103 research outputs found

    Adaptive Equalization and Capacity Analysis for Amplify-and-Forward Relays

    Get PDF
    Recent research has shown that multiple-input multiple-output (MIMO) systems provide high spectral efficiencies and error performance gains. However, the use of multiple antennas in mobile terminals may not be very practical. Certainly there is limited space and other implementation issues which make this a challenging problem. Therefore, to harness the diversity gains afforded by MIMO transmitter diversity techniques, while maintaining a minimal number of antennas on each handset, cooperative diversity techniques have been proposed. In addition, attention has also been given to combining wireless relaying systems with MIMO techniques to improve capacity, coverage, and obtain better diversity at the expense of increased node complexity. This thesis considers the design and analysis of cooperative diversity systems and MIMO amplify-and-forward relaying systems. In particular, we investigate adaptive time- and frequency-domain equalization techniques for cooperative diversity systems using space-time block codes (STBC). For MIMO relaying systems, we analyze the ergodic capacity of various systems and compare different amplify-and-forward methods in terms of system capacity performance. We propose a new block time-domain adaptive equalization structure for time reversal-space time block coding (TR-STBC) systems, which eliminates the separate decoder and also the need for explicit channel state information (CSI) estimation at the receiver. Our simulation results show that the time-domain adaptive block equalizer performs better than the frequency-domain counterpart but at the cost of increased complexity. Then, we extend this time-domain adaptive equalization scheme to distributed TR-STBC systems. We also develop a frequency-domain counterpart for the distributed systems. Our simulation results show that the adaptive algorithms work well for Protocols I and III proposed by Nabar et al. The time-domain adaptive algorithms perform better than the frequency-domain algorithms, and overall the Protocol I receivers outperform the Protocol III receivers. We also show that, if only the Protocol III receiver is used, it can be susceptible to noise amplification due to a weaker source-to-relay link compared to the relay-to-destination link. This problem can be mitigated by using the Protocol I receivers with some extra complexity but much superior diversity performance. We also present an ergodic capacity analysis of an amplify-and-forward (AF) MIMO two-hop system including the direct link and validate the analysis with simulations. We show that having the direct link improves the capacity due to diversity and quantify this improvement. We also present an ergodic capacity analysis of an AF MIMO two-hop, two relay system. Our results verify the capacity gain of relaying systems with two relays due to the extra diversity compared to a single relaying system. However, the results also show that when one of the source-to-relay links has a markedly higher SNR compared to the other, a single relay system has better capacity than a two relay system. Finally, we compare three types of relay amplification methods: a) average amplification, b) instantaneous channel amplification, and c) instantaneous power amplification. The instantaneous power amplification method has a higher mean capacity but with a higher variance. Also, it requires additional information at the destination and would create enormous overheads compared to the other methods. We also find that the instantaneous channel amplification method has almost no advantage in terms of the mean capacity but its capacity is less variable than the average amplification method. On the other hand, the average amplification method is simpler to implement as it does not require channel estimation at the relaying terminal

    Distributed Quasi-Orthogonal Space-Time coding in wireless cooperative relay networks

    Get PDF
    Cooperative diversity provides a new paradigm in robust wireless re- lay networks that leverages Space-Time (ST) processing techniques to combat the effects of fading. Distributing the encoding over multiple relays that potentially observe uncorrelated channels to a destination terminal has demonstrated promising results in extending range, data- rates and transmit power utilization. Specifically, Space Time Block Codes (STBCs) based on orthogonal designs have proven extremely popular at exploiting spatial diversity through simple distributed pro- cessing without channel knowledge at the relaying terminals. This thesis aims at extending further the extensive design and analysis in relay networks based on orthogonal designs in the context of Quasi- Orthogonal Space Time Block Codes (QOSTBCs). The characterization of Quasi-Orthogonal MIMO channels for cooper- ative networks is performed under Ergodic and Non-Ergodic channel conditions. Specific to cooperative diversity, the sub-channels are as- sumed to observe different shadowing conditions as opposed to the traditional co-located communication system. Under Ergodic chan- nel assumptions novel closed-form solutions for cooperative channel capacity under the constraint of distributed-QOSTBC processing are presented. This analysis is extended to yield closed-form approx- imate expressions and their utility is verified through simulations. The effective use of partial feedback to orthogonalize the QOSTBC is examined and significant gains under specific channel conditions are demonstrated. Distributed systems cooperating over the network introduce chal- lenges in synchronization. Without extensive network management it is difficult to synchronize all the nodes participating in the relaying between source and destination terminals. Based on QOSTBC tech- niques simple encoding strategies are introduced that provide compa- rable throughput to schemes under synchronous conditions with neg- ligible overhead in processing throughout the protocol. Both mutli- carrier and single-carrier schemes are developed to enable the flexi- bility to limit Peak-to-Average-Power-Ratio (PAPR) and reduce the Radio Frequency (RF) requirements of the relaying terminals. The insights gained in asynchronous design in flat-fading cooperative channels are then extended to broadband networks over frequency- selective channels where the novel application of QOSTBCs are used in distributed-Space-Time-Frequency (STF) coding. Specifically, cod- ing schemes are presented that extract both spatial and mutli-path diversity offered by the cooperative Multiple-Input Multiple-Output (MIMO) channel. To provide maximum flexibility the proposed schemes are adapted to facilitate both Decode-and-Forward (DF) and Amplify- and-Forward (AF) relaying. In-depth Pairwise-Error-Probability (PEP) analysis provides distinct design specifications which tailor the distributed- STF code to maximize the diversity and coding gain offered under the DF and AF protocols. Numerical simulation are used extensively to confirm the validity of the proposed cooperative schemes. The analytical and numerical re- sults demonstrate the effective use of QOSTBC over orthogonal tech- niques in a wide range of channel conditions

