5 research outputs found

    Time-Reversal UWB Wireless Communication-Based Train Control in Tunnel

    Get PDF
    This paper reports an evaluation of UWB radio technology and Time-Reversal (TR) technique in tunnel environments for train-to-wayside communication. UWB technology has the potential to offer simultaneous ground-totrain communication, train location and obstacle detection in front of the trains. Time-Reversal channel pre-filtering facilitates signal detection and helps reduce interference. Thus, UWB-TR combination provides a challenging, economically sensible, as well as technically effective alternative solution to existing signaling technologies used in urban transport systems. This paper deals with deterministic channel modeling and its characterization in tunnel environment. It reports simulation performance evaluation of UWB-TR combinations in the developed channel model

    UWB Radio Wireless Communication System Design for Railway Tunnels

    Get PDF
    Railway is an economical and comfortable mode of transportation for long distances. Safety, reliability and good quality of service are the main concern of railway industries which are maintained by railway management and communication system. There are several existing management systems like CCCS, ATCS, PTC and many more. With increasing population, demand for railway services also increases. To full fill these demands railway infrastructure has been developing continuously. By implementing latest technologies for railway communication we can make railway transportation safer, efficient, and more accessible. Ultra wideband radio communication system is amongst those very latest and rapidly growing technologies. This research work focuses on the study of UWB radio based wireless communication system for railway tunnels, whose main task is to maintain an uninterrupted data transmission between train driver to wayside controller

    Experimental characterization of the radio channel for systems with large bandwidth and multiple antennas

    Get PDF
    [SPA] Cada día son necesarias comunicaciones mejores y más eficientes, con mayores anchos de banda y mayores tasas de transferencias de datos. Por un lado los sistemas de múltiples antenas, MIMO, surgieron como una técnica para optimizar el uso de la potencia y el espectro. Por otro lado, los sistemas Ultra-Wideband, UWB, han ganado recientemente el interés de la comunidad científica por su gran ancho de banda combinado con su baja potencia de transmisión. A la hora de diseñar y testear nuevos dispositivos de comunicaciones inalámbricas, es esencial poseer un conocimiento preciso del canal de propagación por el que se propagan dichas señales. Esta tesis, se basa en el modelado del canal de propagación para sistemas de gran ancho de banda y múltiples antenas desde un punto de vista experimental. Primeramente se presentan las mejoras y desarrollos realizados en el ámbito de los sistemas de medida del canal, dado que es necesario disponer de equipos adecuados y precisos para realizar adecuadas medidas del canal. Seguidamente, se analiza el canal MIMO-UWB en interiores. Se realiza un análisis en profundidad de varios parámetros, especialmente parámetros de una antena como las pérdidas de propagación, el factor de polarización cruzada o la dispersión del retardo. Finalmente, la tesis particulariza el análisis del canal en un entorno especial como es el caso de túneles. Se realiza un análisis experimental de parámetros de una antena como multi antena para luego evaluar las prestaciones que pueden brindar varias técnicas de diversidad como es en el dominio de la frecuencia, la polarización, el espacio o el tiempo.[ENG] Wireless communications have become essential in our society [Rappaport, 1996], [Parsons, 2000]. Nowadays, people need to be connected everywhere and at any time, and demand faster and enhanced communications every day. New applications requires higher data rates and, therefore, higher bandwidths. On the one hand, Multiple-Input Multiple-Output (MIMO) systems were proposed as one solution to achieve higher data rates and optimize the use of the spectrum. On the other hand, more recently, systems with an ultra large bandwidth, and particularly Ultra-Wideband (UWB) systems, have gained the interest of the scientific community. Such interest is owing to the extremely high data rates offered and its possible coexistence with existing systems due to the its low transmitted power. However, this improvement in mobile communications involves the development and testing of new wireless communications systems. Precise knowledge of the radio channel is an essential issue to design this new devices and, thus, reach such improvement in wireless communications. In general, the modeling of the radio channel can be undertaken in two main ways: Theoretically, where the channel is characterized by means of simulations and theoretical approaches. - Experimentally, where the radio channel is characterized by means of the analysis of measurements carried out in real scenarios. This thesis is mainly focused on the experimental characterization of the radio channel for systems with large bandwidth and multiple antennas (MIMO). However, characterizing experimentally the MIMO wideband channel implies the availability of adequate and accurate channel sounders.Universidad Politécnica de CartagenaUniversité des Sciences et Technologies de Lille (USTL)Programa de doctorado en Tecnologías de la Información y Comunicacione

    Façonnement de l'Interférence en vue d'une Optimisation Globale d'un Système Moderne de Communication

    Get PDF
    A communication is impulsive whenever the information-bearing signal is burst-like in time. Examples of the impulsive concept are: impulse-radio signals, that is, wireless signals occurring within short intervals of time; optical signals conveyed by photons; speech signals represented by sound pressure variations; pulse-position modulated electrical signals; a sequence of arrival/departure events in a queue; neural spike trains in the brain. Understanding impulsive communications requires to identify what is peculiar to this transmission paradigm, that is, different from traditional continuous communications.In order to address the problem of understanding impulsive vs. non-impulsive communications, the framework of investigation must include the following aspects: the different interference statistics directly following from the impulsive signal structure; the different interaction of the impulsive signal with the physical medium; the actual possibility for impulsive communications of coding information into the time structure, relaxing the implicit assumption made in continuous transmissions that time is a mere support. This thesis partially addresses a few of the above issues, and draws future lines of investigation. In particular, we studied: multiple access channels where each user adopts time-hopping spread-spectrum; systems using a specific prefilter at the transmitter side, namely the transmit matched filter (also known as time reversal), particularly suited for ultrawide bandwidhts; the distribution function of interference for impulsive systems in several different settings.Une communication est impulsive chaque fois que le signal portant des informations est intermittent dans le temps et que la transmission se produit à rafales. Des exemples du concept impulsife sont : les signaux radio impulsifs, c’est-à-dire des signaux très courts dans le temps; les signaux optiques utilisé dans les systèmes de télécommunications; certains signaux acoustiques et, en particulier, les impulsions produites par le système glottale; les signaux électriques modulés en position d’impulsions; une séquence d’événements dans une file d’attente; les trains de potentiels neuronaux dans le système neuronal. Ce paradigme de transmission est différent des communications continues traditionnelles et la compréhension des communications impulsives est donc essentielle. Afin d’affronter le problème des communications impulsives, le cadre de la recherche doit inclure les aspects suivants : la statistique d’interférence qui suit directement la structure des signaux impulsifs; l’interaction du signal impulsif avec le milieu physique; la possibilité pour les communications impulsives de coder l’information dans la structure temporelle. Cette thèse adresse une partie des questions précédentes et trace des lignes indicatives pour de futures recherches. En particulier, nous avons étudié: un système d'accès multiple où les utilisateurs adoptent des signaux avec étalement de spectre par saut temporel (time-hopping spread spectrum) pour communiquer vers un récepteur commun; un système avec un préfiltre à l'émetteur, et plus précisément un transmit matched filter, également connu comme time reversal dans la littérature de systèmes à bande ultra large; un modèle d'interférence pour des signaux impulsifs
    corecore