

UNIVERSIDADE NOVA DE LISBOA

Faculdade de Ciências e Tecnologia

Departamento de Engenharia Electrotécnica

AN ONTOLOGY-BASED REPRESENTATION OF AN AGENT-

BASED CONTROLLED ROBOTIC CELL

Ricardo N. S. Cruz Gomes

Dissertação apresentada na Faculdade de Ciência e Tecnologia da

Universidade Nova de Lisboa para a obtenção do grau de Mestre em

Engenharia Electrotécnica e de Computadores

Supervisor: José António Barata de Oliveira

Abstract

Customers demand for high product customization and differentiation, and short

product life-cycle. As such, industries have to adapt their manufacturing systems more

frequently in order to remain competitive.

Changing manufacturing systems within a short period of time requires a huge effort in

terms of time and money, reducing this effort would make industries more competitive.

The proposed solution consists in developing an ontology-based multi-agent system to

control manufacturing systems.

Defining the ontology for the manufacturing system allows the control to perform its

operation, and when changes arise, it is required to change the ontology so that the

control became aware of the changes to control the manufacturing system.

An ontology-based control allows for a smaller setup time since the control is not

specific for one physical system and can be applied to different ones, therefore it

reduces the effort in adapting manufacturing systems to required changes allowing

industries to became more competitive.

Flexibility is given by the multi-agent system that controls the physical system with the

ontology.

Stating this, the solution of an ontology-based control for manufacturing systems

provides the required results.

Preface

This thesis marks the end of 5 years of work as a university student and this journey had

the influence of several people to whom I would like to express my gratitude.

In respect to this thesis, I would like to express my gratitude to my project supervisor

M. Sc. Vladimir V. Herrera for his advices and constant guidance, then to my thesis

supervisor Prof. José L. Martinez Lastra for the opportunity of making this thesis at the

Tampere University of Technology as well as for the professors at my home university

from the Pedagogic Council of the Department of Electrotechnical Engineering of the

New University of Lisbon and also to Prof. José Barata for accepting being my thesis

supervisor at my home university, I would like also to express my gratitude to the

people of FAST lab that dealt with me everyday during its development.

Since the present has no meaning without past, I would like to thank those from the

―núcleo duro‖ (university group of friends) for their support and friendship, and also to

some friends namely: Francisco Ganhão, César Soares, Tiago Fonseca, José Lúzio,

Ruben Lino, Gonçalo Luís, Ricardo Morais and Luciano Batalha.

Finally, this was not possible without the complete support of my family to whom I

would like to express the most kind and special gratitude.

To all of you a great thank you.

Tampere, November 2009

Ricardo Gomes

Table of Contents

1. Introduction .. 1

1.1 Background ... 1

1.2 Problem definition .. 2

1.2.1 JUSTIFICATION OF THE WORK .. 2

1.2.2 PROBLEM STATEMENT ... 3

1.2.3 WORK DESCRIPTION .. 3

1.3 Outline ... 5

2. Theoretical Background .. 6

2.1 Ontology .. 6

2.1.1 DEFINING ONTOLOGY .. 6

2.1.2 REPRESENTATION OF ONTOLOGY ... 6

2.1.3 ONTOLOGY LANGUAGES ... 7

2.1.4 ONTOLOGY BUILDING ..11

2.1.5 ONTOLOGY LIFE CYCLE ...12

2.1.6 ONTOLOGIES IN THE FACTORY AUTOMATION DOMAIN12

2.2 Control Perspective ... 14

2.2.1 OVERVIEW ...14

2.2.2 CONTROL NEEDS ..15

2.3 Multi-Agent Systems ... 16

2.3.1 OVERVIEW ...16

2.3.2 STATE-OF-THE-ART ON MULTI-AGENT SYSTEMS DEVELOPMENT

METHODOLOGIES ..16

2.3.3 APPLICATIONS IN THE FACTORY AUTOMATION DOMAIN20

2.4 Agent Platforms .. 21

3. Manufacturing System Control Solution .. 24

3.1 Functional View of the Proposed Solution ... 24

3.2 Technical Architecture ... 24

3.3 The Physical Scenario ... 25

3.4 Manufacturing System Ontology ... 30

3.4.1 GENERIC DEVICE ONTOLOGY ...31

3.4.2 CONVEYOR ONTOLOGY ..35

3.4.3 DIVERTER ONTOLOGY ..37

3.4.4 TOOL ONTOLOGY ...38

3.4.5 ROBOT ONTOLOGY ...39

3.4.6 SENSOR ONTOLOGY ...44

3.4.7 THE STOPPER ONTOLOGY ...48

3.4.8 PRODUCT ONTOLOGY ...48

3.4.9 PALLET ONTOLOGY ..49

3.4.10 PRODUCTION SYSTEM ONTOLOGY ..51

3.5 Multi-Agent System .. 58

3.5.1 COMMUNICATION BETWEEN AGENTS ...59

3.5.2 LAUNCHER AGENT ...63

3.5.3 TRANSPORT AGENTS ..65

3.5.4 ROBOT AGENT ...73

3.5.5 PALLET AGENT ..75

3.5.6 EXIT HANDLER AGENT ...78

3.5.7 SENSORIAL AGENT ...79

3.5.8 MONITOR AGENT ...81

3.6 Interface to physical controller .. 83

3.7 The Solution Testbed .. 86

4. The Testbed Results ... 87

5. Conclusions and Future Work .. 95

6. Bibliography ... 97

List of Figures

Figure 1: Conceptual overview of the solution .. 2

Figure 2: OWL layers of expressivity, modified from (Martínez Lastra, Delamer and

