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Abstract
In this paper, we present a new mechanical model for biped locomotion, composed of three linear pendulums (one
per leg and one for the whole upper body) to describe stance, swing and torso dynamics. In addition to a double
support phase, this model has different actuation possibilities in the swing hip and stance ankle which produce a
broad range of walking gaits. Without the need of numerical time-integration, closed form solutions help to find periodic
gaits which could simply scale in certain dimensions to modulate the motion online. Thanks to linearity properties, the
proposed model can potentially provide a computationally fast platform for model predictive controllers to predict the
future and consider meaningful inequality constraints to ensure feasibility of the motion. Such property is coming from
describing dynamics with joint torques directly and therefore, reflecting hardware limitations more precisely, even in
the very abstract template space. The proposed model produces human-like torque and ground reaction force profiles,
and thus, compared to point-mass models, it is more promising for generation of dynamic walking trajectories. Despite
being linear and lacking many features of human walking like CoM excursion, knee flexion, and ground clearance, we
show that the proposed model can explain one of the main optimality trends in human walking, i.e. the nonlinear speed-
frequency relationship. In this paper, we mainly focus on describing the model and its capabilities, comparing it with
human data and calculating optimal human gait variables. Setting up control problems and advanced biomechanical
analysis remains for future works.
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Introduction

Humanoid robots are challenging to control mainly
due to their complex structures and a floating base.
During locomotion tasks, these systems introduce another
complexity compared to wheeled or flying robots, which is
the hybrid nature of stepping where the continuous model
changes in each phase. It has always been challenging to
balance these robots with only unilateral supporting forces
from the environment. Also, creating a sequence of motion,
the associated timing and the required control architecture
are other important topics in controlling humanoid robots.
The main objectives are therefore being human-like, energy
efficient, versatile and of course agile like humans. In this
paper, we are proposing a new template model that describes
main aspects of walking while being computationally very
efficient. Such model can be very useful in modern control
architectures from the computational perspective. It can also
go beyond conventional template models such as Linear
Inverted Pendulum (LIP) by producing more natural motions
and faster walking speeds, resembling human locomotion.

The design of controllers should address many concerns
like fast implementation, stability, robustness to unknown
model parameters and the degree of dependency on
sensory data. Besides, it is desired to handle speed
transitions and large disturbance rejection in the same
control framework. Candidate methods are typically coming
with proper identification of the basin of attraction
regarding system states, actuator limitations and violation
of model assumptions. This identification is not always

straightforward due to its nonlinear nature, though it has
been postulated that two steps are enough to stabilize in
almost all conditions (Zaytsev et al. 2015). In this regard,
Model Predictive Control (MPC) is a powerful framework as
it can find optimal policies constrained to certain actuation
and state limitations. It can also predict if there is no feasible
solution, to let the algorithm take a different decision.

Hierarchical controllers
Recently, hierarchical control approaches are becoming
popular, where a simple template model determines the
overall dynamics in an abstract way and then, a detailed
full-body inverse dynamics controller converts this behavior
to individual actuator inputs (Faraji et al. 2014; Feng et al.
2013; Kuindersma et al. 2014). In dynamical systems,
prediction of future evolution is mainly sensitive to the
model and sensory data precision (Bhounsule et al. 2015).
In hierarchical approaches similarly, dynamical matching
between the template and the full model is crucial to
ensure precise execution of the abstract plan. In this regard,
we briefly review relevant template models proposed for
walking, identify missing properties and motivate the new
model proposed in this paper.
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(Iida et al.
2009)

(Hemami
and

Golliday
1977)

(Asano et al.
2004)

(Asano
et al. 2004)

(Kuo 1999) (Kajita and
Tani 1991)

(Takenaka et al.
2009)

name SLIP IP - - - LIP -
knee - - - x - - -
steering - - - - - x -
3D - - - - x x -
smooth x - - - - x x
torso - - - - - - -
swing - - x x x - x
linear - - - - - x -

(Maufroy
et al.
2011)

(Sharbafi
and

Seyfarth
2015)

(Hasaneini
et al. 2013)

(Gomes and
Ruina 2011)

(Manchester
and Umen-

berger
2014)

(Gregg et al.
2012)

proposed

name BSLIP FMCH - - - - 3LP
knee - - - - x x -
steering - - - - - x (x)
3D - - - - - x x
smooth x x - x - - x
torso rotating rotating rotating rotating rotating rotating fixed
swing - - x x x x x
linear - - - - - - x

Figure 1. Different key models introduced in the literature for walking. In this table, the model is standing on the left leg, and the
right leg is in the swing motion. Solid arrows show the direction of motion and degrees of freedom while gray arrows show actuation
torques or push-off forces. For models without swing dynamics, we show the swing leg in gray color to implicitly indicate that attack
angle is a control authority. Note that some of these models are only in 2D while more advanced models are in 3D. Some models
simulate pelvis width, torso dynamics or ground clearance as well. Most of these models produce compass gait. However, some
have ankle actuation or arc foot. In the comparison table, we mention important features such as knee flexion (for ground
clearance), steering capabilities, 3D formulations, smooth profiles, the inclusion of torso and swing dynamics and linearity. By
smoothness, we mean no collision and push-off impulse, but possibly describing the double support phase. Many of these models
allow for torso pitch while we keep it fixed in 3LP for simplicity. Note that 3LP can describe steering like our previous work with LIP
(Faraji et al. 2014), only if pelvis width is set to zero. Despite being linear, 3LP offers many features not existing in other template
models.

Inverted Pendulums

One of the earliest template models that roughly explains
bipedal mechanics is Inverted Pendulum (IP) (McGeer
1990). In this model, a single mass rolls over a massless
stick with a fixed length. IP is widely used to analyze passive
walkers (McGeer 1990) and energetics of human walking
(Kuo et al. 2005). Inspired by IP, many simple robots are built

to walk naturally with minimal energy, injected in push-off,
swing hip or both (Collins et al. 2005). Later, this model was
simplified to Linear Inverted Pendulum (LIP) (Kajita et al.
2003), favoring analytical solutions instead of numerical
integrations. With a proper modulation of Zero Moment
Point (ZMP) (Sardain and Bessonnet 2004), many position
controlled robots like ASIMO (Sakagami et al. 2002)
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perform walking via inverse kinematics methods. These
algorithms are usually able to produce slow to moderate
walking speeds. However, robots using the LIP method
usually walk with crouched knees to keep the Center of Mass
(CoM) at a constant height. In addition to increasing energy
consumption, it is harmful to the robot in the long term and
less human-like, though providing full controllability.

More recent extensions of LIP contain one (Park and
Kim 1998) or two additional masses (Takenaka et al.
2009; Buschmann et al. 2007) in the legs to address
swing dynamics while keeping the CoM height constant.
For instance, in these extensions, the proposed model
is formulated in a 2D space, and parameterized swing
trajectories (in the sagittal and vertical planes) are used to
generate desired gaits. In (Park and Kim 1998) specifically,
sinusoidal profiles lead to closed form solutions with few
realistic approximations introduced. Despite the advantage
of describing ground clearance effects with a minimal
coupling to the sagittal dynamics, the swing trajectory is
yet imposed to the system, which is not desirable. We look
for a more generic model to work at different speeds and
frequencies, not relying on parametric trajectories to tune.

Multi-link pendulums
Apart from these single-mass models, there are other
nonlinear extensions solved numerically. In (Byl and Tedrake
2008; Asano et al. 2004), the IP model was extended to have
two separate masses for each leg as well as a single mass
at the hip level. Using similar actuation schemes, this model
could produce compass gaits on 2D-constrained robots. In
(Asano et al. 2004), the same model was modified to have
another Degree of Freedom (DoF) in the swing leg to provide
ground clearance. The stance leg, however, always remains
straight in this version. In (Westervelt et al. 2007), this
model was augmented with a torso and later, it was also
used by (Manchester and Umenberger 2014) to perform
natural walking on uneven terrain, using a library of motion
primitives. Another model with four masses in the legs, hip,
and torso was proposed in (Gregg and Spong 2009) without
any DoF in the stance knee. This model was used to generate
walking trajectories with steering properties.

Aiming at removing impacts, a simpler model with two
passive springs in the hips was proposed by Gomes (Gomes
and Ruina 2011). These springs are mainly motivated by
elastic properties of human muscles. By exploiting torso
motions, Gomes could find zero energy gaits. Another
interesting complex model was proposed in (Gregg et al.
2012) with a pelvis of a certain width in 3D and a mass in
the center. The swing leg also had a DoF in the knee. This
3D model takes advantage of a limited transversal wrench
in the contact point to facilitate steering. However, finding
a periodic gait for such complicated model is difficult and
computationally expensive.

