planning and execution of adaptation

steps. However, for computational expensive strategies, a strategy should manage its own

threads. The model of strategies does not enforce the MAPE-K reference architecture on its

implementation, thus reducing the number of necessary classes per strategy, speeding up

the prototypical development time on the expense of a conceptual separation of concerns.

However, a strategy can be extended to follow the MAPE-K paradigm. In order to retrieve

measurements, a strategy should register itself as a listener to the monitoring task which

is observing the component of interest. A strategy can use probes de�ned in the previous

section to recon�gure the system.

Figure 7.6.: Strategy Model of SEIA.

In order to encapsulate the strategy creation SEIA introduces strategy builders. A

strategy builder encapsulates the construction knowledge of a strategy and is responsible

to map relevant probes and e�ectors to the strategy. However, it is optional to instantiate

a builder.

60

7.7. Binding Factory

7.7. Binding Factory

SEIA introduces an binding factory in order to instantiate e�ectors and probes based on

the underlying technologies of the cloud application. Figure 7.7 illustrates the factory with

an example of instantiating the bindings of a cloud application deployed on a Kubernetes

cluster.

Figure 7.7.: Environment Factory Model of SEIA.

The environment binding factory is an abstract entity, which maps the concepts used

by SEIA to the managed technologies of the cloud application. A researcher or service

operator has to provide both, a concrete environment binding factory and a technology-

speci�c application model. This allows to support heterogeneous cloud platforms and

technologies but induces e�ort since the environment binding factory is only reusable for

di�erent cloud applications deployed on the same environment.

7.8. Mapping to the MAPE-K Framework

The MAPE-K loop is a reference architecture of self-adaptive systems. Whereas SEIA

provides a lightweight monitoring infrastructure, it is not an implementation of MAPE-K.

Figure 7.8 illustrates the relation between both.

Conceptually, SEIA provides the means for monitoring cloud components and executing

adaptations. A strategy is not obligated to realize a MAPE-K loop in terms of separated

phases. However, it can be extended to do so. By sharing the monitoring and execution

phase with the MAPE-K loop it can be easily integrated into a reference implementation.

On the other side, it allows to speed up the prototypical development time, by providing a

strategy structure, which can unify multiple phases without the need to split it up across

multiple classes.

61

7. SEIA – A Runtime Management Framework for Cloud Applications

Figure 7.8.: SEIA and the MAPE-K loop.

7.9. Discussion

This section has presented SEIA, which is a framework for creating, deploying and operating

runtime strategies on existing cloud applications. It is tailored to the Cloud-IoT domain and

provides concepts for modeling, monitoring and adapting such systems. The contributions

of SEIA are threefold: �rst, it allows to represent Cloud-IoT applications with a pragmatic

view, which is based on the capabilities needed by a runtime management strategy. Second,

it introduce concepts for probes and de�nes entities for reoccurring cloud components.

Third, it provides concepts for e�ectors and de�ne methods. It is lightweight in its nature,

by providing loosely coupled components, which can be connected by the service operator,

without enforcing many design choices.

Since the concepts are abstract, they can be instantiated for di�erent cloud technologies.

SEIA provides an built-in support for CloudFoundry, RabbitMQ and Kubernetes. It has

been successfully applied to conduct research studies, ranging from auto-scaling, �ow

control to coupled strategies across multiple environments.

62

8. Validation

This chapter presents a validation of the contributions. We conduct a set of case studies to

evaluate the central contributions of this thesis:

C1: Evaluation of the impact of capacity and resource demand variations on scaling

decisions.

C2: Design of QoS cost functions for sensing cloud applications and a QoS optimization

framework.

C3: Development of �ow control approaches to overload protect sensing cloud applica-

tions.

C4: Design of rule-based coupling approaches to combine �ow control with auto-scaling.

C5: Design of a sensing cloud application model for self-adaptive systems.

We rely on the Goal Question Metric (GQM) approach proposed by Basili et al. [4] to

validate the contributions. It aims to orientate the validation alongside quanti�able and

measurable metrics. The contributions are mapped onto the research questions presented

in section 1.4.

The remainder of this chapters groups the case studies by the objective they intend to

validate.

8.1. Validation Goals and Overview

We de�ne for each contribution a validation goal based on the GQM approach. The

GQM approach aims to hierarchically structure goals, questions and metrics, requiring

to formulate each goal so it can be answered by collecting measurement data. Each goal

clearly states the purpose of the validation, the issue to be measured, the measured object

and the viewpoint from which the measurements is conducted.

8.1.1. GQM Plan

In this section we presents the validation goals. For each goal we state the corresponding

research questions.

63

8. Validation

8.1.1.1. Evaluation of Performance Metrics for Scaling Decisions

Research Question 1. How robust are infrastructure metrics for scaling microservice to
capacity and resource demand variations?

Goal 1 – Evaluation of Performance Metrics. Evaluate the in�uence of capacity and

resource demand variations on the quality of scaling microservices.

Addressed RQs: 1.

Question 1.1. How are the infrastructure metrics a�ected by capacity or resource

demand variations?

Metric 1.1.1. Pearsons correlation coe�cient between the infrastructure

metrics and capacity and resource demand variations.

Addressed RQs: 1.

Question 1.2. How accurate is the analytical CPU utilization and message queue

model?

Metric 1.2.1. Prediction accuracy as percentage di�erence between predicted

and measured metric values for an observation period.

Addressed RQs: 1.

Question 1.3. How do capacity or resource demand variations a�ect the elasticity

of threshold-based auto-scaling systems?

Metric 1.3.1. In�uence on the elastic deviation to quantify the quality of

scaling decisions.

Metric 1.3.2. In�uence on QoS violations to quantify the quality of scaling

decisions.

Addressed RQs: 1.

Question 1.4. How accurate is the simulation model?

Metric 1.4.1. Prediction accuracy of the elastic deviation as percentage dif-

ference between predicted and measured metric values for an observation

period.

Metric 1.4.2. Prediction accuracy of QoS violations as percentage di�erence

between predicted and measured metric values for an observation period.

Addressed RQs: 1.

8.1.1.2. Congestion Avoidance Characteristic of time-driven Flow Control of Smart Devices

64

8.1. Validation Goals and Overview

Research Question 3. What are suitable �ow control approaches to improve the QoS confor-
mance of sensing cloud applications?

Goal 2 – Congestion Avoidance Characteristics of Flow Control. Investigate the

congestion avoidance characteristic of time-driven �ow control approaches for

sensing cloud applications in di�erent load and capacity scenarios. The congestion

avoidance characteristic hereby denotes the relation of capacity utilization and

congestion-induced delays.

Addressed RQs: 2.

Question 2.1. How e�cient is each strategy in utilizing the capacity and avoiding

congestions in �xed capacity and connectivity scenarios?

Metric 2.1.1. Pareto Curve of average capacity utilization and average queue-

ing delay of an observation period.

Addressed RQs: 2.

Question 2.2. How e�cient is each strategy in utilizing the capacity and avoiding

congestions in varying capacity scenarios?

Metric 2.2.1. Pareto Curve of average capacity utilization and average queue-

ing delay of an observation period.

Addressed RQs: 2.

Question 2.3. How e�cient is each strategy in utilizing the capacity and avoiding

congestions in varying connectivity scenarios?

Metric 2.3.1. Pareto Curve of average capacity utilization and average queue-

ing delay of an observation period.

Addressed RQs: 2.

Question 2.4. How accurate is the simulation model?

Metric 2.4.1. Prediction accuracy of the service utilization as percentage dif-

ference between predicted and measured metric values for an observation

period.

Metric 2.4.2. Prediction accuracy of the queueing delay as percentage di�er-

ence between predicted and measured metric values for an observation

period.

Addressed RQs: 2.

8.1.1.3. QoS Characteristics of isolated and coupled time-driven Flow Control Approaches in
Overload Scenarios

Research Question 3. What are suitable �ow control approaches to improve the QoS confor-
mance of sensing cloud applications?

65

8. Validation

Research Question 4. What are suitable coupling mechanisms to improve the QoS confor-
mance of sensing cloud applications by combining �ow control with auto-scaling?

Goal 3 – QoS Conformance of Flow Control in Overload Scenarios. Evaluate the

QoS characteristics of isolated time-driven �ow control approaches in overload

scenarios. The QoS characteristics are hereby de�ned as the mix of QoS costs in

overload scenarios.

Addressed RQs: 3.

Question 3.1 How are the QoS costs of isolated time-driven �ow control ap-

proaches characterized in overload scenarios?

Metric 3.1.1. Data accuracy, timeliness and resource QoS costs for an obser-

vation period.

Metric 3.1.2. Cumulative QoS costs for an observation period.

Addressed RQs: 3.

Question 3.2 How do the QoS characteristics di�er from resource provisioning

approaches?

Metric 3.2.1. Data accuracy, timeliness and resource QoS costs for an obser-

vation period.

Metric 3.2.2. Cumulative QoS costs for an observation period.

Addressed RQs: 3.

Goal 4 – QoS Conformance of Coupled FlowControl in Overload Scenarios. Eval-

uate the QoS characteristics of coupled time-driven �ow control and resource provi-

sioning approaches in overload scenarios.

Addressed RQs: 4.

Question 4. How are the QoS costs of coupled time-driven �ow control approaches

characterized in overload scenarios?

Metric 4.1. Data accuracy, timeliness and resource QoS costs for an observa-

tion period.

Metric 4.2. Cumulative QoS costs for an observation period.

Addressed RQs: 4.

Goal 5 – Validation of Simulation Results on the Bosch IoT Cloud. Evaluate the

accuracy of the simulation model.

Addressed RQs: 3.

Question 5. How accurate is the simulation model?

Metric 5.1. Prediction accuracy of data accuracy, timeliness and resource

QoS costs as percentage di�erence between predicted and measured metric

values for an observation period.

66

8.1. Validation Goals and Overview

Metric 5.2. Prediction accuracy of cumulative QoS costs as percentage di�er-

ence between predicted and measured metric values for an observation

period.

Addressed RQs: 3.

8.1.1.4. QoS Contribution of isolated and coupled time-driven Flow Control Approaches in
di�erent Application Scenarios

Research Question 3. What are suitable �ow control approaches to improve the QoS confor-
mance of sensing cloud applications?

Research Question 4. What are suitable coupling mechanisms to improve the QoS confor-
mance of sensing cloud applications by combining �ow control with auto-scaling?

Goal 6 – QoS Conformance of (coupled) Flow Control in di�erent Application
Scenarios. Evaluate the QoS contribution of isolated and coupled time-driven �ow

control approaches in overload scenarios for di�erent sensing cloud application

scenarios. The cloud application scenarios are hereby de�ned as cloud applications

demanding a high QoS conformance to speci�c dimensions, e.g. timeliness or

accuracy. The QoS contribution refers to the achieved cumulative QoS costs across

the overload scenarios in each application scenario.

Addressed RQs: 3, 4.

Question 6.1. How do the approaches perform in terms of QoS conformance in

overload scenarios in a mixed application scenario?

Metric 6.1.1. Data accuracy, timeliness, resource and cumulative QoS costs

for an observation period.

Metric 6.1.2. Percentage di�erence of cumulative QoS costs for an observa-

tion period.

Addressed RQs: 3, 4.

Question 6.2. How do the approaches perform in terms of QoS conformance in

overload scenarios in a time-driven application scenario?

Metric 6.2.1. Data accuracy, timeliness, resource and cumulative QoS costs

for an observation period.

Metric 6.2.2. Percentage di�erence of cumulative QoS costs for an observa-

tion period.

Addressed RQs: 3, 4.

Question 6.3. How do the approaches perform in terms of QoS conformance in

overload scenarios in an accuracy-driven application scenario?

Metric 6.3.1. Data accuracy, timeliness, resource and cumulative QoS costs

for an observation period.

67

8. Validation

Metric 6.3.2. Percentage di�erence of cumulative QoS costs for an observa-

tion period.

Addressed RQs: 3, 4.

Question 6.4. How do the approaches perform in terms of QoS conformance in

overload scenarios in a cost-driven application scenario?

Metric 6.4.1. Data accuracy, timeliness, resource and cumulative QoS costs

for an observation period.

Metric 6.4.2. Percentage di�erence of cumulative QoS costs for an observa-

tion period.

Addressed RQs: 3, 4.

Question 6.5. How accurate is the simulation model?

Metric 6.5.1. Prediction accuracy of data accuracy, timeliness and resource

QoS costs as percentage di�erence between predicted and measured metric

values for an observation period.

Metric 6.5.2. Prediction accuracy of cumulative QoS costs as percentage dif-

ference between predicted and measured metric values for an observation

period.

Addressed RQs: 3, 4.

8.1.1.5. QoS Contribution on the Example of an Industry-relevant Sensing Cloud Application

Research Question 3. What are suitable �ow control approaches to improve the QoS confor-
mance of sensing cloud applications?

Research Question 4. What are suitable coupling mechanisms to improve the QoS confor-
mance of sensing cloud applications by combining �ow control with auto-scaling?

Goal 7 – QoS Contributions of (coupled) Flow Control on the Example of a Sens-
ing Cloud Application. Investigate the QoS contribution of isolated and coupled

time-driven �ow control approaches on the example of an industry-relevant sensing

cloud application.

Addressed RQs: 3, 4.

Question 7. How do the approaches contribute to the QoS conformance in the

predictive maintenance use case of Connected Heating?

Metric 7.1.1. Percentage di�erence of data accuracy, timeliness and resource

QoS costs for an observation period.

Metric 7.1.2. Percentage di�erence of cumulative QoS costs for an observa-

tion period.

Addressed RQs: 3, 4.

68

8.1. Validation Goals and Overview

8.1.1.6. Characteristics of the TCP-inspired Flow Control

Research Question 3. What are suitable �ow control approaches to improve the QoS confor-
mance of sensing cloud applications?

Goal 8 – Congestion Avoidance Characteristics of TCP-inspired Flow Control.
Investigate the characteristics of the AIMD-based TCP-inspired �ow control ap-

proach in a centralized and distributed setup in terms of congestion avoidance and

fairness.

Addressed RQs: 3.

Question 8.1. How is the fairness of transmission rate adaptations across each

smart device a�ected by a varying load in distributed setup?

Metric 8.1.1. Jain’s Fairness Measure for an observation period.

Addressed RQs: 3.

Question 8.2. How does a distributed setup a�ect the adaptation quality?

Metric 8.2.1. Percentage di�erence of the average service utilization for an

observation period.

Metric 8.2.2. Percentage di�erence of the average queueing delay for an

observation period.

Addressed RQs: 3.

8.1.2. Case Study Systems

This section presents the case study systems we use to validate the contributions of the

thesis. We use the following systems:

• ShapeShifter – A single-service cloud application which is con�gured to represent

services with di�erent characteristics.

• Connected Heating – An innovative IoT solution, which connects heating units

via an intelligent gateway with a cloud solution.

The case study systems are deployed on heterogeneous cloud infrastructures. The

validation for the ShapeShifter case study is supported by a calibrated simulation model

and aims for a high external validity.

8.1.3. Validation Coverage

This section presents the coverage of validation goals and the corresponding case studies.

Overall, we validate the goals with two case study systems. All goals — except for goal 7 —

are evaluated with the ShapeShifter case study, since it allows to represent services with

di�erent characteristics. We conclude the validation �ndings with goal 7 and rely on the

Connected Heating case study system, which is based on a productively used smart home

application of the Robert Bosch GmbH.

69

8. Validation

Goal 1 – Evaluation of Performance Metrics. The �rst goal aims at understanding the im-

pact of capacity and resource demand variations on scaling decisions. We rely on the

ShapeShifter case study since it is highly con�gureable, allowing us to adjust the com-

putation and wait time spent for each message in order to systematically create these

variations. This case study has no smart devices, instead we induce the workload by

producing messages with a load driver. We measure the CPU utilization and the queue

departure rate in order to compare it to an analytical model (Question 1.1). Then, we

investigate the quality of scaling decisions in varying capacity and connectivity scenarios

for threshold-based rules auto-scaling systems (Question 1.2).

Goal 2 – Congestion Avoidance Characteristics of Flow Control. This goal aims to investi-

gate the congestion avoidance characteristics of a set of �ow control approaches in the

context of sensing cloud applications. On the example of the ShapeShifter case study, we

analyze varying load and capacity scenarios, in which the approaches adapt the transmis-

sion rate in accordance to the capacity of the cloud service. Since applications di�er in

timeliness demands, we create a pareto curve consisting of the achieved utilization and

the congestion-induced delay. This allows a comparison across the approach candidates.

Goal 3 – QoS Conformance of Flow Control in Overload Scenarios. The third goal aims to

evaluate the in�uence of �ow control approaches on the QoS conformance in overload

scenarios. We introduce QoS cost sets for qualities of sensing cloud applications to the

ShapeShifter case study and normalize the dimensions to each other. We investigate the

in�uence of approaches on the QoS characteristics of the cloud application for varying

congestion severities. We compare the approaches to each other via the cumulative

QoS costs (Question 3.1). Furthermore, we compare them to state of the art resource

provisioning approaches (Question 3.2).

Goal 4 –QoS Conformance of Coupled FlowControl in Overload Scenarios. The fourth goal

extends goal 3 by investigating coupled approaches consisting of a combination of �ow

control and resource provisioning. Again, they are compared in terms of the cumulative

QoS costs and the QoS cost characteristics in varying overload scenarios (Question 4).

Goal 5 – Validation of Simulation Results on the Bosch IoT Cloud. Goal 5 aims to validate

the �ndings of goal 3 and 4 by comparing the predicted QoS costs to measured QoS costs

on a Bosch cloud platform. It states the prediction accuracy for the cumulative QoS costs

and the predicted costs of each dimension as a percentage error.

Goal6–QoSConformanceof (coupled) FlowControl indi�erentApplicationScenarios. The

sixth goal investigates the capabilities of (coupled) �ow control approaches to maintain

the QoS in intensifying overload scenarios of time, accuracy and resource cost driven

sensing cloud applications. In contrast to goal 3 and 4, we provide a �xed set of QoS cost

function which is weighted to represent a speci�c application scenario. We create a range

of intensifying overload scenarios and conduct the experiments on the ShapeShifter case

70

8.2. Experimental Setup

study system. We compare them to each other and to resource provisioning approaches in

terms of the cumulative QoS costs.

Goal 7 – QoS Contributions of (coupled) Flow Control on the Example of a Sensing Cloud Ap-
plication. This goal investigate the contributions of the presented approaches on the

QoS conformance on the example of a smart heating unit system. The system is based

on a Bosch connected heating solution and deployed on a Kubernetes cluster. In contrast

to the previous investigations, we capture the accuracy sensed by the smart devices. We

compare the results of isolated and coupled approaches with two di�erent cost function

sets, of which one considers the perceived accuracy. The results are compared in terms of

the cumulative QoS costs.

Goal 8 – Congestion Avoidance Characteristics of TCP-inspired Flow Control. The goal is to

investigate the characteristics of AIMD-based TCP-inspired �ow control approaches in a

distributed and centralized setup. We compute the achieved fairness in a distributed setup

(Question 8.1) and compare the adaptation quality of a distributed with a centralized setup

(Question 8.2). The adaptation quality captures the average service utilization and the

congestion-induced delay.

8.2. Experimental Setup

In this section we describe the experimental setup, which is illustrated in �gure 8.1. The

experiments are conducted via the SEIA framework which has been introduced in chapter

7. Since many of the experiments demand optimized candidates of the approaches to

investigate their characteristics, we instantiate the optimization framework presented in

chapter 4.

8.2.1. Overview

All experiments are conducted by using the SEIA framework, which has been extended by

a case study controller.

Experiment Controller The experimental controller is the core part of each experiment.

It con�gures the runtime strategies, the connectivity of the devices during the experiment

and observes the system under test. The measurements are collected and analyzed in order

to answer a given objective.

System under Test The system under test are sensing cloud applications, which provide

monitoring and recon�guration interfaces for their cloud components. The managed

cloud components are microservices, message queues and smart devices. The runtime

environment of the sensing cloud application is either a simulation model or a real cloud

infrastructure. Since most of the validation goals demand highly optimized candidates

we rely in most instances on a simulation model. The �ndings are then validated by

conducting experiments on the IoT application deployed on the cloud infrastructure.

71

8. Validation

Figure 8.1.: Experimental Setup. The system under test is a case study system.

Connectivity Controller Connectivity patterns describe the changing number of con-

nected devices over time. The workload on the system results from the number of con-

nected devices and the con�gured transmission rate. Therefore the number of devices

is given by the experimental setup whereas the transmission rate can be recon�gured

during the experiment resulting in a dynamic workload. The connectivity controller uses a

binding to the infrastructure of the system under test to create or destroy synthetic smart

devices.

Runtime Strategies The runtime strategies monitor and recon�gure the system based on

their internal adaptation engine, e.g. a �ow control strategy or an auto-scaler.

8.2.2. Optimization Framework

In the following we instantiate the optimization framework introduced in chapter 4.6. For

each validation goal, we provide a custom set of QoS cost functions, which are introduced

and discussed in the experimental setup. In the following we introduce the simulation

model and the optimization method used across all validation goals, which require an

optimization.

8.2.3. Simulation Model

As a simulation model we rely on the QT based model introduced in chapter 3.2. Whereas

it is limited in not supporting multiple cloud services, it allows to simulate the dynamic

recon�guration of the provisioning and the transmission rate. In this model, we obtain the

queueing delay measured by the message queue as the input for a timeliness cost function

or perceived accuracy. We observe the transmission rate of each smart device as an input

for an accuracy cost function based on the collection interval. We model the microservice of

the cloud application with a service time distribution, in order to simulate processing time.

Overall, the simulation model allows to measure the QoS metrics introduced in section

4.3. Therefore, the results can be used to quantify the QoS costs achieved by a speci�c

72

8.3. Case Study Systems

con�guration. It enables to simulate runtime management approaches by providing a

probing and e�ecting infrastructure. Therefore, it provides the interfaces required for an

integration into the optimization framework presented in section 4.6. For each validation

goal, the results are validated against measurements on an implemented system.

8.2.3.1. Optimization Method

We optimize candidates based on a di�erential evolution (DE) based search approach.

DE has been presented in [69] and is a heuristic, multi-dimensional genetic optimization

method. It optimizes a problem by maintaining a population of candidate solutions which

are combined to existing ones and �ltered in terms of the best �tness, i.e. lowest QoS costs.

We select DE due to being able to be parallel computed, to optimize multiple objectives

and its widespread usage in academia and industry. Furthermore we assume a nonlinear

objective function with many variables based on the potentially high parameter space of

runtime management approaches. The parameters of runtime candidates are observed as

dimensions, which have to be optimized. As a �tness function, we rely on the cumulative

QoS costs.

8.3. Case Study Systems

In the following, we present the case study systems used for validating the environments.

They are deployed on heterogeneous cloud infrastructures and each experiment is managed

by SEIA.

8.3.1. ShapeShi�er

The ShapeShifter case study system aims for a high external validity by providing a

highly con�gurable IoT solution consisting of smart devices, a messaging middleware and

a cloud service.

8.3.1.1. Architecture

Figure 8.2 illustrates the conceptual architecture of the system.

Microservice. The microservice consumes messages out of a message queue and processes

each message in a FIFO manner with characteristics based on its con�guration. The

con�guration of the microservice allows to set the computation and I/O wait time for

processing a message. The sum of both impacts the capacity of a microservice instance

since it determines the service time, whereas the mix of both determines its resource

characteristics. We implement the microservice as a lightweight Python application which

provides a REST API as recon�guration interface. The con�guration is shared across all

microservice instances using a network �le system (NFS). We do not rely on environment

variables, since the cloud platform does not support a dynamic change of environment

variables. Based on timestamps in messages the microservices also publish the current

end-to-end time.

73

8. Validation

Figure 8.2.: Illustration of the ShapeShifter case study. The computation steps and the

wait time on the microservice can be adjusted to variate the microservices’

characteristics.

Messaging Middleware (IoT platform). The messaging middleware provides a REST API

to receive messages from devices or a load driver. These messages are then enqueued in

a message queue and processed by the microservice. The messaging middleware acts as

a lightweight IoT platform, since it allows smart devices to connect and receives sensor

data. It also o�ers an interface to adjust the transmission rate of each device. Furthermore,

the communication to each smart device can be delayed by a given latency distribution, in

order to attribute to e�ects in a productive environment.

Smart Devices. Due to cost reasons, the smart devices are synthetic entities, which

are instantiated by a controller of the IoT platform. A smart device is an entity, which

periodically sends sensor data with a creation timestamp in the payload. The timestamp

allows to track the passed time between the creation and processing of a message.

Load Driver. The load driver creates messages and provides them to the messaging mid-

dleware. The load driver produces the messages with a time-varying intensity based on

workload patterns and has no smart device semantic.

8.3.1.2. Environment

The ShapeShifter case study system is deployed on the Bosch IoT Cloud, a PaaS based

on Pivotal CloudFoundry. We extend SEIA with bindings to CloudFoundry and obtain

application stats, e.g. CPU utilization, using the o�cial CloudFoundry Java client
1
. Fur-

thermore we implement a CloudFoundry horizontal provisioning engine in order to be

able to perform scale in or out operations. We select Pivotal RabbitMQ as a message

broker, which we deploy on a VM within the cloud infrastructure. We extend SEIA with

a RabbitMQ binding based on the o�cial management API. Furthermore we install a

message timestamp plugin
2
, in order to retrieve the queueing delay of a given queue. The

smart device controller is also deployed as a microservice on the Bosch IoT Cloud.

1
https://github.com/cloudfoundry/cf-java-client

2
https://github.com/rabbitmq/rabbitmq-message-timestamp

74

8.3. Case Study Systems

8.3.1.3. Simulation Model

We parameterize the simulation model presented in section 3.3 to represent the environ-

ment characteristics of this case study. In order to simulate the monitoring behavior of

RabbitMQ and CloudFoundry, we conduct measurements on our cluster to parameterize

the measurements providers"% = ()- , #) as a tuple of an update interval)- and a moving

average of size # as follows:

• Microservice on CloudFoundry: "%"82A>B4AE824 = (15 sec, 15)

• Message Queue on RabbitMQ: "%"4BB064&D4D4 = (5 sec, 10)

Furthermore, we measure the provisioning time for a single ShapeShifter microservice

on CloudFoundry and set the scaling delay)(20;8=6 to 3 sec.

8.3.2. Connected Heating

In this section, we present Connected Heating, an innovative IoT solution of the Robert

Bosch GmbH. By connecting heating units via an intelligent gateway with cloud solutions

it supports a number of use cases. The case study is used to evaluate the impact of runtime

management approaches presented in this thesis on the QoS conformance on the example

of an industry relevant system.

8.3.2.1. Architecture

The heating units are connected via a messaging middleware to the cloud solutions. Figure

8.3 illustrates the system.

Figure 8.3.: Connected Heating case study system.

Connected heating units communicate via a REST API to the messaging middleware. The

messaging middleware enqueues received messages and dispatch them to corresponding

cloud solutions which may consist of multiple services. Each cloud solution retrieves

messages via a dedicated message queue. Whereas Connected Heating supports a range

of use cases we focus on the Predictive Maintenance use case. In this use case heating

units periodically send pressure and temperature data which is analyzed by a predictive

maintenance service.

75

8. Validation

8.3.2.2. Implementation

Connected Heating is based on a productively used system which we re-implement. The

cloud solutions consists of a scalable microservices with a con�gurable service time

to simulate the business work�ow, e.g. calls to the external database. Furthermore it

consumes messages out of the RabbitMQ message queue. We extend the microservice and

IoT platform implementations of the ShapeShifter case study. We rebuild the architecture

of each system by deploying the con�gured microservices and creating the communication

mechanisms. Furthermore, if applicable, we provide environmental models in order to

enable sensing accuracy quanti�cations. Therefore the synthetic smart devices pass

messages containing environmental data to the cloud application. All components are

deployed on the Bosch IoT Cloud.

Parameterization. In cooperation with the Bosch business area we have conducted load

tests on the Connected Heating system. These measurements contain message queue and

microservice statistics which allows us to estimate the resource demand for each message

using LibReDe [68]. Based on the estimated resource demand, we parameterize instances

of the con�gurable microservice introduced in the previous case study system.

8.3.2.3. Environment

The case study is deployed on a Kubernetes cluster hosted on the bwCloud
3
, an IaaS for

science and education. We extend SEIA with bindings to Kubernetes and obtain application

stats, e.g. CPU utilization, using the Kubernetes CLI
4
. Furthermore we implement a

Kubernetes deployment scaler in order to be able to perform scale in or out operations

by replicating pods of a speci�c deployment. We select Pivotal RabbitMQ as a message

broker and deploy it on the Kubernetes cluster.

8.3.2.4. Predictive Maintenance Architecture

Figure 8.4 illustrates the cloud solution for the predictive maintenance use case.

Figure 8.4.: Connected Heating case study system.

3
https://www.bw-cloud.org/

4
https://github.com/kubernetes/kubernetes/tree/master/pkg/kubectl

76

8.4. Evaluation of Performance Metrics for Scaling Decisions

Heating units send periodically pressure and temperature sensor data to the heating

control service. The heating control services stores the received data by providing it to a

maintenance service.