Ubiz Lopez 2007) ... 8

Figure 3: Example of a SPARQL query .. 11

Figure 4: Example of a nRQL query, adapted from (G. &. RacerSystems 2007) 11

Figure 5: Classical approach to production control - Hierarchical, adapted from

(Bussman, Jennings and Wooldridge 2004) ... 14

Figure 6: Goal-Driven approach to production control - Cooperative, adapted from

(Bussman, Jennings and Wooldridge 2004) ... 15

Figure 7: The Gaia model, adapted from (Bussman, Jennings and Wooldridge 2004) .. 18

Figure 8: Use Case diagram .. 24

Figure 9: Solution Architecture ... 25

Figure 10: Manufacturing system's schematic ... 26

Figure 11: Manufacturing system's picture at the FAST Lab Manufacturing System ... 26

Figure 12: Service Conveyor ... 27

Figure 13: ByPass Conveyor ... 27

Figure 14: InterCell Conveyor... 28

Figure 15: Diverter.. 28

Figure 16: SCARA Robot ... 29

Figure 17: Pallet .. 29

Figure 18: Class Taxonomy of the Generic Device Ontology 32

Figure 19: Properties from Generic Device Ontology .. 33

Figure 20: Restrictions of Types class belonging to the Generic Device Ontology....... 34

Figure 21: Class Taxonomy from Conveyor Ontology .. 35

Figure 22: Added properties of the Conveyor Ontology .. 36

Figure 23: Added restrictions of Types class belonging to the Conveyor Ontology...... 36

Figure 24: Restrictions of CarryDimensions class from Conveyor Ontology 36

Figure 25: Properties and Skills individuals of the Conveyor Ontology 37

Figure 26: Class Taxonomy of the Diverter Ontology ... 38

Figure 27: Properties and Skills individuals bellonging to Diverter Ontology 38

Figure 28: Class Taxonomy of the Tool Ontology ... 39

Figure 29: Properties and Skills individuals of the Tool Ontology 39

Figure 30: Properties of the Robot Ontology ... 40

Figure 31: Restrictions of the Arm class from the Robot Ontology 40

Figure 32: Class Taxonomy from Robot Ontology .. 41

Figure 33: Restriction of the Scara class of the Robot Ontology 41

Figure 34: Restrictions of Link class of the Robot Ontology 42

Figure 35: Restrictions of Joint class of the Robot Ontology 42

Figure 36: Properties and Skills individuals of the Robot Ontology 43

file:///C:\Users\Ricardo\Documents\Thesis\Final%20Correction\Ricardo's_thesis_after_CPL.docx%23_Toc285920257

Figure 37: Class Taxonomy of the Sensor Ontology .. 45

Figure 38: Indutive sensor class restrictions of the Sensor Ontology............................ 46

Figure 39: Properties and Skills individuals of the Sensor Ontology 47

Figure 40: Properties and Skills individuals of the Stopper Ontology 48

Figure 41: Class Taxonomy from the Product Ontology .. 49

Figure 42: Class Taxonomy bellonging to the Pallet Ontology 49

Figure 43: Added properties of the Pallet Ontology ... 50

Figure 44: Added restrictions of the Pallet Ontology ... 50

Figure 45: Properties and Skills individuals of the Pallet Ontology 51

Figure 46: Class Taxonomy of the Production System Ontology 51

Figure 47: Properties of the Production System Ontology ... 52

Figure 48: Restrictions of Production System class of the Production System Ontology

 ... 52

Figure 49: Restriction of Types class added to each device‘s ontology to represent its

attached devices, from the Production System Ontology ... 52

Figure 50: Restriction to all Types classes of the devices belonging to the Production

System Ontology .. 53

Figure 51: Restriction to conveyor Types class of the Production System Ontology 53

Figure 52: Restriction to diverter class of the Production System Ontology 53

Figure 53: Individuals of the Production System Ontology .. 54

Figure 54: Referential axis of the physical system ... 55

Figure 55: Class Taxonomy of the control from the Production System Ontology 56

Figure 56: Properties for the control class of the Production System Ontology 56

Figure 57: Restrictions for the control class that belongs to the Production System

Ontology ... 56

Figure 58: Control individuals of the Production System Ontology 57

Figure 59 Schematic of the devices and respective controlling agents 57

Figure 60: UML Class Diagram of the Ontologies for Agent Communication 61

Figure 61: Activity Diagram of Launcher Agent ... 64

Figure 62: Query Specific Agent Information of the Launcher Agent 65

Figure 63: Behaviour sequence of a Transport Agent .. 66

Figure 64: Service Request from Service Responder behaviour, adapted from FIPA

Request IP .. 66

Figure 65: Query free places from Query Responder Behaviour, adapted from FIPA

Query-If IP ... 67

Figure 66: Query Shared Area from Query Responder, adapted from FIPA Query-If IP

 ... 68

Figure 67: Query pallets‘ information interaction from Query Responder, adapted from