Spring-Loaded Pendulums
It is always questionable which template model produces
more realistic motion from the viewpoint of geometry,
torques or energy. The models above mainly address
energetic and geometric similarities. However, specific
ground reaction force profiles and the elastic behavior

observed in human legs are better produced in another
category of models based on Spring Loaded Inverted
Pendulum (SLIP) (Blickhan 1989). The simplest model
in this category is composed of two massless springs
(legs) connected to a point mass. Observations indicate a
better description of energy exchange in this model over
faster walking speeds and running, mimicking compliant
properties of human tendons (Blickhan 1989). Based on
this model, Iida (Iida et al. 2009) built a hip-actuated robot
walking in 2D with various springs, similar to the human
muscles. Properties of the passive SLIP itself -without hip
actuation- were widely explored later in (Rummel et al.
2010). Using the concept of Virtual Pivot Point (VPP) to
stabilize the torso, the model was also extended to have an
upper body (Sharbafi and Seyfarth 2015) which made the
motion more human-like.

In Figure.1, we have briefly shown key models proposed
for walking in the literature. Note that in some of them,
passive springs are added to the hip actuators for energy
storage, similar to human. In this paper, however, we do not
investigate elastic behaviors and energy-saving mechanisms.

Control difficulty
Except for LIP, all other models presented earlier require
numerical integration to obtain time trajectories. Therefore,
in a periodic walking paradigm, the Jacobian around a
nominal solution linearizes the model and provides the
framework for Floquet analysis or discrete controller designs
(Rummel et al. 2010). This approach can be used to create
an optimal library of primitives (Kelly and Ruina 2015;
Manchester and Umenberger 2014; Gregg et al. 2012).
However, online reaction to disturbances as well as the
inclusion of other inequality constraints that are often
ignored in calculating a stable basin of attraction limit the
generality of this framework. MPC, on the other hand, is
powerful in this regard. However, it requires simple and
possibly linear models to facilitate online calculations. The
LIP model, therefore, fits best in the MPC framework (Faraji
et al. 2014; Herdt et al. 2010). MPC, its simpler version
LQR, and sometimes Discretized LQR (DLQR) (Ogata
1995) controllers are popular in stabilizing walking gaits
and recovering large pushes (Kelly and Ruina 2015; Byl and
Tedrake 2008). With nonlinear models, however, a library of
optimal policies is generated offline, or a discrete transition
model is considered at specific events like CoM apex or
heel-strike. Such controllers can not react to perturbations
very quickly, since adjusting the plan is not computationally
affordable online.

Why 3LP?
In this paper, we propose a more general version of LIP
(Kajita et al. 2003) with three linear pendulums (called 3LP)
that capture torso and swing dynamics in 3D. This model
allows prediction of future at any time in closed form which
is favorable by limited computational resources and MPC.
Compared to LIP, 3LP-based trajectories are easier to track
by inverse dynamics block in a hierarchical controller. In
other words, CoM motion becomes more natural for the
humanoid robot, since swing and torso dynamics are taken
into account. Swing-leg trajectories are also more natural
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compared to the template models which track an imposed
angle of attack with a stiff controller (Kelly and Ruina
2015; Byl and Tedrake 2008; Collins et al. 2005). Besides,
using 3LP, one can define meaningful torque limits in MPC
frameworks instead of putting vague timing or step-size
limits which do not precisely reflect physical facts about the
real hardware. It should be noted, however, that the CoM
height in 3LP is constant similar to LIP.

The 3LP model provides direct access to the hip and
ankle torques. These input dimensions let us find various
types of gaits with simple closed form expressions. 3LP as a
template model is therefore very useful for motion planning.
Along with falling dynamics like IP (Kuo et al. 2005) and
LIP (Kajita et al. 2001), torso-balancing hip torques are
also part of 3LP like (Maufroy et al. 2011). The most
outstanding feature of 3LP is in considering swing dynamics
in a linear fashion that allow us to calculate natural cycles.
With LIP, however, a reference footstep plan is needed (Faraji
et al. 2014). Considering Figure.1 again, few models in the
literature consider this integral part of walking. In these
models, due to nonlinearity, numerical integration is always
needed to search for periodic gaits. In 3LP, however, we do
not need to integrate the system or to perform numerical
optimizations.

This paper merely focuses on introducing the model,
formulating equations, finding gaits and comparing them
to human gaits. Setting up control problems remain for
future works. In the next section, we will explain model
details and the assumptions behind. Next, a method based
on geometrical symmetry is introduced to find different
periodic gaits. We will demonstrate that for a human-like
gait, actuation profiles in 3LP are similar to those in human.
Finally, we show that 3LP, despite being linear, quantitatively
explains the main optimality trend in human gaits, i.e. speed-
frequency relation.

3LP dynamics
To capture the coupling of swing and torso dynamics, we
have added two other pendulums to the standard LIP model,
connected with a pelvis of a certain width. In this model,
as shown in Figure.2, there are 2-DoF actuators in each hip
and ankle. We visualize feet of limited size in Figure.2, only
to mention the availability of ankle torques. The upper body
(referred to as torso) and the legs are each represented by
a single mass. By construction (assuming ideal controllers),
masses stay in horizontal planes of constant height and the
torso is always upright without sagittal, frontal or transversal
rotations. These assumptions are used in (Gregg et al. 2012)
as well to decouple sagittal and lateral dynamics.

Since the torso is connected to an accelerated frame (i.e.
pelvis), a balancing torque is always needed to keep the
torso upright. This torque is often calculated using the virtual
pendulum concept (Sharbafi and Seyfarth 2015), where the
torso can pitch or roll freely. Inspired by rolling contact
constraints that produce more human-like gaits (Hamner
et al. 2013), we allow for a transversal wrench at stance
foot to help to keep the pelvis orientation fixed. In 3LP,
we do not consider steering properties as they make the
model nonlinear. It is practically easy however to steer the
robot using an inverse dynamics layer, as we showed in

(Faraji et al. 2014) where a simple LIP model was used.
There is no need to add heel-strike and push-off impulses
in 3LP since our double support phase smoothly takes care
of the contact transition. In SLIP-based models (Sharbafi and
Seyfarth 2015), the compliant springs automatically produce
a double support phase and perform weight transition
without impulses. In 3LP, however, switching to double
support is triggered when both horizontal components of
the swing foot velocity become zero. This assumption is
typically used in models with swing dynamics like (Gomes
and Ruina 2011), though unlike 3LP, Gomes removes double
support for more simplicity (Gomes and Ruina 2011).

In Figure.2, all external/internal forces and torques, as
well as positions, are shown for each interesting point of
the model, i.e. contacts, hips and pelvis center. These vector
variables in our model are expressed in the Cartesian frame.
One can easily write geometric relations as:

x1 = [x1,x x1,y 0]T + h1 ẑ

x2 = x1 + (
wpd

2
) ŷ

x3 = x1 − (
wpd

2
) ŷ

X1 = x1 + h4 ẑ

X2 = [X2,x X2,y 0]T

X3 = [X3,x X3,y 0]T

y1 = x1 + h3 ẑ

y2 = x2 +
h2
h1

(X2 − x2)

y3 = x3 +
h2
h1

(X3 − x3) (1)

where wp denotes pelvis width, phase variable d = ±1
depends on left or right support phases, ŷ =

[
0 1 0

]T
points

left, ẑ =
[
0 0 1

]T
points up, h1 is pelvis height, h2 is relative

leg mass height, h3 is relative torso mass height and offset
variable h4 from the pelvis indicates the point where an
external perturbation is applied. These parameters as well as
other position variables are shown in Figure.2. We can write
total force equations for each mass i = 1, 2, 3:

mi(ÿi + g) = fi + Fi (2)

where g denotes gravity and m2 = m3, assuming a
symmetric model. The vectors Fi and fi represent external
and internal forces respectively. The total moment equations
for each mass i = 1, 2, 3 are:

(Xi − yi)× Fi + (xi − yi)× fi + Ti + τi = 0 (3)

where vectors Ti represent external wrenches and τi
represent internal torques, all defined in the Cartesian frame
(refer to Figure.2). Finally, we can write total force and
moment equations for the mass-less pelvis around the center
point:

f1 + f2 + f3 = 0 (4)
τ1 + τ2 + τ3 + (x2 − x1)× f2 + (x3 − x1)× f3 = 0

which link all variables together. In these equations, we
consider X1, X2, X3 as independent variables and solve for
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Figure 2. A schematic of 3LP model with all variables and
model parameters. The bottom plane shows level ground and all
upper planes of fixed height show where the three masses and
the pelvis are constrained to move. The torso is always upright,
and the pelvis is along the y-axis by model construction. The
swing foot remains inside the bottom plane, i.e. sliding on the
ground with no force during the swing phase. Note that in single
support all contact forces for the swing leg (T2, F2) are zero.
The inputs of the model are τ2 and T3 shown in red together
with arbitrary external perturbations T1 and F1 applied to the
torso. State variables are feet and pelvis positions, shown in
green. Fixed model parameters are also shown in blue,
including masses and geometrical dimensions.

others as dependent variables. Actuation possibilities for 3LP
are selected as stance foot T3 and swing hip torques τ2 in
the sagittal and lateral planes. Note that T1 and F1 represent
disturbing external forces (at point X1 on the torso) which
are zero in normal conditions.