The request happen regularly, at an interval of 15 sec per heating unit, inducing a

constant load. The use case allows to investigate varying transmission patterns based on

di�erent policies.

8.4. Evaluation of Performance Metrics for Scaling Decisions

In this section, we evaluate the impact of capacity and resource demand variations on

scaling decisions based on the ShapeShifter case study introduced in section 8.3. Fur-

thermore, we validate the prediction accuracy of the analytical and simulation model

presented in chapter 3. The validation targets Goal 1 of this thesis and enables a service

operator to make an educated selection of the auto-scalers’ performance metric for speci�c

microservices.

8.4.1. Experimental Design

Figure 8.5 illustrates the experimental design. First, we calibrate the simulation model

by conducting controlled experiments. Then we select the objective, e.g. evaluating the

impact of capacity variations on the CPU utilization. We evaluate the performance metrics

analytically by adjusting the resource demand and capacity. We use a simulation model

to analyze the elasticity of auto-scalers based on these performance metrics and their

robustness to capacity and resource demand changes. In order to search for optimal auto-

scaler con�gurations, we instantiate the optimization framework introduced in section

8.2.2 with SEIA. We validate the predictions of the elasticity and the metrics by executing

controlled experiments on the case study system deployed on the Bosch IoT Cloud.

Figure 8.5.: Sequence Diagram of the experimental design.

77

8. Validation

Addressing Question 1.1 We evaluate the impact of capacity and resource demand varia-

tions on infrastructure metrics by varying the resource demand of the microservice in a

manner, which re�ects variations in the overall service time and in the workload mix. In

this setup, we do not utilize an auto-scaling system. Finally, we analyze the correlation be-

tween the infrastructure metrics to variations in the overall service time and the workload

mix.

Addressing Question 1.2 We compare the predictions of the calibrated queueing theory

based model with measurements obtained by experiments conducted on the ShapeShifter

case study. We quantify the correlation using the Pearson correlation coe�cient [12].

Addressing Question 1.3 In order to evaluate the impact on the auto-scalers elasticity we

capture timing and accuracy aspects of scaling decisions and observe time-based QoS

violations. We select an initial scenario for which we heuristically optimize each threshold.

We use the optimized thresholds to evaluate the robustness of the auto-scalers in scenarios

with varying service time and workload mix.

Addressing Question 1.4 We compare the simulation predictions with measurements

obtained by experiments conducted on the Bosch IoT Cloud infrastructure. We quantify

the prediction accuracy for the performance metrics and the elasticity.

8.4.1.1. Calibration

In this section, we brie�y state the calibration approach to parameterize the analytical and

simulation model.

Calibrating the Analytical Model. We set the resource demand of a message to �" =

(��%*) by disabling the I/O-share of processing a message. We con�gure the required

computation steps : to use it as baseline CPU demand ��%* = : . The calibration module

measures the round trip)ACC to the microservice. We conduct 8 = 1000 requests and measure

the elapsed time)4;0 to retrieve the service time per request ()'4@ =
)4;0
8
−)ACC . Finally, we

calculate the CPU capacity ��%* =
()'4@

��%*
. Using the capacity and a given CPU resource

demand ��%* we predict the service time ()�%* with ()�%* (��%*) = ��%* ∗ ��%* .

Calibrating the Simulation Model. We calibrate the scaling delay)(20;8=6 by conducting

scaling operations and measure the time span between decision and impact. To calibrate

the measurement providers we conduct a set of controlled experiments with varying

workload intensity and patterns. By analyzing changes in the measurements, we identify

the publish interval)- . We model each measurement provider as a moving average of

size # . We estimate # by analyzing the measurements with expected values based on the

controlled setup.

78

8.4. Evaluation of Performance Metrics for Scaling Decisions

8.4.1.2. Elasticity Quantification

To quantity the achieved elasticity of a metric-based auto-scaler we rely on elasticity

metrics proposed in [37]. Based on a theoretical optimal behavior, in which the resource

demand is matched by the supplied resources, we calculate the timeshare spent in an

under- or overprovisioned state: g* and g$. To capture accuracy aspects, we rely on the

relative amount of under- and overprovisioned resources: * and \$. We aggregate the

set of elasticity metrics by computing the elastic deviation f . In contrast to the elastic

speedup, which is also proposed in [37], the elastic deviation does not require a no-scaler

baseline to quantify the elasticity. It expresses the resemblance to an optimal auto-scaling

with a value of 0 as an ideal match.

8.4.1.3. Optimize Thresholds

A threshold-based rules auto-scaling systems typically relies on an upper and lower

threshold for scaling decisions. Therefore, the selection of the thresholds has a strong

impact on the achieved elasticity.

We formulate the optimization problem as follows: Let the con�guration of the auto-

scaler consists of a performance metric #: = {�%* ,&!4=6Cℎ,
&�4;0~,&�A>FCℎ} with a threshold pair " = {;>F4A,D??4A }. Let �: : #:G" → <
an optimal mapping such that the objective � = f is minimized. The computed elastic

deviation f is used as �tness function in the optimization framework.

8.4.1.4. Capacity and Resource Demand Variations

We model the impact of capacity or resource demand variations by changing the fraction

of compute to wait operations — denoted as workload mix — or the overall service time

for processing a message.

WorkloadMix. Let a workload mix be in the range of 0 % to 100 % and expresses the share

of compute to wait time. The workload mix !<8G is determined by adjusting the resource

demand ��%* and ��$ such that !<8G =
��%* ∗��%*

��%* ∗��%* +��$∗��$

8.4.2. Q.1.1 – Impact of Resource Demand and Capacity Variations on
Infrastructure Metrics

In this section we evaluate the impact of workload mix and service time variations on

CPU and message queue metrics. We use the analytical model presented in chapter 3. We

produce a workload burst of 600 messages with a size of 500 Bytes to the message queue.

The experiment duration is 2min.

Workload Mix Variations. We evaluate the impact of changes in the workload mix on the

infrastructure metrics, whereas the overall service time does not change. We adjust the

workload mix !<8G in a range of 0 % to 100 % by adjusting the relation of ��%* and ��$.

The overall service time is 100ms per message in each scenario.

79

8. Validation

(a) CPU Utilization (b) Output Rate

Figure 8.6.: Measured and predicted CPU utilization and queue output rate for a varying

workload mix.

(a) CPU Utilization (b) Output Rate

Figure 8.7.: Measured and predicted CPU utilization and queue output rate for a varying

service time.

Figure 8.6 shows the predictions over the variations in the workload mix. The results

show a strong correlation of the CPU utilization to the workload mix of 0.99. There is no

correlation between queueing metrics to the workload mix.

Service Time Variations. We evaluate the impact of changes in the service time on the

infrastructure metrics, whereas the workload mix stays constant at 50 %. We vary the

overall service time per message between 5ms and 1000ms by proportionally increasing

the resource demand ��%* and ��$.

Figure 8.7 shows the predictions over the variations of the service time. The results

show a correlation of the queue output rate of −0.59. The correlation is degraded since

the output rate is the inverse of the service time, resulting in a non-linear relation. The

CPU has no correlation to the service time.

80

8.4. Evaluation of Performance Metrics for Scaling Decisions

Conclusion. We analyzed the impact of resource demand and capacity variations on the

CPU and queueing metrics. We calibrated a queueing theory based model to predict the

CPU utilization and the queue output rate of messages. The predictions show, that the

CPU utilization correlates with the workload mix, whereas queueing metrics correlates

with service time variations.

8.4.3. Q.1.2 – Infrastructure Metric Model Accuracy

In this section we evaluate the prediction accuracy of the analytical model by conducting

controlled experiments on the Bosch IoT Cloud. Figure 8.6 shows the predictions for a

varying workload mix. The prediction error of the CPU utilization is 10.72 % and for the

queue departure rate −1.74 % respectively. Since our model does not include the fetching

of messages out of the message queue, we expect that this is responsible for the slightly

degraded departure rate and the CPU degradation due to an increased service time. Figure

8.7 shows the predictions for a varying service time. The prediction error of the CPU

utilization is 1.62 % and for the queue departure rate 1.93 % respectively. The analytical

model predicts the CPU utilization and the queue departure rate with a high accuracy.

8.4.4. Q.1.3 – Impact of Resource Demand and Capacity Variations on
Scaling Decisions

This sections evaluates the impact of resource demand and capacity variations on scaling

decisions of threshold-based auto-scalers. We capture the elasticity of the auto-scalers in

two scenarios: �rst, by adjusting the service time, then by adjusting the workload mix.

We evaluate the elasticity of the auto-scalers based on a simulation model. Therefore, we

re�ne the experimental design.

8.4.4.1. Experimental Design

We conduct two sets of experiments. First, we variate the workload mix by adjusting the

CPU share for each message in a range of 0 % to 100 %. Furthermore, we variate the service

time in a range of 50ms to 1000ms. We capture the elasticity measures to evaluate the

auto-scalers in each scenario. Furthermore, we obtain SLO metrics, such as the percentage

of response time violations with a threshold of 1000ms. We derive the response time by

measuring the queueing delay. Furthermore, we include the average number of instances.

We con�gure the di�erential evolution with 80 iterations and a population size of 10.

The optimization controller uses the simulation model to evaluate a given auto-scaler

con�guration. We compare the optimized auto-scalers with a baseline which is a no-scaler

scenario with a statically provisioned microservice. Finally, we validate the simulation

�ndings by conducting controlled experiments with the optimized threshold con�guration

across some points of the given scenarios. For each measurement we compare the elastic

deviation and the SLO violations in order to con�rm the predictions of the simulation.

81

8. Validation

Application Scenario. In the initial application scenario, we con�gure the service time

per message as follows: ()" = ()�%* + ()�$ = 500ms with
()�%*
()�$

= 1 such that the CPU

share for each message is 50 %. The microservice is provisioned with 1 instance.

Workload. We use traces
5

from the 24.12.2007 of the english Wikipedia to obtain a real-

world workload with time-varying behavior. The traces are on a per hour base, which we

speed up by factor 60, such that each hour is a minute in the experiment. Furthermore

we decrease the load intensity by a factor of 2500. The overall experiment duration is

)4G? = 24min with a total of 13800 produced messages.

SimulationModel. The simulation model uses the calibrated analytical model to calculate

the service time and CPU utilization in each simulation step. Furthermore, we calibrate

the simulation model to re�ect the monitoring policies of the measurement provider.

Elasticity Quantification. The elastic deviation is used as �tness function for the optimiza-

tion and is part of the elasticity metrics used to evaluate the auto-scalers. We adjust the

elastic deviation to exclude instability, since there are no costs associated with unnecessary

resource supply adaptations on our PaaS. Therefore we calculate the elastic deviation as

follows: f = (\ 4
*
+ \ 4

$
+ g4

*
+ g4

$
) 14 .

8.4.4.2. Results

In the following we evaluate the auto-scalers in three di�erent scenarios. In the initial

application scenario we discuss the results achieved by the optimized thresholds. Then, we

vary the service time and the workload mix to evaluate the impact of each on the elasticity

of the auto-scalers and the SLO violations.

Initial Application Scenario. Table 8.1 summarizes the elasticity and SLO metrics of the

optimized thresholds for the initial application scenario. In terms of elasticity the queue

growth excels the other metrics whereas the CPU utilization is the worst. In terms of the

SLO violations the CPU utilization excels the other metrics with the queue growth as the

worst. The CPU utilization provides a balanced mix between elasticity and SLO violations.

The queue growth is able to adjust provisioned resources in a �ne-granular manner by

considering the current capacity to the current load. However, it is barely a�ected by the

current queue length resulting in a high percentage of SLO violations. The queue length

is a metric which requires enqueued message in order to make scaling decisions. This

results in a high amount of SLO violations based on the high service time per message and

the strict SLO threshold. However, it performs well in regard to achieved elasticity. The

queueing delay o�ers a similar elasticity as the queue length, but has a worse response

time. Since all metrics are optimized towards elasticity, they favor an overall low deviation

to the optimal scaling behavior over a low response time.

5 ℎCC? : //FFF.F8:814=2ℎ.4D/??06483 = 60

82

8.4. Evaluation of Performance Metrics for Scaling Decisions

No Scaling CPU Queue Length Queue Growth Queue Delay

022DA02~D 65.75 4.32 7.39 4.55 6.75

022DA02~> 0 10.29 6.16 1.31 6.77

C8<4Bℎ0A4D 83.26 18.89 24.89 22.29 26.88

C8<4Bℎ0A4> 0 30.9 21.18 4.38 23.47

f (4;0BC8234E .) 96.15 31.93 26.59 22.32 30.25

SLO violations [%] 99.72 22.15 57.78 88.19 70.14

Avg. #Instances [#] 1 5.34 5.15 4.9 5.06

Avg. resp. time [sec] 531.44 1.46 6.33 25.25 9.16

Med. resp. time [sec] 517 0 3 26 9

elastic speedup 1 2.74 3.01 5.92 2.64

Table 8.1.: Elasticity and SLO metrics for auto-scalers using a speci�c performance metric

with optimized thresholds.

Service Time Variations. The impact of service time variations on the elastic deviation

for each metric-based scaler is shown in �gure 8.8, whereas the e�ect on the SLO is

shown in �gure 8.9. All metrics seems to be a�ected in a similar manner in terms of the

elastic deviation. With decreasing service time they perform better since less resources

and therefore scaling decisions are required. With an increasing service time the graph

shows a slight increase in the elastic deviation since more resources and therefore scaling

decisions are required. The queue growth and the queueing delay exhibit a high variance.

The queue length and CPU utilization a low variance. This indicates, that the queue growth

and delay have a narrow space of high-performing con�gurations and therefore require a

deeper search.

Both, the CPU utilization and the queue length, are able to maintain a low percentage

of SLO violations. The queue growth exhibits an unsteady behavior which we assume to

be based on the complex interaction of queue length, arrival rate and queue output rate.

The queueing delay maintains a steady percentage of SLO violations. However, for an

increasing service time the SLO violations are slightly decreasing which may be based on

the faster growing queueing delay since the microservice processes messages slower with

an unchanged arrival rate.

In conclusion, each metric has shown a high degree of robustness towards changes in

the service time. The characteristics of the optimized thresholds are largely maintained

during the variations, e.g. the elastic deviation or the percentage of SLO violations. The

CPU utilization o�ers in this setup a good mix of elastic deviation and SLO conformance,

followed by the queue length.

Workload Mix Variations. Figure 8.10 shows the e�ects of workload mix variations on the

elastic deviation, whereas �gure 8.11 shows the e�ect on the SLO. As concluded in the

previous evaluation, the message queue metrics are not a�ected by the workload mix. This

results in a constant elasticity across the workload mix variations. In contrast, relying on

the CPU utilization results in a drastic degradation of the elastic deviation if the workload

mix decreases. The optimization strives to an upper threshold, which approximates the

CPU utilization in a fully utilized scenario. If the service is now fully utilized, but the

83

8. Validation

Figure 8.8.: E�ect of service time variations on the elastic deviation.

Figure 8.9.: E�ect of service time variations on the SLO.

CPU share of the workload decreases, the upper threshold is not breached, resulting in

no scaling decision at all. The elastic deviation steadily increases for an increasing CPU

utilization. This is based on an increased overprovisioned timeshare C8<4Bℎ0A4> since the

scaler provisions too aggressively.

84

8.4. Evaluation of Performance Metrics for Scaling Decisions

Figure 8.10.: E�ect of CPU share variations on the elastic deviation.

Whereas the percentage of SLO violations stays constant for all queue metrics, it

increases greatly for a decreasing CPU share and decreases for an increasing CPU share.

Whereas the �rst is based on no scaling decisions, since the upper threshold is never

breached, the last is based on the aggressive provisioning of the scaler, since the upper

threshold is comparatively low for higher CPU share scenarios.

Figure 8.11.: E�ect of CPU share variations on the SLO.

We conclude this experiment by emphasizing the low robustness of the CPU-based

auto-scalers to cope with variations in the CPU share of the workload.

85

8. Validation

X(!$ (ST Var.) Xf (ST Var.) X(!$ (CPU Var.) Xf (CPU Var.)

Queue Length 6.7 10.6 4.7 34.6

Queueing Delay 8.4 15.3 4.2 20.4

Queue Growth 30.1 117.7 12.8 49.8

CPU Utilization 18.2 14.0 69.2 35.3

Table 8.2.: Prediction error of the simulation.

8.4.5. Q.1.4 – Simulation Model Accuracy

For each performance metric, we conduct controlled experiments for!<8G = {25, 50, 75, 100}
and () = {250, 500, 750, 1000}. Table 8.2 summarizes the prediction error of SLO violations

X(!$ and of the elastic deviation Xf .

The average prediction error for elasticity and SLO violations for an auto-scaler based

on the queue length is 14.17 %, for the queueing delay 12.12 %, for the queue growth

52.64 % and for the CPU utilization 34.18 %. Since the simulation framework models the

monitoring infrastructure, errors in modeling measurements of the arrival and departure

rate cumulate in a high queue growth prediction error. The queueing delay has a low

prediction error. Overall, the results of the controlled experiments show a satisfying

prediction accuracy and support the �ndings of this evaluation.

8.4.6. Threats to Validity

We rely on the guidelines described in [63] to discuss threats to validity of the evaluation.

A special focus lies on the experimental setup, which may a�ect the generalizability of the

results.

Internal validity. We evaluate the impact of resource demand and capacity variations on

scaling decisions. By varying the wait and computation time in a controlled manner, we

express variations, which result in a change in the service time or CPU share. By validating

an analytical and simulation model, we exclude the possibility of another in�uential factor

a�ecting the service time or the CPU share. However, if the payload of messages is

drastically increased or the message service time is strongly reduced, we expect a stronger

in�uence of the communication mechanisms on the results, which may require re�nements

of the analytical model.

External validity. The microservice architectural style aims for loosely coupled and highly

specialized microservices. Both, an asynchronous communication via message queues and

a synchronous communication via the REST paradigm is common. Therefore we deem the

message queues and the usage of their metrics for scaling decisions as relevant for service

operators. The synthetic microservice is a simpli�ed model of a real-world application

for the SaaS use case. However, the fundamental architecture for a similar use case is

discussed in [16]. For this reason we assume that it is su�cient to represent this class of

cloud applications. We generalize the CPU results for microservices which do not utilize a

message queue.

86

8.5. Congestion Avoidance Characteristics of time-driven Flow Control

Threshold-based rules auto-scaling is one of the simplest mechanisms to provision

resources in a cloud environment. In this setup we identi�ed that the quality of perfor-

mance metrics for scaling decisions depends on microservice characteristics. We cannot

exclude the possibility that other scaling mechanisms are more adaptive to changes in the

microservice characteristics and their impact on the performance metrics. However, since

we perceive threshold-based rules as one of the most common scaling strategies in industry

we see validity of our evaluation in real-world scenarios. By creating an analytical model

of the in�uence of the external service characteristics on the microservices CPU utilization

and throughput we emphasize the validity of the case study in an analytical manner.

Construct validity. We derive the robustness of each setup by comparing the elasticity

achieved of a auto-scaler in di�erent scenarios. By capturing timing and accuracy aspects

they provide an application-agnostic measure to evaluate the performance of auto-scalers.

However, a service operator may have multiple goals which include SLO conformance. In

these cases the elasticity measures can be weighted or combined with SLO violations. We

assume, that the general �ndings of the evaluation are still valid in these cases.

Reliability validity. By describing the analytical and simulation model and the experimen-

tal setup we strongly assume that the results are reproducible thus making it possible for

another researcher to conduct the same evaluation and obtain the same or very similar

results. We see a limitation in the dynamic nature of the cloud environment which could

possible change the optimal thresholds based on the time of experiment.

8.4.7. Discussion

In this section we have answered RQ 1. We validated an analytical and simulation model

by conducting measurements. We have shown that thresholds based on message queue

metrics are robust towards resource demand and capacity variations. The elasticity of CPU-

based auto-scalers is greatly decreased if the CPU share of processing messages decreases,

e.g. due to an increased wait time or computation capacity. We have shown, that these

result in drastic changes of the SLO conformance for the CPU utilization. Otherwise, the

CPU utilization o�ers a low elastic deviation and a high SLO conformance. For this reason

we highly recommend a queue-based auto-scaler for runtime managing microservices with

a high variation in the computation capacity or wait time. For some microservices it may

be su�cient to con�gure a comparatively low upper threshold in order to be more robust

to CPU share variations. However, this probably results in a lesser degree of elasticity by

overprovisioning, which a�ect the operating costs.

8.5. Congestion Avoidance Characteristics of time-driven
Flow Control

This section investigates the congestion avoidance characteristics of the time-driven �ow

control approaches presented in chapter 5. Therefore, it addresses Goal 2 of the validation.

87

8. Validation

In the congestion-avoidance mode the approaches aim to fully utilize the available capacity

by continuously probing the capacity with transmission rate adjustments. We analyze

varying load and capacity scenarios, in which we adjust the number of connected devices

or the cloud service capacity during runtime. Since sensing cloud applications di�er in

timeliness demands, we create a pareto curve for each scenario. The pareto curve captures

the congestion avoidance e�ciency in terms of the average achieved service utilization

and the congestion-induced processing delay. In order to construct the curves, we search

for optimal con�gurations for a range of target service utilizations aiming for a minimal

congestion-induced delay. The pareto curve can be used to select a strategy and con�gure

it to reach a target service utilization based on the application-speci�c trade-o� between

the achieved utilization and the congestion-induced delay. Therefore, we do not introduce

QoS cost functions to quantify timeliness or accuracy costs.

8.5.1. Experimental Design

The goal of the experiment is to retrieve the characteristics of each �ow control strategy

in terms of the congestion avoidance e�ciency. The congestion avoidance e�ciency is

expressed by a curve, which consists of the average utilization over a minimal congestion-

induced delay. In order to quantify the service utilization we rely on the average CPU

utilization of the microservice as a proxy metric. Furthermore, we use the measured

queueing delay as a proxy for the congestion-induced delay.

Retrieving such curves is computational expensive since the mapping between con-

�guration and resulting service utilization and queueing delay is complex. Instead of

brute forcing con�guration candidates, we instantiate the optimization framework and

simulation model as described in section 8.2.2. By relying on DE, we are able to reduce

the search e�ort by heuristically creating candidates for the pareto curve input. We con-

�gure the simulation model based on the ShapeShifter case study characteristics. These

characteristics include the monitoring policies of the measurement providers and the

recon�guration delay of smart devices. Finally, we validate the �ndings and determine the

simulation prediction accuracy by conducting experiments on the deployed case study

system on the Bosch IoT Cloud.

Flow Control Candidates. We evaluate the following �ow control strategies: capacity-

estimating �ow control (CEF) and the TCP-inspired �ow control (TIF) with four di�erent

control schemes: AIMD, MIMD, AIAD, MIAD. We also include the TIF approaches with

load extension (TIF-L), to evaluate its impact on the adaptation behavior, especially in

varying connectivity scenarios.

Capacity and Connectivity Scenarios. Figure 8.12 shows the capacity and connectivity

scenarios. Based on the objective, we either adjust the capacity or the connectivity during

the experiment. The steady scenario aims to observe the steady state behavior of each

strategy. The dynamic scenarios with an increasing and decreasing capacity or connectivity

aims to capture the quality of adapting to changes. In order to allow a fair comparison

88

8.5. Congestion Avoidance Characteristics of time-driven Flow Control

each scenario has an average processing capacity of 2 = 22
msg

sec
and an average number of

22 connected devices.

Figure 8.12.: Connectivity and capacity variation scenarios to investigate the impact on

the congestion-avoiding �ow control strategies.

Configuration Space. Each �ow control approach utilizes an increase and decrease pa-

rameter. The parameters a�ect the congestion avoidance behavior to a great extent. Since

all approaches rely on a binary congestion feedback, we provide congestion observers

with the same con�guration. The approaches consist of the following parameter tuples ,

which are recon�gured during the candidate search:

• CEF: Uses an overload protection multiplicator :?A>C42C to accelerate the conges-

tion recovery and a recovery multiplicator :A42>E4A to re�ne the current capacity

estimation: ��� = (:?A>C42C , :A42>E4A)

• TIF: Uses an increase and a decrease parameter, which is, based on the scheme, of

additive or multiplicative nature:) �� = (:8=2A40B4, :342A40B4)

Congestion Observer. We con�gure the congestion observer to monitor the queue length

with a moving average size of 10 and a congestion threshold of 10. The congestion observer

retrieves every second an update from the infrastructure.

89

8. Validation

Pareto Curve Creation. To create the pareto curve, we introduce utilization slots of the

size of 5% in the range of 0 − 100%. For each slot, we search for the best con�guration in

terms of the minimal queueing delay. We rely on an experience-based iteration depth of

5000 and an initial population size of 40.

To evaluate the �tness of each con�guration candidate, we rely on the absolute di�erence

in the service utilization and the measured queueing delay. We calculate the absolute

deviation with Δ* = |*8B − *B;>C |, based on the target service utilization *B;>C and the

measured service utilization *8B . The �tness function � weights the service utilization

deviation to a greater extend but also considers the queueing delay)&�4;0~ :

� = Δ* 2 + Δ* ∗)&�4;0~
However, instead of using the best candidates only, we include each evaluated candidate

as an input for the pareto curve, if its achieved queueing delay is below the lowest queueing

delay of the corresponding utilization slot. Furthermore, we discard measurements which

have resulted in a queueing delay of 0 since it indicates, that the con�guration of the

strategy has not led to a congestion avoidance cycle during the experiment.

Pareto Curve Analysis. In order to attribute to qualitative di�erences across the overall

utilization range, we split the pareto curve in four slots of di�erent sizes. The �rst slot

contains a low utilization range of 0 − 50%, in which we expect the approaches to behave

similar. To analyze the behavior in a higher utilization range, we introduce more �ne-

granular slots: 50 − 78%, 70 − 85% and 85 − 100%. We capture for each slot the average

queueing delay. In order to compare the �ow control strategies we also capture the

overall average and median queueing delay across all slots. Furthermore, we compare the

combined results of TIF with the combined results of TIF-L in order to express qualitative

di�erences between both.

AdaptationProtectionTime. The adaptation protection time of each strategy isg�30?C0C8>= =

5 s. Between an adaptation protection interval, no recon�guration decision takes place.

The time is based on the reactivity of the congestion observer, which relies on a message

queue measurement provider. The message broker used in the ShapeShifter case study is a

RabbitMQ broker, which monitors with an interval of 5 s. Therefore, we assume, that the

adaptation protection time is su�cient to observe an e�ect of a recon�guration decision

in the subsequent adaptation step.

Initial Transmission Rate. In each scenario, we set the initial transmission rate of each

created device to)8=8C = 1
msg

sec
. We set the initial control scheme state of the TIF approaches

to)) �� =)8=8C . To allow a fair comparison with the load extension, we multiply the

initial transmission rate with the number of connected devices #�4E824B , such that)) ��−! =
#�4E824B ∗)8=8C .

Experiment Setup. We set the CPU share of messages to 100 % in order to have a proxy

metric of the service utilization. Furthermore, we set the latency distribution to be deter-

ministic at 0 s. The overall duration of the experimental run is Cexperiment = 12min.

90

8.5. Congestion Avoidance Characteristics of time-driven Flow Control

8.5.2. Q.2.1 – Congestion Avoidance E�iciency in a Steady Capacity and
Connectivity Scenario

The pareto curves retrieved from the experiments are shown in �gure 8.13 and summarized

in table 8.3.

Figure 8.13.: Pareto curve of the average utilization and queueing delay in a steady capacity

and connectivity scenario.

For utilization ranges below 50 % the strategies result in a similar utilization to queueing

delay ratio. However, TIF approaches based on a AIAD schemes result in slightly increased

queueing delays. Within an average utilization of 50 % − 70 % the characteristics of the

strategies start to spread apart, especially for control schemes relying on a multiplicative

increase. In an upper utilization range of above 70 % the quality of the strategies variates

greatly. In this range, TIF AIMD and TIF-L AIMD achieve with 1.27 s and 0.95 s the lowest

average queueing delay, closely followed by the CEF approach with 1.33 s. In utilization

scenarios above 85 % the queueing delay increases drastically for all approaches. Notably,

CEF approach maintains a comparatively low queueing delay of 5.65 s, followed by TIF

AIMD and TIF-L AIMD with 17.17 s and 10.87 s.

Based on the adaptation interval and the moving average, the congestion observer

perceives congestion delayed. Therefore, the control scheme may decide to further increase

the transmission rate. This can be observed for TIF request schemes with a multiplicative

in target utilization above 50 %. Since the transmission rate is increased multiplicative, the

adaptation decision impacts the resulting load to a great extent. Whereas it achieves a high

service utilization, it accumulated messages in the queue, resulting in a comparatively high

queueing delay. Approaches with an additive increase adjust in a linear manner, which

91

8. Validation

Strategy

Queueing Delay [sec]

Average Median 0-50 [%] 50-70 [%] 70-85 [%] 85-100 [%]

CEF 1.33 0.52 0.25 0.56 1.33 5.65

TIF AIAD 5.08 0.76 1.01 0.26 1.5 20.75

TIF AIMD 4.5 0.95 0.93 0.46 1.4 17.17

TIF MIAD 18.29 0.67 0.17 9.04 25.57 92.45

TIF MIMD 7.42 0.45 0.12 0.76 4.13 43.92

TIF-L AIAD 3.9 0.72 1.22 0.18 1.01 16.26

TIF-L AIMD 2.67 0.64 0.71 0.18 0.86 10.87

TIF-L MIAD 9.74 0.32 0.15 0.89 6.87 60.6

TIF-L MIMD 7.34 0.39 0.12 0.75 3.84 43.73

TIF 9.7 0.68 0.36 2.63 8.15 42.66

TIF-L 6.41 0.48 0.36 0.5 3.14 32.87

Table 8.3.: Results of the steady capacity and connectivity scenario.

allows to �nd candidates achieving a high service utilization and avoiding long-lasting

congestions. The con�guration of TIF(-L) and CEF is highly tunable in a steady scenario,

since it converges to the capacity with an oscillation which amplitude is determined by the

parametrization of the increase and decrease parameters. In theory, the load extension of

TIF has no in�uence on the adaptation quality in a steady scenario and behaves equivalent

to TIF. However, in the experiments we measure slight variations with an average deviation

of 14 %.