FIPA Query-If IP .. 69

Figure 68: Behaviour‘s Activity Diagram of Receive Informs 70

Figure 69: Activity Diagram of the Conveyor Agent depicting the delivery of a pallet to

the following Transport agent ... 71

Figure 70: Behaviour‘s Action Diagram of the Receive Informs from agent Decision

Point ... 72

Figure 71: Behaviour sequence of Robot Agent .. 73

Figure 72: Service Responder Interaction of the Robot Agent, adapted from FIPA

Request IP .. 74

Figure 73: Receive Informs Activity Diagram of the Robot Agent 75

Figure 74: Behaviour of Pallet Agent .. 76

Figure 75: Get next Manufacturing Process Activity Diagram of the Pallet Agent 77

Figure 76: Receive Informs Activity Diagram of the Pallet Agent 78

Figure 77: Behaviours of Exit Handler Agent .. 78

Figure 78: Receive Informs Activity Diagram of the Exit Handler Agent 79

Figure 79: Behaviours of the Sensorial Agent ... 80

Figure 80: HeartBeat Signaling Activity Diagram of the Sensorial Agent 80

Figure 81: Get sensor info Activity Diagram of the Sensorial Agent 81

Figure 82: Activity Diagram of the Monitor Agent .. 81

Figure 83: Heart Beat Activity Diagram of the Monitor Agent 82

Figure 84: Monitoring Activity Diagram of the Monitor Agent 82

Figure 85: Interaction between agents and the physical system.................................... 83

Figure 86: Log Window of the Launcher Agent operation ... 87

Figure 87: Log Window of the Launcher Agent launching a Pallet Agent 87

Figure 88: Log Window of a Pallet Agent running .. 88

Figure 89: Content of a Service Request Message ... 88

Figure 90: Log Window of the ByPass Conveyor 2 Agent running.............................. 89

Figure 91: Log Window of the Agent Inter Cell Conveyor 2 running 90

Figure 92: Log Window of the Agent Service Conveyor 2 running 1 90

Figure 93: Log Window of the Agent Service Conveyor 2 running 2 90

Figure 94: Log Window of the Agent Decision Point running 91

Figure 95: Log Window of the Agent Decision Point 2 launching an Exit Handler

Agent .. 91

Figure 96: Log Window of the Exit Handler Agent ... 92

Figure 97: Log Window of robot initialization of the Robot Agent 92

Figure 98: Log Window of a start operation of the Robot Agent.................................. 93

Figure 99: Log Window of an end operation of the Robot Agent 93

Figure 100: Log Window of Pallet agent when operations completed 93

Figure 101: Log Window of the Sensorial Agent running .. 94

Figure 102: Log Window of the Monitor Agent receiving messages............................ 94

Figure 103: Log Window of the Monitor Agent subtituting Sensorial Agent 94

List of Tables

Table 1: Comparison between reasoners Pellet and RacerPro. 9

Table 2: Comparison between query languages, nRQL and SPARQL. 10

Table 3: Comparison of ontologies. ... 13

Table 4: Comparison between Java-based agent platforms .. 21

Table 5 Device's status memory mapping area .. 84

Table 6 Actuating memory mapping area .. 84

Table 7 Sensing and Actuating memory maping area of RFID 85

Acronyms

ATP Agent Transfer Protocol

CORBA Common Object Request Broker Architecture

DAML DARPA Agent Mark-up Language

DARPA Defence Advanced Research Project Agency

DL Description Logics

DLL Dynamic-Link Library

E2PROM Electrical and Erasable Programmable Read Only Memory

FIPA Foundation for Intelligent Physical Agents

IIOP Internet Inter-ORB Protocol

IP Interaction Protocol

JADE Java Agent Development Framework

JMI Java Metadata Interface

JNDI Java Naming and Directory Interface

KQML Knowledge Query and Manipulation Language

MAS Multi-Agent System

MTP Message Transfer Protocol

nRQL New Racer Query Language

OIL Ontology Interchange Language

OWL Web Ontology Language

OWL-DL Web Ontology Language Description Logics

PLC Programmable Controller

QL Query Language

RDF Resource Description Framework

RFID Radio Frequency Identification

RMI Remote Method Invocation

SCARA Selective Compliant Assembly Robot Arm

SHOE Simple HTML Ontology Extensions

SPARQL Simple Protocol and RDF Query Language

SODA Societies in Open and Distributed Agent

TCP Transmission Control Protocol

UDP User Datagram Protocol

URI Uniform Resource Identifier

W3C World Wide Web Consortium

XML eXtensible Mark-up Language

XOL XML-Based Ontology Exchange Language

1. Introduction

This thesis presents a solution for modelling and controlling manufacturing systems. In

respect to modelling this thesis presents an approach to create the knowledge that

represents manufacturing systems, as well as its control; in terms of controlling

manufacturing systems this thesis provides a solution based in a distributed, reactive,

autonomous, social and proactive controller, independent of the physical manufacturing

system. For the control to actuate and sense the physical system it requires an interface

to use it.

