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a b s t r a c t

Fluid dampers are an important tool for dissipating unwanted vibrations in a range of engineering struc-
tures. This paper examines the effects of amplifying the displacements transferred to a non-linear dam-
per, to increase the effectiveness of the damper in a range of situations commonly encountered in civil
engineering structures. These include, (i) the ability to ‘‘fine tune’’ the required damping for a particular
size damper, (ii) the ability to have a set of the same size dampers, but with different amplification factors
to achieve a specific damping task, and (iii) to increase the sensitivity of the damper to small movements
which effectively extends the range over which the damper works. Through numerical simulations and
experimental tests conducted on a non-linear damper, we quantify the potential advantages of adding
an amplification factor and the range of parameters where the benefit to this device is significant. The
example of a two-storey structure is used as a test case and real-time dynamic substructuring tests
are used to assess the complete system performance using a range of different amplification factors.
The results show that the structural performance is most improved for frequencies close to resonance
and that the amplification factor has an effective limit that for the case considered in this study is of
approximately 3. The effects of the mechanism compliance are also assessed.
� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/3.0/).

1. Introduction

The elimination of unwanted vibrations from civil engineering
structures has been of growing importance in recent years, partic-
ularly for slender or otherwise flexible structures. This is impor-
tant, not only for reducing the dynamic response of structures
under extreme loads, but also for increasing the system reliability
and ensuring human comfort during everyday dynamic loads [1].
Over recent decades improvement in damper technology have
been seen. It is typical to split such technologies into three classes;
(i) passive, (ii) active and (iii) semi-active devices [2]. In this paper,
the focus is on using passive fluid dampers, in combination with a
motion amplification mechanism. The purpose of the amplification
factor is to increase the sensitivity of the damper and therefore
extend its range of operation [3]. It can also be used to ‘‘tune’’
the required damping value of a single or multiple dampers.

In practice, the amplification factor can be achieved by using a
variety of in-built mechanisms. In [3] for instance, dampers are
connected to the structure through lever arms and double chevron

braces. By selecting suitable lever arm ratios, the authors highlight
that a single size of damper can be used throughout a building
while still achieving the optimal response performance associated
with using a range of damper sizes. However, the use of a chevron
brace can be visually intrusive. A similar lever arm and chevron
brace setup, this time utilising two dampers, is reported in [4],
where the effects of brace stiffness is discussed. In [5] a brace sys-
tem in which tensioned cables impose amplified structural dis-
placements on dampers is presented. It is reported that this
system can efficiently enhance damping without modifying the
structural stiffness. However due to geometric limitations, the
scheme is only able to deliver relatively low amplification. In [6]
pre-tensioned diagonal bracing bars are connected to angular lever
arms located at the lower corners of each bay. While offering a rel-
atively unobtrusive solution, the performance is shown to be
highly dependent on both the brace stiffness and its angle of
inclination.

A toggle-brace-damper was proposed by Taylor Devices inc. in
[7] and analysed in [8]. Despite being particularly sensitive to the
brace stiffness, toggles can offer relatively high amplification fac-
tors. However, due to geometry considerations, the authors sug-
gest a practical amplitude range of between 2 and 5. The use of
MR dampers in conjunction with the toggle configuration is
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discussed in [9]. They observed that the toggle configuration is
likely to raise the structural stiffness. Scissor-jack-damper systems
offer a compact method for high amplification, see for example the
detailed assessment in [10]. However they also add stiffness and
are sensitive to both pivot movement and elastic deformation.
Another approach involves the use of gears. For example, a device
constructed by coupling together two rack and two pinions having
differing radii is described in [11]. The authors claim compactness
and high amplification capability for the system. A further attrac-
tive approach, Hwang et al. [12], combines rotational inertia damp-
ers with toggle bracing. In this case the amplification system is not
only compact but also able to decrease the effective mass and stiff-
ness of the structure.

Note that all of the mechanisms reported above have been mod-
elled in the literature as constant amplification factors, i.e., coeffi-
cients that linearly scale the velocity transferred from the structure
to the damper.

Here we are interested in the use of an amplifier in conjunction
with a nonlinear damper for vibration suppression. Rather than
studying a particular amplification mechanism, we wish to analyse
how the combined nonlinearity and amplification changes the
effectiveness of the vibration suppression. A further question is
whether this behaviour results in an amplification limit beyond
which no significant performance gain is obtained. Knowledge of
this limit is needed to ensure well-behaved and cost-effective
amplification mechanisms. As such we consider a generic amplifier
capable of linearly scaling the displacement.