Now, differential equations governing the bipedal motion
could be obtained for different phases. We consider a full
stride, consisting of a double support followed by a single
support phase, defined in Table.1. In double support, the
weight is transferred from F2 to F3, and in single support, the
leg with variables of subscripts 2 will swing forward. Over
the next full stride phase, the supporting leg can be simply
changed by altering the sign of variable d.

Full stride = double support + single support
duration tds tss

timing order 1 2
stance leg subscripts 3 subscripts 3
swing leg - subscripts 2

control input ankle hip/ankle
controllability over-actuated fully-actuated

Table 1. Sequencing information about the two consecutive
phases that form a full stride phase.

The equations (2), (3) and (4) are not enough to solve
the system completely. We require 12 new equations to find
all accelerations in terms of control inputs and vice versa.
This number comes from the fact that in total, we have
12 actuation variables in the system (torques in the hips
and ankles). In single support, since the system is fully
actuated, the additional constraints can simply be added

by considering zero contact force in the swing foot and
zero acceleration in the stance foot. In double support,
however, because of the inherent redundancy, we need to
make assumptions to simplify the system.

Single support
In this phase, the swing foot does not have any external
forces and the stance foot is fixed on the ground:

F2 = 0, T2 = 0, Ẍ3 = 0 (5)

To further simplify the system, we consider two modes
of input torques: constant (U ) and ramp (V ) profiles.
Despite being linear, these profiles can still lead to a
convincing match with human torque profiles, discussed
in the next section. More complex terms might improve
the matching precision, but make the equations more
complicated. Besides, since there are fundamental geometric
differences between the limbs in 3LP and human (e.g. the
number of articulated joints), higher order terms might lead
to an over-fitting which is not desired. Overall, we have eight
input parameters U and V in the system:

τ2,y
τ2,x
T3,y
T3,x

 =


Uh,y
Uh,x
Ua,y
Ua,x

+
t

tss


Vh,y
Vh,x
Va,y
Va,x

 = U +
t

tss
V (6)

where tss stands for single support duration, t denotes
the time from the beginning of the single support phase,
and subscripts a and h denote ankle and hip respectively.
Equations of (5) and (6) together give 12 additional
constraints that enable us to solve the system completely.
To this end, we define the state vector Xss(t) and the
disturbance vector W as:

Xss(t) =[
X2,x(t) X2,y(t) x1,x(t) x1,y(t) X3,x X3,y

]T
W =

[
F1,x F1,y T1,y T1,x

]T
(7)

where X3 is the fixed contact point location. Using Maple
(Monagan et al. 2005), we combine all equations and obtain
a linear DAE system symbolically:

d2

dt2
Xss(t) = CssX Xss(t) + (8)

CssU U + CssV V + CssW W + Cssd d

where constant matrices Css merely depend on system
parameters (refer to Appendix A for further details). In this
equation, Xss(t) is the state vector, U and V represent
constant and ramp inputs, W represents perturbations and
d denotes the phase variable. Next, we define the full state
vector Qss(t) and the constant vector R as:

Qss(t) =
[
Xss(t)T Ẋss(t)T

]T
R =

[
UT V T WT d

]T
(9)

Such abstract formulation facilitates the process of finding
periodic gaits, discussed in the next section. Assuming
constant external forces W , we can solve this system



6

analytically:

Qss(t) = Ass(t) Qss(0) +Bss(t) R (10)

where the time-dependent transition matrices Ass(t) and
Bss(t) describe state evolution over time. These matrices
are in fact very easy to calculate, because of their simple
structure:

Ass(t) =

6∑
i=1

Assi γ
ss
i (t)

Bss(t) =

6∑
i=1

Bssi γ
ss
i (t) (11)

where γssi (t) = ew
ss
i t for i = 1..4, γss5 (t) = 1 and γss6 (t) =

t. The four scalars wssi are square roots of the eigenvalues
associated to the non-zero part of CssX matrix (which has
4 dimensions). These values describe falling and swing
dynamics, quantifying instability and divergence properties.
A shorter pelvis height, for example, leads to wssi values
with larger magnitudes which mean that falling and swing
dynamics become faster. Assi and Bssi merely depend on
constant system parameters, encoding evolution of the initial
state and the effect of inputs respectively. Once these
individual matrices are calculated offline, Ass(t) and Bss(t)
can be easily calculated online by few arithmetic operations.
Note that in 3LP, lateral and sagittal dynamics are decoupled,
but their similarity leads to repeated eigenvalues.

Double support
In this phase, the two feet are fixed:

Ẍ3 = 0, Ẍ2 = 0 (12)

and contact forces are being transfered from (F2,M2)
to (F3,M3). Once (F2 and M2) become zero, the next
single support phase starts, where the leg with subscript 2
performs swing motion. So far, equations (12) give us only 4
constraints, while 8 are yet missing.

In double support, we decided a linear transfer of weight
from one leg to another. This means the vertical component
of the Ground Reaction Force (GRF) in the previous stance
leg (which has been stationary during single support) will go
linearly to zero during double support. Such straightforward
policy provides simple analytic solutions (compared to
quadratic or other forms). Assume that:[

F2,z

T2,z

]
= (1− t

tds
)

[
α(t)
β(t)

]
,

[
F3,z

T3,z

]
=

t

tds

[
α(t)
β(t)

]
(13)

where tds denotes double support duration and t denote the
time from the beginning of the double support phase. The
variables α(t) and β(t) are (possibly complex) functions of
other variables in the system, but we are not going to find
them explicitly. The linear policy can be encoded with the
following equations by removing α(t) and β(t):

t

tds

[
F2,z

T2,z

]
= (1− t

tds
)

[
F3,z

T3,z

]
(14)

Remember that in single support, the ankle torques in the
stance foot are determined by (6) and the vertical GRF

is constant (because of the fixed height assumptions in
the model). Given that the vertical GRF decreases linearly
with time, the Center of Pressure (CoP) position can be
simply preserved in double support by linearly decreasing
contact reaction moment T2 in stance leg (and increasing T3
accordingly):[

T2,y
T2,x

]
= (1− t

tds
)

[
Ua,y + Va,y
−Ua,x − Va,x

]
[
T3,y
T3,x

]
=

t

tds

[
Ua,y
−Ua,x

]
(15)

The equations (15) together with (6) will indeed result in
piecewise linear ankle torque profiles. Note that the minus
signs behind the lateral-plane ankle torques Ua,x and Va,x in
(15) come from the symmetry concept in the lateral plane. In
other words, we assume that these constants move the CoP
in opposite directions in the two feet. A positive Ua,x for
example moves the CoP to the left on the left foot, while
moving it to the right on the right foot.

Similarly to (13), we implement a transition policy for the
hip torques as well. Assume that:

τ2,y = (
t

tds
)Uh,y + (1− t

tds
)γ(t) (16)

τ3,y = (1− t

tds
)(Uh,y + Vh,y) + (

t

tds
)γ(t)

where τ2,y starts from a function γ(t)|t=0 in the beginning
and converges to Uh,y at the end of double support phase.
Likewise, τ3,y starts from (Uh,y + Vh,y) and converges to
the same γ(t)|t=tds at the end of the phase. The function
γ(t) in fact represents the torque in the stance hip which is a
complex function of other variables in the system. However,
we know linear trajectories of swing hip torques from
(6). The equation (16) therefore encodes a linear transition
policy. Similar rules can be written for the lateral plane.