In this first chapter, the description and justification of the developed work is presented

and organized in three sub-chapters. First sub-chapter, background, where the

motivation for the work is described, then, the second sub-chapter, problem statement,

where the work is justified and stated. The last sub-chapter presents thesis outline.

1.1 Background

After 1950, the demand for products increased at a relatively high speed that led to a

situation in which it was difficult to satisfy the product demand. This need for a faster

product supply made the industry evolve towards a mass production paradigm, where

automated production lines provided answer to the product demand at lower prices;

however automation at that time was still very limited.

In the decade of 1980, the general demand for products decreased and thus it gave the

possibility to raise the quality of the produced products. This led to some new concepts

in the production field such as Quality Management and Process Control. In the 1990‘s,

industries become more competitive in terms of product quality, flexibility, delivery and

agility as predicted by a group of scholars from Iacocca Institute of the Lehigh

University in USA in 1991. They predicted that agile manufacturing is needed to make

industry competitive and that was already happening in the field (Yusuf, Sarhadi and

Gunasekaran 1999).

At the beginning of the present century, industry‘s market changed from vendor‘s

oriented perspective to customer‘s oriented. In this change, customers demanded

product customization which aroused more competition between vendors. For

companies to respond accordingly and do not loose competitiveness in their market

some changes had to come up. Reduction of product life cycle, reduction of time to

market and increase in product differentiation at reduced costs are the factors that can

make companies more competitive in their market. To accomplish that, companies have

Introduction 2

to introduce changes to current products or newer ones with a higher frequency, since

these are of possible customization, they are more complex from the production point of

view. Consequently, manufacturing systems need to evolve towards more adaptable

manufacturing systems in order to give answer to the demand (Bussman, Jennings and

Wooldridge 2004).

1.2 Problem definition

1.2.1 Justification of the work

For industries to become more competitive require high adaptability to changes in their

environment and doing so makes them agile. In order to become agile, industries‘

products need to adapt according to customer needs or wishes and to make this possible

manufacturing systems have to adapt its configuration to the changes that occur

frequently. Until now, this reconfiguration is time consuming and cost ineffective due to

the required amount of programming and reconfiguration of manufacturing systems

(Kidd 1995). The limitations of these systems are the lack of modularity from high

levels (software and control level) which make systems less flexible due to the difficulty

in adapting to low level (device level) changes, and the lack of modularity from low

levels make integration and upgrading of components more complex.

In order to cope with these problems, manufacturing systems should have a smaller

setup time and should also permit easy integration and reusability of existing systems

(Mehrabi, Ulsoy and Koren 2000). Smaller setup time, easier integration and reusability

of existing systems requires the control domain to define boundaries to become modular

and independent of the manufacturing system. With a specification of the manufacturing

system, used to perform control, it allows the definition of a modular and independent

control of the system. A system specification is the knowledge representation of the

manufacturing system, therefore different systems have different specifications. The use

of knowledge representation to control manufacturing systems makes integration and

reusability of systems easier (Figure 1 presents it).

Figure 1: Conceptual overview of the solution

System's Specification

Software/Control

Manufacturing System

Introduction 3

1.2.2 Problem statement

Currently manufacturing systems are limited in terms of providing control in a generic

way, i.e., independent of the physical system. One way of providing generic control to a

manufacturing system is through the use of a control that is specification-based, i.e. the

control is not focused in one system, is focused in a system specification which allows

the control to be applied to different systems.

This thesis provides a solution to control a manufacturing system, it ranges from the

higher level, the knowledge representation of the manufacturing system to the control

level where entities perform the control of the manufacturing system based on the

available knowledge. However there is no such standard way for those entities to

perform the control as well as a standard way for developing the knowledge

representation of the system.

1.2.3 Work description

1.2.3.1 Objectives

The following objectives have been considered during the development of this thesis

work:

1. Design and develop a knowledge-based representation of a manufacturing

system.

2. Integrate the knowledge-base representation with the control entities of the

manufacturing system.

3. Design and develop the control of the manufacturing system based on the

knowledge provided by the representation of the system.

4. Integrate the controlling entities with the physical manufacturing system.

5. Assess the developed work with an automated system execution based on the

knowledge representation.

1.2.3.2 Solution

The proposed solution consists of:

 A knowledge representation of each device where together represent the

manufacturing system.

 Available knowledge to any decision making process of the control entity.

 Distributed and autonomous control entities applied to each device of the

manufacturing system, which interact with each other to achieve the

manufacturing objectives based in a provided knowledge representation.

For the task of knowledge representation, the choice of the modelling language has

crucial effects for the implementation of the ontology. The language should have

several characteristics such as: expressiveness, inference mechanisms, language support

tool, permit knowledge exchange between applications, allow integration for

Introduction 4

representing the knowledge through the internet, and also the existence of translators

that have minimum losses. The Web Ontology Language - Description Logics (OWL-

DL) was selected since it fulfils the aforementioned characteristics and therefore it is the

most suitable solution for this task.