By considering a wide range of amplification factors and several
loading conditions, we show both numerically and experimentally
the advantages of amplifying the structural velocity transmitted to
a small-scale non-linear damper. Using this approach we can iden-
tify the range of parameters where the most benefit is achieved
when an amplification mechanism is added to the structure. We
use the example of a two-storey structure to assess a whole system
performance by considering a small non-linear damper attached to
an amplification mechanism within the structure. A particular
issue we consider is that of using an amplification mechanism-
damper system with a smaller damper, to reduce the amount of
stiction caused by large damper seals. The effects of the mecha-
nism compliance are also assessed.

This paper is organised as follows. Section 2 introduces the
structural model and highlights the effects of amplifying the veloc-
ity transferred to the non-linear dampers via numerical simula-
tions. Section 3 presents details of the real-time dynamic
substructuring, the experimental testing technique that has been
used in this work. The numerical findings are validated experimen-
tally through a series of experiments that physically test a real
non-linear damper in Section 4. Finally, the conclusions and further
remarks of this work are presented in Section 5.

2. Energy dissipation in dampers and the amplification factor

A basic approach for reducing structural vibration in buildings
is to fit some supplemental damping devices into the structure.
This concept takes advantage of the structure’s own motion to pro-
duce relative movement within the damping devices. In response,
those devices are expected to develop considerable local damping
forces that act to dissipate a significant amount of energy—see for
example [13] and references therein. If the relative motion of the
damper can be amplified, then for small structural movements, a
larger damping force can be achieved. Or, the same damping force
can be achieved, but using a smaller damper.

Typical fluid dampers have a piston/plunger within a cylinder
and two sets of seals. The seals are designed to maintain alignment
of the damper and stop the fluid from leaking. In terms of damper

performance the seals act as sources of non-linearity and friction
effects. One consequence of the seals is that static friction will
restrict the range of velocities when the damper will move. This
results in two different types of behaviour (i) sticking when the
force is below the static friction level and (ii) a slipping phase, after
the damper is mobilised, where energy is effectively dissipated. It
should be noted that negligible energy is dissipated in the damper
during sticking and if there is a large range where this behaviour
occurs the damper performance is degraded.

The major seismic building codes impose strict limits on the
maximum permissible inter-storey drift of buildings when subject
to earthquake excitation. While structural safety is the primary dri-
ver for these limits, minimising damage to non structural elements
is also a factor when considering moderate or minor earthquakes.
In fact, during moderate seismic events, structures are expected to
exhibit just small lateral displacements. If the damper has been
designed for a large event, small deformation may not even mobi-
lise the damper, due to the internal friction forces that must be
overcome prior to mobilisation of the damper.

Since energy is dissipated during the slipping phase rather than
a sticking phase, one advantage of amplifying the structure’s
motion is to use a smaller dampers with lower static friction so
that the slipping phase occurs at lower displacements (and veloc-
ities). The concept is illustrated in Fig. 1, which shows experimen-
tal results from a large-scale non-linear viscous fluid damper
(NLD). Two experimental tests, one over a low and the other a high
displacement range are shown. It can be seen that no slip occurs
over the low range and hence the NLD effectively acts as a nonlin-
ear spring rather than as an energy dissipator. The NLD has a peak
force of 60 kN and a maximum stroke of ±15 mm [14]. When acting
at a range of low displacements, the damper behaves as a very stiff
spring, meanwhile at large displacements the damper goes into the
slipping phase, describing the well-known hysteretic loop and dis-
sipating energy. Therefore, in this situation, using smaller dampers
and amplifying the structural motion transferred to them could
significantly increase the dampers efficacy.

2.1. Two-storey example

As an example structure we consider a symmetric two-storey
building with two NLD attached at the first floor as shown in
Fig. 2a. The structure and damper size were tuned to produce an
equivalent additional damping of approximately 20% of the critical
damping ratio when the system oscillating at the frequency of the
first linear mode. We note that this damper configuration may not
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Fig. 1. Experimental data from a non-linear viscous fluid damper at low level (solid
line) and large (dashed line) regime of displacements.
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represent the optimal arrangement for the studied system, never-
theless this configuration is sufficient to gain a better understand-
ing of the advantages of including an amplification mechanism
together with the nonlinear dampers into a structure. The building
has been modelled as a linear two degree-of-freedom (DOF) sys-
tem by using Eq. (1), where M;C and K represent the mass, damp-
ing and stiffness matrices; €x; _x and x are the acceleration, velocity
and displacement of the structure relative to the ground; €xg is
the ground acceleration, C ¼ ½1;1�T and K ¼ ½�1;0�T .