τ2,x = (
t

tds
)Uh,x + (1− t

tds
)ζ(t) (17)

−τ3,x = (1− t

tds
)(Uh,x + Vh,x) + (

t

tds
)ζ(t)

where the minus sign (behind τ3,x) is for symmetry, like
before. The function ζ(t) plays the same role as γ(t), but
in the lateral plane. Now, we can remove γ(t) and ζ(t) to
make more explicit equations:

τ2,y − t
tds
Uh,y

1− t
tds

=
τ3,y − (1− t

tds
)(Uh,y + Vh,y)
t
tds

τ2,x − t
tds
Uh,x

1− t
tds

=
−τ3,x − (1− t

tds
)(Uh,x + Vh,x)

t
tds

(18)

Now, equations (12), (14), (15) and (18) provide the 12
constraints needed to solve the system in the double support
phase. Note that except (12), other equations are arbitrary
choices to remove the redundancy. One might replace
them with other policies for the same purpose. However,
our simple assumptions preserve linearity and lead to a
convincing match with human torque profiles, discussed in
the next sections.
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As mentioned earlier, 3LP switches to double support
when the swing foot velocity becomes zero. This assump-
tion, however, does not guarantee zero acceleration during
the touchdown event. Therefore, a negligible discontinuity
of torque and force profiles is unavoidable. In the simplest
case, even preserving the continuity of horizontal GRF com-
ponents lead to terms like tx(t) which are linear, but difficult
to solve analytically. With our specific linear transition rules,
however, the profiles are almost continuous. Some disconti-
nuities happen only in the transversal torques which are small
in magnitude, demonstrated later in Figure.10.

In double support phase, the state variable consists of base
positions only:

Xds(t) = (19)[
X2,x X2,y x1,x(t) x1,y(t) X3,x X3,y

]T
while other vectors are the same as before. Again, we
combine all equations and obtain a symbolic linear DAE
system for the double support phase:

d2

dt2
Xds(t) = CdsX Xds(t) + (20)

CdsU U + CdsV V + CdsW W + Cdsd d

where constant matrices Cds merely depend on system
parameters (refer to Appendix.I for further details). Defining
the full state vectorQ(t) and the constant vectorR as before,
we can obtain a similar system of closed form solutions as:

Qds(t) = Ads(t) Qds(0) +Bds(t) R (21)

where the time-dependent transition matrices Ads(t) and
Bds(t) describe state evolution over time. Note that since
X2 and X3 are constant here, the matrix Ads(t) is partially
diagonal with unit elements, keeping feet positions constant.
The transition matrices have the following simple structure:

Ads(t) =

4∑
i=1

Adsi γ
ds
i (t)

Bds(t) =

4∑
i=1

Bdsi γ
ds
i (t) (22)

where γdsi (t) = ew
ds
i t for i = 1..2, γds3 (t) = 1 and γds4 (t) =

t. The two scalars wdsi are replicated square roots of the
eigenvalues associated with the non-zero part of CdsX matrix.

Full stride
Having state transition matrices for both phases, we can now
find closed form equations for the full stride phase:

Q(t) = A(t) Q(0) +B(t) R (23)

where t denotes the time from the beginning of the full stride
phase (= beginning of the double support) and Q(t) ∈ R12

is defined as:

Q(t) =
[
X(t)T Ẋ(t)T

]T
(24)

and X(t) ∈ R6 is:

X(t) =[
X2,x(t) X2,y(t) x1,x(t) x1,y(t) X3,x X3,y

]T
(25)

0 tds+tsstds t t tds+t 

Ads(t ) Ass(t  

A(tds+tss)

A(t)

 t

Single SupportDouble Support

Figure 3. Demonstration of transition matrices on a time axis.
∆t represents arbitrary time duration that could be as small as
a control tick. Thanks to linearity, one can easily find exact
transition matrices for ∆t as well which could be used for
visualization and control purposes. Otherwise, the matrix A(t)
is enough for gait generation.

The transition matrix A(t) is defined as:

A(t) =

{
Ads(t) t ≤ tds
Ass(t− tds)Ads(tds) 0 < t− tds ≤ tss

(26)

and B(t) is:

B(t) =

 Bds(t) t ≤ tds
Ass(t− tds)Bds(tds)

+ Bss(t− tds) 0 < t− tds ≤ tss
(27)

Note that we have used parameters tss and tds to calculate
transfer matrices. The variable tds is crucial for double
support calculations, though tss only determines the rate of
time-increasing input components (V ) in the single support.
Therefore, one can easily scale tss and V such that the
ratio remains constant in (6). The duration of a full stride
phase is defined as tstride = tds + tss. Figure.3 provides a
demonstrates of all transition matrices and timing variables
in a full stride phase.

So far in this section, we have found transition matrices
for the system and defined a full phase, consisting of a
double support followed by a single support. We have
also formulated matrices such that they are very fast for
online calculation. The matrix A(t) is used to find the time
evolution of our system, especially until the end of a full
stride phase where t = tstride. In the next section, we are
going to find different open-loop periodic gaits based on the
type of actuation desired.

Periodic gaits
Although various types of symmetric and asymmetric gaits
can be generated (Rummel et al. 2010), in this paper, we
only focus on symmetric gaits observed in normal human
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walking. In other words, given timing specifications, we find
a space of different vectors that produce symmetric gaits.
Each of these vectors contains initial conditions and constant
inputs. The concept of symmetry could be encoded in a
single matrix along with the constraint of zero foot velocity
at the end of the stride.

Consider the vectors Q(t) and X(t) in (24) and (25)
respectively. Indeed, zero-velocity constraints imply:[

X3,x(t) X3,y(t)
]T

= const, 0 ≤ t ≤ tstride[
Ẋ3,x(0) Ẋ3,y(0)

]T
= 0[

Ẋ2,x(0) Ẋ2,y(0)
]T

= 0[
Ẋ2,x(tstride) Ẋ2,y(tstride)

]T
= 0 (28)

The first constraint is automatically satisfied by construction
of matrices Ass(t) and Ads where we assumed stationary
stance foot (and thus zero acceleration). The other three
constraints shall be satisfied in finding periodic gaits.

After a full stride phase, contact positions are exchanged
by applying the matrix T ∈ R12×12 to the vector Q(tstride)
where velocities are yet unchanged:

T =

[
TX 0
0 I6×6

]
(29)

where TX ∈ R6×6 is defined as:

TX =


. . . . 1 .
. . . . . 1
. . 1 . . .
. . . 1 . .
1 . . . . .
. 1 . . . .

 (30)

To implement the symmetry concept, we define relative
difference vectors between the base, swing foot, and stance
foot positions. These vectors could be extracted from Q(t)
by the following matrix M ∈ R12×12:

M =

[
MX 0
0 MẊ

]
(31)

where 0 and I are zero and identity matrices. Sub-block are
also defined as:

MX =


−1 . 1 . . .
. −1 . 1 . .
. . 1 . −1 .
. . . 1 . −1


MẊ =

 I6×6
1 . . . . .
. 1 . . . .

 (32)

where MX extracts difference vectors from the state vector
and MẊ is used to constrain swing foot velocities to
zero. Comparing the difference vectors before and after a
symmetric full stride, in the sagittal plane, components are
equal, and in the lateral plane, they are opposite. Besides, we
have to encode velocity constraints of (28) as well. So, we
define a matrix S ∈ R12×12:

O = diag( [1,−1, 1,−1, 0, 0, ...
1,−1, 0, 0, 1, 1] ) (33)

where symmetry conditions are applied to the difference
vectors and the base velocity while feet velocities are forced
to zero. Now, consider in initial condition vector Q(0) and
inputs R. The state at the end of a full stride is:

Q(tstride) = A(tstride)Q(0) +B(tstride)R (34)

Applying contact exchange matrix, the initial state Q′(0) for
the next phase is:

Q′(0) = TQ(tstride) (35)

The difference vectors extracted from Q(0) and Q(tstride)
should satisfy symmetry conditions while initial and final
foot velocities in Q(0) and Q(tstride) should be zero. One
can write these conditions as:

MQ(0) = OMQ′(0) (36)

Now, for a general vector of initial conditions and actuation
parameters packed together:

Y =
[
QT (0) RT

]T
(37)

the following equation should hold if Y represents a
symmetric periodic gait:

DY = 0 (38)

where:

D =
[
−M +OMTA(tstride) OMTB(tstride)

]
(39)

The matrix D ∈ R12×25, in fact, compares the difference
vectors before and after a full stride phase while forcing feet
velocities to zero. Note that apart from state vectors, the hip
and contact torques U and V , the disturbance vector W and
the variable d are considered here. However, it is meaningless
in practice to consider a periodic gait with constant external
disturbance. Initial contact positions X3 would be set to zero
to avoid redundant null space dimensions.

