5,791 research outputs found

    Using a damper amplification factor to increase energy dissipation in structures

    Get PDF
    AbstractFluid dampers are an important tool for dissipating unwanted vibrations in a range of engineering structures. This paper examines the effects of amplifying the displacements transferred to a non-linear damper, to increase the effectiveness of the damper in a range of situations commonly encountered in civil engineering structures. These include, (i) the ability to ā€œfine tuneā€ the required damping for a particular size damper, (ii) the ability to have a set of the same size dampers, but with different amplification factors to achieve a specific damping task, and (iii) to increase the sensitivity of the damper to small movements which effectively extends the range over which the damper works. Through numerical simulations and experimental tests conducted on a non-linear damper, we quantify the potential advantages of adding an amplification factor and the range of parameters where the benefit to this device is significant. The example of a two-storey structure is used as a test case and real-time dynamic substructuring tests are used to assess the complete system performance using a range of different amplification factors. The results show that the structural performance is most improved for frequencies close to resonance and that the amplification factor has an effective limit that for the case considered in this study is of approximately 3. The effects of the mechanism compliance are also assessed

    Vibration control strategies for proof-mass actuators

    Get PDF
    Proof-mass actuators have been considered for a broad range of structural vibration control problems, from seismic protection for tall buildings to the improvement of metal machining productivity by stabilizing the self-excited vibrations known as chatter. This broad range of potential applications means that a variety of controllers have been proposed, without drawing direct comparisons with other controller designs that have been considered for different applications. This article takes three controllers that are potentially suitable for the machining chatter problem: Direct velocity feedback, tuned-mass-damper control (or vibration absorber control), and active-tuned-mass-damper control (or active vibration absorber control). These control strategies are restated within the more general framework of Virtual Passive Control. Their performance is first compared using root locus techniques, with a model based on experimental data, including the low frequency dynamics of the proof-mass. The frequency response of the test structure is then illustrated under open and closed-loop conditions. The application of the control strategies to avoid machine-tool chatter vibrations is then discussed, without going into detail on the underlying physical mechanisms of chatter. It is concluded that virtual passive absorber control is more straightforward to implement than virtual skyhook damping, and may be better suited to the problem of machining chatter

    Modeling of Hovering Type AUV Test Bed with Four Thrusters and Two Hulls Design

    Get PDF
    This paper proposes a design of hovering Type Autonomous Underwater Vehicle (AUV) using four thruster and two hulls. The state vector representation of AUV kinematics and the mathematical modeling of their dynamics of motion are presented. Several assumptions are used to simplify the design since the effect of that parameter is small enough thus can be neglected in the modeling process. DC motor is used as the actuator of the thruster. The thrusters used in the system are designed to have the same motor power and propeller characteristic

    Trajectory Deformations from Physical Human-Robot Interaction

    Full text link
    Robots are finding new applications where physical interaction with a human is necessary: manufacturing, healthcare, and social tasks. Accordingly, the field of physical human-robot interaction (pHRI) has leveraged impedance control approaches, which support compliant interactions between human and robot. However, a limitation of traditional impedance control is that---despite provisions for the human to modify the robot's current trajectory---the human cannot affect the robot's future desired trajectory through pHRI. In this paper, we present an algorithm for physically interactive trajectory deformations which, when combined with impedance control, allows the human to modulate both the actual and desired trajectories of the robot. Unlike related works, our method explicitly deforms the future desired trajectory based on forces applied during pHRI, but does not require constant human guidance. We present our approach and verify that this method is compatible with traditional impedance control. Next, we use constrained optimization to derive the deformation shape. Finally, we describe an algorithm for real time implementation, and perform simulations to test the arbitration parameters. Experimental results demonstrate reduction in the human's effort and improvement in the movement quality when compared to pHRI with impedance control alone

    Power harvesting in a helicopter lag damper

    Get PDF
    In this paper a new power harvesting application is developed and simulated. Power harvesting is chosen within the European Clean Sky project as a solution to powering in-blade health monitoring systems as opposed to installing an elaborate electrical infrastructure to draw power from and transmit signals to the helicopter body. Local generation of power will allow for a ā€˜plug and playā€™ rotor blade and signals may be logged or transmitted wirelessly.\ud The lag damper is chosen to be modified as it provides a well defined loading due to the re-gressive damping characteristic. A piezo electric stack is installed inside the damper rod, effec-tively coupled in series with the damper. Due to the well defined peak force generated in the damper the stack geometry requires a very limited margin of safety. Typically the stack geometry must be chosen to prevent excessive voltage build-up as opposed to mechanical overload.\ud Development and simulation of the model is described starting with a simplified blade and piezo element model. Presuming specific flight conditions transient simulations are conducted using various power harvesting circuits and their performance is evaluated. The best performing circuit is further optimized to increase the specific power output. Optimization of the electrical and mechanical domains must be done simultaneously due to the high electro-mechanical cou-pling of the piezo stack. The non-linear electrical properties of the piezo material, most notably the capacitance which may have a large influence, are not yet considered in this study.\ud The power harvesting lag damper provides sufficient power for extensive health monitoring systems within the blade while retaining the functionality and safety of the standard component. For the 8.15m blade radius and 130 knots flight speed under consideration simulations show 7.5 watts of power is generated from a single damper