    Design of distributed space-time block codes for relay networks

    Get PDF
    The fading effect often faced in wireless communications can cause severe attenuation in signal strength. To solve this problem, diversity techniques (in terms of spatial/time/frequency) have been considered. For example, spatial diversity can be achieved by using multiple antennas at the transmitter or the receiver or both. One important architecture that can efficiently exploit the multiple antennas is the space-time block coding (STBC). The realization of STBC requires more than one antenna at the transmitter. Unfortunately, the use of multiple antennas is not practical in many wireless devices due to the size limitation. Recently, the “cooperative diversity”, also known as “user diversity”, enables single-antenna mobiles in a multi-user environment to share their antennas and generate a virtual multiple-antenna transmitter that allows them to achieve transmit diversity. To apply concept of the STBC schemes to the cooperative communications, Laneman et al. suggest the use of “conventional” orthogonal STBC in a “distributed” fashion for practical implementation of user cooperation. The pioneering works on distributed STBC (DSTBC) assume flat fading channels. This can be achieved by using multi-carrier techniques such as orthogonal frequency division multiplex (OFDM) to divide a whole spectrum into a set of narrower bands. Hence, the channel can be considered flat in each sub-band. However, for current wireless communications with single-carrier transmission, the frequency selective channels cannot be avoided. Thus, in this dissertation, I will consider the application of DSTBC to frequency selective fading channels. In the first part of my thesis, I present a new design of DSTBC to achieve full rate transmission and channel decoupling property as in conventional STBC by using zero-padding (ZP). Several receiver techniques in frequency domain are studied for the signal detection of the proposed DSTBC. The extension from ZP to unique-word (UW) will be proposed in the second part. Exploiting the properties of the UW, I will present in the third part of my thesis a method of channel estimation for relay networks

    Channel Estimation and Equalization for Cooperative Communication

    Get PDF
    The revolutionary concept of space-time coding introduced in the last decade has demonstrated that the deployment of multiple antennas at the transmitter allows for simultaneous increase in throughput and reliability because of the additional degrees of freedom offered by the spatial dimension of the wireless channel. However, the use of antenna arrays is not practical for deployment in some practical scenarios, e. g. , sensor networks, due to space and power limitations. A new form of realizing transmit diversity has been recently introduced under the name of user cooperation or cooperative diversity. The basic idea behind cooperative diversity rests on the observation that in a wireless environment, the signal transmitted by the source node is overheard by other nodes, which can be defined as "partners" or "relays". The source and its partners can jointly process and transmit their information, creating a "virtual antenna array" and therefore emulating transmit diversity. Most of the ongoing research efforts in cooperative diversity assume frequency flat channels with perfect channel knowledge. However, in practical scenarios, e. g. broadband wireless networks, these assumptions do not apply. Frequency-selective fading and imperfect channel knowledge should be considered as a more realistic channel model. The development of equalization and channel estimation algorithms play a crucial element in the design of digital receivers as their accuracy determine the overall performance. This dissertation creates a framework for designing and analyzing various time and frequency domain equalization schemes, i. e. distributed time reversal (D-TR) STBC, distributed single carrier frequency domain (D-SC-FDE) STBC, and distributed orthogonal frequency division multiplexing (D-OFDM) STBC schemes, for broadband cooperative communication systems. Exploiting the orthogonally embedded in D-STBCs, we were able to maintain low-decoding complexity for all underlying schemes, thus, making them excellent candidates for practical scenarios, such as multi-media broadband communication systems. Furthermore, we propose and analyze various non-coherent and channel estimation algorithms to improve the quality and reliability of wireless communication networks. Specifically, we derive a non-coherent decoding rule which can be implemented in practice by a Viterbi-type algorithm. We demonstrate through the derivation of a pairwise error probability expression that the proposed non-coherent detector guarantees full diversity. Although this decoding rule has been derived assuming quasi-static channels, its inherent channel tracking capability allows its deployment over time-varying channels with a promising performance as a sub-optimal solution. As a possible alternative to non-coherent detection, we also investigate the performance of mismatched-coherent receiver, i. e. , coherent detection with imperfect channel estimation. Our performance analysis demonstrates that the mismatched-coherent receiver is able to collect the full diversity as its non-coherent competitor over quasi-static channels. Finally, we investigate and analyze the effect of multiple antennas deployment at the cooperating terminals assuming different relaying techniques. We derive pairwise error probability expressions quantifying analytically the impact of multiple antenna deployment at the source, relay and/or destination terminals on the diversity order for each of the relaying methods under consideration