M€xþ C _xþ Kx ¼ �MC€xg þKFD ð1Þ

The structure is considered to be made of steel, the damping is fixed
to be 3% of critical and the natural frequencies to be 2.086 and
5.46 Hz; and:

M ¼
1 0
0 1

� �
� 145:8 N

s2

m
; C ¼

248:9 �83
�83 165:9

� �
N

s
m

;

K ¼
2 �1
�1 1

� �
� 65:5

kN
m

ð2Þ

In this study MR dampers are used in their passive mode (with
the voltage set to zero), as the NLDs. The reason for selecting MR
dampers is that the nonlinear dynamic modelling and associated
parameter fitting for this type of damper is well developed. Here
we use a simplified version of the Dahl model [15, p.152] as shown
in Eq. (3), where FD is the damper force in Newtons; _xD is the rel-
ative velocity across the damper in cm/s; t is time in seconds,
w 2 ð�1;1Þ is a dimensionless parameter which models the hyster-
esis in the force-velocity plane and q is a coefficient that controls
the rate of change of the hysteric variable w. Note that both kx

and kw are voltage-dependent parameters [16].

FDðtÞ ¼ kxðvÞ _xDðtÞ þ kwðvÞwðtÞ
_wðtÞ ¼ q _xDðtÞ � j _xDðtÞjwðtÞð Þ

ð3Þ

This model has proven to be accurate for describing the nonlinear
behaviour of real dampers and captures the damper’s response in
the force-velocity plane while allowing a reduced number of
parameters if compared against traditional hysteretic models like
Bouc–Wen (Further details in [17]). A comprehensive work demon-
strating the identification procedure can be found in [18].

Representing a generic amplification mechanism by means of
an amplification factor (AF), enables us to write the velocity across
the damper in terms of the relative velocity of the first floor of the
structure, giving

_xD ¼ AF � _x1 ð4Þ

Hence the modified equations of the damper and amplifier com-
bined are given by

FDðtÞ ¼ AFkxðvÞ _x1ðtÞ þ kwðvÞwðtÞ
_wðtÞ ¼ qAF _x1ðtÞ � j _x1ðtÞjwðtÞð Þ

ð5Þ

For the physical damper discussed in Section 3, with a constant
voltage of 0 V, the following set of parameters has been identified:
kxð0Þ ¼ 9:78 N s cm�1, kwð0Þ ¼ 60:11 N, q ¼ 47:95 cm�1. It is worth
noting that the amplification factor only directly modifies the veloc-
ity-dependant terms in Eq. (5). This does not alter the magnitude of
the term kw but only the speed at which wðtÞ changes from �1 to 1.
To simulate the dynamic response of the structure, a numerical
model has been developed in Mathworks Simulink. A range of
numerical simulations have been performed to capture the changes
in the structural behaviour. The parameter AF has been varied from
1 to 4 while different harmonic ground motion excitations have
been applied to the system covering frequencies from 1.5 Hz and
up to 5.5 Hz. Fig. 3a shows the numerical results for the steady-state
energy dissipated per cycle for a single NLD. Similarly, Fig. 3b pre-
sents the numerical results for the maximum displacement (drift)
reached at the level of the first floor. Note that the closest edge of
both surfaces correspond to the case of no amplification (AF ¼ 1).

The numerical results indicate that the larger the amplification
factor, the larger the amount of energy dissipated by the damper
and the lower the maximum storey drift reached. As expected,
by amplifying the structural velocity across the dampers, a better
structural performance is achieved as passive dampers move more
readily into the slipping phase, generating larger forces and dissi-
pating much more energy.

Nonetheless, the benefits of amplifying the velocity are only sig-
nificant for a certain range of frequencies. Particularly, we
observed that real advantages in terms of energy are achieved in
between the first natural frequency and the anti-resonance fre-
quency of the base structure (about 4.7 Hz). If reducing the floor
displacement is the primary target when including the amplifica-
tion mechanism, it must be optimised for a frequency slightly
higher than the natural frequency of the original structure (around
2.4 Hz in the example). On the other hand, if increasing the energy
dissipated is the main objective, then the frequency of interest in
the example should be around 3.2 Hz. The simulations shown here
are for a sinusoidal ground motion of 5 mm amplitude. Qualita-
tively very similar results were found for excitation amplitudes
of 2.5 and 10 mm.

