81 research outputs found

    Time-Reversal UWB Wireless Communication-Based Train Control in Tunnel

    Get PDF
    This paper reports an evaluation of UWB radio technology and Time-Reversal (TR) technique in tunnel environments for train-to-wayside communication. UWB technology has the potential to offer simultaneous ground-totrain communication, train location and obstacle detection in front of the trains. Time-Reversal channel pre-filtering facilitates signal detection and helps reduce interference. Thus, UWB-TR combination provides a challenging, economically sensible, as well as technically effective alternative solution to existing signaling technologies used in urban transport systems. This paper deals with deterministic channel modeling and its characterization in tunnel environment. It reports simulation performance evaluation of UWB-TR combinations in the developed channel model

    UWB Radio Wireless Communication System Design for Railway Tunnels

    Get PDF
    Railway is an economical and comfortable mode of transportation for long distances. Safety, reliability and good quality of service are the main concern of railway industries which are maintained by railway management and communication system. There are several existing management systems like CCCS, ATCS, PTC and many more. With increasing population, demand for railway services also increases. To full fill these demands railway infrastructure has been developing continuously. By implementing latest technologies for railway communication we can make railway transportation safer, efficient, and more accessible. Ultra wideband radio communication system is amongst those very latest and rapidly growing technologies. This research work focuses on the study of UWB radio based wireless communication system for railway tunnels, whose main task is to maintain an uninterrupted data transmission between train driver to wayside controller

    Experimental characterization of the radio channel for systems with large bandwidth and multiple antennas

    Get PDF
    [SPA] Cada día son necesarias comunicaciones mejores y más eficientes, con mayores anchos de banda y mayores tasas de transferencias de datos. Por un lado los sistemas de múltiples antenas, MIMO, surgieron como una técnica para optimizar el uso de la potencia y el espectro. Por otro lado, los sistemas Ultra-Wideband, UWB, han ganado recientemente el interés de la comunidad científica por su gran ancho de banda combinado con su baja potencia de transmisión. A la hora de diseñar y testear nuevos dispositivos de comunicaciones inalámbricas, es esencial poseer un conocimiento preciso del canal de propagación por el que se propagan dichas señales. Esta tesis, se basa en el modelado del canal de propagación para sistemas de gran ancho de banda y múltiples antenas desde un punto de vista experimental. Primeramente se presentan las mejoras y desarrollos realizados en el ámbito de los sistemas de medida del canal, dado que es necesario disponer de equipos adecuados y precisos para realizar adecuadas medidas del canal. Seguidamente, se analiza el canal MIMO-UWB en interiores. Se realiza un análisis en profundidad de varios parámetros, especialmente parámetros de una antena como las pérdidas de propagación, el factor de polarización cruzada o la dispersión del retardo. Finalmente, la tesis particulariza el análisis del canal en un entorno especial como es el caso de túneles. Se realiza un análisis experimental de parámetros de una antena como multi antena para luego evaluar las prestaciones que pueden brindar varias técnicas de diversidad como es en el dominio de la frecuencia, la polarización, el espacio o el tiempo.[ENG] Wireless communications have become essential in our society [Rappaport, 1996], [Parsons, 2000]. Nowadays, people need to be connected everywhere and at any time, and demand faster and enhanced communications every day. New applications requires higher data rates and, therefore, higher bandwidths. On the one hand, Multiple-Input Multiple-Output (MIMO) systems were proposed as one solution to achieve higher data rates and optimize the use of the spectrum. On the other hand, more recently, systems with an ultra large bandwidth, and particularly Ultra-Wideband (UWB) systems, have gained the interest of the scientific community. Such interest is owing to the extremely high data rates offered and its possible coexistence with existing systems due to the its low transmitted power. However, this improvement in mobile communications involves the development and testing of new wireless communications systems. Precise knowledge of the radio channel is an essential issue to design this new devices and, thus, reach such improvement in wireless communications. In general, the modeling of the radio channel can be undertaken in two main ways: Theoretically, where the channel is characterized by means of simulations and theoretical approaches. - Experimentally, where the radio channel is characterized by means of the analysis of measurements carried out in real scenarios. This thesis is mainly focused on the experimental characterization of the radio channel for systems with large bandwidth and multiple antennas (MIMO). However, characterizing experimentally the MIMO wideband channel implies the availability of adequate and accurate channel sounders.Universidad Politécnica de CartagenaUniversité des Sciences et Technologies de Lille (USTL)Programa de doctorado en Tecnologías de la Información y Comunicacione