Remember that in the previous section, there were two
variables to decide: tss and tds. In this section, we find
various types of gaits by selecting different combinations of
actuation and timing variables. We do so by considering the
matrix D which is, in fact, a function of timing variables.
Any periodic solution (a vector containing initial states
and actuation inputs) should lie in the null space of the
D matrix. In other words, solution manifolds are found
by combining different null vectors of the matrix D. A
solution contains initial states and actuation parameters
where available actuators are swing hip and stance ankle
torques (in sagittal and lateral directions), in constant U and
time-increasing modes V . Note that only columns attributed
to non-zero values in the solution vector are selected. In
other words, we normally exclude columns related to contact
positions X3 and disturbances W .

In the rest of this paper, we use human-like body param-
eters for numerical simulations, where mass distributions
and geometries are taken from (De Leva 1996). Table.2 lists
these parameters for two adult-size and kid-size models, used
further in this paper.
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Figure 4. Absolute singular values of Dpassive versus tstride,
plotted for an adult-size model. In these plots, we fix the double
support time tds = 0.3s and only change tss. It is notable that
around tstride = 0.86s, the system shows zero singular values
which correspond to a null space containing an infinite number
of periodic solutions. These solutions are all without swing hip
or stance contact actuation referred to as pseudo-passive gaits.

Pseudo-passive gaits manifold
First, we would like to know whether the system has any
pseudo-passive walking pattern or not. By pseudo-passive,
we mean a gait in which swing hip and stance contact torques
are zero. The term pseudo indicates that in the stance hip, the
actuators might produce or dissipate power and the system is
not strictly passive. This term also reflects the fact that in our
linear model, the legs are stretched or shortened by prismatic
actuators, as part of the model construction. For pseudo-
passive gaits, we remove columns associated to X3, U , V
andW inD and obtain a reduced matrixDpassive ∈ R12×11.
Figure.4 shows absolute singular values of Dpassive over
time.

One can clearly see that there is a time tstride = trelax =
0.86s where the system shows an additional zero singular
value. trelax can be found by a simple root-finding algorithm.
This singular value refers to sagittal direction while the
other singular value (which is always zero) refers to lateral

Model adult-size kid-size unit
Total mass 70 30 kg

Body length 1.7 1.0 m
z1 0.89 0.52 m
z2 0.32 0.19 m
z3 0.36 0.22 m
m1 45.7 19.6 kg

m2=m3 12.15 5.2 kg
w/2 0.1 0.06 m

Table 2. Parameters for adult-size and kid-size models used in
simulations.
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Figure 5. Absolute singular values of the matrix Dactive with
respect to the stride time tstride, plotted for an adult-size model.
In these plots, we have fixed the double support time
tds = 0.3s. It is notable that the system does not show a unique
zero singular value anymore. However, there are always 7
default zero singular values that can produce gaits for any
choice of tstride. These gaits are indeed actuated with arbitrary
swing hip or stance ankle torque profiles.

direction. We can simply calculate corresponding singular
vectors of Dpassive and find a null space manifold. Note
that there is only one lateral solution as the value of d
should be ±1. However, the solution in the sagittal plane
can be scaled by any arbitrary positive or negative value to
obtain different modulated speeds. Therefore, the manifold
of pseudo-passive compass gaits, in this case, is only 1-
dimensional. A demonstration of normal pseudo-passive
compass gaits can be found in Figure.6. From Figure.4 also,
we simply conclude that for any stride time other than trelax,
the system cannot demonstrate pseudo-passive gaits.

Actuated gaits manifold
In this part, we are going to find manifolds of motion which
can benefit from swing hip actuation and CoP modulation
as well. These inputs are of course containing constant
and time varying components for both sagittal and lateral
dynamics, as discussed in the previous section. With these
inputs, we can pump energy into the swing leg and brake
at the end of the phase to produce faster swing motions.
We can also apply contact torques which modulate the CoP
and resemble the fact the CoP in human goes forward from
the heel to the toes during the swing phase. Here we only
remove columns associated to X3 and W in D and obtain
a reduced matrix Dactive ∈ R12×19. The corresponding
absolute singular values are shown in Figure.5 over time.

Surprisingly, the system does not have a distinct zero
singular value at trelax like before. However, it has 7 zero
singular values that produce a larger null space at any given
stride time tstride. The corresponding actuated gait manifold
is not 7-dimensional however. The variable d should always
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be ±1, reducing the total dimensions to 6. Besides, one can
also choose active actuators and the desired speed to reduce
the dimensionality further and find a unique solution.

As demonstrated in pseudo-passive gaits, at trelax,
Dpassive has a certain 2-dimensional null space. Now what
if we calculate a 7-dimensional null space using trelax and
Dactive instead of Dpassive? Could we still find a pseudo-
passive gait out of this larger null space? In fact, it is possible,
even though no distinct zero singular value is observed in
Figure.5. The reason is that the rank of actuation space at
trelax is equal to 5 in the 7-dimensional null space manifold
of Dactive. This means if we constrain all of them to zero for
pseudo-passive walking, we only lose 5 ranks. The other 2
ranks could still be dedicated to the variable d and the desired
speed, like before. So, the null space manifold of actuated
gaits already encompasses the one for pseudo-passive gaits
and we do not need to calculate them separately. In the next
subsection, we are going to show a few examples of walking
gaits, using these null spaces.

Numerical examples
In addition to the pseudo-passive gait which has a certain
timing trelax, we are going to show other same-speed gaits
with different timings and actuation patterns. From the
singular value analysis, we have 7 singular vectors ni, 1 ≤
i ≤ 7 for the matrix Dactive. Each of these vectors have
similar dimensions with Y in (37), consisting of an initial
state, with the contact point (X3) at origin, a resting swing
foot (Ẋ2 = 0), a certain actuation pattern (encoded in U
and V ) and no disturbance (W = 0) of course. We pack
them together in a matrix N =

[
n1 n2 ... n7

]
. We also

select a smaller yet more human-like choice of tds = 0.1s
(Cappellini et al. 2006), and tss = 0.6028s calculated by the
pseudo-passivity root finding procedure. The choice of speed
will be vdes = 1m/s.

Given the constant matrix N , we want to find a vector
of coefficients δ =

[
δ1 δ2 ... δ7

]T
that combine the

columns in N and produce unique solutions. We consider
minimizing squared torques as an estimate of the mechanical
power. The quadratic minimization is formulated as:

minimize
δ,U,V

UTU + V TV

s.t.
SX2,x

SU
SV
Sd

Nδ =

−vdes × tstride

U
V
±1

 (40)

where SX2,x
selects the row corresponding to the sagittal

swing foot position (X2,x), SU and SV correspond to the
constants U and V and Sd corresponds to the constant
d. The specific way of encoding vdes in the optimization
moves the initial swing foot position backward to find
gaits with an average velocity equal to vdes. Note that the
equality constrained quadratic optimization of (40) has, in
fact, a closed form solution and there is no need to solve it
iteratively.

Now consider the following scenarios:

• Pseudo-passive walking: which is calculated as
mentioned earlier. In this gait, the hip and ankle
torques are all zero.

• Long double support: in this gait, we enforce ankle
torques to zero by adding more constraints to the
optimization: [

SUa

SVa

]
Nδ = 0 (41)

where SUa
and SVa

select rows corresponding to the
stance ankle torques. Keeping the same tstride, we
double tds and decrease tss accordingly. Note that
now, the walking cannot be pseudo-passive anymore.
The optimization, therefore, finds nonzero hip torques
to produce the same speed and stride length.
• Stage walking: here, we constrain the ankle torques to

zero like before. Instead of optimizing the hip torques,
however, we optimize lateral velocities in the cost
function. In this case, the biped walks on a straight line
without lateral bounce.
• CoP modulation: given the length of the feet, the

total weight and the timing of single support, we
can calculate a constantly increasing ankle torque
t
tss
τCoP , acting in the sagittal plane to move the CoP

forward. In this scenario, we force the time-increasing
sagittal component of the ankle torques to τCoP (and
other components to zero) by adding the following
constraints to the optimization in (40):[

SUa

SVa

]
Nδ =

[
0 0 τCoP 0

]T
(42)

The result is a gait with time-increasing ankle torque
profiles and minimal hip actuation.