Overall, the CEF o�ers a high congestion avoidance e�ciency in a wide range of target

utilizations. However, TIF or TIF-L with AIMD or AIAD are also very strong candidates

and surpass CEF in utilization areas below 85 %, without inducing the same architectural

restrictions. However, the CEF approach allows a higher utilization of the service without

drastically increasing the queueing delay.

8.5.3. Q.2.2 – Congestion Avoidance E�iciency in a Varying Capacity
Scenario

The pareto curves for a scenario with a varying cloud service capacity but a constant

number of devices are shown in �gure 8.14 and are summarized in table 8.4.

As in the steady connectivity and capacity scenario, the approaches have a similar

characteristic for an average utilization below 50 %. For utilizations between 50 % − 85 %,

TIF(-L) with AIMD and AIAD outperforms the other approaches, with an average queueing

delay between 0.29 s − 2.97 s. In a high utilization range of 85 % − 100 % CEF surpasses the

TIF approaches, with an average queueing delay of 8.51 s.

By varying the capacity, CEF is challenged to estimate the time-varying capacity with

a high accuracy. In scenarios with an utilization below 85 % congestions are less severe.

Since CEF estimates the capacity in congestion state, it is readjusted less often. We assume,

that this contributes to the qualitative degradation compared to the previous experiment.

Since the experiment considers a change in the capacity but not in the number of connected

92

8.5. Congestion Avoidance Characteristics of time-driven Flow Control

Figure 8.14.: Pareto curve of the average utilization and queueing delay in a varying

capacity and steady connectivity scenario.

devices, the optimization of the con�guration parameters should result in an equivalent

behavior for both TIF approaches. However, based on the results, we measure an average

deviation of 27 % in the achieved average queueing delay.

In this scenario, TIF(-L) AIMD and AIAD outperforms CEF slightly. TIF(-L) schemes

based on multiplicative increase maintain an inferior congestion avoidance e�ciency.

8.5.4. Q.2.3 – Congestion Avoidance E�iciency in a Varying Connectivity
Scenario

Figure 8.15 shows the result for a varying connectivity scenario, whereas table 8.5 summa-

rizes the queueing delay for each strategy across di�erent utilization ranges.

Within a utilization range of 50 % − 70 % TIF(-L) AIMD and AIAD provide the highest

congestion avoidance e�ciency. They are closely followed by CEF. In the utilization

range between 70 % − 85 % TIF-L AIMD and AIAD surpasses the approaches without load

extension. In utilization scenarios above 70 % CEF o�ers with an average of 6.41 s a low

queueing delay but is overall on par with TIF-L AIMD and AIAD, which achieve 7.25 s,

respectively 6.01 s.

The load extension of TIF allows to react to connectivity change in a proportional manner.

That means, that adaptations result in the same e�ect on the overall load independently

of the number of connected devices. Therefore, it o�ers an average improvement of the

queueing delay of 200 % compared to TIF without load extension. The CEF approach

93

8. Validation

Strategy

Queueing Delay [sec]

Average Median 0-50 [%] 50-70 [%] 70-85 [%] 85-100 [%]

CEF 1.78 0.5 0.19 0.57 1.62 8.51

TIF AIAD 11.66 1.29 0.56 0.41 2.97 44.98

TIF AIMD 6.14 1.15 0.71 0.49 2.41 22.47

TIF MIAD 31.47 1.88 0.96 21.38 54.83 141.13

TIF MIMD 8.59 0.54 0.13 1.1 6.1 53.06

TIF-L AIAD 3.52 0.72 0.29 0.23 1.61 13.99

TIF-L AIMD 3.2 0.66 0.34 0.25 1.42 13.1

TIF-L MIAD 10.87 1.17 0.24 2.8 11.74 63.95

TIF-L MIMD 7.17 0.73 0.16 1.26 6.34 41.43

TIF 15.9 0.98 0.59 5.85 16.58 62.97

TIF-L 6.75 0.73 0.23 1.14 5.28 32.33

Table 8.4.: Results of the varying capacity and steady connectivity scenario.

Strategy

Queueing Delay [sec]

Average Median 0-50 [%] 50-70 [%] 70-85 [%] 85-100 [%]

CEF 1.0 0.09 0.02 0.28 1.3 6.41

TIF AIAD 2.46 0.04 0.0 0.1 1.79 15.57

TIF AIMD 1.66 0.02 0.01 0.1 1.51 10.78

TIF MIAD 12.46 0.11 0.03 1.3 18.21 94.51

TIF MIMD 5.81 0.19 0.03 0.44 5.72 42.76

TIF-L AIAD 1.06 0.04 0.0 0.04 0.53 6.01

TIF-L AIMD 1.24 0.05 0.0 0.04 0.48 7.25

TIF-L MIAD 4.44 0.05 0.01 0.72 6.05 33.77

TIF-L MIMD 4.42 0.05 0.01 0.68 5.93 29.5

TIF 6.05 0.05 0.02 0.48 6.81 40.91

TIF-L 3.1 0.05 0.01 0.37 3.25 19.13

Table 8.5.: Results of the steady capacity and varying connectivity scenario.

94

8.5. Congestion Avoidance Characteristics of time-driven Flow Control

Figure 8.15.: Pareto curve of the average utilization and queueing delay in a varying load

scenario.

performs well, but exhibits slight degradations compared to TIF-L approaches with AIMD

or AIAD.

The scenario has shown, that the load extension of TIF results in improvements in

scenarios with a varying capacity. The CEF approach maintains a high congestion avoiding

e�ciency across all target utilizations.

8.5.5. Q.2.4 – Simulation Model Accuracy

For each approach in each scenario (= {(C403~,+0A~8=6�0?028C~,+0A~8=6�>==42C8E8C~}
we conduct 4 measurements, resulting in a total of 81 measurements to evaluate the

accuracy of the simulation model. We evaluate the following target utilizations * =

{60, 70, 80, 90} in order to capture the accuracy in utilization ranges with signi�cant

di�erent congestion characteristics. For each scenario and strategy, we determine the

average relative prediction error as percentage of the CPU utilization X�%* — which

acts as a proxy for the service utilization — and of the average queue length X&D4D4!4=6Cℎ
and queueing delay X&D4D4�4;0~ . Furthermore f&D4D4�4;0~ denotes the median queueing

delay prediction error.

Steady. Table 8.6 summarizes the prediction accuracy for of each strategy in a steady

connectivity and capacity scenario.

Overall, the simulative predictions are accurate, with an average prediction error of

8 % of the CPU utilization and a median prediction error of 31.1 % for the queueing delay.

95

8. Validation

Strategy X�%* X&D4D4!4=6Cℎ X&D4D4�4;0~ f&D4D4�4;0~
CEF 3.9 45.9 107.1 72.9

TIF AIAD 0.0 52.0 41.9 48.4

TIF AIMD 2.7 106.6 195.0 118.1

TIF MIAD 19.5 58.1 39.1 34.5

TIF MIMD 3.7 38.3 22.1 24.7

TIF-L AIAD 7.7 46.6 18.3 20.7

TIF-L AIMD 6.9 23.8 43.5 29.9

TIF-L MIAD 12.2 55.1 34.4 25.0

TIF-L MIMD 6.7 33.0 47.0 51.6

Average 7.8 51.0 60.9 34.5

Table 8.6.: Average and median prediction errors as percentage di�erence for the service

utilization, queue length and queueing delay in a steady scenario.

Strategy X�%* X&D4D4!4=6Cℎ X&D4D4�4;0~ f&D4D4�4;0~
CEF 4.8 17.4 52.7 44.6

TIF AIAD 11.8 47.6 36.4 36.4

TIF AIMD 1.6 49.8 129.0 173.7

TIF MIAD 41.1 55.8 51.2 62.6

TIF MIMD 2.9 25.8 76.1 30.9

TIF-L AIAD 6.8 17.1 126.7 71.2

TIF-L AIMD 1.3 27.2 171.8 118.2

TIF-L MIAD 20.0 51.8 55.2 56.4

TIF-L MIMD 2.1 22.8 43.2 17.7

Average 11.3 35.0 82.5 62.6

Table 8.7.: Average and median prediction errors as percentage di�erence for the service

utilization, queue length and queueing delay in a varying capacity scenario.

The high accuracy in predicting the CPU utilization shows, that the simulation is able to

precisely simulate the congestion avoidance dynamics. The simulation is less accurate in

predicting the queueing delay or queue length, but still produces decent predictions. The

simulation aims to reproduce the measurements provided by RabbitMQ. It performs well

for low utilization ranges, but underestimates the queue length and queueing delay for an

utilization of ≥ 90 % resulting in a high prediction error. The high prediction error on this

target utilization is re�ected in the comparatively high average queueing delay but low

median queueing delay.

Varying Capacity. Table 8.7 summarizes the prediction accuracy for of each strategy in a

varying capacity scenario.

The prediction error stays low in predicting the service utilization with 10.7 % but

increases greatly in predicting the queueing delay, which exhibits a median prediction

error of 69.1 %. The simulation underestimates the queueing delay and queue length in

high utilization ranges. Overall, the prediction is degraded in this scenario, based on

96

8.5. Congestion Avoidance Characteristics of time-driven Flow Control

Strategy X�%* X&D4D4!4=6Cℎ X&D4D4�4;0~ f&D4D4�4;0~
CEF 2.7 38.0 71.9 64.2

TIF AIAD 2.5 42.1 48.1 32.8

TIF AIMD 0.2 38.7 16.5 10.7

TIF MIAD 12.9 59.5 49.8 53.5

TIF MIMD 9.0 21.3 20.7 21.7

TIF-L AIAD 3.9 47.2 43.9 29.5

TIF-L AIMD 1.3 35.3 13.9 14.4

TIF-L MIAD 10.7 55.4 44.2 42.7

TIF-L MIMD 2.7 26.1 20.0 11.1

Average 5.1 40.4 36.6 29.5

Table 8.8.: Average and median prediction errors as percentage di�erence for the service

utilization, queue length and queueing delay in a varying connectivity scenario.

the technical realization of the capacity variations. The ShapeShifter service is adjusted

every second by a controller managed by SEIA. Based on the deployment on a distributed

infrastructure, the recon�guration decision may experience delays. This challenges the

simulation, since it assumes an instant capacity adjustment.

Varying Connectivity. Table 8.8 summarizes the prediction accuracy for of each strategy

in a steady connectivity and capacity scenario.

The simulation accuracy for a varying connectivity scenario is very high, with an

average prediction error of 5.2 % for the utilization and 28.0 % for the queueing delay.

Overall, the simulation correctly simulates the dynamics induced by changing devices.

Since smart devices are synthetic entities in the ShapeShifter case study, there are no

adjustment dynamics compared to a distributed setup.

Discussion. Overall, we deem the simulation predictions as accurate enough to analyze

scenarios experienced by a single service Cloud-IoT application. The simulation is very

precise in predicting the service utilization but less in the queueing delay. The prediction

degrades for queue metrics in high utilization scenarios.

8.5.6. Threats to Validity

We rely on the guidelines described in [63] to discuss threats to validity of the evaluation.

A special focus lies on the experimental setup, which may a�ect the generalizability of the

results.

Internal validity. The presented approaches recon�gure the transmission rate of smart

devices to utilize the capacity of a cloud service. In order to converge to a speci�c utilization

the approaches induce short-term congestions. Since we operate both the message broker

and the message queue in isolation and the measured arrival rate of the queue is in line with

the expected rate of produced messages by the smart devices, we exclude an interfering

97

8. Validation

factor and strongly assume a causal relation between transmission rate adaptations and

congestion avoidance.

External validity. The running example is based on a typical architecture for sensing

Cloud-IoT solutions. Since smart devices are operated as virtual entities, which are de-

ployed as microservices on the cloud infrastructure, there are some factors threatening the

generalization of the results. One of these factor is a nearly uniform network latency to

each virtual smart device, which we can expect to be not the case in a productive setup. In

general, we expect a higher and more varying network latency in real world scenarios. We

expect these latencies to degrade the adaptation quality by decreasing the responsiveness

of the approach. However, we expect the qualitative results of this work as generalizable

for similar application setups. Furthermore, the synthetic microservice is a simpli�ed

model of a real-world application. However, on the one side, some Cloud-IoT applications

consist of a single processing microservice storing messages in a database, and on the

other side, we investigate the �ow control behavior in respect to the induced load and

available capacity, where it does not matter, how many services contribute to the overall

capacity. Therefore, we deem the results as generalizable.

Construct validity. In our setup we analyze message queue metrics to derive the degree of

congestion avoidance. By communicating via a message queue, an imbalance between the

cloud services’ capacity and the overall load on it results in an accumulation of messages

in the queue. For this reason, we rely on message queue metrics, in order to express the

congestion-induced delay and to recognize congestions by observing the queue length.

Reliability validity. To the best of our knowledge, we provided all details needed to

replicate the experimental setup. For this reason, we strongly expect the results to be

reproducible.

8.5.7. Discussion

In this set of experiments, we have investigated the congestion avoidance characteristics

of the set of �ow control strategies.

Overall, the CEF approach provides a high congestion e�ciency in all scenarios. It

performs well in a steady and in a varying load scenario and shows slight adaptation quality

degradations in a varying capacity scenario. It is closely followed by TIF(-L) approaches

with AIMD or AIAD request schemes, which in contrast to CEF do not impose architectural

restrictions. In some cases, they outperform CEF. In varying connectivity scenarios, TIF

approaches without load extension are inferior, since the resulting shift in the load based

on an additive increase or decrease adjustment depends on the number of active devices.

The pareto curves can be used to compare the approaches in terms of their service

utilization and congestion characteristics. They in�uence the QoS of sensing cloud ap-

plications to a great extent, since the achieved service utilization determines the average

transmission interval in congestions, which in�uences the accuracy. Congestion-induced

98

8.6. QoS Characteristics of time-driven Flow Control

delays a�ect the timeliness. Therefore, a suitable trade-o� should be met by a service

operator.

8.6. QoS Characteristics of time-driven Flow Control

This section targets Goal 3 of this thesis by investigating the QoS characteristics of time-

driven �ow control approaches in overload-protection mode. In contrast to the previous

investigation the approaches enforce an upper limit for the transmission rate at which

the cloud applications accuracy demand is considered to be satis�ed. We compare these

approaches to auto-scalers which provide a complementary mechanism by resource provi-

sioning. Based on normalized QoS cost functions we investigate the composition of the

QoS costs of each approach in intensifying overload scenarios. To enable a fair compar-

ison between the approaches, we optimize the con�guration of each approach in each

overload scenario. Furthermore, as stated in Goal 4, we investigate the QoS characteristics

of coupling mechanisms which combine time-driven �ow control with auto-scaling as pre-

sented in chapter 6. Whereas the results are obtained by simulation, we obduct controlled

experiments on the Bosch IoT Cloud to address Goal 5.

8.6.1. Experimental Design

In order to capture the impact of overload situations and recon�guration decisions on the

QoS conformance we rely on accuracy, timeliness and resource cost functions, as introduced

in chapter 4. We express the QoS characteristics of each approach in intensifying overload

scenarios by the composition of these costs. We compare �ow control approaches with

auto-scaling using a static provisioned cloud service as baseline. In each scenario, we

normalize the QoS cost functions based on the expected performance of a theoretical

optimal auto-scaler or �ow control approach. Furthermore we optimize the con�guration

of each approach in each overload scenario using SEIA to instantiate the optimization

framework described in section 8.2.2.

CaseStudy. We rely on the ShapeShifter case study, since it provides a simple but complete

architecture for a sensing cloud application.

Flow Control Candidates. We select the following �ow control approaches, since they

have shown a high congestion avoidance e�ciency in the investigation conducted in

validation chapter 8.5:

• TIF AIMD. The approach utilizies an AIMD scheme in order to adjust the transmis-

sion rate of all smart devices. It has shown a high congestion avoidance e�ciency

but a vulnerability to connectivity variations.

• TIF-L AIMD. This approach utilizes a load extension, in which the overall load is

adjusted according to an AIMD scheme. It has shown a high congestion avoidance

e�ciency by sharing the load fairly across the current number of active devices.

99

8. Validation

• CEF. As a main re�nement to the TIF approaches, it utilizes a capacity-estimation

module. Therefore, it aims to reduce the time needed to �nd a congestion avoiding

transmission rate. It has shown a high congestion avoidance e�ciency, especially

for high service utilizations.

Auto-Scaler Candidates. Many auto-scaling approaches have been proposed in literature

[49]. We conduct experiments in the range of minutes, which aim to be e�cient in terms of

observable e�ects and duration. Therefore, we focus on auto-scalers which rely on a recent

history to make predictions [42][21] in contrast to auto-scalers using long-term history

data [71] or being hybrid in nature [7]. We select the following auto-scaler candidates:

• React. Presented in [21], React is a mechanism which provisioning decisions are

based on thresholds. It also introduces a cooldown duration in order to avoid

oscillating scaling decisions. The scaling mechanism is realized as a built-in scaler

on many cloud platforms and is widely used in industry labeled as threshold-based

rules auto-scaler. Scaling decisions are usually based on the CPU utilization.

• Reg. We select a regression-based auto-scaler (Reg) [42] as state of the art candidate.

Whereas it reacts to load by scale-up decisions, it uses a regression-based prediction

for scale-down decisions, when the capacity exceeds the load. As in [7] we con�gure

the regression window size to 60 data points, which translates to 60 s. We obtain

the implementation from [56], which relies on the capacity per instance and the

arrival rate in order to calculate the number of required service instances. Since the

approach aims to scale web services, it relies on proxy logs of C seconds to determine

the 95th percentile of the average response time. We re�ne this mechanism to rely

on a capacity estimation based on message queue metrics as presented in section

5.4.1. Overall, the main di�erence to React is the ability to scale multiple instances

at once, based on the (estimated) arrival rate and the capacity per instance.

Coupling Candidates. Based on the coupling mechanisms presented in chapter 6, we

investigate the following candidates:

• Concurrent Coupling. Described in section 6.3, this approach operates strategies

concurrently without any orchestration resulting in an emergent behavior.

• QoS Rules-Based Coupling. Presented in section 6.4.4, the approach utilizes a set

of threshold-based activation rules to decide, when to active a strategy on the basis

of QoS cost functions.

• Fuzzy-Rules Coupling. In contrast to the rule-based coupling mechanisms, the

Fuzzy-Rules based coupling approach presented in 6.5 aims to provide a comprehen-

sible rule set to express reusable and complex rules.

100

8.6. QoS Characteristics of time-driven Flow Control

Flow Control and Auto-Scaler Combinations. Each coupling mechanism o�ers an auto-

scaling system binding, which (de-)activates all deployed auto-scaling systems of a cloud

application. We investigate the coupling in a single service cloud application, therefore we

combine a �ow control and an auto-scaling strategy. Each coupling approach is investigated

by relying on each combination of the �ow control and auto-scaling strategies. The goal

is to capture the emergent behavior of di�erent mechanisms and observe the impact on

the QoS characteristics of each approach. We select (5 ;>F−2>=CA>; = {���,) ����"�} as

�ow control approaches and (0DC>−B20;8=6 = {'402C (�%*), '46} as auto-scaling approaches,

resulting in overall of 4 combinations. We exclude the TIF-L AIMD approach, since it

exhibits a similar and slightly inferior behavior to the CEF approach in high utilization

ranges as concluded in the congestion avoidance investigation.

Overload Scenarios. We characterize overload situations in a time and intensity dimen-

sion. We quantify overload situations relying on the supported number of devices by the

current service capacity 2 . We consider a device supported by the given capacity, if it is

able to transmit data with a target transmission rate)C? , at which the data accuracy is

saturated, without experience timeliness degradations based on congestions. Therefore,

we calculate the number of supported devices #BD??>AC43 as follows:

#BD??>AC43 =

⌊
#8=BC0=24B ∗ 2

)C?

⌋
We consider the application as overloaded, if the number of connected devices #8B ex-

ceeds the number of supported devices, such that$ (C) =<0G (<8=(#8B (C)−#BD??>AC43 , 1), 0).
We do not investigate scenarios, in which the application is not overloaded. Therefore, the

time share of an overload situation within an experiment of duration) can be calculated

as follows:

>E4A;>03C8<4Bℎ0A4 =

∑)
1
$ (C)3C
)

The intensity describes the severity of the overload situation in terms of the average

ratio of the required to the supported devices:

>E4A;>038=C4=B8C~ =

∑)
1
($ (C) ∗ #8B (C)

#BD??>AC43
)3C∑)

1
$ (C)3C

Figure 8.16 illustrates the approach.

We introduce a measure, which combines both dimensions in order to quantify overload

severities:

>E4A;>03<40BDA4 =
>E4A;>038=C4=B8C~ + >E4A;>03C8<4Bℎ0A4

2

Cost Functions. We instantiate the QoS functions introduced in section 4.4 using an input

metric : , a target point :C? and a worst point :F? . Based on these, we compute the QoS

costs using a linear error function. We focus on accuracy, timeliness and resource cost

101

8. Validation

Figure 8.16.: Illustration of the overload quanti�cation. The overload intensity is based on

the deviation between supported and connected devices, whereas the overall

time spent in an overload state is quanti�ed by the overload share.

.

functions and provide for each input metrics. This approach assumes a linear relation

between measured input and resulting QoS costs, which may not be the case in practice.

We construct each cost function as follows:

• Accuracy: We quantify accuracy costs based on the average transmission rate) as

an inverse of the collection interval during the experiment. We associate no accuracy

costs, if) is above the target point)C? = 1
msg

sec
. Therefore, we use the following cost

function:

&�22DA02~ ()) =

)C? −)
)C? −)F?

, if) ≤)C?

0, otherwise

• Timeliness: We quantify timeliness costs based on the average queueing delay g .

We associate no timeliness costs, if g is below or equal the target point gC? = 0 sec.

Therefore, we use the following cost function:

&)8<4;8=4BB (g) =

g

gF?
, if g > gC?

0, otherwise

• Provisioning: We create the following cost function for #8=BC0=24B provisioned

instances, using a the target point %C? = 1 instance to consider, that at least 1 instance

is required to let the cloud application be available:

&'4B>DA24B (%) =

%

%F?
, if % ≥ %C?

0, otherwise

102

8.6. QoS Characteristics of time-driven Flow Control

The cost functions are reconstructed in each scenario by readjusting the worst point for

each cost function. The worst point is obtained for each dimension by solving the overload

situation by provisioning resources, adjusting the transmission rate or by accumulating

messages. This enables to fairly capture each dimension, to make them comparable and to

investigate the QoS characteristics of each approach. Therefore, the QoS costs should be

exactly 1 if the overload situation is solely addressed by resource provisioning, transmission

rate adjustments or by the initial resource con�guration (baseline). Figure 8.17 illustrates

the approach.

Figure 8.17.: Illustration of obtaining the worst value points. In a baseline setup, the

overload situation results in a high queueing delay and peaking in gF>ABC . If

the overload situation is addressed by provisioning resources, it peaks in

%F>ABC . If the transmission rate is adjusted accordingly, it is degraded up to

)F>ABC
.

In order to obtain the worst points for auto-scaling and �ow control, we compute the

optimal adjustments. Let 2 be available cloud service capacity, which speci�es the number

of messages which can be processed during a time unit without inducing QoS violations

in time. Then, we compute the adjustments at a time point C as follows:

• Flow-Control: The optimal transmission rate) (C) depends on the capacity of the

cloud service 2 and is computed as follows:) (C) =<8=(2 (C)
#�4E

,)C?).

103

8. Validation

• Auto-Scaling: Let 28 be the capacity of a single cloud service. Then, the required

instances ? (C) are based on and the number of connected devices #�4E and the

transmission rate target point)C? , such that: ? (C) =
⌈
#�4E (C)∗)C?

28

⌉
.

We obtain the average number of provisioned instances or the average transmission

rate by computing it for each overload scenario. We obtain the input for the timeliness

cost function by measuring the average processing delay in a static provisioning scenario.

Connectivity and Capacity Scenario. We con�gure a deterministic processing rate of 28 =

13
msg

sec
per cloud service instance with a compute-intensive message processing. In order

to have time-varying behavior for the connectivity, we rely on a connectivity pattern with

an increasing, plateauing and decreasing number of devices. We adjust the intensity using

a multiplicator : and variate : in a range of [0, 180] in order to create overload situations,

which vary in share and intensity.

Congestion and QoS Observer. The congestion observer to monitors the queue length

with a moving average size of 10 and a threshold of 10. The congestion observer retrieves

every second an update from the infrastructure. Coupling approaches which rely on

QoS costs, utilize a QoS observer with a moving average of size 10 for each input metric.

The current QoS costs are recalculated once per second on the basis of the provided cost

functions. Therefore, it calculates the current accuracy, timeliness and resource costs based

on transmission rate, queueing delay and active instance measurements in an observation

period of) = 10 s.

Adaptation Protection Time. The adaptation protection time for each strategy, including

auto-scaling, is g�30?C0C8>= = 10 s. This time is derived by the monitoring infrastructure

latency of the message queue.

Optimization. For each intensity : the QoS cost functions are reconstructed and normal-

ized. The cumulative costs&)>C0; = &�22 +&)8<4 +&'4B are used for quantifying the �tness

of each approach. We rely on an experience-based iteration depth of 100 and an initial

population size of 40 using a DE based search.

Configuration Space. We optimize the parameters of the �ow control approaches in

5 ;>F−2>=CA>; dimensions and of auto-scalers in #0DC>−B20;8=6 dimensions. Each coupling can-

didate is optimized in#2>D?;8=6 dimensions, whereas# consists of# 5 ;>F−2>=CA>; , #0DC>−B20;8=6
and #2>D?;8=6−?0A0<B parameters, such that:

#2>D?;8=6 = # 5 ;>F−2>=CA>; + #0DC>−B20;8=6 + #2>D?;8=6−?0A0<B
Note, that only the QoS rules-based coupling o�ers a con�guration space#2>D?;8=6−?0A0<B ,

whereas the fuzzy rules are based on �xed rules and the concurrent coupling provides

no parameters. The approaches consist of the following parameter tuples , which are

recon�gured during the candidate search:

104

8.6. QoS Characteristics of time-driven Flow Control

Strategy

QoS Costs Measurements

Total Accuracy Timeliness Resources Transmission Rate Queueing Delay Instances

TIF AIMD 0.98 0.27 0.71 0.0 0.79 171.77 1.0

Baseline 1.0 0.0 1.0 0.0 1.0 226.77 1.0

CEF 1.02 0.99 0.03 0.0 0.2 7.39 1.0

TIF-L AIMD 1.05 0.97 0.07 0.0 0.19 11.9 1.0

Reg 1.12 0.0 0.01 1.12 1.0 1.4 9.93

React (CPU) 1.12 0.0 0.21 0.91 1.0 55.17 7.87

Table 8.9.: Isolated Overload Protection Approaches – Average QoS costs and measure-

ments across all overload scenarios.

• CEF: Uses an overload protection multiplicator :?A>C42C to accelerate the conges-

tion recovery and a recovery multiplicator :A42>E4A to re�ne the current capacity

estimation: ��� = (:?A>C42C , :A42>E4A)

• TIF: Uses an increase and a decrease parameter, which is, based on the scheme, of

additive or multiplicative nature:) �� = (:8=2A40B4, :342A40B4)

• React: Uses an upper and lower threshold for scaling decisions based on the CPU

utilization: '402C = (;>F4A,D??4A)

• Reg: No con�guration parameters.

Simulation Accuracy. We determine the simulation accuracy by comparing the predicted

average cumulative QoS costs with the measured ones and express it as an average relative

prediction error in percent X&C>C0; . Furthermore we show the average absolute error for

the cost functions&A4B ,&022 and&C8<4 . We select the absolute error, since prediction errors

can result in a high relative prediction error without a�ecting the cumulative QoS costs

to a high degree. Furthermore, we show the average prediction error as percentage for

the input metrics for the QoS cost functions: queueing delay Xg , number of provisioned

instances X%�=BC0=24B and transmission rate X) .

Experiment Duration. The duration of each experiment is Cexperiment = 10min.

8.6.2. Q.3 QoS Characteristics of Overload Protection Approaches

Figure 8.18 shows the average QoS cost for each strategy for intensifying overload situa-

tions and table 8.9 summarizes each strategy.