    Advanced Train Positioning/Communication System

    Get PDF
    In the past, in order to ensure train positioning as well as ground-to-train information exchange, railways have adopted various technologies. Over time, each new generation of equipment enriched the global information exchange but, as a consequence, necessitated higher data rate transfers. For the positioning functionality, the existing localisation systems are still limited, since most of them require an infrastructure installation with constraints such as laying equipment between the rails or having high database maintenance requirements and computational costs. Moreover, some of them accumulate errors (odometers and inertial sensors) or offer limited coverage in shadowed areas (GNSS, etc.). Currently, in railway applications, a widely used localization system is based on proprioceptive sensors embarked in the train. This on-board system is coupled to the use of balises located at ground between the rails. These balises are kilometre markers. They are used to compensate for the drift of the localization information computed using the proprioceptive sensors alone, when the train moves. The balises provide absolute localization information whenever the train passes over them. They can also provide spot communication during the short period of time when trains are passing over them. In the first part of this chapter, techniques for achieving train positioning and data exchanges between trains and infrastructure are introduced. In the second part, a new balise is proposed. Particular attention is paid to the contribution of this new solution in terms of localization error and communication performances

    Prog Electromagn Res C Pier C

    Get PDF
    Understanding wireless channels in complex mining environments is critical for designing optimized wireless systems operated in these environments. In this paper, we propose two physics-based, deterministic ultra-wideband (UWB) channel models for characterizing wireless channels in mining/tunnel environments - one in the time domain and the other in the frequency domain. For the time domain model, a general Channel Impulse Response (CIR) is derived and the result is expressed in the classic UWB tapped delay line model. The derived time domain channel model takes into account major propagation controlling factors including tunnel or entry dimensions, frequency, polarization, electrical properties of the four tunnel walls, and transmitter and receiver locations. For the frequency domain model, a complex channel transfer function is derived analytically. Based on the proposed physics-based deterministic channel models, channel parameters such as delay spread, multipath component number, and angular spread are analyzed. It is found that, despite the presence of heavy multipath, both channel delay spread and angular spread for tunnel environments are relatively smaller compared to that of typical indoor environments. The results and findings in this paper have application in the design and deployment of wireless systems in underground mining environments.CC999999/Intramural CDC HHS/United States2018-02-14T00:00:00Z29457801PMC5812029vault:2734

    Development and Experimental Analysis of Wireless High Accuracy Ultra-Wideband Localization Systems for Indoor Medical Applications

    Get PDF
    This dissertation addresses several interesting and relevant problems in the field of wireless technologies applied to medical applications and specifically problems related to ultra-wideband high accuracy localization for use in the operating room. This research is cross disciplinary in nature and fundamentally builds upon microwave engineering, software engineering, systems engineering, and biomedical engineering. A good portion of this work has been published in peer reviewed microwave engineering and biomedical engineering conferences and journals. Wireless technologies in medicine are discussed with focus on ultra-wideband positioning in orthopedic surgical navigation. Characterization of the operating room as a medium for ultra-wideband signal transmission helps define system design requirements. A discussion of the first generation positioning system provides a context for understanding the overall system architecture of the second generation ultra-wideband positioning system outlined in this dissertation. A system-level simulation framework provides a method for rapid prototyping of ultra-wideband positioning systems which takes into account all facets of the system (analog, digital, channel, experimental setup). This provides a robust framework for optimizing overall system design in realistic propagation environments. A practical approach is taken to outline the development of the second generation ultra-wideband positioning system which includes an integrated tag design and real-time dynamic tracking of multiple tags. The tag and receiver designs are outlined as well as receiver-side digital signal processing, system-level design support for multi-tag tracking, and potential error sources observed in dynamic experiments including phase center error, clock jitter and drift, and geometric position dilution of precision. An experimental analysis of the multi-tag positioning system provides insight into overall system performance including the main sources of error. A five base station experiment shows the potential of redundant base stations in improving overall dynamic accuracy. Finally, the system performance in low signal-to-noise ratio and non-line-of-sight environments is analyzed by focusing on receiver-side digitally-implemented ranging algorithms including leading-edge detection and peak detection. These technologies are aimed at use in next-generation medical systems with many applications including surgical navigation, wireless telemetry, medical asset tracking, and in vivo wireless sensors