• LIP-like: in this case, keeping the original timing, we
change the model of the robot. We transfer most of
the weight of each leg to the torso, and also move the
three masses closer to the pelvis by decreasing h2 and
h3. Again, we disable all ankle torques as well.

The 3D geometry of resulting gaits are shown in Figure.7
while a detailed diagram of each stride is shown in Figure.6.
The accompanied Multimedia Extension 1 demonstrates
different features of 3LP while Multimedia Extension 2
shows movies of the five previously mentioned scenarios. It
can be concluded from the Figure.7 that changing different
parameters does not have a major effect on the overall
geometry of walking. However, since it is important to
match dynamics of the full model, we investigate dynamic
properties of these walking scenarios as well.

Although CoM trajectories look similar in Figure.7,
they have very different characteristics regarding velocity
variations, shown in Figure.8. The LIP-like model shows
a significant variation in the sagittal velocity. It is not so
obvious how swing and torso dynamics affect this motion
at first glance. By torso dynamics, we mean the torques
required by the stance hip to keep the torso always upright.
These torques are not necessarily zero since the pelvis
has nonzero accelerations. Therefore, torso-balancing hip
torques can affect the CoM motion considerably, especially
since the torso is relatively heavy. Moreover, although the
swing foot has a smaller weight compared to other parts
of the body, it can be seen from Figure.9 that the swing
leg has relatively large velocities during single support.
Such motion increases the kinetic energy quadratically and
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Pseudo-passive walking long double support stage walking CoP modulation LIP-like

Figure 7. Snapshots of different walking scenarios at 1m/s and approximately 1.5step/s. These snapshots are taken in phase
switching moments. Feet trajectories are plotted along with the projection of the CoM trajectory on the ground. In pseudo-passive
walking, there is no actuation. However, one can clearly see that the model can produce CoM trajectory, lateral bounces, and swing
motions. In the long double support case, the motion is geometrically quite similar. Stage walking produces no lateral bounce by
using proper hip torques to let the model step on a single straight line only. On the real robot, however, one should avoid
self-collision, and this motion is thus infeasible. CoP modulation also leads to a geometry similar to pseudo-passive walking, though
CoM trajectory (the green line on the ground) starts a bit further from the trailing leg. The influence of CoP modulation is mainly
reducing variations in the sagittal CoM speed (Figure.8). Finally, the motion of LIP-like model is rather similar to the pseudo-passive
case, but with higher CoM speed variations (Figure.8). In this case, we enforce lateral footstep distances to mimic other scenarios,
since the pelvis width is minimal. All corresponding walking movies could be found in Multimedia Extension 2.

Figure 6. A detailed demonstration of a full stride phase in
pseudo-passive walking where snapshots are taken every
30ms. Black arrows show the direction of motion, and the swing
leg is shown in red. In this figure, lateral bounces could be seen
on the right while velocities can be inferred from the snapshots
on the left. The swing leg speeds up and slows down during a
stride phase while the torso has minimum speed when the
swing foot is at maximum speed. It can also be observed that
the swing foot approximately follows a straight line while the
swing hip bounces laterally.

therefore results in a significant workflow. In our model,
we have described these effects in a simplified and linear
fashion, yet capturing important couplings between the three
pendulums.
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Figure 8. Sagittal vs. lateral CoM velocity trajectories for
different scenarios discussed. Note that the LIP-like model
produces significant sagittal variations. The pseudo-passive gait
shows moderate variations, however, indicating that swing and
torso dynamics clearly reduce these variations. Long double
support also reduces variations in both directions. By
modulating the CoP, although lateral motions remain similar to
the pseudo-passive gait, sagittal variations reduce even more,
and the motion becomes smoother. Finally, one can see that the
stage walking has no lateral motion compared to the other gaits.
In general, increasing the double support duration and CoP
modulation both have a similar smoothing effect on CoM
velocities. However, this does not induce any argument on
energy efficiency.

Taking a closer look at Figure.8 reveals that even maximal
CoP modulation still does not change velocity profiles
considerably. This means the difference between pseudo-
passive and LIP-like walking is way larger than that between
pseudo-passive and CoP-modulated walking. In other words,
CoP authority can at most convert the pseudo-passive gait
to the CoP-modulated gait. The available CoP authority
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Figure 9. CoM and feet positions plotted together with
velocities over a 2-stride motion. The average speed is set to
1m/s, the frequency is about 1.5step/s and the pseudo-passive
gait is used to obtain these trajectories. It can be observed that
maximum foot velocities are up to three times larger than the
average speed of the CoM. Despite a smaller mass, therefore,
the swing leg can have a considerable kinetic energy.

is hardly enough to convert the pseudo-passive gait to
LIP-like gait, and this gap increases substantially at faster
walking speeds. Although here the speed is moderate, we
can easily infer that LIP as a template model can only
operate in a very limited range of walking speeds. Remember
that in fact an inverse dynamics or kinematics approach
eventually realizes the template motion with the full model
by exploiting all control authorities of the robot (including
the CoP). This motivates therefore not to modulate the CoP
in a template level and leave the control authority free for
the underlying full-body controllers to mimic the template
motion as precisely as possible.

In this section, we introduced an easy method to find
manifolds of periodic motions without any numerical
forward simulation of the system. Once these manifolds were
found, we also showed how to find individual solutions,
based on the type of actuation and timing desired. We only
considered gaits with minimal hip torques here. However,
to go further, we would like to investigate the effect of
timing and walking speed as well. Such investigation reveals
interesting energetic properties of 3LP, discussed in the next
section.

Comparison with human data
Compared to LIP, the 3LP model is much more similar to
human locomotion, because it describes falling dynamics,
swing motion, torso balance, lateral stepping and double
support features altogether. In addition to geometric
similarities, we investigate ground reaction forces and joint
torques to compare the underlying dynamics that result
in such geometric similarity. For this purpose, regarding
available data from human subjects (Eng and Winter 1995),
we selected similar model parameters and timing, calculated
periodic manifolds and found solutions with the same speed
and CoP modulation pattern. The resulting trajectories are
demonstrated in Figure.10 together with average human

profiles. In the following, we discuss various similarities
observed in this figure.

Sagittal dynamics
From the last column of Figure.10, one can observe a good
match of hip extensor and ankle plantar flexor torques as
well as Anterior-Posterior ground reaction forces. This is
despite a relatively fast walking speed and large step sizes
(about 80% of the leg length). Note also that the constant and
time-increasing components of hip/ankle torques are roughly
enough to describe major trends in human curves. Nonlinear
profiles in 3LP are, however, related to the stance leg and
those degrees of freedom which are not directly controlled
by desired input torques. The LIP model does not have hip
torques and produces larger A/P GRF, because of different
CoM trajectories shown in the Figure.8.

Vertical GRF
By model construction, the CoM height is constant, and
we do not expect two peaks in the vertical GRF profiles,
similar to SLIP-based models (Rummel et al. 2010; Sharbafi
and Seyfarth 2015). However, the general trapezoidal shape
is preserved, thanks to our double support phase and its
linear transition rules. Note that the LIP model can produce
a similar profile too. The main consequence of a constant-
height profile is walking with crouched knees which looks
less human-like compared to many other template models
listed in Figure.1.

Lateral dynamics
In 3LP, we only minimize hip/ankle torques to find a unique
solution out of the large manifold of all symmetric periodic
gaits. This minimization is not necessarily realistic and
human-like, as it leads to wider lateral steps, more bouncing,
and often larger transversal ankle torques. A better cost
function on energy might produce more human-like gaits,
although it is doubted in (Workman and Armstrong 1986)
that optimal gaits merely depend on energy terms. There
might be terms related to balancing performance as well, at
least in lower speeds. In faster speeds also (like the human
profiles demonstrated here (Eng and Winter 1995)), humans
take closer steps laterally compared to our model.