The control has to be robust, and for that a distributed option minimizes risks, since a

failure affects a device and not the whole system. Consequently, the control should be

assigned independently to each device, requiring interactions among them to control the

manufacturing system. To achieve that, the control has to be autonomous, to sense and

act on its environment, it also has to be reactive, and to trigger the system and achieve

manufacturing goals, it also has to be proactive. The control that fulfils the previous

mentioned characteristics is the Agent (López Orozco and Martínez Lastra 2007).

The platform that supports the development of Agents must be compliant with

standards, since The Foundation of Physical Agents (FIPA) is the entity responsible for

the promotion of Agent standards, the selected platform must be FIPA compliant. Java

Agent Development Framework (JADE) was selected since it is FIPA compliant.

1.2.3.3 Assumptions and Limitations

In order to develop the knowledge-based representation and the controlling scheme of

the manufacturing system, the concepts of scalability and re-usability should be

considered. Scalability since the domain of manufacturing systems can range from

small production system to a large-scale production system and re-usability to avoid

repeating developed work. Regarding the controlling scheme, the concept of robustness

should also be applied so that, in case of failure, the system is able to continue its

normal operation by using alternative modules of control when one controlling module

fails. In terms of processing capacity, the paradigm of ubiquitous computing should be

considered where each controller consists of an independent and limited processing

unit.

This thesis applies to manufacturing systems where each device can be controlled

independently and are a separate physical module, this way device boundaries are well

defined. It is worth emphasising that this thesis apply to modules of devices where

device‘s boundaries are not well defined and the control of one device physically

implies also the control of the other. Due to that, the control cannot be applied to each

device therefore not allowing the control of a device to be independent of the others.

Introduction 5

1.3 Outline

This thesis is organized into five chapters, namely Introduction, Theoretical

Background, Solution, Results, Conclusions and Future Work.

Chapter 2 presents the theoretical background of the technologies used in terms of the

state-of-the-art and also with the methodologies that gave support for the solution of this

thesis. Chapter 3 presents the designed and developed solution, where first the modelled

knowledge base representation is presented, followed by the developed control of the

manufacturing system. Chapter 4 presents the obtained results regarding the case

scenario in which the solution was applied. Chapter 5 presents the conclusions of this

thesis and points out future directions regarding this thesis.

2. Theoretical Background

This chapter describes the paradigms, theories and methodologies used in this work and

it is organized in four sub-chapters: Ontology, Control Perspective, Multi-Agent

Systems and Agent Platforms.

Sub-chapter 1 presents ontology definition, formal language and several examples that

apply in the manufacturing domain. Sub-chapter 2 presents an overview of

manufacturing systems and manufacturing control needs. Sub-chapter 3, presents an

overview and a review of the state-of-the-art of the methodologies for Multi-Agent

Systems (MASs), several implementation examples of MAS in the domain, and finally

existing agent platforms are presented.

2.1 Ontology

2.1.1 Defining ontology

An ontology is the formalization of knowledge. Gruber defines an ontology as ―a

specification of a conceptualization‖ where a conceptualization is an abstract simplified

view of the world that is intended to represent (Gruber 2007). A database, a program or

a conceptualization are not an ontology, reasoned by an internal sharing of some

formats defined a priori and a conceptualization is only a vision or concept that is not

specified thus alone is not an ontology.

An ontology is a formal representation of knowledge (Martínez Lastra, Delamer and

Ubiz Lopez 2007), a body of knowledge describing some particular domain using a

vocabulary representation.

2.1.2 Representation of ontology

An ontology is a representation described in an organized way by several components;

these are classes, relations, functions or other objects. Humans represent an ontology

through sets of declarative statements in natural language, however machines are not

able to understand it and thus, it requires a formal language to allow machines to

interpret it.

Specifying the vocabulary of an ontology makes the knowledge understood by both

human and machines. Nonetheless, it is of relevance that an ontology is not ―active‖

since it cannot be run as a program, it only represents the knowledge from a specific

domain (Gasevic, Djuric and Devedzic 2006).

Theoretical Background 7

Ontology makes software more efficient, adaptive and intelligent, among some other

reasons, the following are of relevance:

 Allow people or software to share knowledge from domains.

 Make domain assumptions explicit.

 Allow re-use and analyse of domain knowledge.

Ontology is not only a representational model, with the addition of reasoning and

inference capabilities new knowledge emerge and is added to the domain (IBM 2006).

An Ontology can be classified into two main types, either a two-dimensional

categorization based on their internal structure and the subject of conceptualization, or a

categorization based on their level of dependence on a particular task or point of view.

Classifications can also range in terms of the subject of conceptualization: knowledge

representation ontology, general or common ontology, top-level or upper-level

ontology, domain ontology, domain-task ontology, method ontology, application

ontology.