React. By provisioning a single instance at a time, React is challenged to (de-)provision

resources in time. This is re�ected by its QoS characteristics, which consists of 80 %

of resource costs and 20 % of timeliness costs. React steadily increases the number of

provisioned resources and is plateauing at 10.04 instances at an overload share of 500 %

based on the �xed experiment duration. These limitations are re�ected in a high average

underprovisioning timeshare of 53.75 %with a relative deviation of 23.83 %. In low intensity

overload scenarios, the overall QoS costs are reduced compared to other approaches since

105

8. Validation

Figure 8.18.: Isolated Overload Protection Approaches – QoS Characteristics in intensifying

overload scenarios.

it is slowly provision resources but resulting only in minor timeliness violations. In a

high intensity overload scenarios, the QoS costs are overall decreasing. This is based on

normalizing the QoS cost functions in each overload scenario, which assumes an ideal

auto-scaler, which is not faced with any constraints in provisioning resources. Since the

number of required instances is increasing but the provisioning of React is plateauing, the

resource costs are decreasing.

Reg. By provisioning resources in consideration of the capacity per instance and the

current load intensity, Reg is able to react to changes with a high accuracy. Furthermore it

is able to react fast to an overload situation, by provisioning multiple instances at once.

Therefore, the overall QoS costs are mainly resource driven with 1.13 with only minor

timeliness costs of 0.01. Therefore, the scaler tends to overprovision, which is re�ected

by a timeshare of 62.75 % in an overprovisioned state, with a relative deviation of 18.58 %.

In contrast, the average underprovisioned timeshare is 4.19 % with a very low relative

deviation of 2.9 %. The regression module contributes to this by being able to predict the

arrival rate changes to a high degree when faced with a steady workload decrease.

106

8.6. QoS Characteristics of time-driven Flow Control

Baseline. By neither adjusting the transmission rate nor the provisioned resources, the

baseline does only induce timeliness costs based on the induced queueing delay of the

overload situation. The QoS costs are as expected on average 1, since the timeliness cost

function is created by measuring the average queueing delay in each overload scenario.

TIF AIMD. The TIF AIMD approach holds a transmission rate state, which is shared with

each smart device. As shown in the previous investigation in section 8.5, �ow control

approaches do induce congestions in order to probe the available capacity. The overall

QoS costs are therefore expected to be composed of accuracy and timeliness violations.

The optimization approach aims to minimize the cumulative QoS costs and therefore give

an advantage to con�gurations, which only induce timeliness violations. This e�ectively

disables the approach, but results in overall lower QoS costs. Based on the optimization

depth, the data points are scattering, but overall approaching the baseline.

TIF-L AIMD. The TIF-L approach utilizes a load extension to hold a load or capacity model,

which is fairly shared across the connected smart devices. This limits the in�uence of the

con�guration space on the adaptation behavior, since the number of connected devices

in�uences to a strong degree the adjusted transmission rate. Overall, the approaches

expenses are mainly based on accuracy degradations. However, based on behavior of

the measurement provider, the congestion observer and the adaptation protection time,

adaptations are not optimal, resulting in timeliness costs of 0.06, which are plateauing in

overload shares over 200 % with a standard deviation of 0.01.

CEF. The CEF approach has similar characteristics as the TIF-L AIMD approach with a

slightly improved congestion avoidance e�ciency. This is re�ected by the QoS costs of

the accuracy and timeliness. The approach adapts overall closer to a theoretical optimal

adjuster. Therefore, the accuracy costs are increased by 0.03 compared to the TIF-L AIMD

approach, with decreased timeliness costs.

Discussion. TIF-L AIMD is nearly on-pair with CEF and both are superior to the TIF AIMD

in terms of congestion-avoidance, which is re�ected by low timeliness costs. However, the

TIF AIMD approach o�ers the possibility to tune the behavior based on its parameters,

resulting in a worse congestion-avoidance, which can be — within the investigation

scope — bene�cial in high overload scenarios. This is based on timeliness violations,

which occurs in high intensity scenarios, regardless of the �ow control or auto-scaling

approach, increasing the cumulative QoS costs. The TIF AIMD approach allows to avoid

the cumulative costs of accuracy degradation and timeliness violations by minimizing

transmission rate adjustments altogether, such that costs arise only in one dimension.

The resource provisioning approaches di�er greatly in their behavior. Whereas Reg

utilizes a capacity estimation and regression module to predict the arrival rate, React

make provisioning decisions based on threshold violations. Reg is able to address the

overload situation with a high adaptation accuracy, whereas React (de-)provisions a single

instance at a time. In high overload scenarios, this results in lower resource costs, but

higher timeliness costs compared to React.

107

8. Validation

8.6.3. Q.4 QoS Characteristics of Coupled Overload Protection Approaches

This section presents the result of the investigation of coupling mechanisms.

8.6.3.1. Concurrent Coupling

Figure 8.19 shows the average QoS cost of each strategy for intensifying overload situations

and table 8.10 summarizes each strategy.

Figure 8.19.: Concurrent Coupling – QoS Characteristics in intensifying overload scenarios.

The QoS characteristics are determined by the emergent behavior of the coupled strate-

gies. In contrast to the CEF approach, the TIF AIMD approach requires more cycles to

probe the supported capacity. This allows the auto-scaling approaches to be more e�ective.

Therefore, the QoS of coupling approaches with TIF AIMD is dominated by resource costs.

In contrast to the React, Reg provisions multiple resources at once, based on the capacity

estimation and the arrival rate. This enables Reg to provision resources with a higher

accuracy and with a reduced underprovisioned timeshare resulting in higher resource

costs. This reduces the resource cost contribution to the overall QoS by 13 % in a CEF

setup and by 34 % in a TIF setup. The reduced congestion-avoidance e�ciency allows

108

8.6. QoS Characteristics of time-driven Flow Control

Strategy

QoS Costs Measurements

Total Accuracy Timeliness Resources Transmission Rate Queueing Delay Instances

Concurrent (React, AIMD) 1.1 0.36 0.04 0.7 0.69 10.02 5.68

Concurrent (React, CEF) 1.17 0.81 0.01 0.34 0.3 3.38 1.9

Concurrent (Reg, AIMD) 0.99 0.3 0.02 0.66 0.73 4.72 5.06

Concurrent (Reg, CEF) 1.16 0.74 0.02 0.4 0.35 4.87 2.24

Average 1.1 0.56 0.02 0.52 0.52 5.75 3.72

Table 8.10.: Concurrent Coupling – Average QoS costs and measurements across all over-

load scenarios.

Strategy

QoS Costs Measurements

Total Accuracy Timeliness Resources Transmission Rate Queueing Delay Instances

QoS Rules (React, TIF AIMD) 1.03 0.04 0.91 0.08 0.97 214.16 1.16

QoS Rules (React, CEF) 1.03 0.05 0.86 0.13 0.97 204.16 1.38

QoS Rules (Reg, TIF AIMD) 1.01 0.04 0.79 0.17 0.97 185.05 1.98

QoS Rules (Reg, CEF) 0.99 0.07 0.71 0.22 0.95 171.38 2.15

Average 1.02 0.05 0.82 0.15 0.97 193.69 1.67

Table 8.11.: QoS-Based Coupling Rules – Average QoS costs and measurements across all

overload scenarios.

to address the overload situation by resource provisioning, thus reducing the accuracy

degradation to a greater extent. The CEF approach counteracts the e�ciency of Reg, with

the combination of both resulting in the highest cumulative QoS costs.

Overall, CEF results in disadvantages in a concurrent coupling setup based on its

high congestion avoidance e�ciency. The congestion avoidance is e�cient enough to

make provisioning unnecessary. More sophisticated auto-scaling approaches like Reg can

mitigate this e�ect but contribute to overall high QoS costs. In combination with TIF AIMD

the coupling with Reg provides a balance between resource provisioning, transmission rate

adjustments and timeliness violations, resulting overall in low cumulative QoS costs. In

contrast, the coupling with the CEF approach results in high resource costs and accuracy

costs, providing only a minor bene�t in timeliness. All approaches are able to avoid

timeliness violations, with Reg coupled with TIF AIMD resulting in the best ratio of

timeliness costs to resource and accuracy costs.

8.6.3.2. QoS-Aware Rule-Based Coupling

Figure 8.20 shows the average QoS cost of each strategy across the overload scenarios and

table 8.11 summarizes each strategy.

Since each coupled strategy is triggered by a rule set consisting of each QoS cost function

and a threshold, the emerging behavior can be tuned with a �ne granularity. Based on the

optimization of the thresholds, the coupling approach is able to minimize and cap the QoS

costs. In all overload scenarios, the activation rules of the �ow control or auto-scaling tend

to not trigger, resulting at QoS costs of 1 based on the timeliness degradation. Therefore,

the QoS characteristics mainly comprise of timeliness violations neglecting transmission

rate and provisioning adjustments. We assume, that activating the approaches result in

additional timeliness degradations based on runtime dynamics, therefore it results in less

QoS costs to not activate them. In contrast to a concurrent coupling, the �ne-granular

109

8. Validation

Figure 8.20.: QoS-Based Coupling Rules – QoS Characteristics in intensifying overload

scenarios.

activation control allows to use timeliness as a cost sink as a mean to minimize the overall

costs.

8.6.3.3. Fuzzy Rules-Based Coupling

Figure 8.21 shows the average QoS cost of the strategies coupled with fuzzy rules and table

8.12 summarizes the results.

Based on the QoS cost functions, the fuzzy coupling decides when to operate �ow

control or auto-scaling concurrently or in isolation. The decision is based on QoS cost

violations, e.g. if resource costs are bad, switch to �ow control. Since the cost functions are

constructed in a similar manner, it can be expected, that the costs are equally shared across

resources and accuracy. However, a coupling with CEF results in high accuracy costs

whereas a coupling with AIMD enables to balance the costs between the two dimensions

to a greater extent. Based on the reactivity of CEF it contributes to overall higher QoS

costs since it addresses overload situations with a high adaptation accuracy based on a

capacity model and the current load. A coupling with the AIMD approach, which tends to

110

8.6. QoS Characteristics of time-driven Flow Control

Figure 8.21.: Fuzzy Coupling Rules – QoS Characteristics in intensifying overload scenar-

ios.

converge slowly, results in lower accuracy costs. Note, that the timeliness is increased for

these couplings, since the fuzzy rules decide to utilize the AIMD approach, which in turn

is too slow in addressing the overload situation, resulting in increased timeliness costs. On

the other side, CEF tends to overshadow the resource provisioning, which is more obvious

in the combination with React.

8.6.3.4. Discussion

In this section, we have investigated the QoS characteristics of coupled approaches. The

concurrent coupling is able to address overload situations with low QoS costs. The QoS

characteristics di�er greatly based on the combination of the approaches. Reactive and

precise approaches as CEF or Reg tend to dominate the coupled approach. The coupling

re�ects the relation of timeliness and accuracy of adaptations of each approach. Therefore

AIMD and React provides a balance, since both approaches require time to address the

overload situation. The QoS-based rules coupling allows a �ne-tuning of the coupling

based on activation thresholds for each coupled strategy based on QoS cost functions.

111

8. Validation

Strategy

QoS Costs Measurements

Total Accuracy Timeliness Resources Transmission Rate Queueing Delay Instances

Fuzzy (React, AIMD) 1.02 0.29 0.06 0.67 0.75 15.03 5.43

Fuzzy (React, CEF) 1.14 0.74 0.01 0.39 0.36 2.15 2.13

Fuzzy (Reg, AIMD) 0.97 0.43 0.06 0.48 0.62 14.92 3.61

Fuzzy (Reg, CEF) 1.13 0.82 0.01 0.3 0.29 3.12 1.77

Average 1.06 0.57 0.03 0.46 0.5 8.8 3.23

Table 8.12.: Fuzzy Coupling Rules – Average QoS costs and measurements across all over-

load scenarios.

Strategy X&C>C0; Δ&022 Δ&C8<4 Δ&A4B X) Xg X�=BC0=24B

TIF AIMD 29.28 0.3 0.21 0.0 64.7 56.04 0.0

CEF 22.08 0.14 0.15 0.0 10.6 72.1 0.0

TIF-L AIMD 22.96 0.29 0.05 0.0 25.38 51.98 0.0

RegCon�g 16.46 0.0 0.03 0.11 0.0 74.94 10.18

AutoScaler-MS_CPU 14.32 0.0 0.5 0.53 0.0 53.24 304.1

Baseline 8.68 0.0 0.1 0.0 0.0 8.68 0.0

Table 8.13.: Average prediction errors of the QoS costs and the input metrics as percentage

di�erence (X) or absolute prediction errors (Δ) for the �ow control and auto-

scaling approaches.

Therefore, the optimization is able to highly optimize the strategy to the scenario, resulting

in low QoS costs. In contrast to the fuzzy and concurrent coupling, the approach is able

to utilize timeliness as a cost sink based on inactivity of the coupled strategies. The

fuzzy coupling utilizes a simplistic set of rules in order to decide, when to operate the

coupled strategies in isolation. Since the rule set utilizes reusable rules, we expect it to

be more suitable to manage di�erent application scenarios. Overall, we recommend a

concurrent coupling since both the QoS-based and the fuzzy coupling are challenging in

their con�guration or operation. Whereas the QoS-based coupling requires a �ne-granular

tuning of the weights for the activation rules for each coupled strategy, the fuzzy coupling

demands an online estimation of the QoS costs, which can be challenging to provide at

runtime. Additionally, in both cases the coupled approaches have to be con�gured on

their own to achieve a high QoS conformance of the coupling. Therefore the concurrent

coupling exhibits the lowest e�ort for a service operator and achieves a comparable high

QoS conformance.

8.6.4. Q.5 Simulation Model Accuracy

The simulation prediction of each coupling approach is validated by conducting 4 mea-

surements in di�erent overload shares >E4A;>03Bℎ0A4 = {75, 150, 200, 300}.

Isolated Approaches. In the following, we validate the simulation accuracy in predicting

the QoS costs for isolated approaches, e.g. auto-scaling or �ow control only. The results

are summarized in table 8.13.

112

8.6. QoS Characteristics of time-driven Flow Control

Strategy X&C>C0; Δ&022 Δ&C8<4 Δ&A4B X) Xg X�=BC0=24B

Rules (Reg, TIF AIMD) 37.75 0.06 1.06 0.58 5.33 98.78 237.0

Rules (Reg, CEF) 35.75 0.07 1.01 0.55 6.35 94.3 229.13

Rules (React, TIF AIMD) 31.0 0.05 0.78 0.58 2.63 71.88 205.02

Concurrent (React, TIF AIMD) 29.95 0.22 0.07 0.39 22.27 290.55 29.97

Rules (React, CEF) 28.45 0.0 0.56 0.24 0.17 50.68 52.08

Concurrent (Reg, TIF AIMD) 24.82 0.05 0.0 0.23 3.02 150.65 16.47

FuzzyCouplingCon�g (Reg, TIF AIMD) 18.83 0.15 1.06 0.78 9.23 91.8 105.65

Concurrent (React, CEF) 16.73 0.42 0.01 0.27 37.25 208.35 38.7

FuzzyCouplingCon�g (React, CEF) 12.7 0.56 1.11 0.61 39.72 99.8 76.65

FuzzyCouplingCon�g (Reg, CEF) 10.2 0.28 1.16 0.85 19.58 99.75 148.13

FuzzyCouplingCon�g (React, TIF AIMD) 8.75 0.19 1.1 0.81 13.15 98.4 150.0

Concurrent (Reg, CEF) 4.73 0.1 0.0 0.07 13.93 75.42 11.93

Table 8.14.: Average prediction errors of the QoS costs and the input metrics as percentage

di�erence (X) or absolute prediction errors (Δ) for the coupling approaches.

Overall, the simulation is able to precisely predict the behavior of the approaches

resulting in a QoS cost prediction errors of less than 30.0 %. It is most accurate for the

baseline scenario which has except for the varying number of devices no dynamics. In

general, �ow control approaches are less accurately predicted than auto-scalers, based on

inaccuracies in simulating the RabbitMQ message queue of the ShapeShifter case study.

CoupledApproaches. In the following we validate the prediction accuracy of the coupling

approaches for each of the 4 auto-scaler and �ow control combinations. We validate the

concurrent, the QoS-based rules and the fuzzy coupling. The results are summarized in

table 8.14.

Overall, the simulation is able to predict the behavior of the approaches with a high

accuracy resulting in QoS cost prediction errors of less than 40.0 %. The simulation is

inaccurate in predicting the behavior of Reg coupled with a �ow control approach by a set

of QoS rules with a high error in predicting the provisioned instances. Since the approach

relies on QoS cost functions, inaccuracies in predicting the input metrics may result in

time-varying behavior of the approach. In a concurrent setup each strategy is continuously

activated, thus excluding activation dynamics as a threat to the accuracy. Therefore, the

concurrent approach can be predicted with a high accuracy, with an average prediction

error of the cumulative QoS costs of < 30 %, whereas the QoS-based coupling rules exhibit

a minimum error of 28.45 %.

8.6.5. Threats to Validity

This section discusses threats to validity of the investigation. Threats to validity related

to the case study system are omitted, since they have been discussed in the previous

investigation in section 8.5.6.

External validity. We deem accuracy, timeliness and resource costs as relevant dimensions

for IoT applications which are impacted by resource provisioning and transmission rate

adjustments. In order to compare the approaches to each other we have constructed

113

8. Validation

normalized QoS cost functions which enable to characterize the QoS costs for each approach

in intensifying overload scenarios. The characteristics of each approach are important to

understand since they determine the behavior of a coupled operation to a great extent.

One of the �ndings was, that approaches which excel in isolation can be disadvantageous

in a coupled setup by dominating other approaches. We deem the �ndings as relevant for

other IoT applications since they capture the impact and interaction of the approaches in

a basic sensing cloud application.

Construct validity. The QoS cost functions are constructed by using a target and a worst

case value. They assume a linear relation between input metric and resulting QoS costs.

We derive the input for the QoS functions by monitoring the adjusted transmission rate,

the number of provisioned resources and the queueing delay. In the given application

scenario, we do not consider an environmental model in order to quantify the accuracy

degradations by the transmission rate reduction. Therefore, we assume, that there is a

linear relation between transmission rate and accuracy degradation. This is not the case

for every sensing application, which may exhibit a complex and changing relation between

transmission interval and accuracy. However, since the SLA of cloud applications may

impose a target transmission interval and penalize degradations based on implicit accuracy

assumptions we deem it as a suitable operational measure. The queueing delay is a�ected

by overload situations and therefore a suitable proxy metric for congestion-induced delays,

which a�ect the timeliness. The number of provisioned resources can be usually mapped

to operating costs based on the contract with the cloud provider. Therefore, we deem the

number of provisioned resources as suitable to be used in the QoS resource cost function.

However, an in�uencing factor on the timeliness could be network delays and device

latencies a�ecting the quality of adaption decisions. These factors are not considered in

the current investigation, but could be included by end-to-end measurements in future

ones. However, based on the experimental setup within a single cloud infrastructure, we

do not think, that they a�ect the investigation to a greater extent.

Reliability validity. To the best of our knowledge, we provided all details needed to

replicate the experimental setup. For this reason, we strongly expect the results to be

reproducible.

8.6.6. Discussion

This section investigated the QoS characteristics of isolated and coupled overload protec-

tion approach and compared it to state of the art auto-scalers. We optimized each approach

in each overload scenario based on normalized QoS cost function sets. Therefore, it enabled

to investigate the composition of QoS costs of each approach in intensifying overload

scenarios. In isolation, the resulting accuracy costs of the �ow control approaches are

comparable to resource costs caused by auto-scalers (Goal 3). A coupling of �ow control

and auto-scaling can be bene�cial to the overall QoS costs since it allows to tune the

adaptation behavior to a greater extent (Goal 4). Whereas the QoS characteristics in a

concurrent setup are determined by emergent behavior of the coupled approaches, a rule-

114

8.7. QoS Contributions of time-driven Flow Control in di�erent Application Scenarios

based approaches enable to control them to a speci�c degree. Rule-based approaches aim

to minimize the QoS costs by deactivating the approaches altogether, since the resulting

timeliness costs are less expensive than multi-dimensional costs caused by adaptations.

An extension of this investigation could weight the normalized QoS cost functions in

favor of a speci�c dimension to leverage the capabilities of the coupling approaches. We

conducted controlled experiments on the Bosch IoT Cloud to validated the simulation

results, which have shown a satisfying accuracy (Goal 5). Overall, the time-driven �ow

control approaches are able to maintain the timeliness on the expense of the accuracy. By

normalizing the QoS cost functions we aimed to compare them fairly to auto-scaling. The

results show, that they are similar e�cient in coping with overload scenarios. Coupling

the approaches can be bene�cial by enabling to share timeliness degradations in over-

load situations on both the accuracy and resource dimension. However, in the evaluated

scenario we provided linear cost functions which do not reward such behavior. Based

on the satisfying QoS costs achieved by a concurrent coupling and the comparable small

con�guration space we recommend service operators to use this coupling mechanism.

8.7. QoS Contributions of time-driven Flow Control in
di�erent Application Scenarios

This section addresses Goal 6 by investigating the capabilities of (coupled) �ow control

approaches to maintain the QoS costs in intensifying overload scenarios for time, accuracy

and resource cost driven sensing cloud applications. We represent these scenarios by

weighting the QoS cost function of the speci�c dimension. In contrast to the investigation

in section 8.6 we do not normalize the QoS cost functions in each overload scenario. Instead,

we obtain a single normalized QoS cost function set for a speci�c overload scenario, weight

it according to the application scenario and use it in each overload scenario. This aims

to represent the state of the practice to a greater extent, since QoS costs functions are

derived from a SLA. As in the previous investigation, we compare the approaches with

auto-scaling. We obtain the results by simulation and conduct controlled experiments on

the Bosch IoT Cloud to validate them.

8.7.1. Experimental Design

The experimental design is based on the previous one described in section 8.6. Therefore, it

is re�ned in order to target Goal 6 of the validation. We provide a time-varying connectivity

pattern and select a speci�c overload scenario for which we create a set of normalized

cost functions. This set is used in all overload scenarios and adjusted in order to represent

the QoS requirements of a speci�c application scenario. In contrast to the previous

investigation, we aim to penalize a processing delay to a greater extent, by using the

percentage of SLA violations as QoS input metric for the timeliness cost function. The

application scenarios are represented by weighting the cost functions of the corresponding

QoS dimensions. As in the previous investigation, we search for optimal con�gurations of

the approaches in each overload scenario.

115

8. Validation

Application Scenarios We consider the the following application scenarios to be particu-

larly relevant for sensing cloud applications:

• Accuracy driven. We characterize an accuracy driven application scenario as toler-

able to delays and resource costs, but less to accuracy degradations. An example are

environmental monitoring applications, which do not require immediate actuation.

• Time driven. We deem a time driven application scenario as tolerable to accuracy

degradations and resource costs, but less to delays. This is relevant for smart home

applications, in which the system needs to react to changes in the environment by

immediate actuation.

• Cost driven. We consider a cost driven application scenario as tolerable to accuracy

degradations and delays, but less to resource costs. E.g. applications, in which the

service operator has a limited budget and wants to optimize the overall costs by

degrading data qualities.

• Mixed. A mixed application scenario considers all dimensions as equally important.

Therefore, none of the accuracy, delays and resource cost functions is weighted.

QoS Cost Functions. We reuse the QoS cost function creation described in section 8.6. We

select an overload scenario which results in an overload share of 148 %. The constructed

cost functions are the base of the optimization of each approach at any overload share.

Furthermore, we re�ne the timeliness cost function creation by constructing it using

SLO violations. We de�ne a SLO violation, if the processing time per message exceeds 8 s.

The set point is 33 %, which means, that the timeliness cost function induced costs of 1 if

33 % of the messages are not processed in time.

All of the QoS cost functions are created using a quadratic cost function, which we

realize by multiplying each cost function with itself. This rewards approaches, which are

able to address the overload situation without exhausting the costs of a single quality.

Therefore, a non-ideal auto-scaler which cause resource and timeliness costs is expected to

perform better than accumulating messages in a static resource scenario, which burdens

timeliness only. The QoS costs can rise quickly, if they exceed the set point of the cost

function, e.g. if the SLO violations exceeds 66 % the timeliness costs are ≥ 4.

QoS Cost Function Weighting. We use the QoS cost set j1 presented in chapter 4 and

introduce weights :022 , :C8<4 and :A4B as follows:

j1 = :022 ∗&�22DA02~ + :C8<4 ∗&)8<4;8=4BB + :A4B ∗&'4B>DA24B
Based on the concrete application scenario, the weights of each cost function are

readjusted. We weight corresponding QoS dimensions with 4 = 2 in order to represent

application scenarios:

• Accuracy driven. Let :022 = 4 , :C8<4 = 1 and :A4B = 1.

• Time driven. Let :022 = 1, :C8<4 = 4 and :A4B = 1.

116

8.7. QoS Contributions of time-driven Flow Control in di�erent Application Scenarios

• Cost driven. Let :022 = 1, :C8<4 = 1 and :A4B = 4 .

• Mixed. Let :022 = 1, :C8<4 = 1 and :A4B = 1.

Connectivity Pattern. In order to have time-varying behavior we rely on a complex

connectivity pattern, which is illustrated in �gure 8.22. We adjust the intensity by varying

a multiplicator : in a range of [1, 170] in order to create overload situations, which vary

in share and intensity.

Figure 8.22.: Time-varying connectivity pattern of the investigation.

Optimization Methodology Based on the QoS cost functions of each application scenario,

we optimize the parameters of each approach using Di�erential Evolution in an overload

scenario with an overload share of 148 %. Therefore we obtain an optimized con�guration

for each approach in each application scenario for an initial overload situation. The

intensity of the overload situation is then adjusted to evaluate the QoS contributions of

each approach.

Experiment Duration. The duration of each experiment is Cexperiment = 10min.

8.7.2. Q.6.1 – QoS conformance in mixed application scenarios

Figure 8.23 shows the cumulative QoS cost for each approach in a mixed application

scenario. The QoS costs and measurements of the approaches are summarized in table

8.15. In the following, we discuss the results of each approach in a mixed scenario.

Isolated. CEF and TIF-L AIMD results in the lowest overall QoS costs within the group of

isolated approaches. This is based on their high congestion-avoidance e�ciency, which is

able to probe the available capacity with a high precision and share it fairly across connected

smart devices. Both approaches have a comparatively low share of SLO violations of 5 %.

Since they adapt with a high precision, the accuracy costs exceeds 1 only slightly. As in the

117

8. Validation

(a) (b)

(c) (d)

Figure 8.23.: Mixed Application Scenario. Cumulative QoS Costs of each approach in

intensifying overload scenarios.

previous investigations, the CEF approach is slightly better, by an overall cost reduction

of 7.6 %.

By being sensitive to connectivity variations, the TIF AIMD approach is prone to induce

long lasting congestions. This is re�ected by high timeliness costs based on average SLO

violations of 19 %. Therefore, the inferior congestion-avoidance characteristics result in

overall higher costs.

The Reg approach utilizes a similar mechanism as CEF in order to estimate the capacity

and adjust the provisioning in respect to the load intensity. Overall, it reacts fast and

e�cient, avoiding SLO violations altogether, which are at 0 %. However, as concluded in

the previous investigation, it tends to overprovision, which is strongly penalized by the

cost functions. Whereas it is more e�cient than the �ow control approaches in avoiding

congestions, it is less accurate and therefore overall more expensive. Especially in low

overload scenarios, it tends to eagerly provision resources, re�ected by high initial costs.

118

8.7. QoS Contributions of time-driven Flow Control in di�erent Application Scenarios

Approach

QoS Costs Measurements

Total Accuracy Timeliness Resources Transmission Rate [
<B6

B42
] SLO Violations [%] Instances [#]

CEF 1.58 1.53 0.05 0.0 0.57 5.74 1.0

TIF-L AIMD 1.69 1.62 0.06 0.0 0.56 5.87 1.0

TIF AIMD 3.07 2.16 0.91 0.0 0.51 12.71 1.0

Reg 3.46 0.0 0.0 3.46 1.0 0.0 4.68

React (CPU) 4.42 0.0 1.31 3.11 1.0 10.94 4.07

Baseline 5.46 0.0 5.46 0.0 1.0 72.3 1.0

Average 3.28 0.89 1.3 1.1 0.77 17.83 2.13

Concurrent (React, CEF) 1.94 0.87 0.06 1.01 0.7 1.37 2.15

Concurrent (Reg, CEF) 1.99 0.65 0.0 1.34 0.77 0.47 2.95

Concurrent (React, AIMD) 2.31 0.44 0.58 1.29 0.81 5.01 2.6

Concurrent (Reg, AIMD) 2.25 0.34 0.13 1.78 0.85 1.96 3.42

Average 2.12 0.57 0.2 1.35 0.78 2.2 2.78

Fuzzy (Reg, AIMD) 1.34 0.28 0.12 0.94 0.84 1.72 2.48

Fuzzy (Reg, CEF) 1.36 0.42 0.0 0.94 0.79 0.49 2.49

Fuzzy (React, CEF) 1.56 0.77 0.09 0.7 0.72 1.42 2.09

Fuzzy (React, AIMD) 1.94 0.4 0.36 1.17 0.82 4.03 2.62

Average 1.55 0.47 0.14 0.94 0.79 1.92 2.42

QoS Rules (Reg, CEF) 1.15 0.52 0.07 0.55 0.75 1.57 1.86

QoS Rules (Reg, AIMD) 1.27 0.16 0.17 0.94 0.88 2.07 2.38

QoS Rules (React, CEF) 1.61 0.68 0.15 0.79 0.73 2.03 2.03

QoS Rules (React, AIMD) 2.14 0.42 0.59 1.14 0.8 4.54 2.54

Average 1.54 0.45 0.24 0.85 0.79 2.55 2.2

Table 8.15.: Mixed Application Scenario – Average QoS costs and measurements across all

overload scenarios.