In order to compare this result with physical experiments, we
tested a system equipped with real NLD. Fig. 2b shows the mag-
netorheological (MR) damper that was used in the experimental
tests, a model RD-8040-1 produced by the Lord Corporation (see
http://www.lord.com). It is characterised by a stroke of 55 mm
and damping forces up to 2447 N (peak-to-peak) at 1 A. Note that
we do not apply any voltage to the damper coils such that the dam-
per can be considered as a purely passive NLD. In the next section,
we introduce the experimental technique that was used and in
Section 4 the experimental results are presented.

Two more examples are considered here. The aim is to show
that the practical limit value of the AF beyond which the
amplification mechanism loses effectiveness, is influenced by the

Damper

Damper

(a) (b)

Fig. 2. (a) Ideal 2-DoF system with added passive dampers. (b) Real damper used in the experimental tests.
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relative magnitude of the damping force with respect to the
structural responses. In other words, it depends on the criteria
used to size the dampers. Keeping the same damper size and
similar additional damping ratio as a point of reference, the second
example corresponds to the structural system presented in (2)
with the masses increased by 50%. Fig. 4(a) presents numerical
results of the energy dissipated per cycle in the steady-state in a
single NLD (upper panel) along with the maximum drift reached
at the first floor (lower panel). The third example corresponds to
a 4-DOF system with same masses and stiffnesses as in (2) and
nonlinear dampers located at the first and second floors. The
numerical results are presented in Fig. 4(b). These results show
again that there exists a practical limit for the amplification
factor, beyond which the benefits of including the amplification
mechanism are diminished. Larger values of the AF could be in fact
detrimental as shown in the lower panel of Fig. 4(b), where the
maximum displacement starts to rise as the AF exceeds the value
of approximately 2.

3. Real-time dynamic substructuring testing

Real-time dynamic substructuring (RTDS) is an efficient and
cost-effective testing technique able to assess the rate-dependent
behaviour of systems. RTDS provides the ability to physically test
mechanical components that are difficult to model numerically
within a structure (due to, for example, their nonlinear behaviour)
[19,20]. These components can be tested at real scale and in real-
time to fully capture any rate dependency [21]. They are extracted
from the original system to form the ‘‘physical substructure’’, while
the remaining part of the system is simulated numerically (the

‘‘numerical substructure’’). In RTDS forces and displacements must
be matched at the interface between the two substructures, there-
fore dynamic transfer and measurement systems are included (see
Fig. 5). The challenging issue is to minimise interface errors and
therefore ensure that the physical and the numerical substructures
together behave in the same way as the whole system [22,23].

In the experiments reported in this paper, the numerical sub-
structure is the 2-DOF system described above (with no added
damper), the physical substructure consists of the MR damper act-
ing in passive mode and the transfer system is a electro-mechani-
cal actuator. To satisfy compatibility and equilibrium at the
interface, the interface displacement is calculated by the numerical
substructure and posed to the physical substructure. The force
required to impose this displacement is then passed back to the
numerical substructure.

3.1. Delay, stability and accuracy

The success of a RTDS simulation is dependent on the perfor-
mance of the actuator and its associated controller, whose dynam-
ics introduce both timing and amplitude errors into the signal
affecting the accuracy of the results [24]. Several authors have
shown that these errors may be propagated throughout the simu-
lation and may cause the test to become unstable [25,26]. Time
delay compensation schemes, which make corrections on the actu-
ator command signal, have commonly been used to overcome this
issue [27]. The most-widely used procedure in RTDS simulation is
the polynomial approximation method introduced by Horiuchi
et al. [28–30]. Results of comparable quality using different
compensation procedures can also be found in [31–33]. Due to
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Fig. 3. Numerical simulations. (a) Energy dissipated per cycle in a single damper. (b) Maximum structural displacement at the first floor. The right hand side panels
correspond to slices of the 3D surfaces for different levels of AF.
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its simplicity and efficiency, a polynomial extrapolation scheme
has been used in these experiments. Over the frequency range of
interest, the actuator delay was found to be approximately
constant at about 18 ms. We found that a first-order polynomial
with four data points (with a spacing of 1 ms) can be used to
successfully forward predict the command displacement.