General or common ontology specifies the knowledge that can be reused across

domains; top-level or upper-level ontology gives a general description of concepts and

provides a framework to be specialized for different domains; domain ontology

specifies at a generic level tasks, activities and processes which can be reused across

domains, usually as a specialization of a top-level ontology; domain-task ontology gives

a specification for tasks regarding a particular application domain; method ontology

specifies a problem-solving or reasoning methods to achieve given tasks and lastly

application ontology gives a specification regarding application dependent concepts by

extending existing upper-level and task ontologies by reusing concepts defined in

general ontologies (Martínez Lastra, Delamer and Ubiz Lopez 2007). Other

classifications can also be found in related literature

2.1.3 Ontology Languages

There are different types of languages and the ones used nowadays appeared with the

boom of the internet and thus are called Web-based ontology languages or ontology

mark-up languages. The syntax of these languages is based in eXtensible Mark-up

Language (XML-W3C 1998) and the more known ones are Simple HTML Ontology

Extensions (SHOE 1999), XML-Based Ontology Exchange Language (Karp, Chaudhri

and Thomere 1999), Resource Description Framework (RDF) and RDF Schema (RDF-

W3C 1999), Ontology Interchange Language (OIL) (Horrocks, et al. 2008), Defence

DARPA Advanced Research Project Agency Agent Mark-up Language + OIL (DAML-

OIL-W3C 2001) and Web Ontology Language (OWL-W3C 2004). The ones that are

supported nowadays are RDF, RDF Schema and OWL.

The knowledge representation paradigms that support ontology languages were based in

First Order Logics, frames combined with First Order Logics and Description Logics.

Theoretical Background 8

Description Logics (DL) emphasises by its logic-based semantics and computational

properties for reasoning systems (Corcho, Fernández-Lopez and Gómez-Pérez 2006).

The selection of the appropriate language is of high importance to avoid problems

during the development process of the ontology and during its application. Some

characteristics that an ontology language must have are expressiveness, inference

mechanisms, a language support tool, ontology exchange and integration for

applications and web (HTML, XML), and also existence of translators with minimum

losses.

2.1.3.1 OWL

The Web Ontology Language (OWL-W3C 2004) is a recommendation of the World

Wide Web Consortium. OWL is based on XML, XML Schema, RDF and RDF Schema.

OWL-Full

OWL-DL

OWL-Lite

RDF Schema

RDF

XML Schema

XML

Figure 2: OWL layers of expressivity, modified from (Martínez Lastra, Delamer and Ubiz Lopez

2007)

XML defines the syntax structure of the document, XML Schema defines the structure

and the datatype restrictions of the XML document, RDF represents the data model of

objects or resources and the relationships among them, and RDF Schema gives the

vocabulary to describe properties and classes of RDF resources. On the top of this

hierarchy lays the OWL language which has three sublanguages that vary in terms of

expressiveness, OWL-Lite, OWL - Description Logics (OWL-DL) and OWL-Full.

Figure 2 presents the OWL layers and the relation with RDF and XML.

OWL-Lite is the less expressive sub-language which provides a classification hierarchy

with simple constraints that permit an easier implementation of inference engines

compared to other richer languages. OWL-DL adds maximum expressiveness allied to

computational completeness, i.e., all the conclusions are computable guaranteed. OWL-

Full like OWL-DL adds all the characteristics of the previous language subset and

enhances expressiveness possibilities, however there is a price to pay for all this added

expressiveness, computational complexity is highly increased (OWL-W3C 2004).

Stating this and based in the characteristics for choosing a language presented in the

sub-chapter 2.1.3, the chosen language for modelling in the scope of factory automation

and in this thesis is OWL-DL.

Theoretical Background 9

2.1.3.2 Inference Engines

An inference engine is a so called ―black box‖ that is used to infer types and also to get

new knowledge from a developed ontology, it provides consistency and taxonomy
1

checking, and it can also query the knowledge inside the ontology.

These are also known as reasoners and they complement the ontology editor with the

offered operations. For the ontology to be queried it requires a query language and in

the following sub-chapter two are presented.

There are several reasoners available; two examples are Pellet and RacerPro. Pellet is a

free open-source Java-based reasoner, and RacerPro is a commercial lisp-based

reasoner, both are OWL-DL aware engines which provide support for description logic-

based query languages. RacerPro is mainly developed to provide support for its

proprietary query language nRQL although RacerPro supports Simple Protocol and

RDF Query Language (SPARQL) in a limited scope. Table 1 presents a comparison

between the features of these two inference engines.

Table 1 was developed based on information present in (ZHANG 2005), (SPARQL-

W3C 2008), (Sirin, Parsia and Grau, et al. 2007), (Clark&Parsia 2004), (G. &.

RacerSystems 2007) and (Haarslev, Möller and Wessel 2004).

Table 1: Comparison between reasoners Pellet and RacerPro.