This is based on the capacity estimation, which is only re�ned in overload situations, and

relying on a guess based on the current arrival rate. Based on the low load intensity, the

guess does not re�ect the capacity of the service, thus resulting in overprovisioning.

The React approach degrades the QoS by being too slow and inaccurate in provisioning

resources. This can be bene�cial in low intensity overload situations, since the overall

costs are shared across resources and timeliness, resulting in overall low cumulative QoS

costs. However, the characteristics have a negative impact in high intensity overload

situations, which result in a high amount of SLO violations. This is re�ected by in average

27.11 % SLO violations.

Based on the quadratic cost functions, the baseline is heavily penalized by inducing SLO

violations up to 100 % at an overload share of roughly 300 %. Therefore, it results in the

highest overall costs of on average 5.46.

Concurrent Coupling. The concurrent coupling results on average in an improved QoS

conformance compared to isolated approaches. As investigated in section 8.6, both, CEF and

Reg are reactive and tend to overshadow the coupled approaches. In low overload scenarios

up to 180 %, a coupling results in slightly higher costs compared to isolated approaches.

Especially Reg coupled with CEF or coupled with TIF AIMD results in degraded costs,

since Reg is more reactive than the �ow control approaches by not relying on a congestion

observer to trigger resource provisioning. Therefore, the �ow control approaches do not

contribute to congestion avoidance, which results in a nearly equivalent behavior to an

isolated Reg approach. However, this changes in more intense overload situations. Then,

the combination of CEF and Reg results in the lowest cumulative QoS costs, with a fair

119

8. Validation

share of resource provisioning and transmission rate adjustments. Coupling React with

the �ow control approaches results in higher SLO violations but lower resource costs.

On average, there is a clear improvement in the QoS conformance of 166 % compared to

the isolated approaches. However, in less severe overload situations, the coupling may

degrade the QoS conformance.

Fuzzy Rules Coupling. The fuzzy rules approach switches to an isolated operation of �ow

control or auto-scaling if the accuracy or resource costs have exceed a certain threshold.

This is bene�cial for a coupling of Reg with CEF or TIF AIMD, since it does contribute

to worse QoS costs in low intensity overload scenarios, as observed in the concurrent

coupling. By deciding to switch to �ow control only, the costs are greatly reduced. Overall,

it results in a clear improvement compared to the concurrent approach, by avoiding a

dominant resource provisioning.

QoS Rules Coupling. By being optimized in each overload scenario, the �ne-granular

rule set of the QoS coupling aims to leverage the capabilities of an activation control

coupling. Therefore, it is expected to result in the lowest QoS costs, which is the case in the

experiment. Overall, it achieves the lowest average QoS costs with 1.54. The optimization

results in tuned thresholds for the given scenario, which may decide to initially operate

only one or none approach. This is shown in low overload intensity scenarios, since it

deactivates the resource provisioning of Reg altogether, avoiding the high initial spike.

The coupling of Reg and CEF results in a harmonizing behavior, in which the QoS costs

are fairly shared. Overall, the activation control leverages the potential of the coupled

approaches in isolation and in combination.

Discussion. In the mixed scenario, timeliness, accuracy and provisioning costs are equally

weighted. Therefore, each approach is optimized to share the QoS costs across multiple

dimensions. This is leveraged by the quadratic cost functions, which penalize approaches

heavily, if they are unable to utilize multiple cost dimensions. For this reason, isolated

approaches are challenged in maintaining a high QoS conformance. This is re�ected by

the average QoS costs of 4.33, which exceeds the QoS costs of coupled approaches by 166 %

to 195 %.

8.7.3. Q.6.2 – QoS conformance in time driven application scenarios

Figure 8.24 shows the cumulative QoS cost of the isolated and coupled overload protection

approaches in a time driven application scenario. The QoS costs and measurements of the

approaches are summarized in table 8.16. In the following, we discuss the results of each

approach.

Isolated. Approaches with a high congestion avoidance e�ciency tend to avoid long

lasting overload situations. Therefore, CEF, TIF-L AIMD and Reg result in the lowest

overall QoS costs. Since Reg tends to overprovision in the low overload scenario, its QoS

costs are degraded by inducing high resource costs. The inferior congestion avoidance

120

8.7. QoS Contributions of time-driven Flow Control in di�erent Application Scenarios

(a) (b)

(c) (d)

Figure 8.24.: Time driven Application Scenario. Cumulative QoS Costs of each approach

in intensifying overload scenarios.

characteristics of the TIF AIMD approach result in relatively high QoS costs by inducing

long lasting congestions, which are re�ected by SLO violations of 14.97 %. Especially in

higher overload scenarios, the React approach is unable to cope with the overload situation

in time, resulting in average SLO violations of 21.06 %. As expected, the baseline approach

exhibits the lowest QoS conformance based on the high amount of SLO violations. Overall,

there is an average QoS degradation of 17.0 % compared to the mixed setup.

Concurrent Coupling. A concurrent coupling inherits the timeliness properties of isolated

approaches. If one of the coupled approaches is able to avoid timeliness violations to

a great extent, the overall QoS costs are not a�ected compared to a mixed application

scenario. However, if both approaches are less e�cient in avoiding congestions, e.g. TIF

AIMD and React, the timeliness violations contribute to 13.7 % higher QoS costs.

121

8. Validation

Approach

QoS Costs Measurements

Total Accuracy Timeliness Resources Transmission Rate [
<B6

B42
] SLO Violations [%] Instances [#]

CEF 1.61 1.54 0.07 0.0 0.57 4.64 1.0

TIF-L AIMD 1.76 1.7 0.06 0.0 0.54 3.82 1.0

Reg 3.48 0.0 0.0 3.48 1.0 0.0 4.69

TIF AIMD 3.74 2.48 1.26 0.0 0.46 14.97 1.0

React (CPU) 5.47 0.0 1.96 3.5 1.0 21.06 4.3

Baseline 10.92 0.0 10.92 0.0 1.0 72.3 1.0

Average 4.49 0.95 2.37 1.17 0.76 20.61 2.17

Concurrent (Reg, CEF) 2.02 0.65 0.0 1.36 0.77 0.42 2.98

Concurrent (React, CEF) 2.23 0.86 0.1 1.26 0.71 1.31 2.29

Concurrent (Reg, AIMD) 2.39 0.26 0.16 1.97 0.87 1.28 3.59

Concurrent (React, AIMD) 3.01 0.48 1.04 1.49 0.81 4.51 2.76

Average 2.41 0.57 0.33 1.52 0.79 1.88 2.9

Fuzzy (Reg, CEF) 1.34 0.38 0.01 0.95 0.8 0.53 2.5

Fuzzy (Reg, AIMD) 1.53 0.36 0.18 0.99 0.82 1.47 2.54

Fuzzy (React, CEF) 1.63 0.77 0.16 0.7 0.72 1.38 2.09

Fuzzy (React, AIMD) 2.27 0.54 0.53 1.2 0.79 2.91 2.62

Average 1.69 0.51 0.22 0.96 0.78 1.57 2.44

QoS Rules (Reg, CEF) 1.2 0.52 0.11 0.57 0.76 1.43 1.91

QoS Rules (Reg, AIMD) 1.42 0.21 0.24 0.97 0.87 1.76 2.41

QoS Rules (React, CEF) 1.71 0.81 0.29 0.62 0.71 1.97 1.87

QoS Rules (React, AIMD) 2.47 0.42 0.88 1.16 0.8 3.58 2.57

Average 1.7 0.49 0.38 0.83 0.78 2.18 2.19

Table 8.16.: Time driven Application Scenario – Average QoS costs and measurements

across all overload scenarios.

Fuzzy Rules Coupling. The fuzzy rule set is independent to timeliness costs. Therefore,

the activation mix of resource provisioning and �ow control is not a�ected by the change

in the application scenario. However, the resulting QoS costs are a�ected, since timeliness

costs are increased. They are nearly 0 for a coupling of CEF and Reg based on their

congestion avoidance e�ciency. The remaning coupling candidates do induce timeliness

costs, which result in a degradation of the overall cumulative QoS costs compared to the

mixed application scenario by 10.9 %.

QoSRulesCoupling. The QoS cost characteristics in accuracy and resources remain nearly

una�ected in comparison to the mixed application scenario. However, the rule set is more

eager to activate approaches to avoid congestion induced SLO violations which is re�ected

by slightly degraded timeliness costs and slightly increased resource and accuracy costs

for all approaches. However, no approach is able to avoid timeliness violations altogether

resulting in overall degraded QoS costs of 10 %.

Discussion. In a time driven scenario, timeliness costs are heavily penalized. This rewards

approaches which avoid SLO violations. The QoS costs are strongly increased for isolated

approaches which are not e�cient at avoiding congestions, e.g. React or TIF AIMD. A

coupling based on fuzzy rules or a concurrent operation is not a�ected in its activation

behavior based on the time driven scenario. The QoS rules are able to con�gure activation

rules, which activate each approach more often in order to reduce timeliness violations.

All approaches have resulted in higher QoS costs since each is not able to address the

overload situations without inducing SLO violations.

122

8.7. QoS Contributions of time-driven Flow Control in di�erent Application Scenarios

8.7.4. Q.6.3 – QoS conformance in accuracy driven application scenarios

Figure 8.25 shows the cumulative QoS cost of each approach in an accuracy driven appli-

cation scenario. The QoS costs and measurements are summarized in table 8.17. In the

following, we discuss the results of each approach.

(a) (b)

(c) (d)

Figure 8.25.: Accuracy driven Application Scenario. Cumulative QoS Costs of each ap-

proach in intensifying overload scenarios.

Isolated. The weight on accuracy results in a major degradation of the QoS conformance

of �ow control approaches up to 100 %. Since auto-scaling does not induce accuracy

costs it has a QoS cost advantage in this application scenario. However, this advantage

is overshadowed for Reg by overprovisioning in low intensity overload scenarios and

for React by timeliness violations in high overload scenarios. Therefore, the �ow control

approaches are on average only slightly below auto-scaling approaches. Notably, the TIF

AIMD approach is able to reduce accuracy degradations, since the optimized parameters

123

8. Validation

Approach

QoS Costs Measurements

Total Accuracy Timeliness Resources Transmission Rate [
<B6

B42
] SLO Violations [%] Instances [#]

CEF 3.04 2.96 0.09 0.0 0.58 7.45 1.0

TIF-L AIMD 3.26 3.1 0.15 0.0 0.57 9.81 1.0

React (CPU) 3.42 0.0 0.29 3.13 1.0 10.4 4.08

Reg 3.46 0.0 0.0 3.46 1.0 0.0 4.68

TIF AIMD 4.64 1.38 3.27 0.0 0.78 44.83 1.0

Baseline 5.45 0.0 5.45 0.0 1.0 72.8 1.0

Average 4.03 1.24 1.69 1.1 0.82 24.13 2.13

Concurrent (Reg, CEF) 2.54 0.69 0.0 1.86 0.85 0.28 3.48

Concurrent (Reg, AIMD) 2.62 0.39 0.07 2.15 0.9 0.94 3.72

Concurrent (React, AIMD) 2.63 0.73 0.53 1.37 0.83 4.76 2.73

Concurrent (React, CEF) 3.09 1.41 0.06 1.62 0.74 1.21 2.55

Average 2.72 0.8 0.16 1.75 0.83 1.8 3.12

Fuzzy (Reg, AIMD) 1.48 0.28 0.12 1.08 0.89 1.65 2.64

Fuzzy (Reg, CEF) 1.76 0.64 0.0 1.12 0.82 0.39 2.7

Fuzzy (React, AIMD) 2.33 0.45 0.36 1.52 0.86 4.16 2.96

Fuzzy (React, CEF) 2.26 1.07 0.08 1.11 0.77 1.23 2.52

Average 1.96 0.61 0.14 1.21 0.84 1.86 2.7

QoS Rules (Reg, AIMD) 1.44 0.28 0.16 1.0 0.89 2.05 2.44

QoS Rules (Reg, CEF) 1.57 0.82 0.07 0.68 0.79 1.53 2.05

QoS Rules (React, CEF) 2.29 1.22 0.17 0.9 0.76 2.13 2.18

QoS Rules (React, AIMD) 2.61 0.66 0.54 1.41 0.84 4.19 2.77

Average 1.98 0.74 0.24 0.99 0.82 2.47 2.36

Table 8.17.: Accuracy driven Application Scenario – Average QoS costs and measurements

across all overload scenarios.

do a�ect its congestion avoidance e�ciency to a great extent, as discussed in section 8.6.2.

However, this is achieved on the expense of timeliness, which result in overall increased

QoS costs.

Concurrent Coupling. Whereas a concurrent coupling does not control the activation of

approaches, the emergent behavior is tuned by the initial optimization of the con�guration

of the coupled approaches for the time driven application scenario. Therefore, the overall

transmission rate adjustments are decreased in comparison to the mixed application

scenario by 6 %, whereas the instance provisioning is increased by 23 %. The e�ciency

of Reg enables to maximize this e�ect since its resource provisioning triggers the �ow

control approaches to a lesser degree resulting in low cumulative QoS costs.

Fuzzy Rules Coupling. The fuzzy rules favor auto-scaling when faced with high accuracy

costs. This is re�ected by a reduced transmission rate adjustment compared to the mixed

application scenario of in average 6.3 %. Based on the less e�cient congestion avoidance

property of TIF AIMD it acts favorable on the QoS costs since the transmission rate

adjustments are less intense. Overall, the combination of Reg and CEF remains a strong

coupling candidate which is excelled by Reg and AIMD since both pro�t from the e�cient

resource provisioning of Reg.

QoSRules Coupling. Whereas it could be expected, that the QoS rules tend to not activate

�ow control approaches, they still do. This is based on the results of auto-scaling in

isolation and the baseline, which contributes in this experiment to higher QoS costs

124

8.7. QoS Contributions of time-driven Flow Control in di�erent Application Scenarios

Approach

QoS Costs Measurements

Total Accuracy Timeliness Resources Transmission Rate [
<B6

B42
] SLO Violations [%] Instances [#]

CEF 1.57 1.52 0.05 0.0 0.57 1.83 1.0

TIF-L AIMD 1.69 1.63 0.06 0.0 0.56 1.71 1.0

TIF AIMD 3.08 2.32 0.77 0.0 0.48 10.45 1.0

Baseline 5.48 0.0 5.48 0.0 1.0 103.53 1.0

Reg 6.97 0.0 0.0 6.97 1.0 0.14 4.69

React (CPU) 7.17 0.0 1.76 5.41 1.0 15.42 3.83

Average 4.33 0.91 1.35 2.06 0.77 22.18 2.09

Concurrent (React, CEF) 2.6 1.06 0.08 1.45 0.66 1.63 1.84

Concurrent (React, AIMD) 3.25 0.69 0.76 1.8 0.75 6.34 2.26

Concurrent (Reg, AIMD) 3.81 0.59 0.26 2.95 0.78 3.07 3.12

Concurrent (Reg, CEF) 3.17 1.05 0.01 2.12 0.69 0.7 2.57

Average 3.21 0.85 0.28 2.08 0.72 2.93 2.45

Fuzzy (Reg, CEF) 2.13 0.71 0.0 1.42 0.72 0.58 2.18

Fuzzy (React, CEF) 2.18 0.94 0.09 1.15 0.68 1.52 1.87

Fuzzy (Reg, AIMD) 2.23 0.43 0.19 1.61 0.8 2.42 2.31

Fuzzy (React, AIMD) 2.99 0.7 0.51 1.78 0.76 5.49 2.32

Average 2.38 0.69 0.2 1.49 0.74 2.5 2.17

QoS Rules (Reg, CEF) 1.66 0.77 0.1 0.78 0.7 1.84 1.6

QoS Rules (React, CEF) 1.97 1.07 0.18 0.72 0.65 2.3 1.5

QoS Rules (Reg, AIMD) 2.14 0.26 0.22 1.65 0.84 2.3 2.23

QoS Rules (React, AIMD) 3.41 0.51 0.73 2.17 0.78 5.17 2.35

Average 2.29 0.65 0.31 1.33 0.74 2.9 1.92

Table 8.18.: Cost driven Application Scenario – Average QoS costs and measurements

across all overload scenarios.

than combining it with �ow control. Therefore, the coupling only slightly reduces the

transmission rate adjustments on the expense of an increased resource provisioning.

Overall, the weighted accuracy costs and the increased provisioning costs result in a QoS

conformance degradation of in average 23 % compared to a mixed application scenario.

Discussion. In an accuracy driven application scenario the adjustments of time-driven

�ow control approaches are heavily penalized. Therefore, they induce high QoS costs if

operated on their own. Coupling �ow control approaches with auto-scaling has shown to

be bene�cial on the overall QoS.

8.7.5. Q.6.4 – QoS conformance in cost driven application scenarios

Figure 8.26 shows the cumulative QoS cost for each approach in a cost driven application

scenario. The QoS costs and measurements of the approaches are summarized in table

8.18.

Isolated. Since the weighted resource cost function does only a�ect the auto-scaling

approaches, the degradation of the QoS conformance is especially strong for Reg and React.

Since Reg o�ers no parameters space, the resulting QoS costs are nearly doubled, whereas

React is able to reduce the resource provisioning by 6 % on the expense of timeliness.

Nevertheless, React results in the highest QoS costs of 7.17. Both approaches exceeds the

baseline by at least 10 %.

125

8. Validation

(a) (b)

(c) (d)

Figure 8.26.: Cost-driven Application Scenario. Cumulative QoS Costs of each approach

in intensifying overload scenarios.

Concurrent Coupling. In contrast to a mixed application scenario, a coupling with Reg

results in worse QoS costs than a coupling with React. This is based on its reactivity and

the lack of a parameter space, such that it can not be tuned for this scenario. Since CEF is

more e�cient in congestion avoidance than TIF AIMD, it achieves the lowest QoS costs by

enabling to sink the QoS costs on accuracy.

Fuzzy Rules Coupling. The fuzzy rules enables to switch to �ow control, if the resource

costs have exceeded a certain threshold. CEF is a more suitable �t, by being able to degrade

the accuracy and maintain low timeliness violations. This lighten the burden on the

auto-scaling approaches. Notably, a coupling with Reg performs slightly better than a

coupling with React. This may be based on the property of React to deprovision only one

microservice as a time resulting in high resource costs.

126

8.7. QoS Contributions of time-driven Flow Control in di�erent Application Scenarios

QoS Rules Coupling. In comparison to the mixed application scenario, the provisioned

instances are reduced by 15 %, which allow to avoid a strong QoS degradation based on

resource costs. However, they are still considerably increased by 56 %. Nevertheless, the

QoS coupling results in the lowest average QoS costs. Similar to the fuzzy rules coupling

the QoS rules coupling achieves the best results with Reg coupled with CEF followed by

React coupled with CEF.

Discussion. In a cost driven application scenario auto-scaling approaches are challenged

since resource provisioning is heavily penalized. Therefore auto-scaling results in high

QoS costs. They can be mitigated by relying on coupling approaches at which a QoS based

rule set performs best.

8.7.6. Q.6.5 – Simulation Model Accuracy

The simulation prediction of each coupling approach is validated by conducting 5 measure-

ments in di�erent overload shares >E4A;>03Bℎ0A4 = {75, 150, 200, 300} and each application

scenario B24=0A8> = {<8G43, C8<43A8E4=, 2>BC3A8E4=, 022DA02~3A8E4=}.

Isolated. Table 8.19 summarizes the results for the simulation of isolated approaches

in each scenario. The application scenarios lead to approximately the same prediction

accuracy. The accuracy is high for �ow control approaches and becomes increasingly

worse for resource provisioning approaches. This is mainly due to inaccuracies in pre-

dicting the SLO violations. The prediction of the �ow control approaches bene�t from

the implementation of the synthetic smart devices in the case study system since it is not

a�ected by environmental dynamics to a great extent. Provisioning decisions are executed

by the cloud platform. We suspect that the dynamics of provisioning are insu�ciently

modeled, resulting in a degraded simulation accuracy. Overall, they are at an acceptable

level of accuracy that allows the results to be analyzed.

Coupled. The results are summarized in table 8.20. The coupling of approaches results

in additional dynamics in the system. However, these have little e�ect on the simulation

accuracy. Overall, the prediction accuracy of 32.1 % to 144.25 % is within the acceptable

range.

8.7.7. Threats to Validity

The presented investigation di�ers from the investigation in section 8.6 by providing a

�xed QoS cost functions. This QoS cost function set is not normalized across each overload

scenario but only once for each application scenario. We model application scenarios

based on weighting corresponding dimensions of these cost functions. Furthermore, the

QoS costs functions are constructed with a quadratic error function, in order to reward

approaches, which share the QoS costs across multiple dimensions. Therefore, we re�ne

the external validity to discuss the generalizability of the �ndings.

127

8. Validation

Approach Scenario X&C>C0; Δ&022 Δ&C8<4 Δ&A4B X) X&D4D4�4;0~ X�=BC0=24B

React time driven 291.3 0.0 5.07 0.19 0.0 520.58 18.45

Concurrent time driven 142.55 0.59 0.94 0.31 14.88 302.32 19.85

Reg time driven 93.53 0.0 0.03 17.59 0.0 0.0 70.1

Rules time driven 88.85 0.26 11.02 0.3 16.53 97.73 192.05

CEF time driven 75.75 0.2 5.32 0.0 10.03 71.92 0.0

TIF-L AIMD time driven 50.4 0.69 0.77 0.0 18.13 63.55 0.0

TIF AIMD time driven 36.67 1.52 0.56 0.0 24.27 38.93 0.0

Baseline time driven 2.25 0.0 0.27 0.0 0.0 5.83 0.0

React mixed 127.05 0.0 2.31 0.21 0.0 410.85 17.8

Reg mixed 94.53 0.0 0.02 15.34 0.0 0.0 71.1

Rules mixed 79.0 0.24 4.97 0.37 18.97 95.65 213.25

CEF mixed 70.47 0.22 3.53 0.0 10.15 71.78 0.0

TIF-L AIMD mixed 56.42 0.57 0.97 0.0 22.57 48.35 0.0

TIF AIMD mixed 34.9 0.69 0.7 0.0 25.75 44.92 0.0

Concurrent mixed 48.67 0.65 1.85 0.13 20.35 77.08 62.4

Baseline mixed 2.1 0.0 0.13 0.0 0.0 5.85 0.0

React accuracy driven 117.72 0.0 2.7 0.45 0.0 265.15 109.3

Reg accuracy driven 89.75 0.0 0.02 14.99 0.0 0.0 65.33

Concurrent accuracy driven 85.4 0.41 1.2 0.21 20.02 93.32 52.15

Rules accuracy driven 83.2 0.47 5.35 0.15 21.23 96.65 136.63

CEF accuracy driven 74.38 0.37 5.55 0.0 8.15 85.35 0.0

TIF-L AIMD accuracy driven 49.23 1.01 1.45 0.0 19.92 63.7 0.0

TIF AIMD accuracy driven 31.05 1.04 1.08 0.0 11.13 33.4 0.0

Baseline accuracy driven 1.85 0.0 0.12 0.0 0.0 5.68 0.0

Reg cost driven 91.73 0.0 0.02 31.3 0.0 0.0 67.17

Rules cost driven 78.63 0.22 5.52 0.64 15.88 97.68 205.55

Concurrent cost driven 77.22 0.33 2.02 0.43 27.4 151.9 48.42

CEF cost driven 75.25 0.2 3.79 0.0 7.85 80.92 0.0

React cost driven 44.58 0.0 2.58 1.13 0.0 132.0 233.03

TIF-L AIMD cost driven 42.13 0.47 0.47 0.0 23.1 50.95 0.0

TIF AIMD cost driven 33.48 0.58 0.35 0.0 17.27 31.77 0.0

Baseline cost driven 1.85 0.0 0.11 0.0 0.0 5.48 0.0

Table 8.19.: Average prediction errors of the QoS costs and the input metrics as percentage

di�erence (X) or absolute prediction errors (Δ) for the isolated approaches in

each application scenario.

128

8.7. QoS Contributions of time-driven Flow Control in di�erent Application Scenarios

Approach Scenario X&C>C0; Δ&022 Δ&C8<4 Δ&A4B X) X&D4D4�4;0~ X�=BC0=24B

Concurrent (React, CEF) accuracy driven 144.25 1.24 0.36 0.16 51.72 43.45 93.13

Rules (Reg, CEF) accuracy driven 92.97 0.23 5.8 0.11 15.68 98.9 110.25

Rules (Reg, TIF AIMD) accuracy driven 91.95 0.1 5.65 0.16 10.22 97.75 140.05

Rules (React, TIF AIMD) accuracy driven 86.67 0.24 5.73 0.36 11.47 98.65 200.8

Rules (React, CEF) accuracy driven 86.0 0.64 5.63 0.06 25.57 98.4 77.25

Concurrent (Reg, CEF) accuracy driven 84.08 0.24 0.0 15.8 11.65 1189.45 66.7

Concurrent (Reg, TIF AIMD) accuracy driven 73.53 0.09 0.03 12.43 7.33 1690.55 56.55

Concurrent (React, TIF AIMD) accuracy driven 61.3 1.37 1.91 0.26 48.75 165.78 45.0

Concurrent (React, CEF) mixed 104.85 0.67 0.07 0.3 28.42 163.63 45.72

Rules (Reg, CEF) mixed 95.1 0.15 5.85 0.1 17.82 99.08 99.22

Rules (Reg, TIF AIMD) mixed 94.3 0.06 5.73 0.18 9.47 98.77 147.9

Rules (React, TIF AIMD) mixed 91.03 0.07 5.49 0.14 11.35 97.4 130.52

Rules (React, CEF) mixed 87.95 0.34 5.73 0.14 23.75 98.42 110.02

Concurrent (Reg, TIF AIMD) mixed 86.47 0.0 0.0 16.03 1.57 309.4 60.83

Concurrent (Reg, CEF) mixed 85.88 0.05 0.0 14.74 7.52 5895.05 64.17

Fuzzy (Reg, TIF AIMD) mixed 76.33 0.05 5.69 0.72 10.2 98.35 138.9

Fuzzy (Reg, CEF) mixed 74.95 0.14 5.84 0.82 16.9 99.67 158.03

Fuzzy (React, CEF) mixed 71.63 0.65 5.8 0.42 32.95 98.78 80.15

Fuzzy (React, TIF AIMD) mixed 71.38 0.3 5.62 0.68 17.15 98.38 168.35

Concurrent (React, TIF AIMD) mixed 32.1 0.19 0.63 0.31 10.05 197.55 13.72

Rules (Reg, TIF AIMD) time driven 96.1 0.06 11.49 0.13 9.18 97.95 126.67

Rules (Reg, CEF) time driven 95.8 0.21 11.62 0.15 18.0 98.97 132.57

Rules (React, CEF) time driven 94.05 0.4 11.41 0.07 29.25 98.23 64.33

Rules (React, TIF AIMD) time driven 93.8 0.4 11.47 0.17 25.9 98.6 133.05

Fuzzy (React, CEF) time driven 87.9 0.25 11.56 0.68 22.18 99.03 129.13

Fuzzy (Reg, TIF AIMD) time driven 87.35 0.16 11.59 0.77 16.23 99.13 156.5

Fuzzy (Reg, CEF) time driven 84.38 0.2 11.71 0.88 20.27 99.68 141.48

Concurrent (Reg, CEF) time driven 80.17 0.18 0.01 13.46 14.2 1501.25 65.38

Fuzzy (React, TIF AIMD) time driven 75.93 0.45 10.0 0.59 26.23 93.1 118.47

Concurrent (Reg, TIF AIMD) time driven 73.15 0.25 0.07 13.7 17.0 5109.27 62.3

Concurrent (React, CEF) time driven 71.55 1.06 0.0 2.75 28.5 5692.32 43.95

Concurrent (React, TIF AIMD) time driven 51.9 0.08 0.44 0.26 8.57 76.0 26.15

Rules (Reg, CEF) cost driven 93.3 0.19 5.76 0.08 18.88 98.5 71.85

Rules (Reg, TIF AIMD) cost driven 92.2 0.11 5.73 0.25 14.38 98.35 124.8

Concurrent (Reg, TIF AIMD) cost driven 84.42 0.04 0.04 29.82 7.15 11960.5 61.73

Concurrent (Reg, CEF) cost driven 84.27 0.41 0.0 28.61 23.5 2965.15 64.82

Rules (React, TIF AIMD) cost driven 79.8 0.2 4.88 0.22 21.73 93.88 107.22

Rules (React, CEF) cost driven 77.0 0.33 5.56 0.75 25.75 97.72 121.33

Fuzzy (Reg, CEF) cost driven 70.95 0.25 5.88 1.37 23.63 99.58 121.83

Fuzzy (Reg, TIF AIMD) cost driven 69.03 0.06 5.8 1.5 11.35 99.2 148.47

Concurrent (React, TIF AIMD) cost driven 68.55 0.47 1.1 0.8 19.27 395.48 39.23

Fuzzy (React, TIF AIMD) cost driven 63.48 0.46 5.71 1.58 16.68 98.48 187.53

Fuzzy (React, CEF) cost driven 60.25 0.62 5.82 1.41 28.57 98.78 133.85

Concurrent (React, CEF) cost driven 36.77 0.32 0.12 0.2 15.52 63.12 23.08

Table 8.20.: Average prediction errors of the QoS costs and the input metrics as percentage

di�erence (X) or absolute prediction errors (Δ) for the coupled approaches in

each application scenario.

