295,442 research outputs found

    Specification and Verification of Commitment-Regulated Data-Aware Multiagent Systems

    Get PDF
    In this paper we investigate multi agent systems whose agent interaction is based on social commitments that evolve over time, in presence of (possibly incomplete) data. In particular, we are interested in modeling and verifying how data maintained by the agents impact on the dynamics of such systems, and on the evolution of their commitments. This requires to lift the commitment-related conditions studied in the literature, which are typically based on propositional logics, to a first-order setting. To this purpose, we propose a rich framework for modeling data-aware commitment-based multiagent systems. In this framework, we study verification of rich temporal properties, establishing its decidability under the condition of “state-boundedness”, i.e., data items come from an infinite domain but, at every time point, each agent can store only a bounded number of them

    Resource-Aware Junction Trees for Efficient Multi-Agent Coordination

    No full text
    In this paper we address efficient decentralised coordination of cooperative multi-agent systems by taking into account the actual computation and communication capabilities of the agents. We consider coordination problems that can be framed as Distributed Constraint Optimisation Problems, and as such, are suitable to be deployed on large scale multi-agent systems such as sensor networks or multiple unmanned aerial vehicles. Specifically, we focus on techniques that exploit structural independence among agents’ actions to provide optimal solutions to the coordination problem, and, in particular, we use the Generalized Distributive Law (GDL) algorithm. In this settings, we propose a novel resource aware heuristic to build junction trees and to schedule GDL computations across the agents. Our goal is to minimise the total running time of the coordination process, rather than the theoretical complexity of the computation, by explicitly considering the computation and communication capabilities of agents. We evaluate our proposed approach against DPOP, RDPI and a centralized solver on a number of benchmark coordination problems, and show that our approach is able to provide optimal solutions for DCOPs faster than previous approaches. Specifically, in the settings considered, when resources are scarce our approach is up to three times faster than DPOP (which proved to be the best among the competitors in our settings)

    Efficient Communication and Coordination for Large-Scale Multi-Agent Systems

    Get PDF
    The growth of the computational power of computers and the speed of networks has made large-scale multi-agent systems a promising technology. As the number of agents in a single application approaches thousands or millions, distributed computing has become a general paradigm in large-scale multi-agent systems to take the benefits of parallel computing. However, since these numerous agents are located on distributed computers and interact intensively with each other to achieve common goals, the agent communication cost significantly affects the performance of applications. Therefore, optimizing the agent communication cost on distributed systems could considerably reduce the runtime of multi-agent applications. Furthermore, because static multi-agent frameworks may not be suitable for all kinds of applications, and the communication patterns of agents may change during execution, multi-agent frameworks should adapt their services to support applications differently according to their dynamic characteristics. This thesis proposes three adaptive services at the agent framework level to reduce the agent communication and coordination cost of large-scale multi-agent applications. First, communication locality-aware agent distribution aims at minimizing inter-node communication by collocating heavily communicating agents on the same platform and maintaining agent group-based load sharing. Second, application agent-oriented middle agent services attempt to optimize agent interaction through middle agents by executing application agent-supported search algorithms on the middle agent address space. Third, message passing for mobile agents aims at reducing the time of message delivery to mobile agents using location caches or by extending the agent address scheme with location information. With these services, we have achieved very impressive experimental results in large- scale UAV simulations including up to 10,000 agents. Also, we have provided a formal definition of our framework and services with operational semantics

    General Knowledge Supported News Analysis for Portfolio Risk Prediction

    Get PDF
    In the portfolio risk management domain, traditional risk value is just measured by the historical price information. While in the current turmoil financial market, more and more investors are also aware of the importance of real-time market information, such as news about interest rates changes and unemployment, as well as the company bankruptcy, mergers and acquisitions. To make the portfolio risk prediction be sensitive to the real-time news, we propose a multi-agent based intelligent news analysis system. Compared with other news analysis systems, which are based on either domain knowledge or statistical methods, we initially integrate general knowledge in the agent reasoning process. A description logic based general knowledge mediator (DL-GKM) is designed to organize the general ontologies and instances from distributed knowledge sources, and to support dynamic knowledge loading and querying. Through experiments, we find that the DL-GKM and the intelligent news analysis system work seamlessly within the multi-agent framework

    An ontology-based representation of an agent-based controlled robotic cell

    Get PDF
    Dissertação apresentada na Faculdade de Ciência e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de ComputadoresCustomers demand for high product customization and differentiation, and short product life-cycle. As such, industries have to adapt their manufacturing systems more frequently in order to remain competitive. Changing manufacturing systems within a short period of time requires a huge effort in terms of time and money, reducing this effort would make industries more competitive. The proposed solution consists in developing an ontology-based multi-agent system to control manufacturing systems. Defining the ontology for the manufacturing system allows the control to perform its operation, and when changes arise, it is required to change the ontology so that the control became aware of the changes to control the manufacturing system. An ontology-based control allows for a smaller setup time since the control is not specific for one physical system and can be applied to different ones, therefore it reduces the effort in adapting manufacturing systems to required changes allowing industries to became more competitive. Flexibility is given by the multi-agent system that controls the physical system with the ontology. Stating this, the solution of an ontology-based control for manufacturing systems provides the required results

    A Logical Framework for the Representation and Verification of Context-aware Agents

    Get PDF
    © 2014, Springer Science+Business Media New York. We propose a logical framework for modelling and verifying context-aware multi-agent systems. We extend CTL∗ with belief and communication modalities, and the resulting logic 𝓛OCRS allows us to describe a set of rule-based reasoning agents with bound on time, memory and communication. The set of rules which are used to model a desired systems is derived from OWL 2 RL ontologies. We provide an axiomatization of the logic and prove it is sound and complete. We show how Maude rewriting system can be used to encode and verify interesting properties of 𝓛OCRS models using existing model checking techniques

    Location Awareness in Multi-Agent Control of Distributed Energy Resources

    Get PDF
    The integration of Distributed Energy Resource (DER) technologies such as heat pumps, electric vehicles and small-scale generation into the electricity grid at the household level is limited by technical constraints. This work argues that location is an important aspect for the control and integration of DER and that network topology can inferred without the use of a centralised network model. It addresses DER integration challenges by presenting a novel approach that uses a decentralised multi-agent system where equipment controllers learn and use their location within the low-voltage section of the power system. Models of electrical networks exhibiting technical constraints were developed. Through theoretical analysis and real network data collection, various sources of location data were identified and new geographical and electrical techniques were developed for deriving network topology using Global Positioning System (GPS) and 24-hour voltage logs. The multi-agent system paradigm and societal structures were examined as an approach to a multi-stakeholder domain and congregations were used as an aid to decentralisation in a non-hierarchical, non-market-based approach. Through formal description of the agent attitude INTEND2, the novel technique of Intention Transfer was applied to an agent congregation to provide an opt-in, collaborative system. Test facilities for multi-agent systems were developed and culminated in a new embedded controller test platform that integrated a real-time dynamic electrical network simulator to provide a full-feedback system integrated with control hardware. Finally, a multi-agent control system was developed and implemented that used location data in providing demand-side response to a voltage excursion, with the goals of improving power quality, reducing generator disconnections, and deferring network reinforcement. The resulting communicating and self-organising energy agent community, as demonstrated on a unique hardware-in-the-loop platform, provides an application model and test facility to inspire agent-based, location-aware smart grid applications across the power systems domain
    corecore