Features RacerPro Pellet

Licence Commercial Open-Source

Implementation Lisp Java

Query Language (QL) nRQL SPARQL

QL Syntax Complex Simple

OWL-DL aware Yes

DL-based QL Yes Yes (SPARQL-DL)

Interfaces

nRQL parser
SPARQL parser

RacerPorter

Jena
SPARQL (AllegroGraph)

OWLAPI adaptor
OWL API

OWL link (DIG interface)

JRacer
DIG

LRacer

Regarding Pellet, it provides full support for the SPARQL query language which is a

recommendation from the W3C; its support for a description logic-based query

1 For the scope of this thesis Taxonomy is in respect to classification naming.

Theoretical Background 10

language is based on the full implementation of the subset SPARQL-DL of the

SPARQL language.

Pellet is a free-open-source reasoner, it provides support for a non proprietary query

language and is simple to use, these characteristics makes it the selection as the

inference engine for the scope of this thesis.

2.1.3.3 Query Languages

A query language is a language used to query a database or an information system in

order to get knowledge or data.

SPARQL

SPARQL (SPARQL-W3C 2008) is a query language for RDF and it is a

recommendation of W3C. It has capabilities for querying, value testing and constraining

queries to a RDF graph source (node graph where nodes are connected with relations),

its queries consist in triple patterns, conjunctions, disjunctions and optional patterns.

Besides that, SPARQL can be used across different data sources and its query results

can be organised in result sets or in a RDF graph.

SPARQL-DL

The query language SPARQL-DL is an extension to SPARQL which adds the

possibility to query the expressiveness of an OWL-DL source in a more satisfactory

way (Sirin and Parsia 2007). This is a more expressive language when comparing to

other existing description logics query languages and it is based in OWL-DL semantics.

The added features associated with this query language makes it a valuable choice when

deciding which query language to use since other query languages are mainly developed

to query RDF graphs thus those do not satisfy when querying OWL-DL. Table 2

presents a comparison between two description logics query languages.

Table 2: Comparison between query languages, nRQL and SPARQL.

Features SPARQL nRQL

Proprietary No Yes

DL-based QL
Yes(SPARQL-

DL)
Yes

QL Syntax Simple Less Simple

Queries Tbox/Abox/Rbox Abox/Tbox

As previously mentioned, nRQL is a proprietary query language for RacerPro and is a

description logics-based query language (Kaplunova, Möller and Wessel 2007);

however its syntax has a strong mathematical base with logical basis which makes it

Theoretical Background 11

less simple (Zhang, et al. 2007), on the other hand, SPARQL-DL is not proprietary and

its syntax is simple.

Since the description logic-based query language SPARQL-DL is simple and not

proprietary, it was selected for the scope of this thesis.

Figure 3 and Figure 4 present an example of a query to get all the siblings in a family

ontology. Siblings have common parents and the parents are related with their children

by means of the property hasChild in the ontology.

PREFIX fam:< http://www.owl-ontology.com/FamilyOntology.owl#>
SELECT ?x ?y
WHERE{?z fam:hasChild ?x.

 ?z fam:hasChild ?y}

Figure 3: Example of a SPARQL query

 (retrieve (?x ?y)
(and (has-child ?z ?x)

 (has-child ?z ?y)))

Figure 4: Example of a nRQL query, adapted from (G. &. RacerSystems 2007)

?x and ?y are the resulting variables, the siblings, and ?z is an auxiliary variable used to

relate the siblings by means of their parents and is not part of the result.

2.1.4 Ontology Building

A general methodology is presented to implement an ontology using OWL-DL and it

consists of the following steps (Martínez Lastra, Delamer and Ubiz Lopez 2007):

1. Determination of the domain and scope of the ontology to acquire the necessary

knowledge of the domain.

2. Reusing existing ontologies consist of reusing already developed ontologies on

an ontology and for that several open-source communities have developed

ontologies and published them online through libraries (ProtégéWiki 2006),

wikis and also in a semantic web search engine (olp.dfki.de s.d.) (UMBC 2006).

3. Use reliable support for the taxonomy like standards, laws and regulations,

glossaries from professional or industrial associations, technical publications,

books, and also dictionaries or encyclopedia.

4. Define classes and a class hierarchy according to the third step. Class hierarchy

is established through classes, sub-classes, sub-sub-classes and so on, where the

OWL notation specifies that the top-level classes are the super-classes and any

class that has a sub-class is also defined as a super-class; classes that are at the

same level are considered siblings.

5. Define classes properties. Properties introduce the required expressiveness for

the reasoning capabilities, since it creates relations between classes and

Theoretical Background 12

datatypes. Properties are inherited to subclasses and in OWL there are two types

of properties: object properties and datatype properties. Object properties relate

individuals from classes and datatype properties relate individuals from a class

to a datatype value. Domain and range of a property define the classes in which

individuals are linked. The individuals from a class are specified in the domain

classes and the individuals to, are indicated by the range classes. Object

properties have also other characteristics like functional, functional inverse,

inverse and transitive. Datatype properties can be functional or not, the range of

datatype properties specify the datatype value and in terms of restrictions the

allowed values that apply to this type of properties is the definition of the

allowed values for the property. Properties can also be organized in a hierarchy

and in this way it enhances asserting and querying. With the addition of more

sub-properties it is possible to get more detailed information from the ontology

thus sub-properties permit a narrower classification.

6. Create instances and individuals which represent the objects of interest in the

domain.