129

8. Validation

External validity. The investigation aims to generalize the impact of the application

scenario on the overload protection quality of di�erent approaches. In practice, there

may be applications, which are driven by the combination of qualities, e.g. time and

accuracy. However, the investigation allows a general understanding by showing how

each application scenario in�uences the contributions of isolated and coupled �ow control

approaches on the QoS conformance. We rely on a speci�c time-varying connectivity

pattern. By using optimization heavily, we can not exclude an over-optimization to this

connectivity scenario which favors one approach over the other.

Reliability validity. To the best of our knowledge, we provided all details needed to

replicate the experimental setup. For this reason, we strongly expect the results to be

reproducible.

8.7.8. Discussion

In this section an investigates the capabilities of (coupled) �ow control approaches to

maintain the QoS in intensifying overload scenarios for time, accuracy and resource

cost driven sensing cloud applications (Goal 6). Overall, it has been shown that isolated

approaches are less e�cient in coping with di�erent application scenarios since each

experience a strong QoS degradation if speci�c qualities are weighted. All coupling

mechanisms have shown to improve the QoS conformance to a strong degree leveraging

the contribution of the coupled approaches. The QoS conformance of concurrent coupling

depends to a great extent on the emergent behavior of the coupled approaches since some

approaches tend to dominate others. A fuzzy rules coupling is able to switch to an isolated

operation of the coupled approaches if speci�c QoS costs are too high. This stabilizes

the QoS conformance in all application scenarios making it a good choice for overload

protection. The QoS rules coupling depends heavily on �ne tuning and can therefore

be expected to be less suitable to be used in practice. However, the �ne tuning allows

to optimize for speci�c application scenarios resulting in overall low QoS costs. The

investigation has strengthen the �ndings of the investigation of the QoS characteristics on

the previous section. Furthermore, it has demonstrated the weaknesses of each overload

protection approach in respect to reoccurring application scenarios for sensing cloud

applications.

8.8. Connected Heating – Use Case ’Predictive Maintenance’

In this section, an investigation of the QoS contribution of the presented �ow control

approaches on the example of an industry-relevant cloud solution takes place. Therefore

it addresses Goal 7 of the validation. The investigation is based on the Predictive Main-

tenance use case of the Connected Heating solution of the Robert Bosch GmbH. In this

use case, heating units publishes temperature and pressure data with a high frequency.

Since the use case requires data about the environment to analyze it, it demands that the

environment is sensed by the heating units with a speci�c accuracy. Therefore it allows

us to quantify the impact of transmission rate adjustments based on the error between

130

8.8. Connected Heating – Use Case ’Predictive Maintenance’

the sensed data and the actual environment. Since the presented �ow control approaches

aim to improve the QoS conformance in overload situations, we introduce an outage and

recovery scenario, such that the initial provisioning is eventually insu�cient to cope with

the connected heating units. We provide QoS cost functions to quantify the contributions

of the approaches and compare it to auto-scaling and an accuracy driven collection strategy

introduced in [67]. Furthermore, we investigate the bene�ts and impacts of coupling the

approaches with each other.

8.8.1. Experimental Design

The outage and recovery scenario is formed by a cloud service with an initial provisioning

of 1 instance per microservice and 2000 reconnecting heating units over a time span of 24

minutes. In order to quantify accuracy QoS costs we calculate a target accuracy which

emerges for a provided environment model and the sensed data based on a transmission

interval declared in the internal documentation. We quantify accuracy degradations by

measuring the deviation of the sensed environment to the actual environment. Further-

more, we introduce two QoS cost set functions. Whereas the �rst captures the sensed

accuracy and timeliness violations, the second introduces a measure, which expresses

how accurate the measured values are at the time of arrival at the cloud application. We

focus on temperature data only and use a homogeneous environment model for all smart

devices and do not exploit the correlation of measurements.

Candidates. The case study focuses on the following candidate sets, which are compared

with each other with regard to di�erent QoS metric:

• I. Baseline: As a baseline scenario and as an initial state of the system, we use a

statically con�gured system where each service has exactly one instance and which

is not replicated during the experiment. The goal is to observe the behavior of the

system without dynamics caused by runtime management approaches. It is therefore

used for comparison with the other runtime approaches.

• II. Isolated Auto-Scaling: Auto-scalers are the current state of the practice in

runtime management of cloud applications. For this reason, an auto-scaling scenario

is set up as one of the runtime candidates, in which each individual service is

automatically provisioned via an auto-scaler. Furthermore, this setup allows insights

into the elasticity of the system, as the elasticity characteristics depend on the cloud

platform and the deployed applications.

• III. Isolated Flow Control (CEF): This candidate relies on an isolated overload

protection approach, which dynamically regulates the transmission rate of the

heating units based on performance metrics. The goal is to �nd out what in�uence

this approach has on the QoS and how it in�uences the QoS in this process.

• IV. Isolated Accuracy-Driven (ACC): This candidate focus on an accuracy driven

approach, which adjust the transmission rate according to a target accuracy derived

by the change in the current and the last measurement. This state of the art approach

131

8. Validation

is presented in [67] and included in this case study to investigate its in�uence on

the accuracy and the overall load.

• V. Flow Control & Accuracy-Driven: This candidate couples the candidates pre-

sented in III and IV, in order to investigate the combination of a time- and an

accuracy-driven �ow control approach. Since both approaches a�ect the same

mechanism based on di�erent qualities, we use a rule-based coupling that only

triggers the overload protection if necessary. Therefore, the strategy candidate aims

to dynamically adapt the transmission rate in order to sense the environment with

a reduction in the overall load. Since it can induce congestions by increasing the

transmission rate or exceeding the available capacity, the congestion avoiding �ow

control approach aims to mitigate resulting overload situations.

• VI. Auto-Scaling & Accuracy-Driven: This candidate couples the candidates

presented in II and IV. The goal is to reduce the transmission rate while at the same

time adapting the capacity to counteract overload situations. The candidates are

operated concurrently.

• VII. Auto-Scaling & Flow Control: The candidates presented in II and III are

coupled in a concurrent manner. The aim is to provide an additional mechanism to

counteract severe overload situations. The time in which necessary resources are

provisioned depends on the auto-scaler, the cloud platform and the cloud service.

Therefore it may not be always in time, which is why a congestion avoiding �ow

control approach is utilized.

• VIII. Auto-Scaling & Flow Control & Accuracy-Driven: This candidate couples

II, III and IV. The idea is to use the accuracy-driven approach to adjust the transmis-

sion rate as needed. The required capacity should be provided by the auto-scalers.

Therefore, the auto-scalers operate simultaneously with one of the �ow control

approaches, whereas the �ow control approaches are coupled as described in V.

Sensing Accuracy. As introduced in chapter 4 the accuracy of measurements by heating

units is determined by calculating the percentage error between the measured values and

the actual environment. Let �C be the environment data an �C the sensed data within at a

slotted time C with a total of) discrete time slots. We express the accuracy as the mean

percentage error, with 0 % as the best value:

022DA02~ (�) = 100 ∗
)∑
C=0

|�C − �C |
�C

The accuracy is not dependent on time, as each heating unit sets a timestamp before

transmitting a value. The measured temperature curve is reconstructed using this times-

tamp. In order to determine the accuracy from the point of view of the cloud service, a

second error value is calculated, which we call perceived accuracy. This error expresses

how accurate the measured values are at the time of arrival at the cloud application, i.e. it

becomes minimal if there is no processing delay and no measurement inaccuracy.

132

8.8. Connected Heating – Use Case ’Predictive Maintenance’

Environment Data. We rely on temperature traces retrieved from Deutsche Wetterdi-

enst, which provides hourly temperature data on an open access platform
6
. Based on the

coarse granularity of the data, we speed it up by a factor of 2∗24∗60, such that each hour is

represented by half a minute. Furthermore, we interpolate data linearly in order to retrieve

varying data for each second. Whereas this induce more environment changes than to

be expected in a real world setup, it allows to shorten the overall experiment duration

and to leverage the contribution of accuracy-driven strategies on the QoS. We select all

the temperature data of the 31.05.2018 obtained by the weather station in Großenkneten,

Lower Saxony. The data is illustrated in �gure 8.27.

Figure 8.27.: Extracted and prepared Environment Temperature Data from a weather sta-

tion in Großenkneten, Lower Saxony, during 31.05.2018 - 01.06.2018.

QoSCost Functions. The sensing requirements of cloud services can be driven by di�erent

qualities. Whereas some cloud services may require a high accuracy without strict time

constraints others demands a high accuracy under strong time constraints. While the

former focuses on an analysis of the environment, the latter implies a certain reactivity

of the IoT application to changes in the environment. Whereas the use case Predictive

Maintenance focuses on an analysis, it can not be conclusively answered which cost

functions are best suited for evaluation. Therefore, two di�erent sets of cost functions

are used in this study as introduced in chapter 4. One set is consistent with the previous

investigations and consists of a cumulative cost function for resources, time, and accuracy,

such that j1 = &�22DA02~ +&)8<4;8=4BB +&'4B>DA24B . In the second set, we combine accuracy

and time aspects in a cost function. Here, we look at the accuracy of temperature values

in time, i.e. how accurate is the temperature data transmitted at a given time, perceived by

6
https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/hourly/

133

8. Validation

the cloud application. Therefore, we use only a resource and a time-accuracy cost function,

which uses perceived accuracy as input, such that j2 = &%4A248E43�22DA02~ +&'4B>DA24B . We

also introduce a temporal shift metric, which quanti�es how old the data perceived by

the cloud service is at the end time of the experiment. In general, we construct linear cost

functions as described in chapter 4.4. We compute the cumulative QoS costs after each

experiment. We create a normalized QoS cost function set as described in section 8.6.1.

Therefore, we construct a linear cost function for each quality which computes the QoS

costs by comparing the measured QoS input metric to its worst value across all candidates.

The construction of each cost function is explained below:

• Accuracy: While the internal documentation describes a message interval of 15 s,

the resulting accuracy of the measurements depends on the environmental changes.

Based on the worst measured accuracy 022F>ABC > 0 % and the best accuracy of

022>?C = 0 %, we construct the cost function as follows:

&�22DA02~ (0224G?) =
0224G?

022F>ABC

• Timeliness: There is no hard constraint on the timeliness described in documenta-

tion. Therefore, we rely on the worst measured value in the candidate sets)F>ABC > 0 s

and a best timeliness of)>?C = 0 s, such that:

&)8<4;8=4BB ()4G?) =
)4G?

)F>ABC

• Resources: Since the actual productively used system is statically provisioned

and not operated on a cloud platform, we could not extract any operating costs

for the resources. Therefore, we introduce a cost function, based on the highest

average number of instances provided accumulated across all cloud services %F>ABC >

0 instance, and a best average provisioning of %14BC = 0 instance. Notably, there can

not be 0 costs for resources, since there is at least 1 service instance active, per

microservice. This results in the following cost function for a given number of

instances %4G? :

&'4B>DA24B (%4G?) =
%4G?

%F>ABC

• Perceived Accuracy: This cost function represents the accuracy of the measured

data perceived by the cloud service, therefore considering both, the sensing ac-

curacy and processing delays. Based on the worst measured perceived accuracy

022
?4A248E43

F>ABC > 0 % and the best accuracy of 022
?4A248E43

>?C = 0 %, we construct the cost

function as follows:

&%4A248E43�22DA02~ (022?4A248E434G?) =<8=(1,
022

?4A248E43
4G?

022
?4A248E43

F>ABC

)

134

8.8. Connected Heating – Use Case ’Predictive Maintenance’

Cloud Service Parametrization. Based on systematic load tests on the processing service

of the connected heating system in a test environment, we obtain an average processing

time of 5.8ms per message with a minor standard deviation of f = 0.5ms. The service

exhibits I/O characteristics by waiting for an external system, which results in an average

CPU utilization of �%* = 83 % in a fully utilized scenario. We were not able to retrieve

data on the dispatching service, the heating control. However, we decide to parameterize it

with a lower service time of 2ms and a CPU share of 1. Since the dispatching service waits

for the processing service to serve the messages by conducting REST calls, it experiences

wait times. In the initial state, each service has 1 active instance. According to internal

documents, heating units send messages at a rate of one every 15 s. Therefore, we are

taking this value as the basis for the initial transmission rate. This value is set by each

connecting device, whereas each device sends at least one message, before being readjusted

by �ow control approaches.

Connectivity Scenario. Whereas connected heating can be expected to have a low varia-

tion in the number of connected heating units, we focus on a recovery scenario, e.g. after

an outage of the cloud service. This allows to observe the impact of overload protection

approaches and the auto-scalers and the combination of both. We rely on a connectivity

pattern illustrated in �gure 8.28, which we have extracted from a Wikipedia workload

peak. We set the number of connected devices up to 2000.

Figure 8.28.: Connectivity Scenario based on a recovery of the IoT system.

Candidates Parametrization. Based on the properties of the case study and many experi-

ments on this system, we con�gure each strategy as follows:

135

8. Validation

• II. Auto-Scaling: Due to the wide distribution of this class of auto-scalers, we rely

on threshold based rules auto-scalers, which were introduced as React in [42]. Based

on the �ndings of the performance metrics investigation in chapter 8.4 we select a

CPU- and a queue-based auto-scaler:

– Heating Control Service Scaler: Since the heating control service dispatches

received messages to the predictive maintenance, it has to wait for its process-

ing. Therefore, we characterize it as a mainly I/O-intensive microservice and

con�gure a queue-based auto-scaler, which monitors the queue length of the

consumed message queue as a metric for the services utilization. We set the

lower threshold to 0messages and the upper threshold to 200messages.

– Predictive Maintenance Service Scaler: We con�gure the auto-scaler of

the predictive maintenance service with a lower threshold of 20 % and an upper

threshold with 30 %.

The cooldown duration after each scaling decision is set for both to 10 s. We set the

range of available service replicas to 1 − 50.

• III. Flow Control: Based on the congestion avoidance qualities demonstrated in

previous investigations, we select CEF as the congestion avoidance �ow control

strategy and con�gure the overload avoidance factor with :0E>830=24 = 1.05 and

the overload protection factor with :?A>C42C8>= = 0.98. The initial transmission rate

and the upper limit is)D??4A = 1

15 s
= 0.07

msg

sec
. The cooldown duration after each

transmission rate adaptation is set to 10 s.

• IV. Isolated Accuracy-Driven: We con�gure the AIMD scheme with an additive

increase of 0.005
msg

sec
and a multiplicative decrease of 0.8. Furthermore, we con�gure

a target utilization of 1.73 %, since this achieved by the �xed sensing interval de�ned

in the documentation and the environment data used in the case study system.

• V. Flow Control & Accuracy-Driven: The rule-based coupling is de�ned as fol-

lows:

02C8E0C4��� = 2>=64BC8>=

02C8E0C4�22DA02~3A8E4=�>;;42C8>= = ¬2>=64BC8>=

Whereas congestion is evaluated by a congestion observer with a window size 10

observing the message queue:

2>=64BC8>= = &D4D4!4=6Cℎ ≥ 100

The presented con�guration is used across all case study candidates. Whereas the

previous investigations in chapter 8.6 concludes, that the QoS characteristics of a coupled

setup is strongly a�ected by the coupling mechanism and the coupled strategies, we rely,

if possible, on coupling mechanism which do not utilize QoS costs. This allows us, to

evaluate the QoS conformance in consideration of all experiments. Furthermore, we aim

136

8.8. Connected Heating – Use Case ’Predictive Maintenance’

Strategy

QoS Costs Measurements

Total Accuracy Timeliness Resources Accuracy [%] Queueing Delay [sec] Instances [#]

Auto-Scaling & CEF & ACC 0.71 0.35 0.04 0.32 8.77 5.08 2.95

CEF 0.95 0.67 0.06 0.22 16.63 8.89 2.0

Auto-Scaling 1.1 0.07 0.03 1.0 1.75 4.3 9.17

Auto-Scaling & ACC 1.18 0.51 0.04 0.63 12.8 4.97 5.76

CEF & ACC 1.28 0.99 0.06 0.22 24.82 9.05 2.0

Baseline 1.29 0.07 1.0 0.22 1.73 141.89 1.98

Auto-Scaling & CEF 1.35 1.0 0.04 0.31 24.99 5.93 2.8

ACC 1.43 0.42 0.79 0.22 10.6 111.74 2.0

Table 8.21.: Measurements and QoS Costs based on the cost function set j1 for each strategy

in the Connected Heating Case Study.

to improve the comprehensibility of the case study by selecting a speci�c strategy, e.g.

CEF, to use it as a representative of its runtime management class.

8.8.2. Q.7 – QoS Contributions in Overload Situation on the Example of an
Industry-Based Cloud Application

The results of each candidate are summarized in table 8.21 for the QoS cost function set j1
and in table 8.22 for the QoS cost function set j2.

I. Baseline. A static provisioning without further recon�guration leads to a strong over-

load situation due to the strong increase of heating units without adjusting the capacity.

This results in a high message processing delay caused by accumulated messages as shown

in Figure 8.29b. Since the transmission rate is not degraded in this setup it collects and

transfers measurements every 15 s which leads to a very high sensed accuracy of 1.7 %.

However, based on the high message processing delay measured values arrive at the cloud

service with a considerable temporal shift. At the end of the experiment, the measurement

points are already delayed by 14min, which strongly a�ects the perceived accuracy. Figure

8.29a shows the sensed and perceived accuracy for the �rst connected heating unit. The

perceived accuracy degrades to 15.43 %. In terms of the QoS cost functions, the baseline is

in a mid range. In j1 its costs mainly consist of timeliness violations. In j2 its costs are

mainly based on the perceived accuracy. Overall, the static provisioning is not suitable for

Strategy

QoS Costs Measurements

Total Perc. Accuracy Resources Perc. Accuracy [%] Instances [#] Temporal Shift [sec]

Auto-Scaling & CEF & ACC 0.64 0.32 0.32 7.98 2.95 273

ACC 0.68 0.46 0.22 11.45 2.0 533

CEF 0.77 0.56 0.22 13.89 2.0 51

Baseline 0.83 0.62 0.22 15.43 1.98 825

CEF & ACC 0.89 0.68 0.22 16.89 2.0 198

Auto-Scaling & CEF 1.04 0.74 0.31 18.45 2.8 64

Auto-Scaling & ACC 1.19 0.56 0.63 14.11 5.76 289

Auto-Scaling 1.36 0.36 1.0 9.0 9.17 563

Table 8.22.: Measurements and QoS Costs based on the cost function set j2 for each strategy

in the Connected Heating Case Study.

137

8. Validation

coping with an outage and recovery scenario, since the messaging middleware is �lled

with over 240 000messages at the end of the experiment.

(a) Sensed Environment (b) Queueing Delay

Figure 8.29.: Baseline. Sensed and perceived environment and message processing delay

during the experiment.

II. Isolated Auto-Scaling: As shown in �gure 8.30 the auto-scalers manage to counteract

the strong increase in active heating units by providing resources. However, the provi-

sioning speed of the auto-scalers is challenged by the cloud platform and the provisioning

mechanism. A CPU update occurs approximately every 30 s and the provisioning of an

instance takes more than 45 s. The con�gured cooldown duration of 10 s is negligible. A

delay due to accumulating messages can not be avoided completely. While messages are

delayed by only 4.3 s on average, this has a strong e�ect on the perceived accuracy. The

sensed accuracy, as in the baseline, is 1.7 %, but the perceived accuracy is 9.0 %. Whereas

this is a signi�cant improvement over the baseline, it is achieved on the expense of the

provisioning many resources, on average 9.17 instances. In j1, isolated auto-scaling per-

forms very well with a total cost of 1.1, because it is primarily resource based and there

are minor time or accuracy costs. However, due to the cost function construction, the total

cost is in favor of auto-scaling, since the baseline is penalized with �xed resource costs of

0.22. In j2 an opposite e�ect can be observed and auto-scaling has the worst score of 1.36,

since although perceived accuracy leads to low costs, resource costs dominate, since both

are equally weighted. Overall, auto-scaling is a suitable way to deal with such a scenario.

While it is challenged by the speed in resource provisioning, it eventually manages to

provide enough capacity to cope with the load.

III. Isolated Flow Control: Figure 8.31 shows the results for CEF. It shows that above a

certain number of connected heating units, the pre-con�gured message interval leads

to a load that exceeds the capacity of the cloud service. Therefore, the �rst congestion

138

8.8. Connected Heating – Use Case ’Predictive Maintenance’

(a) Sensed Environment (b) Queueing Delay

(c) Transmission Rate (d) Provisioning

Figure 8.30.: Isolated Auto-Scaling. Measurements during the experiment.

avoidance cycle is triggered at about 6min. Based on the capacity model of the process,

the transmission rate is reduced signi�cantly and then, when the messaging middleware

has recovered, the transmission rate is increased multiplicatively. Since the load increases

continuously, a point is reached where the con�gured rate can not be maintained. The

cycles become longer and longer, because the transmission rate has to be degraded more

strongly due to the higher number of heating units, while the capacity remains the same.

Eventually, with the same number of units, the process will level o� at a speci�c cycle.

Due to the increasingly strong degradation of the transmission rate, fewer measurements

are performed resulting in sensing intervals which extend several minutes. Overall, the

approach leads to a strong reduction of the sensed accuracy, since the environment is

only roughly captured by the few measurement points. On average the sensed accuracy is

16.63 %. Since the approach is able to avoid a queueing delay to a large extent, the average

queueing delay is 8.89 s. Due to the cycles, however, it exceeds the queueing delay from

auto-scaling. The perceived accuracy for the �rst device is 13.8 % and is therefore close to

139

8. Validation

the sensed accuracy. The reason for this is that there is hardly any temporal delay, which

means that the measurement points are inaccurate overall, but in time. In j1, CEF has

the second best result, with QoS costs of 0.95. These are so low because the time costs

are negligible and the accuracy costs are in the middle range. In j2, it reaches a total cost

of 0.68, which is also relatively low. The good result is due to the mediocre accuracy at

low resource costs. Overall, this approach is suitable for keeping the provisioning costs

low. However, the congestion avoidance cycle leads to a certain pattern of perception that

can result in not noticing important changes in the environment. Therefore, the low total

costs within this experiment should be treated with caution.

(a) Sensed Environment (b) Queueing Delay

(c) Transmission Rate (d) Provisioning

Figure 8.31.: Isolated CEF. Measurements during the experiment.

IV. IsolatedAccuracy-Driven: Given a target accuracy, the accuracy driven approach adapts

the transmission interval based on the di�erence between the current and previous mea-

surement. While the target accuracy is con�gured to perceive the environment with an

accuracy of 1.73 %, the accuracy actually achieved depends on both the environmental

140

8.8. Connected Heating – Use Case ’Predictive Maintenance’

changes and the parametrization of the approach. In this experiment, the approach results

in a sensed accuracy of 10.6 %. Since the approach potentially reduces the number of

measurements, especially in episodes with few environment changes, a lower load on

the cloud service can be assumed. However, it still exceeds the cloud services’ capacity

resulting in a very high queueing delay of 112 s. Nevertheless, there are signi�cantly fewer

messages produced, which is re�ected in the average transmission interval. While it is

15 s for the baseline, it is 22 s for the accuracy-driven approach. The transmission rate

adaptations illustrated in Figure 8.32c show how the approach uses the AIMD scheme to

adjust the rate as the environment changes. Figure 8.32a shows that, overall, temperature

values are measured — for the �rst device — with a high degree of accuracy of 3.96 %.

However, they arrive with a delay, resulting in a degraded perceived accuracy of 11.45 %.

Using the cost function set j1, the approach results in a total cost of 1.43. This is the

worst result, because although the resource costs are low, the time costs are high and

the accuracy is only slightly above average. In j2 the approach takes the second highest

place, since the perceived accuracy is very high despite the temporal shift. All in all, the

�ndings from [67] are con�rmed in this experiment. It is an approach that can achieve a

high accuracy and reduces the number of measurements needed. In contrast to the other

approaches, the focus is not on load and capacity but on cost reduction while maintaining

a target accuracy.

V. Flow Control & Accuracy-Driven: Figure 8.33 shows the results of a coupling of CEF and

ACC. The interaction of the two approaches is shown by the transmission adjustments.

In case of sudden reductions, an overload situation has occurred, which activates CEF.

Especially towards the end, CEF dominates strongly, because it is a very intensive overload

situation. This results in a complex interaction between the approaches, which is primarily

determined by the rule-based coupling mechanism. The coupling uses a simple threshold

based on the queue length to determine the overload state. For both ACC and CEF the

coupling mechanism is transparent, which means that both approaches can not react to

it. The adaptation behavior is generally more unsteady than in isolated CEF or isolated

ACC. This is due to the fact that the trigger activates ACC even before CEF considers

the overload situation as solved. ACC does not use a multiplier to smoothly recover the

transmission rate. Instead, it uses an additive component that causes sudden increases, e.g.

at 7.5min. This sudden increase causes the queue to �ll up with messages, resulting in an

reactivation of CEF, which tries to recover the transmission rate through the multiplier

component. Overall, there is little harmonic e�ect, which is also expressed in the fact that

the message interval is signi�cantly reduced by over 15 s compared to an isolated CEF with

37.8 s. This a�ects the sensed accuracy, which is almost the worst at 24.82 %. However, the

perceived accuracy is much better with 14.11 %, because CEF prevents delays and because

of the smaller cycles and more frequent short-term overload situations, allowing to sense

more evenly distributed data points. Using the cost function set j1 it achieves total costs of

1.18 and is thus in the middle �eld, since hardly any time and resource costs are incurred

and the total costs are therefore primarily composed of the inaccuracy. In j2 the total cost

is 0.89, which also consists of the average perceived accuracy and the static provisioning.

141

8. Validation

(a) Sensed Environment (b) Queueing Delay

(c) Transmission Rate (d) Provisioning

Figure 8.32.: Isolated Accuracy-Driven. Measurements during the experiment.

All in all, the combination of these two approaches is suitable, unless a constant overload

situation — as in this experiment — has to be assumed.

VI. Auto-Scaling & Accuracy-Driven: Figure 8.34 shows the results for a concurrent op-

eration of the auto-scalers and ACC. Since ACC reduces the overall load by adjusting

the transmission rate, the overload situation is mitigated. As with the isolated ACC, the

average message interval is 22 s, which corresponds to a load reduction per device of

roughly 30 %. The measured accuracy is 12.8 %, which is a slight degradation compared

to the isolated ACC, which achieves 10.6 %. However, it can be assumed that a coupling

with auto-scalers does not in�uence the behavior of ACC. Therefore, we conclude, that

dynamics in monitoring and e�ecting are responsible for this. Due to the reduction in

the load by ACC, fewer resources are required overall, which is shown by an average of

5.76 provisioned instances, compared to 9.71 in isolated auto-scaling. Both share a similar

average queueing delay, which di�er in its progression. In isolated auto-scaling, the high

142

8.8. Connected Heating – Use Case ’Predictive Maintenance’

(a) Sensed Environment (b) Queueing Delay

(c) Transmission Rate (d) Provisioning

Figure 8.33.: CEF & Accuracy-Driven. Measurements during the experiment.

provisioning results in only slight delays of less than 8 s towards the end of the experiment.

Nevertheless, the time delay at the end of the experiment is with 563 s signi�cantly higher

than in coupled operation with only 289 s. Nevertheless, this has hardly any e�ect on the

perceived accuracy, e.g. 14.11 % for coupled operation, while it is 9 % percent for isolated

auto-scaling. However, it should be noted that the perceived accuracy depends on the

message processing delay, sensed accuracy and actual environmental changes, and the

combination of these factors seems to have been advantageous for the auto-scaler in this

time-limited experiment. Based on the �rst cost function set j1, this coupling is in the

upper range with 1.28 and feeds the costs primarily from accuracy and resources. In the

set j2, the coupling leads to high costs based on the inferior perceived accuracy. Despite

these results, a coupling of these approaches is quite conceivable, since it dynamically

reduces the load, yet achieves a high degree of accuracy and can thus act as a supplement

to resource provisioning.

143

8. Validation

(a) Sensed Environment (b) Queueing Delay

(c) Transmission Rate (d) Provisioning

Figure 8.34.: Auto-Scaling & Accuracy-Driven. Measurements during the experiment.

VII. Auto-Scaling & Flow Control: Figure 8.35 shows the adaptation behavior of the con-

current coupling of the auto-scalers and CEF. Compared to the isolated CEF, congestion

avoidance cycles have become shorter due to an increased capacity by the auto-scalers.