In Figure.7), we see that 3LP keeps general trends
like double peaks in the Medio-Lateral (M/L) GRF, but
cannot precisely describe other torque profiles. Humans
normally tend to step as close as possible to minimize lateral
motions and energy (Kuo 1999) (Similar to stage walking
in Figure.7). However, humans swing their foot over an arc
shape to avoid self-collision. Such a fine motion is feasible
in 3LP but requires a better objective function in (40). Note
that the sagittal swing motion can influence lateral dynamics
as well (Kuo 1999; Collins et al. 2005), possibly through
transversal moments. This might be another reason for the
discrepancy observed between different lateral curves since
3LP completely decouples the lateral and sagittal dynamics.
In the LIP model, though, there is no pelvis included.
However, we consider a gait with the same step-width as 3LP.
Although LIP does not have hip torques, M/L GRF forces are
yet similar to 3LP, shown in Figure.7.
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Figure 10. Comparing dynamic profiles of 3LP and LIP with normalized human data, taken from (Eng and Winter 1995). This data
is for male subjects with average mass of 77.2kg and height of 1.8m, walking at 1.6m/s and 108steps/min. Here we use the same
CoP modulation for both LIP and 3LP for better comparison. In these curves, we have demonstrated hip/ankle torques as well as
ground reaction forces. Note that our model does not have any knee and we consider ankle torques to approximate contact
wrenches. Most of the profiles in 3LP match the human data quite well, although lateral and transversal dynamics have some
discrepancies. The LIP model is, however, unable to describe hip torques as it does not include swing and torso dynamics. It is also
remarkable that our specific assumptions in (14), (15) and (18) move the discontinuity on variables with smaller magnitudes (shown
with circles).

Transversal rotation torques
3LP preserves the general trend of transversal torques
observed in human, but not matching precisely, especially
in the ankle. One major reason is that arm motions, and
pelvic rotations are not considered in the model. Another
important reason is wider lateral steps in 3LP compared
to human which require larger transversal moments. Note
that transversal torques are needed to keep the torso upright
and straight ahead during swing phase, compensating the
moment produced by the swing leg. In LIP, however, since
there is no pelvis and swing leg, we do not expect transversal
torques.

Energetics
Apart from dynamics profiles, it is always interesting to
investigate energy flow in the model and compare it with the
human. Remember that one of the main motivations behind
developing 3LP was to match humanoid dynamics as precise
as possible in the template space. Such matching could be
viewed from a power-flow perspective as well, inspired by
the fact that humans can walk very efficiently. Compared to
LIP, 3LP can additionally describe swing and torso dynamics
which are important aspects of locomotion, especially
at faster speeds. Since the pelvis has accelerations in
sagittal and lateral directions, the whole upper-body requires
nonzero hip torques to balance. Our model successfully
encodes the influence of these torques on the horizontal
motion.

Energy trade-offs: Although the mass of swing leg is
relatively small, its peak velocity is about three times larger
than the torso which has a heavier mass. Therefore, the
peak kinetic energy of the swing leg is quite comparable
with the torso. Such energy comes from both the accelerated
pelvis where the swing leg is attached to and swing hip
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Figure 11. The optimal choice of double support ratio in 3LP
versus human data (Cappellini et al. 2006), over normal walking
speed-frequency curves reported in (Bertram 2005). In this
figure, for each particular choice of speed and frequency, an
optimization has found the optimum double support ratio by
maximizing walking efficiency. Since the mass and body height
of individual subjects were not reported, we used the average
body mass 66kg and height 1.7m in (Bertram 2005). For both
human and 3LP data, we also used a linear model to find the
trends.
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Figure 12. Efficiency (economy) of walking, i.e. the inverse of
Cost of Transport (CoT) which is calculated as positive work on
the CoM over a unit of distance traveled, normalized by body
mass. Here, we set body mass to 66kg and body height to 1.7m
with normal human-like mass distribution (De Leva 1996). A)
Contours of 3LP-based walking efficiency, calculated for the
choice of tds

tstride
= 10%. Peaks for this double support ratio as

well as other choices of 20% and 30% are plotted versus the
optimal relations observed in human. 3LP can demonstrate a
peak line, but not matching with human data. B) 3LP-based
efficiency, using the double support ratio of (44). Now, 3LP can
provide a roughly close prediction. C) Optimal walking
efficiency, where for each choice of speed and frequency, an
optimization finds the double support time ratio that maximizes
the efficiency. Here, 3LP does not match human trends
anymore. D) The smoothed contours of human walking
efficiency, taken from (Bertram 2005).

torques that can modulate swing dynamics. In a trade off
with falling dynamics, this phenomenon can explain optimal
speed-frequency relations observed in the metabolic cost
of human walking (Bertram 2005). Although 3LP does not
include many important walking determinants like heel-toe
motions, knee flexions and CoM excursions (Inman et al.
1953), surprisingly, it can capture the main optimality trend
in human walking.

Comparison method: We consider two parameters of
locomotion: stepping frequency and forward speed. Similar
to (Bertram 2005), we calculate the efficiency of walking
(called economy in the original paper) for different speed-
frequency combinations. Efficiency is defined as the inverse
of the cost of transport, which is the total energy consumed
per unit of mass, per unit of distance traveled. There are many
ways to calculate such mechanical power in our model. In
fact, 3LP does not simulate muscles and the exact geometry
of a human and thus, it is unable to precisely reconstruct
the human efficiency surface based on the metabolic cost.
However, by integrating the positive part of the mechanical
power, we can approximate a portion of this energy which
still plays a major role in the overall energy landscape
according to (Anderson and Pandy 2001). We are not able
to model other costs like muscle activation, maintenance and
shortening heat rates since we do not have muscles in 3LP.

Fixed double support time: We calculate the net positive
work divided by the total mass over a grid of different speed-
frequency combinations that cover slow to fast walking gaits
(Bertram 2005) . Figure.12A demonstrates corresponding
efficiency contours for the choice of tds

tstride
= 10%. It is

surprising that the model shows a peak line within the range
of speed-frequencies explored in (Bertram 2005). Such peak,
in fact, demonstrates the trade-off between swing and falling
dynamics. The former increases in higher frequencies, since
more energy is pumped into the swing leg and taken out by
braking at the end of the swing phase (Doke et al. 2005). The
latter, however, increases by step-size which results in larger
CoM velocity variations.

We repeated the same process for two other choices of
double support time: 20% and 30%. The resulting peak
lines are demonstrated in Figure.12A as well as the optimal
trend of human data (shown in black), taken from (Bertram
2005) (the case of constrained speed). Here we use the same
average mass (66kg) and height (1.7m) of human subjects
in (Bertram 2005) as well as average mass distributions
reported in (De Leva 1996). Although 3LP is successful in
identifying the trade-off, using the choice of constant double
support time ratio, it fails to match the human data.

From Figure.12A, it can be hypothesized that in slow
speeds, humans have larger double support ratios compared
to higher speeds. Measurements of this quantity from
recorded human gaits verify this hypothesis, suggesting a
linear relation between the double support ratio tds

tstride
and

the walking speed v:

tds
tstride

= −0.09 v + 0.345 (43)

This relation gives a ratio of 27% at v = 0.8m/s and 12% at
v = 2.5m/s, close to our three initial conjectures. Does 3LP
predict such relation too?



Faraji and Ijspeert 15

Human-like double support time: We took the optimal
speed-frequency trend line in human data (Bertram 2005)
(shown in Figure.12 A with black color) and performed
a simple optimization to find the choice of tds

tstride
which

maximizes walking efficiency in each combination of
walking speeds and frequencies. Since we did not have
access to anatomical parameters of individual subjects in
(Bertram 2005), we performed optimization for the average
body mass (66kg) and height (1.7m) reported. The resulting
curves are shown in Figure.11 for both human and 3LP,
where a line fitted to 3LP values is found as:

tds
tstride

= −0.11 v + 0.36 (44)

This line is indeed very similar to the optimal trend line
in human data, although it predicts shorter double support
times in faster speeds. Repeating the same grid search of
Figure.12A with the particular choice of double support time
in (44), we obtain Figure.12B.

Optimal double support time: If we do not limit the
optimization to the optimal trend line of human data and
perform it everywhere for all combinations of speeds and
frequencies, 3LP finds a different trend line, shown in
Figure.12C. This is expected, however, since our simplifying
linear assumptions in the double support phase can only
approximate the real curves in Figure.10 to some extent.
To predict optimal trends in human data without using any
information about human walking, we need more complex
double support formulations and better optimality criteria.
The results shown in Figure.12 are very promising and
important, despite the fact that:

• No impact or push-off is considered.
• CoM height is constant.
• No foot clearance is modeled.
• Heel-toe motions and knee flexions are not included.
• The torso has no rotation in any direction.
• Weight support cost on the stance leg is not considered.
• Walking-independent metabolic cost components are

not modeled.

