55,754 research outputs found

    Synchronized sweep algorithms for scalable scheduling constraints

    Get PDF
    This report introduces a family of synchronized sweep based filtering algorithms for handling scheduling problems involving resource and precedence constraints. The key idea is to filter all constraints of a scheduling problem in a synchronized way in order to scale better. In addition to normal filtering mode, the algorithms can run in greedy mode, in which case they perform a greedy assignment of start and end times. The filtering mode achieves a significant speed-up over the decomposition into independent cumulative and precedence constraints, while the greedy mode can handle up to 1 million tasks with 64 resources constraints and 2 million precedences. These algorithms were implemented in both CHOCO and SICStus

    A Partitioning Algorithm for Maximum Common Subgraph Problems

    Get PDF
    We introduce a new branch and bound algorithm for the maximum common subgraph and maximum common connected subgraph problems which is based around vertex labelling and partitioning. Our method in some ways resembles a traditional constraint programming approach, but uses a novel compact domain store and supporting inference algorithms which dramatically reduce the memory and computation requirements during search, and allow better dual viewpoint ordering heuristics to be calculated cheaply. Experiments show a speedup of more than an order of magnitude over the state of the art, and demonstrate that we can operate on much larger graphs without running out of memory

    Quantization as Histogram Segmentation: Optimal Scalar Quantizer Design in Network Systems

    Get PDF
    An algorithm for scalar quantizer design on discrete-alphabet sources is proposed. The proposed algorithm can be used to design fixed-rate and entropy-constrained conventional scalar quantizers, multiresolution scalar quantizers, multiple description scalar quantizers, and Wyner–Ziv scalar quantizers. The algorithm guarantees globally optimal solutions for conventional fixed-rate scalar quantizers and entropy-constrained scalar quantizers. For the other coding scenarios, the algorithm yields the best code among all codes that meet a given convexity constraint. In all cases, the algorithm run-time is polynomial in the size of the source alphabet. The algorithm derivation arises from a demonstration of the connection between scalar quantization, histogram segmentation, and the shortest path problem in a certain directed acyclic graph

    End-to-end resource management for federated delivery of multimedia services

    Get PDF
    Recently, the Internet has become a popular platform for the delivery of multimedia content. Currently, multimedia services are either offered by Over-the-top (OTT) providers or by access ISPs over a managed IP network. As OTT providers offer their content across the best-effort Internet, they cannot offer any Quality of Service (QoS) guarantees to their users. On the other hand, users of managed multimedia services are limited to the relatively small selection of content offered by their own ISP. This article presents a framework that combines the advantages of both existing approaches, by dynamically setting up federations between the stakeholders involved in the content delivery process. Specifically, the framework provides an automated mechanism to set up end-to-end federations for QoS-aware delivery of multimedia content across the Internet. QoS contracts are automatically negotiated between the content provider, its customers, and the intermediary network domains. Additionally, a federated resource reservation algorithm is presented, which allows the framework to identify the optimal set of stakeholders and resources to include within a federation. Its goal is to minimize delivery costs for the content provider, while satisfying customer QoS requirements. Moreover, the presented framework allows intermediary storage sites to be included in these federations, supporting on-the-fly deployment of content caches along the delivery paths. The algorithm was thoroughly evaluated in order to validate our approach and assess the merits of including intermediary storage sites. The results clearly show the benefits of our method, with delivery cost reductions of up to 80 % in the evaluated scenario

    Solving the Resource Constrained Project Scheduling Problem with Generalized Precedences by Lazy Clause Generation

    Full text link
    The technical report presents a generic exact solution approach for minimizing the project duration of the resource-constrained project scheduling problem with generalized precedences (Rcpsp/max). The approach uses lazy clause generation, i.e., a hybrid of finite domain and Boolean satisfiability solving, in order to apply nogood learning and conflict-driven search on the solution generation. Our experiments show the benefit of lazy clause generation for finding an optimal solutions and proving its optimality in comparison to other state-of-the-art exact and non-exact methods. The method is highly robust: it matched or bettered the best known results on all of the 2340 instances we examined except 3, according to the currently available data on the PSPLib. Of the 631 open instances in this set it closed 573 and improved the bounds of 51 of the remaining 58 instances.Comment: 37 pages, 3 figures, 16 table
    • …
    corecore