The capacity estimation of the approach is able to react to it by decreasing the transmission

rate to a lesser degree. While the auto-scalers are able to react to the overload situation,

their e�ectiveness is reduced by the high congestion avoidance e�ciency of CEF. Thus,

with an average of 2.8 provisioned instances, signi�cantly fewer resources are used than

in an isolated auto-scaling with 9.17 instances. CEF dominates the runtime management,

which is also evident from the average message interval. On average, messages are sent

every 20 s, which is only slightly below the average of an isolated operation with 23 s.

Nevertheless, this setup provides a high congestion avoidance, since messages do not

experience a particularly high delay. Thus, at the end of the experiment the measurement

points arrive with a delay of less than one minute, which is a signi�cant improvement

compared to isolated auto-scaling. Resource provisioning via the auto-scalers induce

144

8.8. Connected Heating – Use Case ’Predictive Maintenance’

dynamics that reduce the adaptation quality of CEF. This results in an overall lower mea-

sured accuracy of 25 %, while the perceived accuracy is around 18.45 %. Both values are

signi�cantly worse than in the isolated approaches. In isolated auto-scaling, the measured

accuracy is very high with 1.75 %, while the perceived accuracy is good at 9 % despite a

time o�set of almost 9 minutes. Both in cost function set j1 and j2 the strategy results in

relatively high QoS costs. The reason for this is an antagonistic coupling e�ect degrading

the adaptation quality of both approaches. However, the temporal shift is small and thus

potentially a high perceived accuracy can be achieved in overload situations. As pointed

out in the previous investigation in chapter 8.6, CEF dominates in a concurrent coupling.

Therefore, it can be assumed that better results can be expected with a rule-based coupling

or other �ow control candidate.

(a) Sensed Environment (b) Queueing Delay

(c) Transmission Rate (d) Provisioning

Figure 8.35.: Auto-Scaling & Flow Control. Measurements during the experiment.

VIII. Auto-Scaling & Flow Control & Accuracy-Driven: Figure 8.36 shows the measurements

during the experiment. In contrast to a coupling of CEF and ACC a signi�cantly higher

145

8. Validation

accuracy of 8.77 % is achieved, which is based on an increased capacity by resource

provisioning. The accuracy also exceeds that of the coupling of CEF with auto-scalers, since

we observed an antagonistic e�ect on the accuracy. This is mainly due to the additional

coupling with ACC, which has already shown in the coupling with auto-scalers that it is

able to reduce the overall load with a moderate loss of accuracy. All in all, this coupling

is convincing in multiple dimensions. However, transmission rate adaptations based on

CEF result in a strong transmission rate adaptations and a light resource provisioning.

The messages experience only minor processing delays, such that the accuracy perceived

by the cloud service is very high at 7.98 %. The provisioned resources are with with 2.95

instances in the mid�eld and slightly above the auto-scaler and CEF coupling. Overall, the

coupling achieves low QoS costs in both cost function sets j1 and j2. The reason is, that

the sensed and the perceived accuracy is relatively high with only minor resource costs.

Therefore we consider this as the most promising approach for runtime managing sensing

cloud applications and deem it as a signi�cant improvement over the other approaches.

We assume that there is room for optimization, since, as already observed in the previous

experiments, a coupling with CEF dominates auto-scaling.

8.8.3. Threats to Validity

The threats to validity of the case study are discussed below.

Internal validity. As in the ShapeShifter case study presented in chapter 8.6, we derive

the input for the QoS functions by monitoring the adjusted transmission rate, the number

of provisioned resources and the queueing delay. In contrast to this investigation, we do

consider an environmental model in order to quantify the accuracy degradations by the

transmission rate reduction. Since the calculation is based on a provided environment

model, we can exclude any in�uencing third factor on the accuracy. Furthermore, this

case study system consists of multiple cloud services, which make it more challenging

to exclude a third factor, e.g. based the additional communication layer, which a�ects

the overall processing rate. This may a�ect the resource and timeliness cost function by

changes in the capacity. However, since the experiments are running over a longer period

of time and we execute the experiments on an isolated Kubernetes Cluster, we deem the

extent of it as negligible. Nevertheless, we have noticed, that the resulting processing rate

is below the expected processing rate.

External validity. By preseting a case study, which utilizes environment data to quantify

accuracy violations, we expect an increased generalizability for sensing cloud applications.

We deem the �ndings as relevant for cloud applications, which may experience strong

connectivity variations. While the study focuses on overload situations, the approaches

examined here and their e�ects are not limited to these. In particular, the coupling of auto-

scaling with accuracy-driven collection approaches shows the possibility of dynamically

reacting to changes in the environment and thereby provisioning resources.

146

8.8. Connected Heating – Use Case ’Predictive Maintenance’

(a) Sensed Environment (b) Queueing Delay

(c) Transmission Rate (d) Provisioning

Figure 8.36.: Auto-Scaling & Flow Control & Accuracy-Driven. Measurements during the

experiment.

Constructvalidity. While the system in the study is based on a real environment, the actual

cloud application is minimalistic, with a deterministic response time per message. However,

since the interaction of the two cloud services creates dynamics that can also be observed in

real systems, we consider the setup su�cient to represent such an application. In addition,

as in previous investigations in this thesis, the smart devices do not experience latencies,

which means that approaches that adjust the transmission rate have an advantage over

auto-scaling. We assume that the system would react more slowly with latencies, without

negating its fundamental e�ect. Whereas many smart devices are connected in wireless

networks, the heating units are installed using the cable connection of the customers

home. Since the customers are regionally distributed in Germany, we assume that there

is only a minor latency based on the distance and the stable network. Furthermore, we

have utilized a single environment model for all smart devices, which does not hold true

147

8. Validation

in practice. Since the smart devices connect to a di�erent point of time, they perceive the

environment with a di�erent accuracy.

Reliability validity. We assume that the experimental design of the case study has been

described in su�cient detail. Therefore we expect the results to be reproducible.

8.8.4. Discussion

This chapter presented a case study based on an industry-relevant cloud solution. This

involved intelligent heating control units that continuously transfer measured values over

messaging middlewares to a cloud service. Based on the thesis’ focus on overload protecting

approaches, we investigated an outage and recovery scenario. We investigated auto-scaling,

a congestion avoiding �ow control and �nally an accuracy driven collection approach. Each

approach was deployed in isolation and in coupling with the other approaches. We were

able to show that a coupling of all three approaches yields the most bene�ts, since it keeps

timeliness violations to a minimum and is able to signi�cantly reduce the overall load with

a comparatively low loss of accuracy. Each approach on its own has clear disadvantages.

Runtime management with CEF leads to strong cycles, which result in erratic sampling.

ACC does not consider time aspects and is therefore unsuitable for overload situations,

but can signi�cantly reduce the total load depending on changes in the environment

through dynamic adaptation. Popular auto-scaling techniques are too sluggish to cope

with the rapidly increasing load, which ultimately leads to overprovisioning with a high

time violation. We consider the �ndings of the case study to be meaningful enough to be

valid for other sensing cloud applications.

8.9. Characteristics of TCP-inspired Flow Control

In this section, we investigate the characteristics of the TIF AIMD in a distributed setup.

We focus on the AIMD scheme based on its superior e�ciency and fairness in distributed

setups compared to other increase/decrease schemes [22]. We conduct the investigation

on the Bosch IoT Cloud using the ShapeShifter case study.

8.9.1. Experimental Design

We provision the microservice statically and let the smart devices connect over time using a

connectivity pattern. We capture the fairness and obtained transmission rate. We compare

the results of a distributed and centralized setup. We adapt the ShapeShifter-IoT case study

to propagate the binary congestion state to smart devices. Each smart device utilizes a

dedicated AIMD-based request scheme. Each smart device receives the congestion state

after transmitting data by piggy-backing.

AIMD Scheme. The AIMD scheme is con�gured with the additive increase parameter

0 = 0.1
<B6B

B42
and the multiplicative decrease parameter 1 = 0.9. The transmission rate

148

8.9. Characteristics of TCP-inspired Flow Control

adaptation is limited to a minimum of 0.2
<B6B

B42
to ensure that an adaptation step occurs

within a foreseeable period of time in a severe overload situation.

Congestion Observer. The congestion observer to monitors the queue length with a

moving average size of 10 and deems the cloud solution as overloaded if a threshold

of 10 is exceeded. The congestion observer retrieves every second an update from the

infrastructure.

Connectivity Scenario. We rely on a connectivity pattern, which has an increase, a steady

and a decrease phase, ranging from 0 to 12 devices.

Fairness. We measure the fairness in a distributed setup by applying Jain’s Fairness Index,

which is de�ned in [43] and is applicable to any resource sharing problem. The index is

bounded between 0 and 1, whereas 1 means absolute fairness.

Supported Transmission Rate. In order to illustrate the quality of adaption decisions, we

compare the transmission rate adaptations to a theoretical supported transmission rate.

Since we control the processing rate of the cloud solution, it is not subject to strong

variations resulting in a nearly deterministic processing rate 2 . The optimal transmission

rate)$?C is based on the processing rate, the number of devices #� and an upper boundary

)(0C as follows:)$?C =<8=(2#� ,)(0C)

Experiment Setup. We set the experimental duration to 10 minutes and set a �xed pro-

cessing rate of 10.0
<B6B

B42
and an initial transmission rate and upper boundary of)8=8C =

)B0C = 1.0
<B6B

B42
.

8.9.2. Q.8.1 – How does varying load a�ect the fairness of adaptations in a
distributed setup?

Figure 8.37 shows the transmission rate of each smart device during the experiment.

Figure 8.38 shows the achieved fairness at each point of time and on average during the

experiment.

With an average fairness of 0.95, the AIMD scheme maintains its e�ciency and fairness

characteristics in distributed setups. The results show, that the approach is vulnerable to a

changing number of connected devices, especially if the number of devices is increasing.

Since a smart device starts with a certain initial transmission rate, it requires some round-

trips to let itself and the other devices converge towards a fair share of the processing

capacity of the cloud application. If the number of connected devices remains steady, the

fairness converges quickly towards 1.0, demonstrating absolute fairness.

149

8. Validation

Figure 8.37.: Adaptation behavior for each smart device in a distributed setup. It achieves

fairness in a steady state and converges to the supported transmission rate.

Figure 8.38.: Average and current Jain’s Fairness Index. The fairness increases greatly

for a steady state with a �xed number of devices. The fairness is especially

vulnerable to a changing —and especially increasing— number of connected

devices.

150

8.9. Characteristics of TCP-inspired Flow Control

Figure 8.39.: Adaptation behavior and number of the connected devices during the experi-

mental run in a distributed setup.

8.9.3. Q.8.2 – How does a distributed setup a�ect the adaptation quality?

Figure 8.40 shows the adapted transmission rate, the supported transmission rate and the

number of connected devices during the experiment in a centralized setup. Figure 8.39

shows the adaptation behavior in a distributed setup.

Centralized Setup. The approach achieves an average service utilization of 65 %, a queue-

ing delay of 6.2 secs and a queue length of 24.5 messages. The service utilization is strongly

degraded by a substantially lower initial transmission rate value compared to the process-

ing rate of the cloud application, resulting in the need of many round-trips to converge

to this value. However, this e�ect is mitigated by the increasing number of devices. In

the steady state in the middle section of the experiment it achieves an average service

utilization of 87.1 %.

Distributed Setup. The approach achieves an average service utilization of 70.1 % during

the experiment and 84.0 % in a steady state. However, by the degraded adaptation quality,

congestions are on average more severe, which is re�ected by an average queueing delay

of 6.9 secs and an average queue length of 32.3 messages.

Discussion. Since each smart device adapts itself its transmission rate eventually con-

verges to the supported transmission rate of the cloud application. Connecting devices

start with the precon�gured initial transmission rate and require some round trips to

achieve a fair send rate in accordance to already connected devices. This degrades the

overall quality of the adaptation. The experiment shows, that the distributed approach is

able to let the transmission rate adaptation of the smart devices converge towards a fair

151

8. Validation

Figure 8.40.: Adaptation behavior and number of the connected devices during the experi-

mental run in a centralized setup.

share of the processing rate of the cloud application. However, compared to the centralized

approach, it results in increased amplitudes of the saw-tooth like adaptation behavior,

especially for a changing number of connected devices.

8.9.4. Discussion

The investigation has shown the applicability of the AIMD scheme in distributed setups

for congestion-avoiding cloud applications. However, a distributed setup is associated

with a quality reduction of the adaptations. A distributed setup can be considered for

smart devices utilizing a wireless sensor link, such that a high frequency is associated

with costs. In this case, the available energy level can be used for reconsidering adaptation

decisions. As presented in [67], devices can adapt the transmission rate based on changes

in the environment, such that the resolution increases if there are many changes in the

environment or decrease if there is no change.

152

9. RelatedWork

This section presents works related to the contributions of the thesis.

9.1. Performance Metrics for Scaling Decisions

In this section we discuss works related to auto-scalers and performance metrics. To the

best of our knowledge there is no work which evaluates performance metrics for scaling

decisions in relation to the microservice characteristics. First, we introduce works related

to the evaluation of auto-scalers. Then, we present works related to the evaluation of

performance metrics. Finally, we present auto-scalers which are closely related to the

context of the evaluation, e.g. by addressing the challenge of scaling microservices with

varying resource characteristics.

9.1.1. Evaluation of Auto-Scalers

PEAS [56] is an auto-scaling evaluation framework based on the queuing theory. The

presented model abstracts cloud applications as a G/G/N stable queue, which capacity

is parameterized by a rate based on the average number of requests per time unit that a

service instance can handle with an acceptable service time. The proposed model is limited

to single service applications and does not allow to optimize auto-scalers considering a

complex interaction of services. We have adopted the presented model for the evaluation

of performance metrics and re�ned it to represent single-service Cloud-IoT applications. A

queueing theory based model for multi-service applications could be part of future work,

e.g. by integrating it with queueing petri nets simulations, as introduced by Kounev [48].

SimuLizar [10] is a performance analysis tool which supports software architects in

the design of elastic software systems. However, SimuLizar lacks the capability to model

an asynchronous communication via messages queues [47]. Furthermore, it relies on

stochastic arrival patterns to induce workload on the system, requiring an extension to

support smart device as message inducing and adaptable entities. Therefore, it is in its

current state not suitable to evaluate auto-scaling decisions based on message queues.

9.1.2. Evaluation of Performance Metrics

Dickel et al. [25] present an evaluation of auto-scaling metrics for scaling stateful IoT

gateways. The evaluated metrics are the CPU utilization, the number of concurrent

connections and the throughput per gateway. They concluded, that each of the metric on

its one is faced with limitations: the CPU utilization does not consider the workload based

on the number of concurrent clients and their messaging rate, the number of connected

153

9. Related Work

clients does not consider the workload per connection and the throughput per gateway

does not consider the number of connected clients. The evaluation lacks elasticity measures

to quantify the di�erence. However, they state, that auto-scaling based on service demands

outperforms the CPU utilization. Overall, we deem the work as closely related, since

it evaluates performance metrics for scaling decisions. However, whereas it evaluates

metrics for auto-scaling, it focuses on CPU-bound (stateful) IoT gateways whereas this

evaluation focuses on stateless microservices with varying resource characteristics.

Rao et al. [61] presents a fuzzy control-based resource allocation for cloud applications.

They state as one of the challenges the non-uniformity of cloud resources, which means,

that users can experience variations in the capacity of the application based on the cloud

environment. Based on a E-Commerce benchmark, they measured for a CPU utilization of

80 % variations in the response time up to 150 %. They conclude, that the CPU utilization

can not readily translated to application-level performance.

9.1.3. Related Auto-Scalers

In this section, we brie�y present auto-scalers which overcome the limitations of relying

on a speci�c performance metric, e.g. the CPU limitation.

Control-Theory based works, as presented in [61] or [58] rely on heterogeneous mon-

itoring metrics for scaling decisions since the e�ectiveness of controllers strong relates

to the values of the control parameters. Threshold-based rules approaches, as presented

by Bauer et al. [8], address the challenge by relying on a service demand estimation. The

service demand denotes the time a unit of work spends on a speci�c resource, e.g. CPU,

and is statistically estimated. They compare the performance to a CPU-based auto-scaler

and evaluate, that it achieves a higher degree of elasticity and SLO conformance. The

�ndings support the results, since an auto-scaler based on the service demand is not faced

with the same limitations as on the CPU utilization. Khaleg et al. [1] discuss the �ndings

of the performance metric evaluation in this thesis and present an auto-scaling approach

which is agnostic towards the microservice characteristics. It consists of a controller, which

monitors the QoS of microservices in terms of the response time in order to recalibrate

the thresholds through an optimization technique. Based on the characteristics of the

microservice they deploy a memory, a CPU and a queue length based auto-scaler.

9.2. Feedback Control of Smart Devices

In this section we discuss related work to the �ow control of smart devices. First, we

discuss feedback control approaches which provide overload protection by congestion

control. Then, we present approaches which adjust the collection behavior of smart devices

for other non-functional qualities of IoT applications.

9.2.1. Congestion Control

A model for congestion control in IoT is presented by Huang et al. [40] with the goal to

maintain service access. The model aims to cope with the limited amount of resources

154

9.2. Feedback Control of Smart Devices

in IoT, including network bandwidth and service capacities. It is based on an improved

Random Early Discard (RED) algorithm is employed to guarantee a fast response time of

the IoT services. The system is modeled as a queue, in which packages are dropped at a

certain probability if the queue length exceeds a threshold. Furthermore, the arrival rate

will be reduced, which resembles an implicit feedback control. Therefore, the approach aim

to maintain the service access by dropping packets. In contrast to the approaches presented

in this thesis, it aims to capture bottlenecks including network bandwidth, and does not

make any assumption about the services capacity. By using an implicit performance model

in our approaches, we aim to fairly share the capacity across the smart devices without

dropping messages. Future work may compare the presented approach with ours based

on the impact on the data quality.

Nylander et al. proposed control-theoretical approaches for feedback control in [54] and

[53]. In [54] they focus on combining the actions of a load balancer with user experience

degradation techniques, in order to handle capacity shortages and achieve a predictable

response time. In [53] they re�ne the degradation controller to additionally provide formal

guarantees. A load-balancing controller decides based on the response time of services, if

the request should be degraded. Whereas we consider this approach as promising to control

congestions by data quality reductions we deem the imposed load-balancing architecture

as a challenge to its feasibility. The reason is, that we do not consider load-balancing

as a concern of the service operator, since it is fully managed by cloud platforms, e.g.

CloudFoundry or Kubernetes.

9.2.2. Collection Strategies

Siris et al. [67] present approaches to e�ciently collect IoT data while achieving a target

data accuracy, response time, energy and privacy protection. The context of this work is

an IoT platform, which collects data from smart devices in speci�c intervals. The accuracy-

driven approach maintains a target accuracy and adapts the measurement rate based on

changes in the data, whereas the time-driven approach adjust the time period between

measurement requests in order to ensure, that the elapsed time to the last measurement is

below a speci�c threshold. The energy-driven strategy adjusts the measurement interval

with accuracy and energy cost considerations and the privacy-driven strategy adds noise

to measurements. The results show, that AIMD adaptations of the measurement periods

are robust to di�erent types of measurements. The approaches are closely related to the

work of the thesis by utilizing AIMD schemes but di�er in goals. In contrast to our work,

the proposed time-driven strategy aims to cope with network delays in order to maintain

the timeliness of data, whereas our approaches aim to cope with capacity shortages.

Based on the battery limitations of many smart devices energy-e�ciency is a concern

of collection strategies. Ogawa et al. [55] proposes a measurement rate reduction of

�eld sensing devices in dependency to detected conditions. The approach proposed by

Nolan et al. [52] aims to extend the operating lifetime of power-constrained devices by

an adaptive messaging rate, to minimize the energy-intensive transmission of data via a

wireless link. Whereas the �rst approach reduces the load on the network and the second

approach increases the operating lifetime both do not consider the state of the processing

application.

155

9. Related Work

Sato et al. [64] present a feedback control theory based model of real-time IoT appli-

cations, which represents smart devices as controlled objects. They introduce a smart

station, which noti�es a crowd to space evenly by controlling the number of people which

have to leave. They analyze the functional performance of the controller using numerical

analysis. Whereas the modeling technique is focused on functional capabilities it can be

re�ned to support performance-based goals, e.g. transmission rate adaptations based on

the current accuracy.

9.3. QoS Optimization of Cloud Applications

Bauer et al. [9] present a systematic search approach for distributed cloud services. By

searching for minimal resource con�gurations in terms of the resource costs for a given

load intensity they create a Pareto set. A resource con�guration is considered as e�cient,

if it is able to meet time-based SLOs. However, in order to be applicable to sensing cloud

applications, the load intensity should emerge from the number of active smart devices and

their transmission rate con�guration. Therefore the search problem has to be extended in a

dimension with the number of devices in order to obtain the optimal resource con�guration

in a speci�c connectivity scenario.

An IoT application model and a back tracking approach is presented by Brogi and

Forti [14] to support a QoS-aware deployment of IoT applications on fog infrastructures.

First, they introduce QoS pro�les, which captures latency and bandwidth features. Then,

they model fog infrastructures, consisting of things, nodes, cloud data centers and com-

munication links. Finally, they model the IoT application as a triplet of things, software

components and infrastructure. Based on the model they introduce a search which consists

of a pre-processing and backtracking search phase to �nd an eligible deployment. There-

fore, the approach focuses on the deployment in the design-phase without considering the

elasticity of services or smart device recon�gurations.

Palladio [11] is a method to analyze the QoS properties of component-based applications

based on an application model with a focus on performance and reliability. It is extensively

used in research and provides a rich tool-support for performance analysts. Klinaku et

al. [47] conduct a case study to assess the applicability of Palladio for microservices and

cloud technologies. They conclude, that Palladio is able to provide acceptable prediction

results for microservices in cloud environments but is in its current state not feasible for

elasticity and cost-e�ciency analysis.

9.4. Frameworks for Self-Adaptive Systems

In the following we present frameworks for self-adaptive systems which are closely related

to SEIA.

Garlan et al. [31] present Rainbow, a highly adopted framework for self-adaptive systems,

which has been extensively evaluated in terms of e�ectiveness [20] and robustness [15].

Rainbow can be considered as a reference implementation of the MAPE-K loop and

provides functionalities to be extended. However, it aims to support web applications and

156

9.4. Frameworks for Self-Adaptive Systems

lacks concepts of cloud applications. We have adopted the graph based representation of

applications in our application model. Therefore, we consider the software architecture

model and the probe and e�ector bindings of SEIA as transferable to Rainbow.

HOGNA is a platform for self-adaptive applications in cloud environments presented by

Barna et al. [3]. In its core it is a MAPE-K loop, which provides out-of-the-box implemen-

tations, e.g. a performance model, tailored to web applications. Besides, it has deployment

support based on a topology description. Whereas it aims to provide a platform for the

prototype creation and evaluation of adaptive feedback loops, it is tailored to web applica-

tions deployed in cloud environments. Therefore it does not provide an application model

with e�ectors and probes to to manage sensing cloud applications.

157

10. Conclusion

In this chapter the thesis is concluded. First, we summarize the contributions of this work

in section 10.1. Section 10.2 discusses the bene�ts of the presented approaches and section

10.3 the assumptions and limitations. In section 10.4 we outline future work.

10.1. Summary

This thesis presented QoS cost functions and time-driven �ow control approaches to

improve the runtime management of sensing cloud applications. The contributions of this

thesis address the Research Questions (RQs) discussed in section 1.4. In the following we

summarize the contributions:

C1: Evaluation of the impact of capacity and resource demand variations on scal-
ing decisions. We obtained insight in selecting performance metrics by evaluating the

in�uence of microservice characteristic variations on the elasticity of threshold-based

rules auto-scaler (RQ 1). The elasticity of CPU-based auto-scalers is greatly decreased if

the CPU share of processing messages decreases, e.g. due to an increased wait time or

computation capacity. Queue-based auto-scalers outperforms CPU-based auto-scalers for

scaling microservices with varying wait time. Additionally, the presented model allows

to predict the achieved elasticity of an auto-scaler based on the CPU or message queue

metrics.

We have shown that thresholds based on message queue metrics are robust towards

resource demand and capacity variations. The elasticity of CPU-based auto-scalers is

greatly decreased if the CPU share of processing messages decreases, e.g. due to an

increased wait time or computation capacity. We have shown, that these result in drastic

changes of the SLO conformance for the CPU utilization.

C2: Design of QoS cost functions for sensing cloud applications and a QoS opti-
mization framework. The proposed QoS cost functions are able to capture the e�ect of

resource and transmission rate recon�gurations on the qualities of sensing cloud appli-

cations (RQ 2). The presented optimization framework allows to integrate a simulation

model and optimization method to search for runtime or resource con�guration candidates

to minimize the cumulative QoS costs.

The presented QoS cost functions aim to be pragmatic, such that a service operator can

construct them based on a SLA. A set of cost function can be used to search for an optimal

con�guration at design time. Based on the availability of most of the presented QoS input

metrics in cloud enviroments, e.g. by probing message broker or cloud platforms, the

QoS cost functions can also be used for decision making at runtime. Furthemore, we

159

10. Conclusion

have instantiated the optimization framework using the proposed QoS cost functions to

evaluate the presented �ow control approaches in case studies.

C3: Development of �ow control approaches to overload protect sensing cloud
applications. The developed �ow control approaches address overload situations by

adjusting the transmission rate. They aim to maintain the QoS by improving the timeliness

on the expense of accuracy. Therefore, they are a complementary runtime mechanism to

auto-scaling, which maintains the QoS on the expense of resource costs. The evaluation on

the example of a sensing cloud application shows, that the approaches are able to maintain

a QoS with varying overload intensities with a comparable performance to auto-scalers

(RQ 3).

We presented an approaches based on the congestion avoidance mechanisms of TCP

(TIF) and re�ned them with a capacity-estimation module (CEF). We evaluated that both

approaches are able to cope with capacity shortages by transmission rate adjustments.

However, they do probe the capacity by inducing minor congestions of an intensity based

on the con�guration of the approach. We evaluated, that both approaches are e�cient

enough to perform similar to auto-scalers. Thus they provide a complementary mechanism

to auto-scaling to cope with capacity shortages by reducing the load to a degree which

avoids congestions.

C4: Design of rule-based coupling approaches to combine �ow control with
auto-scaling. We present rule-based coupling approaches for coupling �ow control

approaches with auto-scaling. This allows to leverage the mechanisms of auto-scaling and

�ow control in managing sensing cloud applications. We evaluate, that a coupling is able

to improve the QoS conformance (RQ 4).

We proposed rule-set based couplings mechanisms to combine auto-scalers with �ow

control approaches. Overall, we evaluated three techniques: concurrent, QoS-based rules

and fuzzy rules coupling. The e�ciency of a concurrent coupling emerges from the coupled

strategies, which have to be tuned carefully. In our case study, it has shown to be bene�cial

to use a rule set to decide which strategy to activate. The QoS-based rules have shown the

highest QoS conformance but depend on heavy optimization to properly con�gure the

thresholds. The fuzzy rules are able to stabilize the the QoS conformance in all application

scenarios and provide a reusable set of rules. Especially for sensing cloud applications

with non-linear cost functions a coupling has resulted in a substantially improved QoS

conformance.

C5: Design of a sensing cloud application model for self-adaptive systems. We

present sensing cloud application model for self-adaptive systems consisting of the cloud

topology and e�ectors and probes. This model enables to design runtime management

approaches.

We instantiated the application model with the SEIA framework to conduct experiments

on case study systems to empirically answer RQs in multiple publications [32], [33], [34].

Therefore, we demonstrated the adequacy of the abstraction level of the application model

by instantiating it for multiple cloud applications architectures in heterogeneous environ-

160

10.2. Bene�ts

ments (RQ 5). By presenting an application model which contains relevant components of

cloud applications, e.g. microservices and message queues, we enable a service operator to

design runtime strategies with transmission rate and resource con�guration adjustments.

10.2. Benefits

The contributions of this thesis enable service operators to improve the QoS conformance of

sensing cloud applications by selecting and con�guring runtime management approaches

based on a set of QoS cost functions. In the following we describe the bene�ts of the work

from the perspective of a service operator.

The QoS cost functions enable a service operator to capture the impact of transmission

rate and resource con�gurations on the QoS of sensing cloud applications. Therefore,

it enables to optimize the transmission rate and resource con�guration in terms of the

cumulative QoS costs in design time. It also enables to create Pareto curves to analyze

the trade-o�s in resource con�guration costs and achievable data quality. Additionally,

the con�guration of runtime management approaches can be optimized in design time in

respect to an application scenario.

The advantages of the �ow control approaches are to provide another runtime tool

to cope with capacity shortages or to fully utilize the available capacity. They enable a

service operator to maintain the QoS in scenarios in which auto-scalers face limitations,

e.g. based on economical or resource constraints. Sensing cloud applications may exhibit

cost functions which are non-linear, which makes a combination of �ow control and auto-

scaling bene�cial for the QoS conformance, by enabling to cope with capacity shortages

with a combination of both. Furthermore, they can be applied to fully utilize the available

capacity, e.g. if the cloud application is accuracy-driven.