    New Approach of Indoor and Outdoor Localization Systems

    Get PDF
    Accurate determination of the mobile position constitutes the basis of many new applications. This book provides a detailed account of wireless systems for positioning, signal processing, radio localization techniques (Time Difference Of Arrival), performances evaluation, and localization applications. The first section is dedicated to Satellite systems for positioning like GPS, GNSS. The second section addresses the localization applications using the wireless sensor networks. Some techniques are introduced for localization systems, especially for indoor positioning, such as Ultra Wide Band (UWB), WIFI. The last section is dedicated to Coupled GPS and other sensors. Some results of simulations, implementation and tests are given to help readers grasp the presented techniques. This is an ideal book for students, PhD students, academics and engineers in the field of Communication, localization & Signal Processing, especially in indoor and outdoor localization domains

    Intra-Body Communications for Nervous System Applications: Current Technologies and Future Directions

    Full text link
    The Internet of Medical Things (IoMT) paradigm will enable next generation healthcare by enhancing human abilities, supporting continuous body monitoring and restoring lost physiological functions due to serious impairments. This paper presents intra-body communication solutions that interconnect implantable devices for application to the nervous system, challenging the specific features of the complex intra-body scenario. The presented approaches include both speculative and implementative methods, ranging from neural signal transmission to testbeds, to be applied to specific neural diseases therapies. Also future directions in this research area are considered to overcome the existing technical challenges mainly associated with miniaturization, power supply, and multi-scale communications.Comment: https://www.sciencedirect.com/science/article/pii/S138912862300163

    Application of the Public-Trust Doctrine and Principles of Natural Resource Management to Electromagnetic Spectrum

    Get PDF
    The Electromagnetic spectrum is among our most valuable natural resources. Yet while the past few decades have seen a rich body of environmental law develop for other natural resources, this movement has largely passed over the electromagnetic spectrum. This Article argues that to remedy that situation, the public-trust doctrine, which is now a cornerstone of modern environmental law, should be extended to the electromagnetic spectrum. This extension would not be a leap: the public-trust doctrine has already been used to guarantee the public access to various bodies of water (not just navigable water), and to protect recreational lakes and beaches, wildlife preserves, and even the air. Electromagnetic spectrum is at least as valuable as these other resources, so access to it should be similarly guaranteed in order for the public to enjoy its full potential. This Article will first show that there is a problem with the way that the electromagnetic spectrum is regulated, that its regulation stifles innovation and has favored incumbents by wrongly giving them exclusive access to a natural resource at no charge, and that the situation has been exacerbated by mistakenly assuming that auctions are a panacea for past spectrum-allocation problems. The Article will then argue that the public- trust doctrine, as well as other more general concepts borrowed from environmental-law scholarship-such as sustainable consumption, electromagnetic pollution, and ecological imbalance-should be imported into a new spectrum-management paradigm. Two technologies, Ultra-Wideband and Software Defined Radio, may be well-suited for a new regulatory paradigm that is freer than the one that the spectrum has always had, and that provides for access to the spectrum\u27s being guaranteed by the public-trust doctrine
    corecore