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Distributed differential beamforming and power allocation for cooperative communication networks

    Get PDF
    Many coherent cooperative diversity techniques for wireless relay networks have recently been suggested to improve the overall system performance in terms of the achievable data rate or bit error rate (BER) with low decoding complexity and delay. However, these techniques require channel state information (CSI) at the transmitter side, at the receiver side, or at both sides. Therefore, due to the overhead associated with estimating CSI, distributed differential space-time coding techniques have been suggested to overcome this overhead by detecting the information symbols without requiring any (CSI) at any transmitting or receiving antenna. However, the latter techniques suffer from low performance in terms of BER as well as high latency and decoding complexity. In this paper, a distributed differential beamforming technique with power allocation is proposed to overcome all drawbacks associated with the later techniques without needing CSI at any antenna and to be used for cooperative communication networks. We prove through our analytical and simulation results that the proposed technique outperforms the state-of-the-art techniques in terms of BER with comparably low decoding complexity and latency

    Cooperative Techniques for Next Generation HF Communication Systems

    Get PDF
    The high frequency (HF) band lies within 2-30 MHz of the electromagnetic spectrum. For decades, the HF band has been recognized as the primary means of long-range wireless communications. When satellite communication first emerged in 1960s, HF technology was considered to be obsolete. However, with its enduring qualities, HF communication survived through this competition and positioned itself as a powerful complementary and/or alternative technology to satellite communications. HF systems have been traditionally associated with low-rate data transmission. With the shift from analog to digital in voice communication, and increasing demands for high-rate data transmission (e.g., e-mail, Internet, FTP), HF communication has been going through a renaissance. Innovative techniques are required to push the capacity limits of the HF band. In this dissertation, we consider cooperative communication as an enabling technology to meet the challenging expectations of future generation HF communication systems. Cooperative communication exploits the broadcast nature of wireless transmission and relies on the cooperation of users relaying the information to one another. We address the design, analysis, and optimization of cooperative HF communication systems considering both multi-carrier and single-carrier architectures. As the multi-carrier HF system, we consider the combination of the orthogonal frequency division multiplexing (OFDM) with the bit interleaved coded modulation (BICM) as the underlying physical layer platform. It is assumed that cooperating nodes may use different HF propagation mechanisms, such as near-vertical-incidence sky wave (NVIS) and surface wave, to relay their received signals to the destination in different environmental scenarios. Diversity gain analysis, optimum relay selection strategy and power allocation between the source and relays are investigated for the proposed cooperative HF system. For single-carrier HF systems, we first derive a matched-filer-bound (MFB) on the error rate performance of the non-regenerative cooperative systems. The results from the MFB analysis are also used for relay selection and power allocation in the multi-relay cooperative systems. To overcome the intersymbol interference impairment induced by frequency-selectivity of the HF channel, equalization is inevitable at the destination in a single-carrier system. In this work, we investigate the minimum-mean-square-error (MMSE) based linear/decision-feedback frequency domain equalizers (FDEs). Both symbol-spaced and fractionally-spaced implementations of the proposed FDEs are considered and their performance is compared under different channel conditions and sampling phase errors at the relay and destination nodes.1 yea