The presented framework SEIA reduces the e�ort to prototypical develop runtime man-

agement approaches and deploy it on heterogeneous environments. With the application

model, probes and e�ectors it enables a tool set to design complex runtime strategies. The

framework provides default implementations for adaptation logic, e.g. threshold-based

rules auto-scalers, and for cloud environments, e.g. CloudFoundry and Kubernetes, and

can be extended by other developers.

10.3. Assumptions and Limitations

In the following, we discuss assumptions and limitations of the contributions.

Performance Metrics Evaluation. The evaluation of the performance metrics assumed

microservices which are stateless. Therefore, the analytical and the simulation model are

based on this assumption. This limits the results of the evaluation to scaling stateless

microservices only. Furthermore, we assumed microservices which consume messages of

a single message queue. Therefore the evaluation of scaling decisions based on queueing

metrics is limited to this architectural design. Furthermore, we have abstracted the mes-

sages in terms of CPU and wait time. The model and the evaluation assumes, that only

161

10. Conclusion

homogeneous messages are processed, whereas in practice a microservice may process

messages of multiple classes.

QoSCostFunctions. The presented set of QoS cost functions assume that the smart devices

of a sensing cloud application perceive the environment with one sensor. However, IoT

applications often require the input of multiple sensors on the smart devices. Additionally,

the QoS cost functions assume a continuous transfer of data, whereas in practice smart

devices may transfer data on events. Therefore the QoS cost functions are limited to

sensing cloud applications with a single data stream.

Flow Control. The presented �ow control approaches are based on the assumption, that

the load on the cloud application only depends on the transmission con�guration of the

smart devices. Therefore, they are limited to manage sensing cloud applications with

smart devices transmitting only one type of messages. Adaptation decisions are based

on the assumption, that each message has an equal resource demand. Whereas the �ow

control approaches are fair in respect of sharing the capacity equally across all smart

device, they may not result in fairness in respect to accuracy. The reason is, that the

changes in the environment sensed by each smart device can vary greatly and may require

a di�erent sensing rate to achieve the same accuracy. Therefore, the approaches assume

that adjusting the transmission rate of each smart devices results in a comparable change

of the accuracy. The presented approaches are limited to continuous message transfers and

are not suitable to manage event-based message transfers with unpredictable workloads.

Furthermore, they heavily rely on message queues to recognize congestions or estimate

the capacity of the cloud service. Therefore, they impose the architectural restriction, that

the cloud service processes messages by consuming a message queue.

SEIA. The presented framework is able to create and operate runtime strategies for

sensing cloud applications. A limitation of the framework is the lack of an automated

deployment of a cloud topology. In the current state, a service operator has to provide an

application model to the framework and bind it to a deployed cloud application, which

induce additional e�ort.

10.4. Future Work

In the following we discuss the future work categorized in identi�ed areas.

Performance Metrics Evaluation. The performance metrics evaluation is limited to state-

less microservices consuming messages of a message queue. Therefore, the evaluation

can be extended to case studies with a more complex work�ow in order to identify more

insight into the metric selection and its impact on the elasticity of auto-scalers.

Flow Control. Future �ow control approaches could aim to achieve fairness in terms

of the accuracy, such that the capacity of a cloud application is shared across the smart

162

10.4. Future Work

devices in a manner, which results in a similar accuracy. Since many IoT applications

sense the environment with multiple sensors, it could be bene�cial to consider multiple

transmission rate con�gurations per smart device in adaptation decisions. The concern of

the presented �ow control approaches is to manage the timeliness dimension of sensing

cloud applications on the expense of accuracy. Therefore, the approaches can be extended

to manage or consider other qualities, e.g. battery or privacy. Furthermore, we have

evaluated rules-based coupling mechanisms for �ow control approaches with auto-scaling.

More sophisticated �ow control approaches could be application-aware and make both

resource and transmission rate recon�guration decisions. Future work could also focus

on integrate existing approaches of resource demand estimation into the �ow control

approaches, e.g. LibReDe [68]. This could resolve the architectural constraint of relying

on a message queue for performance estimation.

QoS Cost Functions. The QoS cost functions only consider data from one sensor. In prac-

tice, smart devices sense the environment via multiple sensors. Therefore it is reasonable

to introduce an aggregation method in order to support to quantify the overall accuracy

of a sensing cloud application based on the accuracy of each sensor.

SEIA Framework. Future work can ease the development e�ort by extending the frame-

work with implementations for probing and e�ecting existing IoT platforms. Additionally,

it can be enriched with additional models, e.g. security or privacy, to increase the capabili-

ties of the framework. Since the application model is graph-based it can be bene�cial to

enable a transformation of existing application models to SEIA, such that an IoT application

with runtime approaches can be designed in a tool like SimuLizar and then operated via

SEIA.

Validation. Based on the small case studies systems it can be bene�cial to validate the

contributions on larger case study systems. This can help to identify the shortcomings of

the approaches. Additionally, it would help to identify future research directions based on

the experienced challenges.

163

Bibliography

[1] A. Abdel Khaleq and I. Ra. “Agnostic Approach for Microservices Autoscaling in

Cloud Applications”. In: 2019 International Conference on Computational Science and
Computational Intelligence (CSCI). 2019, pp. 1411–1415.

[2] Congestion Avoidance. “Van Jacobson,“Congestion Avoidance and Control”, SIG-

COMM 1988”. In: ().

[3] Cornel Barna et al. “Hogna: A platform for self-adaptive applications in cloud envi-

ronments”. In: 2015 IEEE/ACM 10th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems. IEEE. 2015, pp. 83–87.

[4] Victor Basili et al. “GQMˆ+ strategies–aligning business strategies with software

measurement”. In: First International Symposium on Empirical Software Engineering
and Measurement (ESEM 2007). IEEE. 2007, pp. 488–490.

[5] Len Bass, Ingo Weber, and Liming Zhu. DevOps: A Software Architect’s Perspective.
Addison-Wesley Professional, 2015.

[6] André Bauer, Nikolas Herbst, and Samuel Kounev. “Design and Evaluation of a

Proactive, Application-Aware Auto-Scaler: Tutorial Paper”. In: Proceedings of the
8th ACM/SPEC on International Conference on Performance Engineering. ACM. 2017,

pp. 425–428.

[7] André Bauer et al. “Chameleon: A hybrid, proactive auto-scaling mechanism on a

level-playing �eld”. In: IEEE Transactions on Parallel and Distributed Systems 30.4

(2018), pp. 800–813.

[8] André Bauer et al. “On the value of service demand estimation for auto-scaling”. In:

International Conference on Measurement, Modelling and Evaluation of Computing
Systems. Springer. 2018, pp. 142–156.

[9] André Bauer et al. “Systematic Search for Optimal Resource Con�gurations of

Distributed Applications”. In: Proceedings of Workshop on Evaluations and Measure-
ments in Self-Aware Computing Systems as part of FAS*(IEEE ICAC/SASO) conferences
companion. 2019.

[10] Matthias Becker, Ste�en Becker, and Joachim Meyer. “Simulizar: Design-time mod-

eling and performance analysis of self-adaptive systems”. In: Software Engineering
2013 (2013).

[11] Ste�en Becker, Heiko Koziolek, and Ralf Reussner. “Model-Based Performance

Prediction with the Palladio Component Model”. In: Proceedings of the 6th Interna-
tional Workshop on Software and Performance. WOSP ’07. Buenes Aires, Argentina:

Association for Computing Machinery, 2007, pp. 54–65. isbn: 1595932976. doi:

10.1145/1216993.1217006. url: https://doi.org/10.1145/1216993.1217006.

165

https://doi.org/10.1145/1216993.1217006
https://doi.org/10.1145/1216993.1217006

Bibliography

[12] Jacob Benesty et al. “Pearson correlation coe�cient”. In: Noise reduction in speech
processing. Springer, 2009, pp. 1–4.

[13] Alessio Botta et al. “Integration of Cloud computing and Internet of Things: A

survey”. en. In: Future Generation Computer Systems 56 (Mar. 2016), pp. 684–700.

issn: 0167739X. doi: 10 . 1016 / j . future . 2015 . 09 . 021. url: http : / / linkinghub .

elsevier.com/retrieve/pii/S0167739X15003015 (visited on 09/14/2017).

[14] Antonio Brogi and Stefano Forti. “QoS-aware deployment of IoT applications through

the fog”. In: IEEE Internet of Things Journal 4 (2017), pp. 1185–1192.

[15] Javier Cámara et al. “Robustness evaluation of the rainbow framework for self-

adaptation”. In: Proceedings of the 29th Annual ACM Symposium on Applied Comput-
ing. ACM. 2014, pp. 376–383.

[16] Cyril Cecchinel et al. “An Architecture to Support the Collection of Big Data in the

Internet of Things”. In: IEEE, June 2014, pp. 442–449. isbn: 978-1-4799-5069-0. doi:

10.1109/SERVICES.2014.83. url: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=6903302 (visited on 09/14/2017).

[17] Yair Censor. “Pareto optimality in multiobjective problems”. In: Applied Mathematics
and Optimization 4.1 (1977), pp. 41–59.

[18] Inderveer Chana and Sukhpal Singh. “Quality of service and service level agreements

for cloud environments: Issues and challenges”. In: Cloud Computing. Springer, 2014,

pp. 51–72.

[19] You Chen et al. “Survey and taxonomy of feature selection algorithms in intrusion

detection system”. In: Information security and cryptology. Springer. 2006, pp. 153–

167.

[20] Shang-Wen Cheng, David Garlan, and Bradley Schmerl. “Evaluating the e�ectiveness

of the rainbow self-adaptive system”. In: 2009 ICSEWorkshop on Software Engineering
for Adaptive and Self-Managing Systems. IEEE. 2009, pp. 132–141.

[21] Trieu C Chieu et al. “Dynamic scaling of web applications in a virtualized cloud

computing environment”. In: 2009 IEEE International Conference on e-Business Engi-
neering. IEEE. 2009, pp. 281–286.

[22] Dah-Ming Chiu and Raj Jain. “Analysis of the increase and decrease algorithms

for congestion avoidance in computer networks”. In: Computer Networks and ISDN
systems 17.1 (1989), pp. 1–14.

[23] S. Das and P. N. Suganthan. “Di�erential Evolution: A Survey of the State-of-the-Art”.

In: IEEE Transactions on Evolutionary Computation 15.1 (2011), pp. 4–31.

[24] Jiang Dejun, Guillaume Pierre, and Chi-Hung Chi. “EC2 performance analysis

for resource provisioning of service-oriented applications”. In: Service-Oriented
Computing. ICSOC/ServiceWave 2009 Workshops. Springer. 2009, pp. 197–207.

[25] Helge Dickel, Vladimir Podolskiy, and Michael Gerndt. “Evaluation of Autoscaling

Metrics for (stateful) IoT Gateways”. In: 2019 IEEE 12th Conference on Service-Oriented
Computing and Applications (SOCA). IEEE. 2019, pp. 17–24.

166

https://doi.org/10.1016/j.future.2015.09.021
http://linkinghub.elsevier.com/retrieve/pii/S0167739X15003015
http://linkinghub.elsevier.com/retrieve/pii/S0167739X15003015
https://doi.org/10.1109/SERVICES.2014.83
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6903302
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6903302

[26] Nicola Dragoni et al. “Microservices: yesterday, today, and tomorrow”. In: arXiv
preprint arXiv:1606.04036 (2016).

[27] Diego Dujovne et al. “6TiSCH: deterministic IP-enabled industrial internet (of

things)”. In: IEEE Communications Magazine 52.12 (2014), pp. 36–41.

[28] Kyle Ebersold and Richard Glass. “THE IMPACT OF DISRUPTIVE TECHNOLOGY:

THE INTERNET OF THINGS.” In: Issues in Information Systems 16.4 (2015).

[29] Ahmed El Rheddane et al. “Elastic message queues”. In: Cloud Computing (CLOUD),
2014 IEEE 7th International Conference on. IEEE. 2014, pp. 17–23.

[30] Martin Fowler and James Lewis. “Microservices”. In: ThoughtWorks. (2014). http:

//martinfowler.com/articles/microservices.html. (Visited on 02/17/2015).

[31] David Garlan et al. “Rainbow: Architecture-based self-adaptation with reusable

infrastructure”. In: Computer 37.10 (2004), pp. 46–54.

[32] Manuel Gotin, Felix Lösch, and Ralf Reussner. “TCP-Inspired Congestion Avoidance

for Cloud-IoT Applications”. In: 2019 IEEE International Conference on Software
Architecture Companion (ICSA-C). IEEE. 2019, pp. 5–10.

[33] Manuel Gotin et al. “Investigating Performance Metrics for Scaling Microservices

in CloudIoT-Environments”. In: Proceedings of the 2018 ACM/SPEC International
Conference on Performance Engineering. ACM. 2018.

[34] Manuel Gotin et al. “Overload Protection of Cloud-IoT Applications by Feedback

Control of Smart Devices”. In: Proceedings of the 2019 ACM/SPEC International
Conference on Performance Engineering. ACM. 2019, pp. 51–58.

[35] Jasmin Guth et al. “A Detailed Analysis of IoT Platform Architectures: Concepts,

Similarities, and Di�erences”. In: Internet of Everything. Springer, 2018, pp. 81–101.

[36] R Hassan et al. “Adaptive congestion control mechanism in CoAP Application

Protocol for Internet of Things (IoT)”. In: (2016), pp. 121–125.

[37] Nikolas Herbst et al. “Quantifying cloud performance and dependability: Taxonomy,

metric design, and emerging challenges”. In: ACM Transactions on Modeling and
Performance Evaluation of Computing Systems (ToMPECS) 3.4 (2018), p. 19.

[38] Nikolas Herbst et al. “Ready for Rain? A View from SPEC Research on the Future of

Cloud Metrics”. In: arXiv preprint arXiv:1604.03470 (2016).

[39] Nikolas Roman Herbst, Samuel Kounev, and Ralf Reussner. “Elasticity in cloud

computing: What it is, and what it is not”. In: Proceedings of the 10th International
Conference on Autonomic Computing ({ICAC} 13). 2013, pp. 23–27.

[40] Jun Huang et al. “Modeling and analysis on congestion control in the Internet of

Things”. In: Communications (ICC), 2014 IEEE International Conference on. IEEE.

2014, pp. 434–439.

[41] IBM. “An architectural blueprint for autonomic computing”. In: IBM White Paper
36.June (2006), p. 34. issn: 19448244. doi: 10.1021/am900608j. url: http://users.encs.

concordia.ca/%7B~%7Dac/ac-resources/AC%7B%5C_%7DBlueprint%7B%5C_%7DWhite%7B%

5C_%7DPaper%7B%5C_%7D4th.pdf.

167

 http://martinfowler.com/articles/microservices.html
 http://martinfowler.com/articles/microservices.html
https://doi.org/10.1021/am900608j
http://users.encs.concordia.ca/%7B~%7Dac/ac-resources/AC%7B%5C_%7DBlueprint%7B%5C_%7DWhite%7B%5C_%7DPaper%7B%5C_%7D4th.pdf
http://users.encs.concordia.ca/%7B~%7Dac/ac-resources/AC%7B%5C_%7DBlueprint%7B%5C_%7DWhite%7B%5C_%7DPaper%7B%5C_%7D4th.pdf
http://users.encs.concordia.ca/%7B~%7Dac/ac-resources/AC%7B%5C_%7DBlueprint%7B%5C_%7DWhite%7B%5C_%7DPaper%7B%5C_%7D4th.pdf

Bibliography

[42] Waheed Iqbal et al. “Adaptive resource provisioning for read intensive multi-tier

applications in the cloud”. In: Future Generation Computer Systems 27.6 (2011),

pp. 871–879.

[43] Rajendra K Jain, Dah-Ming W Chiu, and William R Hawe. “A Quantitative Measure

of Fairness and Discrimination”. In: Eastern Research Laboratory, Digital Equipment
Corporation, Hudson, MA (1984).

[44] Vineet John and Xia Liu. “A Survey of Distributed Message Broker Queues”. In:

arXiv preprint arXiv:1704.00411 (2017).

[45] David G Kendall. “Stochastic processes occurring in the theory of queues and

their analysis by the method of the imbedded Markov chain”. In: The Annals of
Mathematical Statistics (1953), pp. 338–354.

[46] Anja Klein et al. “Representing data quality for streaming and static data”. In: 2007
IEEE 23rd International Conference on Data Engineering Workshop. IEEE. 2007, pp. 3–

10.

[47] Floriment Klinaku, Dominik Bilgery, and Ste�en Becker. “The Applicability of

Palladio for Assessing the Quality of Cloud-based Microservice Architectures”.

In: Proceedings of the 13th European Conference on Software Architecture - Volume
2. ECSA ’19. Paris, France: ACM, 2019, pp. 34–37. isbn: 978-1-4503-7142-1. doi:

10.1145/3344948.3344961. url: http://doi.acm.org/10.1145/3344948.3344961.

[48] Samuel Kounev. “Performance modeling and evaluation of distributed component-

based systems using queueing petri nets”. In: IEEE Transactions on Software Engi-
neering 32.7 (2006), pp. 486–502.

[49] Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A. Lozano. “A Review of Auto-

scaling Techniques for Elastic Applications in Cloud Environments”. en. In: Journal
of Grid Computing 12.4 (Dec. 2014), pp. 559–592. issn: 1570-7873, 1572-9184. doi:

10.1007/s10723-014-9314-7. url: http://link.springer.com/10.1007/s10723-014-

9314-7 (visited on 09/14/2017).

[50] M. Marjani et al. “Big IoT Data Analytics: Architecture, Opportunities, and Open

Research Challenges”. In: IEEE Access 5 (2017), pp. 5247–5261.

[51] Adnan M Mulaosmanović. “Application of the HART protocol for communication

with smart �eld devices”. In: Vojnotehnički glasnik 63.3 (2015), pp. 160–175.

[52] Keith E Nolan et al. “Techniques for resilient real-world IoT”. In: Wireless Communi-
cations and Mobile Computing Conference (IWCMC), 2016 International. IEEE. 2016,

pp. 222–226.

[53] Tommi Nylander et al. “BrownoutCC: Cascaded Control for Bounding the Response

Times of Cloud Applications”. In: American Control Conference 2018. IEEE–Institute

of Electrical and Electronics Engineers Inc. 2018.

[54] Tommi Nylander et al. “Cloud Application Predictability through Integrated Load-

Balancing and Service Time Control”. In: 2018 IEEE International Conference on
Autonomic Computing (ICAC). IEEE. 2018, pp. 51–60.

168

https://doi.org/10.1145/3344948.3344961
http://doi.acm.org/10.1145/3344948.3344961
https://doi.org/10.1007/s10723-014-9314-7
http://link.springer.com/10.1007/s10723-014-9314-7
http://link.springer.com/10.1007/s10723-014-9314-7

[55] Keigo Ogawa et al. “Edge-centric �eld monitoring system for energy-e�cient and

network-friendly �eld sensing”. In: Consumer Communications & Networking Con-
ference (CCNC), 2018 15th IEEE Annual. IEEE. 2018, pp. 1–6.

[56] Alessandro Vittorio Papadopoulos et al. “PEAS: A performance evaluation frame-

work for auto-scaling strategies in cloud applications”. In: ACM Transactions on
Modeling and Performance Evaluation of Computing Systems (TOMPECS) 1.4 (2016),

p. 15.

[57] Ismael Pena-Lopez et al. “ITU Internet report 2005: the internet of things”. In: (2005).

[58] Valerio Persico et al. “A Fuzzy Approach Based on Heterogeneous Metrics for Scaling

Out Public Clouds”. In: IEEE Transactions on Parallel and Distributed Systems 28.8

(2017), pp. 2117–2130.

[59] Valerio Persico et al. “Measuring network throughput in the cloud: the case of

amazon ec2”. In: Computer Networks 93 (2015), pp. 408–422.

[60] Valerio Persico et al. “On network throughput variability in microsoft azure cloud”.

In: Global Communications Conference (GLOBECOM), 2015 IEEE. IEEE. 2015, pp. 1–6.

[61] Jia Rao et al. “QoS guarantees and service di�erentiation for dynamic cloud ap-

plications”. In: IEEE Transactions on Network and Service Management 10.1 (2013),

pp. 43–55.

[62] Yousef Rastegari and Fereidoon Shams. “Optimal decomposition of service level

objectives into policy assertions”. In: The Scienti�c World Journal 2015 (2015).

[63] Per Runeson and Martin Höst. “Guidelines for conducting and reporting case study

research in software engineering”. In: Empirical software engineering 14.2 (2009),

p. 131.

[64] Keisuke Sato et al. “A modeling technique utilizing feedback control theory for

performance evaluation of IoT system in real-time”. In: 2015 International Conference
on Wireless Communications & Signal Processing (WCSP). IEEE. 2015, pp. 1–5.

[65] M. Sepesy Maučec et al. “Improved Di�erential Evolution for Large-Scale Black-Box

Optimization”. In: IEEE Access 6 (2018), pp. 29516–29531.

[66] Parminder Singh et al. “Research on Auto-Scaling of Web Applications in Cloud: Sur-

vey, Trends and Future Directions”. In: Scalable Computing: Practice and Experience
20.2 (2019), pp. 399–432.

[67] Vasilios A Siris et al. “Smart application-aware IoT data collection”. In: Journal of
Reliable Intelligent Environments 5.1 (2019), pp. 17–28.

[68] Simon Spinner et al. “LibReDE: a library for resource demand estimation”. In: Pro-
ceedings of the 5th ACM/SPEC international conference on Performance engineering.

ACM. 2014, pp. 227–228.

[69] Rainer Storn and Kenneth Price. “Di�erential evolution–a simple and e�cient

heuristic for global optimization over continuous spaces”. In: Journal of global
optimization 11.4 (1997), pp. 341–359.

169

Bibliography

[70] Giacomo Tanganelli, Carlo Vallati, and Enzo Mingozzi. “Ensuring Quality of Service

in the Internet of Things”. In: (2018), pp. 139–163.

[71] Bhuvan Urgaonkar et al. “Agile dynamic provisioning of multi-tier internet applica-

tions”. In: ACM Transactions on Autonomous and Adaptive Systems (TAAS) 3.1 (2008),

p. 1.

[72] Mario Villamizar et al. “Infrastructure Cost Comparison of Running Web Appli-

cations in the Cloud Using AWS Lambda and Monolithic and Microservice Archi-

tectures”. In: IEEE, May 2016, pp. 179–182. isbn: 978-1-5090-2453-7. doi: 10.1109/

CCGrid.2016.37. url: http://ieeexplore.ieee.org/document/7515686/ (visited on

09/14/2017).

[73] Danny Weyns. “Software engineering of self-adaptive systems: an organised tour

and future challenges”. In: (2017).

[74] Miaomiao Yu, Chunjie Wu, and Fugee Tsung. “Monitoring the data quality of data

streams using a two-step control scheme”. In: IISE Transactions (2019), pp. 1–14.

170

https://doi.org/10.1109/CCGrid.2016.37
https://doi.org/10.1109/CCGrid.2016.37
http://ieeexplore.ieee.org/document/7515686/

A. Appendix

A.1. Publikationsliste

Im Folgenden sind die im Zuge dieser Arbeit verö�entlichten Publikationen aufgeführt:

• Gotin, Manuel, et al. “Investigating performance metrics for scaling microservices

in cloudiot-environments.” Proceedings of the 2018 ACM/SPEC International Con-

ference on Performance Engineering. ACM, 2018. S. 157-167.

• Gotin, Manuel, et al. "Overload Protection of Cloud-IoT Applications by Feedback

Control of Smart Devices." Proceedings of the 2019 ACM/SPEC International Con-

ference on Performance Engineering. ACM, 2019.

• Gotin, Manuel, Felix Lösch, and Ralf Reussner. "TCP-Inspired Congestion Avoid-

ance for Cloud-IoT Applications." 2019 IEEE International Conference on Software

Architecture Companion (ICSA-C). IEEE, 2019.

171

	Abstract
	Zusammenfassung
	Danksagungen
	Introduction
	Motivation
	Problem Statement
	State of the Art
	Challenges and Research Questions
	Understanding Performance Metrics for Auto-Scaling
	Modeling and Optimization of the QoS of Sensing Cloud Applications
	Flow Control Approaches for Smart Devices
	Runtime Management of Sensing Cloud Applications

	Contributions
	Outline

	Foundations
	The Cloud-IoT Paradigm
	Underlying Concepts
	IoT Platforms
	Microservice Architectural Style

	Qualities of Sensing Cloud Applications
	Terminology
	Data Qualities

	Elasticity in Cloud Computing
	Auto-Scaling
	Elasticity Evaluation

	Flow Control and Congestion Avoidance
	TCP Flow Control & Congestion Avoidance
	Jains Fairness Index

	Self-Adaptive Systems
	Optimization
	Differential Evolution
	Pareto Frontier

	Evaluation of Performance Metrics for Scaling Decisions
	Microservice Model
	Analytical model of infrastructure metrics
	CPU Utilization
	Message Queue Metrics

	Simulation model
	Model for Cloud Applications
	Model for Sensing Cloud Applications

	Discussion

	QoS Cost Optimization of Sensing Cloud Applications
	Application Model
	Qualities of a Sensing Cloud Application
	QoS Metrics
	QoS Cost Functions
	Quality Cost Functions
	QoS Cost Function Sets

	Optimization Goals
	Resource and Message Rate Configuration
	Runtime Management Configuration

	Optimization Framework
	Discussion

	Time-driven Flow Control of Smart Devices
	Underlying Concepts
	Integration into Sensing Cloud Applications
	Architectural Integration
	Information Exchange Mechanism
	Congestion Observer
	Transmission Rate Boundaries

	TCP-Inspired Flow Control
	Conceptual Differences
	Load Model Extension
	Overload Protection Mode
	Discussion

	Capacity-Estimating Flow Control
	Capacity Estimation
	Transmission Rate Calculation
	Phases
	Overload Protection Mode
	Discussion

	Discussion

	Coupling Mechanisms for Runtime Strategies
	Coupling Strategy Metamodel
	Strategy Classes
	Concurrent Coupling
	Rule-Based Coupling
	Metamodel
	Accuracy-driven Overload Protection
	Cost-driven Overload Protection
	QoS-based Coupling
	Discussion

	Fuzzy Rules-Based Coupling
	Fuzzification
	Defuzzification
	Fuzzy Rules Set

	Discussion

	SEIA – A Runtime Management Framework for Cloud Applications
	Overview
	Cloud Application Meta-Model
	Cloud-IoT Concepts
	Probes and Effectors
	Probes
	Effectors

	Monitoring Concept
	Strategy Concept
	Binding Factory
	Mapping to the MAPE-K Framework
	Discussion

	Validation
	Validation Goals and Overview
	GQM Plan
	Case Study Systems
	Validation Coverage

	Experimental Setup
	Overview
	Optimization Framework
	Simulation Model

	Case Study Systems
	ShapeShifter
	Connected Heating

	Evaluation of Performance Metrics for Scaling Decisions
	Experimental Design
	Q.1.1 – Impact of Resource Demand and Capacity Variations on Infrastructure Metrics
	Q.1.2 – Infrastructure Metric Model Accuracy
	Q.1.3 – Impact of Resource Demand and Capacity Variations on Scaling Decisions
	Q.1.4 – Simulation Model Accuracy
	Threats to Validity
	Discussion

	Congestion Avoidance Characteristics of time-driven Flow Control
	Experimental Design
	Q.2.1 – Congestion Avoidance Efficiency in a Steady Capacity and Connectivity Scenario
	Q.2.2 – Congestion Avoidance Efficiency in a Varying Capacity Scenario
	Q.2.3 – Congestion Avoidance Efficiency in a Varying Connectivity Scenario
	Q.2.4 – Simulation Model Accuracy
	Threats to Validity
	Discussion

	QoS Characteristics of time-driven Flow Control
	Experimental Design
	Q.3 QoS Characteristics of Overload Protection Approaches
	Q.4 QoS Characteristics of Coupled Overload Protection Approaches
	Q.5 Simulation Model Accuracy
	Threats to Validity
	Discussion

	QoS Contributions of time-driven Flow Control in different Application Scenarios
	Experimental Design
	Q.6.1 – QoS conformance in mixed application scenarios
	Q.6.2 – QoS conformance in time driven application scenarios
	Q.6.3 – QoS conformance in accuracy driven application scenarios
	Q.6.4 – QoS conformance in cost driven application scenarios
	Q.6.5 – Simulation Model Accuracy
	Threats to Validity
	Discussion

	Connected Heating – Use Case 'Predictive Maintenance'
	Experimental Design
	Q.7 – QoS Contributions in Overload Situation on the Example of an Industry-Based Cloud Application
	Threats to Validity
	Discussion

	Characteristics of TCP-inspired Flow Control
	Experimental Design
	Q.8.1 – How does varying load affect the fairness of adaptations in a distributed setup?
	Q.8.2 – How does a distributed setup affect the adaptation quality?
	Discussion

	Related Work
	Performance Metrics for Scaling Decisions
	Evaluation of Auto-Scalers
	Evaluation of Performance Metrics
	Related Auto-Scalers

	Feedback Control of Smart Devices
	Congestion Control
	Collection Strategies

	QoS Optimization of Cloud Applications
	Frameworks for Self-Adaptive Systems

	Conclusion
	Summary
	Benefits
	Assumptions and Limitations
	Future Work

	Bibliography
	Appendix
	Publikationsliste