    3LP: a linear 3D-walking model including torso and swing dynamics

    Get PDF
    In this paper, we present a new model of biped locomotion which is composed of three linear pendulums (one per leg and one for the whole upper body) to describe stance, swing and torso dynamics. In addition to double support, this model has different actuation possibilities in the swing hip and stance ankle which could be widely used to produce different walking gaits. Without the need for numerical time-integration, closed-form solutions help finding periodic gaits which could be simply scaled in certain dimensions to modulate the motion online. Thanks to linearity properties, the proposed model can provide a computationally fast platform for model predictive controllers to predict the future and consider meaningful inequality constraints to ensure feasibility of the motion. Such property is coming from describing dynamics with joint torques directly and therefore, reflecting hardware limitations more precisely, even in the very abstract high level template space. The proposed model produces human-like torque and ground reaction force profiles and thus, compared to point-mass models, it is more promising for precise control of humanoid robots. Despite being linear and lacking many other features of human walking like CoM excursion, knee flexion and ground clearance, we show that the proposed model can predict one of the main optimality trends in human walking, i.e. nonlinear speed-frequency relationship. In this paper, we mainly focus on describing the model and its capabilities, comparing it with human data and calculating optimal human gait variables. Setting up control problems and advanced biomechanical analysis still remain for future works.Comment: Journal paper under revie

    Design and Control of Compliant Actuation Topologies for Energy-Efficient Articulated Robots

    Get PDF
    Considerable advances have been made in the field of robotic actuation in recent years. At the heart of this has been increased use of compliance. Arguably the most common approach is that of Series-Elastic Actuation (SEA), and SEAs have evolved to become the core component of many articulated robots. Another approach is integration of compliance in parallel to the main actuation, referred to as Parallel- Elastic Actuation (PEA). A wide variety of such systems has been proposed. While both approaches have demonstrated significant potential benefits, a number of key challenges remain with regards to the design and control of such actuators. This thesis addresses some of the challenges that exist in design and control of compliant actuation systems. First, it investigates the design, dynamics, and control of SEAs as the core components of next-generation robots. We consider the influence of selected physical stiffness on torque controllability and backdrivability, and propose an optimality criterion for impedance rendering. Furthermore, we consider disturbance observers for robust torque control. Simulation studies and experimental data validate the analyses. Secondly, this work investigates augmentation of articulated robots with adjustable parallel compliance and multi-articulated actuation for increased energy efficiency. Particularly, design optimisation of parallel compliance topologies with adjustable pretension is proposed, including multi-articulated arrangements. Novel control strategies are developed for such systems. To validate the proposed concepts, novel hardware is designed, simulation studies are performed, and experimental data of two platforms are provided, that show the benefits over state-of-the-art SEA-only based actuatio

    Multi-axis transient vibration testing of space objects: Test philosophy, test facility, and control strategy

    Get PDF
    IABG has been using various servohydraulic test facilities for many years for the reproduction of service loads and environmental loads on all kinds of test objects. For more than 15 years, a multi-axis vibration test facility has been under service, originally designed for earthquake simulation but being upgraded to the demands of space testing. First tests with the DFS/STM showed good reproduction accuracy and demonstrated the feasibility of transient vibration testing of space objects on a multi-axis hydraulic shaker. An approach to structural qualification is possible by using this test philosophy. It will be outlined and its obvious advantages over the state-of-the-art single-axis test will be demonstrated by example results. The new test technique has some special requirements to the test facility exceeding those of earthquake testing. Most important is the high reproduction accuracy demanded for a sophisticated control system. The state-of-the-art approach of analog closed-loop control circuits for each actuator combined with a static decoupling network and an off-line iterative waveform control is not able to meet all the demands. Therefore, the future over-all control system is implemented as hierarchical full digital closed-loop system on a highly parallel transputer network. The innermost layer is the digital actuator controller, the second one is the MDOF-control of the table movement. The outermost layer would be the off-line iterative waveform control, which is dedicated only to deal with the interaction of test table and test object or non-linear effects. The outline of the system will be presented
    • ā€¦
    corecore