Full numerical simulations have been completed to assess the
effects of including both the damper nonlinearity and the delay
compensation in the RTDS loop. In Fig. 6 the curves labelled ‘‘No
delay’’ (solid line) correspond to the ideal RTDS outputs when nei-
ther delay nor compensation are considered; similarly, the curves
labelled as ‘‘Delayed’’ (dashed line) correspond to the outputs when

the actuator dynamics are modelled as a constant delay and a first-
order polynomial is used to predict the actuator command signal.
Fig. 6a shows the displacement time history at the first floor along
with the damper force from formula (3); this simulation considers
an actuator delay of 18 ms, AF = 1 and full delay compensation. The
inclusion of both time lag and full delay compensation does not
seem to alter the results significantly. However, when considering
higher values of AF oscillations, which increase exponentially in
amplitude, are observed in the simulation (See Fig. 6b where
AF ¼ 3:25).

We found that this phenomenon is due to the difficulty for a
continuous-signal based predictor to cope with the near-piecewise
response of the NLD. We note that the use of a higher-order poly-
nomial does not provide any benefit as this just forces the system
to undergo larger oscillations. By reducing the forward prediction,
the tests can be stabilised for higher values of AF but with slightly
reduced levels of accuracy. Fig. 6c shows a simulation where the
prediction scheme compensates for 50% of the actuator delay. Note
that the undesired oscillations decrease at shorter prediction times
but they are always present to some extent.

Owing to the trade-off between stability, prediction and AF, the
degree of forward prediction has individually selected for each
experimental test presented in the next section. As AF increases,
the forward prediction is reduced in such a way that the system
was kept as close to the stability boundary as possible to maximise
accuracy.
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Fig. 5. Block diagram of a substructured system.
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4. Experimental results

The experimental rig shown in Fig. 7 has carefully been set up to
emulate the structural system described in Section 2. A Dspace
DS1104 board was used to run the numerical substructure and for-
ward prediction written in Simulink.

The aim of these experiments was to physically test a system
equipped with real NLDs and evaluate the effects of considering
a motion amplification factor. Just as for the numerical simulations,
the structural model has been evaluated under ground excitation
using harmonic motion and the mechanical amplifier has been
modelled as a constant gain.

4.1. Harmonic excitation

Several tests were conducted to capture the changes in the sys-
tem behaviour when the velocity transferred to the damper is
amplified. Fig. 8 shows the damper response for 4 different levels
of amplification when the structure is excited at 3.0 Hz and
5 mm. As can been seen, the nature of the damper response is
highly non-linear. From the figure it is also clear how much energy
is dissipated by the damper as AF increases. For the experiments,
we have considered ground motion excitations at frequencies from
1.5 to 5.5 Hz in steps of 0.5 Hz. Higher frequencies were not con-
sidered here since they fall outside the range of the test equipment.
The system has been evaluated for the cases when the velocity
transferred to the damper was amplified by factors of 1.0, 1.5,
2.0, 3.0 and 4.0. This range of parameters was also determined in

accordance with the physical limitation of the damper (after
amplification the maximum damper displacement is 23 mm).

Figs. 9b and 10b summarise the experimental steady-state
responses. In these plots, the black dots correspond to direct exper-
imental measurements while the surfaces were constructed within
the range of the discrete set of known data points by using the
cubic spatial interpolation method. The numerical results have
been included again to facilitate a direct comparison (panel a) in
both figures). The figures demonstrate very good agreement
between the numerical estimations and the experimental results.
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Fig. 6. Oscillations arise when errors in predicting piecewise signals are amplified by the AF.

Fig. 7. Experimental rig used for running the RTDS simulations.
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The experimental tests confirm that the amplification of the
structural displacements and velocities transferred to the supple-
mental dampers can improve the structural performance in a range
of frequencies that goes from just beyond the natural frequency to
the anti-resonance frequency of the unmodified structure. From
both numerical and experimental results it has been observed that
no significant benefits are achieved for amplification factors
greater than 3 as only limited further reduction in structural
response is achieved beyond this point. This suggests that
well-behaved mechanism-damping systems are required to offer
amplification up to approximately 3 times, beyond this value the
mechanism would be over-specified for this damper setup.

4.2. Seismic excitation

We now consider the case of the structure subjected to seismic
base excitation. The earthquake considered is compatible with the
elastic response spectrum provided by Eurocode 8 for very dense
sand, gravel, or very stiff clay (soil type B) and for high and moder-
ate seismicity regions (Seismic Zone 1), but has been scaled in
amplitude as shown in Fig. 11a in accordance with the physical
constrains of the damper and experimental rig. We note that the
earthquake was chosen so that the maximum frequency content
of the ground motion occurs around the first natural frequency
of the structure. Fig. 11b presents a typical response when carrying
out a substructuring simulation of the whole system with the
selected seismic load. The plots correspond to the case of an ampli-
fication factor of 2.5. The total energy dissipated during the stron-
gest part of the earthquake (5 to 20 s) is 78.99 Nm.