    Cooperative underwater acoustic communications

    Get PDF
    This article presents a contemporary overview of underwater acoustic communication (UWAC) and investigates physical layer aspects on cooperative transmission techniques for future UWAC systems. Taking advantage of the broadcast nature of wireless transmission, cooperative communication realizes spatial diversity advantages in a distributed manner. The current literature on cooperative communication focuses on terrestrial wireless systems at radio frequencies with sporadic results on cooperative UWAC. In this article, we summarize initial results on cooperative UWAC and investigate the performance of a multicarrier cooperative UWAC considering the inherent unique characteristics of the underwater channel. Our simulation results demonstrate the superiority of cooperative UWAC systems over their point-to-point counterparts. © 1979-2012 IEEE

    Doppler-Resilient Schemes for Underwater Acoustic Communication Channels.

    Get PDF
    In this thesis we consider Orthogonal Frequency Division Multiplexing (OFDM) technique by taking into account in the receiver design the fundamental and unique characteristics of Underwater Acoustic (UWA) channels in the context of Relay-Assisted (RA) systems. In particular, OFDM technique is used to combat the problem of Intersymbol Interference (ISI), while to handle the Intercarrier Interference (ICI), a pre-processing unit is used prior to the Minimum Mean Squared Error (MMSE) frequency-domain equalization called Multiple Resampling (MR), which minimizes the effect of time variation. This pre-processor consists of multiple branches, each corresponds to a Doppler scaling factor of a path/user/cluster, and performs of frequency shifting, resampling, and Fast Fourier Transform (FFT) operation. As a suboptimal alternative to MR pre-processing, Single Resampling (SR) pre-processing is also used to reduce the effect of ICI in the system, and it consists of only one branch that performs frequency shifting, resampling, and FFT operation, which corresponds to one approximated resampling factor, that is a function of one or more of the actual Doppler scaling factors. The problem of bandwidth scarcity is considered in the context of Two Way Relaying (TWR) systems in an attempt to increase the bandwidth efficiency of the system, while the problem of fading is considered in the context of Distributed Space-Time Block Coding (D-STBC) to boost the system reliability. Also, joint TWR-D-STBC system is proposed to extract the advantages of both schemes simultaneously. Second, motivated by the fact that OFDM is extremely sensitive to time variation, which destroys the orthogonality between the subcarriers, we consider another candidate to UWA channels and competitor to OFDM scheme, namely, block-based Single Carrier (SC) modulation with Frequency Domain Equalization (FDE). We start by the Point-to-Point (P2P) systems with path-specific Doppler model and Multiple Access Channel (MAC) system with user-specific Doppler model. The Maximum Likelihood (ML) receiver in each case is derived, and it is shown that a MR pre-processing stage is necessary to handle the effect of time variation, as it is the case in OFDM. Different from OFDM, however, the structure of this pre-processing stage. Specifically, it consists of multiple branches and each branch corresponds to a Doppler scaling factor per path or per user, and performs frequency shifting, resampling, and followed by and integration. FFT operation is not a part of the pre-processor. The goal of this pre-processing stage is to minimize the level of time variation in the time domain. So, the output of the pre-processor will still be time-varying contaminated by ISI, and hence an equalization stage is required. To avoid the complexity of the optimum Maximum Likelihood Sequence Detector (MLSD), we propose the use of MMSE FDE, where the samples are transformed to the frequency domain by means of FFT operation, and after the FDE transformed back to the time domain, where symbol-by-symbol detection becomes feasible. Also, the channels are approximated such that all paths or all users have the same Doppler scaling factor, and the pre-processing stage in this case consists of only one branch and it is called SR. Having the basic structure of SC-FDE scheme, we then consider the corresponding schemes that are considered for OFDM systems, namely: TWR, D-STBC, and TWR-D-STBC schemes. A complete complexity analysis, bandwidth efficiency, and extensive Average Bit Error Rate (ABER) simulation results are given. It is shown that MR schemes outperforms its SR counterparts within a given signaling scheme (i.e., OFDM or SC-FDE). However, this superiority in performance comes at the expense of more hardware complexity. Also, for uncoded systems, MR-SC-FDE outperforms its OFDM counterpart with less hardware complexity, because in SC-FDE systems, FFT operation is not part of the MR pre-processor, but rather a part of the equalizer. Finally, under total power constraint, it is shown that TWR-D-STBC scheme serves as a good compromise between bandwidth efficiency and reliability, where it has better bandwidth efficiency with some performance loss compared to D-STBC, while it has better performance and the same bandwidth efficiency compared to TWR
    corecore