Therefore, although the optimal speed-frequency trend is
roughly predicted in Figure.12B, the overall 3LP-based
efficiency surface is not matching the human data shown in
Figure.12D. Linear models are conventionally expected to be
a linearization of the actual non-linear system, performing
better in near-stance (small step-size) conditions, where the
geometry of 3LP is more close to the actual system. 3LP does
not model heal-toe-knee motions and intrinsically simplifies
them with an extensible prismatic actuator. However here,
it appears to demonstrate a similar mechanical energy flow,
even with large step sizes. In future works, we would explore
other components of walking energy, keeping 3LP as a core
model. Inclusion of other costs might reconstruct the actual
human efficiency surface more precisely.

Conclusion
Compared to most of other template models listed in
Figure.1, our proposed model considers swing and torso
dynamics in a linear formulation. On the other hand, it
is computationally similar to LIP which is vastly used

in the literature to control humanoids over a range of
relatively slow walking speeds (Sakagami et al. 2002).
Nonlinear models are also popular in controlling simpler
robots (Collins et al. 2005), but again over a limited range
of speeds.

Template models describe major dynamics of the robot
in an abstract way used for motion analysis or synthesis,
probably in a hierarchy with more complex full models. In
such control paradigms, it is important to keep computational
costs as minimal as possible, favoring future prediction. On
the other hand, template models should match the full models
dynamically. 3LP can describe many features of human
walking, and consequently, it is more precise for controlling
humanoids, compared to many other single-mass models.
The energy flow in 3LP is also more similar to the human,
providing more natural motions for humanoids which have
similar anthropomorphic features.

In 3LP, the pelvis width parameter has a linear effect on
the lateral motion. This parameter is used to find lateral
ankle/hip torques and to determine a natural lateral foot
placement. This is compared to many of other methods like
(Faraji et al. 2014) where the two feet are forced to be
apart to avoid self-collision. In the literature, the timing and
footstep locations are imposed without enough knowledge
of internal dynamics. In our model, however, since swing
dynamics is included and a zero final velocity is assumed
for the feet, natural periodic gaits automatically come out
of equations. The assumption mentioned relieves the need
to calculate impact forces and determines the timing and
periodicity conditions as well.

3LP can predict human walking profiles quite well, even
in relatively fast speeds where the linearity assumption might
not be realistic. Although IP-based models can demonstrate
CoM excursions quite well, a nonlinear nature makes them
less suitable for highly complex robots that require online
planning. There are more advanced versions of IP-based
models in the literature, including torso and swing dynamics.
However again, nonlinear equations cannot be used in a
per-time-step MPC control. The proposed model is based
on a reasonable trade-off between geometric and dynamic
matching, favoring fast computation properties.

We showed that 3LP could also describe the exchange
of energy between swing and falling dynamics, despite a
constant CoM height. We would like to mention that the
vertical excursion of CoM, even in a very fast walking
gait at 2m/s is still about 5cm (Gard et al. 2004) which
is quite negligible compared to a step-size of about 1m
(pelvis excursion is about 7cm however). CoM excursion
depends on step-size which does not increase linearly with
the walking speed. Humans increase the frequency as well,
which in consequence affects swing dynamics and demands
more energy from the hip muscles.

We did not set up control frameworks in this paper. Rather,
we focused on biomechanical analysis and similarities to
human locomotion that can be inspiring for generating more
precise abstract plans, used to control humanoid robots. In
brief, 3LP provides:

+ Swing dynamics.
+ Torso balancing torques.
+ Double support phase.
+ Hip/ankle actuation possibilities.
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+ Natural lateral motion.
+ Natural periodic gaits.
+ Pseudo-passive compass gait.
+ Computational advantages.
+ Possibility to consider hip torque limits.
+ Optimal speed-frequency relation similar to human.

Despite limiting factors such as:

- Constant CoM height.
- Flat vertical GRF profiles.
- Stretched legs.
- No steering capabilities yet.
- No arm motion.
- No torso pitch/roll DoF.

3LP can be extended to have two more degrees of freedom
for the torso. It can also include quadratic actuation terms
to produce more accurate torque profiles. It should be noted
that without pelvis, steering is still possible as demonstrated
in our previous work (Faraji et al. 2014) which is based on
LIP. Steering makes 3LP nonlinear, but one can compromise
the lateral motion and let inverse dynamics find proper
actuation patterns. Without the pelvis in 3LP, one actually
needs to impose the lateral bouncing as we did in the LIP-like
scenario. An important role of pelvis is, therefore, to produce
a natural lateral motion which automatically emerges from
the optimization of (40). This makes the model more generic
without the need to impose the lateral bouncing. Note that the
natural step width is not easy to determine, since it depends
on the leg length, stepping frequency and available ankle
torques.

It is worth mentioning that an imposed step width which
is similar to the natural step width (found when including
the pelvis) might not produce very different GRF profiles.
This is induced from Figure.10 by comparing GRF profiles
of the LIP-like scenario and the full 3LP model. As a result,
one can easily remove the pelvis and allow for steering with
the cost of imposing the step width. This can be realized by
finding a natural step width with the pelvis and then imposing
it in another version of 3LP which does not have the pelvis
anymore. The second model remains natural (in terms of
GRF), linear and of course suitable for producing steering
motions.

In future work, we are going to replace LIP with 3LP in
our MPC-based control framework (Faraji et al. 2014). 3LP
can be used in both state estimation and planning levels.
It can possibly exchange information about the CoM or
the feet with the full model. Dynamic equations of 3LP
can, therefore, predict future states in a MPC framework
or help to filter sensory noises by Kalman filtering. The
linear equations of 3LP can indeed provide a non-periodic
formulation of the system as well, where footsteps might
act as inputs to the system instead of the hip torques. This
reformulation is similar to planning footsteps in MPC (Faraji
et al. 2014) or Capturability frameworks (Koolen et al. 2012).

Among all advantages offered by 3LP, we favor its
capability to produce more natural motions. In this regard,
we can expect our inverse dynamics layer to track the
template model more precisely and therefore, being able
to produce more human-like motions. Including torso
and swing dynamics in template models make them

computationally more complicated, but closer to reality. In
the literature, complex models are mostly used for offline
trajectory generation. In 3LP, however, we partially include
these additional dynamic effects while keeping the model yet
suitable for online control and future prediction. The focus
of this paper was to introduce the model and to explore
different capabilities. In future, we integrate it with our
hierarchical walking controller to achieve more dynamic
motions. This paper is accompanied with two multimedia
extensions, demonstrating general features of 3LP together
with the five gait scenarios discussed. All codes used in this
article are available online at http://biorob.epfl.
ch/page-99800-en.html.
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Appendix A

The parametric matrices C describing 3LP dynamics in
single and double support phases are found by Maple. These
matrices are sparse and have duplicate elements, since the
sagittal and lateral dynamics are similar. Defining auxiliary
parameters:

u = h3 + h1

v = h2 − h1
c1 = m1uh1 +m2v

2

c2 = m1uh1 + 2m2v
2

c3 = −m1h1 +m2v −m2h1

c4 = (−1 + 2t

tds
)h1 + v (45)

the matrices in (8) take the form:

CssX =
g

c1

(− c2
h2

+m2v)I
m1h1(v+u)

h2
I vc3

h2
I

m2h1I (m1h1 −m2v)I c3I
0 0 0


CssU =

h1
c1

 c2
h2
2m2

I − v
h2
I

v
h2
I −I

0 0


CssV =

t

tss
CssU

CssW =
h1
c1

vuh2
I − v

h2
I

uI −I
0 0


Cssd =

gwP
c1

 c2
h2
J

m2vJ
0

 (46)

and the matrices in (21) are found as:

CdsX = gh1m1

c2

 0 0 0
(−1 + t

tds
)I I − t

tds
I

0 0 0


+ gm2

c2

 0 0 0
c4I −2vI c4I
0 0 0


CdsU = h1

c2

0 0
0 I
0 0


CdsV = (1− t

tds
) CdsU

CdsW = h1

c2

 0 0
uI −I
0 0


Cdsd = 0 (47)

where I ∈ R2×2 is identity matrix and J = [0 1]T . The
closed form transition matrices in (10) and (21) are then
calculated symbolically based on these matrices. Altogether,
offline calculations require about 3.7k FLOPS in a maple-
optimized code which take few microseconds on an average
core-i5 computer if implemented in c++. The results are
constant matrices in (11) and (11) which can be used online
with a much faster speed.
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