The experimental results considering seismic base excitation
are summarised in Fig. 12, where both the total energy dissipated
by the dampers and the maximum structural displacement at the
first floor have been plotted against the amplification factor. As
the amplification factor increases the system exhibits a significant
reduction of the structural displacements and a corresponding
increase in the amount of energy dissipated during the earthquake.
As with the harmonic excitation results, the effects of increasing
the amplification become less at higher amplification factors. Note
that considering softer soil conditions, or equivalently earthquakes
with frequency contents outside the considered frequency range,
will not have significant impact in the structural response and
therefore the study regarding the effects of the AF will be less
meaningful.

4.3. Effects of the mechanism flexibility

The flexibility of the amplification mechanism could signifi-
cantly reduce its own efficiency and therefore diminish the damp-
ing capability of the mechanism-damping arrangement. Due to the
mechanism compliance, the amplified displacement that is actu-
ally transferred from the amplification device to the damper is
reduced. Compliance also introduces a phase offset (with reference
to the structural forcing displacement) in the damper response.
These issues have been studied when searching for more accurate
design procedures of brace-damper systems [34].

To assess the impact of compliance on the overall system per-
formance, we introduce the mechanism stiffness effect into the
model by way of a linear spring. This flexible element was located
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Fig. 9. Energy dissipated per cycle in a single damper. (a) Numerical simulations. (b) Experimental results.
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in series between the generic amplification mechanism and the
damper. Simulations in which the ratio of mechanism stiffness
(km) to structural stiffness (ks) was varied have been conducted.
Fig. 13a shows how the energy dissipated per cycle is affected as
the ratio ks=km increases. The surfaces are coloured in grayscale
with the darkest colour corresponding to the more compliant
mechanism configuration.

Fig. 13b shows the maximum displacement at the first floor for
the structure when considering a mechanism with AF = 1 and vary-
ing ks=km at the frequency of 2.4 Hz that corresponds to the peak
displacement for the system without mechanism (AF = 1,
km !1). The dashed line indicates the level of displacement
reached when no amplification mechanism is considered. The
plot shows the degradation in the structural response as the
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Fig. 10. Maximum structural displacement at the first floor. (a) Numerical simulations. (b) Experimental results.
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Fig. 11. (a) Earthquake ground motion used in the tests. (b) Experimental response of the system for AF = 2.5.
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mechanism flexibility increases. For stiffnesses km lower than 20%
of the floor stiffness, the beneficial effect of the mechanical
amplification is no longer seen – in fact the presence of the mech-
anism is deleterious in this case.

5. Conclusions

In this paper we investigated the advantages of amplifying the
structural velocity transmitted to non-linear dampers (NLD) fitted
within a structure. We tested a small NLD attached to an amplifi-
cation mechanism and presented results for a series of numerical
simulations. These findings were verified experimentally using
real-time dynamic substructuring with a real damper. We found
that the structural performance can be improved if an amplifica-
tion mechanism-damping system is added to increase the sensitiv-
ity of the NLD as they spend more time in the slipping phase.
Nonetheless, such benefits are only significant for a range of fre-
quencies that goes from just beyond the first natural frequency
to the anti-resonance frequency of the unmodified structure and
for amplification factors between 1 and 3 in the cases studied.
Beyond this range the amplification mechanism would be over-
specified for the tested setup. We note that this practical limit of
the amplification factor is influenced not only by the nonlinear
characteristics of the damper, but also by the relative magnitude
of the damping force with respect to the structural responses, i.e.
it depends on the criteria used to size the dampers.

Excitation frequencies higher than 5.5 Hz could not be tested
experimentally since they fall outside the range of the test equip-
ment. Yet numerical simulations indicate no significant improve-
ment above that range for any value of AF. This can be explained
by the fact that the overall system response (including the mecha-
nism) is moved away from the resonance region.

The impact of the mechanism compliance on the vibration sup-
pressions was also studied. We showed the degradation in the
structural response as the mechanism flexibility increases. We
found that for mechanisms with an effective stiffnesses lower than
20% of the structural stiffness, the beneficial effect of the mechan-
ical amplification is no longer seen. This demonstrates the need to
carefully design the mechanism to achieve the wanted perfor-
mance in terms of energy dissipation and storey drift.
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