2.1.5 Ontology Life Cycle

Developing an ontology is a step by step process which starts by getting the knowledge

from the domain of interest, then check existing ontologies from the domain taking

advantage of ontology reusability. In order to formalize this knowledge the appropriate

ontology language must be chosen and after development, comes the maintenance phase

which consists in updating the ontology in order to be continuously used, also merging

more ontologies contributes to the expansion of knowledge in the modelled domain.

2.1.6 Ontologies in the Factory Automation Domain

Currently there are some ontologies that can be used within the domain of factory

automation, such as:

 DOLCE Ontology (Descriptive Ontology for Linguistic and Cognitive

Engineering) is an ontology for generic engineering purpose and it can be used

for the factory automation domain, although this ontology was not developed for

the factory automation domain (Masolo, et al. 2003).

 The functional knowledge of manufacturing processes (Mizoguchi and Kitamura

2000).

 MASON ontology which models three concepts: entities, operations and

resources (Lemaignan, et al. 2006).

 OntoMAS is intended to design modular assembly systems and is presented

under the concepts of product, assembly process, assembly equipment and

structure definition (Lohse, Ratchev and Barata 2006).

Theoretical Background 13

 MKS (Manufacturing Knowledge System) uses the concepts of process,

equipment, facilities, and operational procedures to represent the domain (Pan,

Tenenbaum and Glicksman 1989).

 Ontology for information exchange among controlling entities (Mönch and

Stehli 2004) (Pouchard, Ivezic and Schlenoff 2000)

Table 3 presents a comparison between the previous ontologies in terms of the

modelling concepts and it is possible to verify that for most of the ontologies that can

model more concepts are not domain specific, i.e. the ontology was not developed

focused only in the factory automation domain. Based on this, developing the

knowledge makes it a very hard task. On the other side, ontologies that are domain

specific, i.e. were developed for the factory automation domain have limitations,

whether it lacks representing functionality, process, the system as a whole or the control

associated to the physical system.

Stating this, it is required an ontology which models functionality, processes, devices,

control, and through the combination of modules (devices) represent the complete

system, and at the same time are domain specific, i.e. focused in factory automation.

Table 3: Comparison of ontologies.

Represent

F
u

n
ct

io
n

a
li

ty

P
ro

ce
ss

D
ev

ic
e

M
o
d

u
la

r

D
o
m

a
in

 s
p

ec
if

ic

D
o
m

a
in

 g
en

er
a
l

M
o
d

u
le

s
to

g
et

h
er

re
p

re
se

n
t

sy
st

em
 a

s

a
 w

h
o
le

C
o
n

tr
o
l

DOLCE yes yes yes Yes no Numerous yes yes

OntoMAS no yes yes Yes yes No no no

Mizoguchi and

Kitamura 2000
yes no yes Yes yes No no no

MASON yes yes yes Yes no Yes yes yes

MKS no yes yes yes yes No no no

Mönch and Stehli

2004
no yes limited yes yes No limited yes

Pouchard, Ivezic

and Schlenoff 2000
no yes limited yes yes No no yes

Theoretical Background 14

2.2 Control Perspective

2.2.1 Overview

In order to cope with the adaptability of industry shop floor, the control scheme should

have a plan that performs accordingly to classical methods, use a hierarchical and

schedule-driven approach where the higher hierarchies provide instructions or

scheduled operations to the lower and those act upon accordingly. Thus there is only

minimal feedback and exchange of information at the same level in all processes, this

means that when a problem occurs the entire system has to be rescheduled being

detected at the next scheduling cycle. Figure 5 presents the model of the explained

production control. This model only works if there are no problems during operation

time, if any problem arises the controllers cannot respond, since the schedule or plan is

made in an optimal way, i.e. all resource utilization is maximized to optimally to reduce

costs. Thus there is no way for controllers to act upon a problem without interfering

with neighbouring controllers operation, resulting in a cascade interfering effect in the

hierarchy.

Scheduling

System

Control

Controller

Resource

Controller

Resource

System

Control

Controller

Resource

Controller

Resource

Production Program

Schedule Distribution

Local Rescheduling

Material Flow

Figure 5: Classical approach to production control - Hierarchical, adapted from (Bussman,

Jennings and Wooldridge 2004)

An alternative production control model consists in giving more autonomy to the device

controllers, hence controllers are able to make better decisions according to the present

state, in case of failure they can also act upon due to their autonomy. This approach is

based on goal-driven production control in which each controller acts upon

accomplishing its assigned goal. To accomplish goals, controllers have to co-operate

with others in order to achieve the production goal. Since controllers are autonomous,

there is a need for distributing the control since it is not centralised anymore. The main

Theoretical Background 15

schedule can be divided by into sub-schedules and deliver them to each controller unit.

Figure 6 presents the model of the production program explained before.

This model not only provides a scalable control but also makes the system robust to

failures and easily adapt to changes. As simply as changing the goal of the production

plan the system changes accordingly and make it evolve in the right direction. Thus,

applying this scheme in the industrial level provides companies the capability of having

a flexible production system that supports smaller product life cycles and highly

customized products.

Scheduling

System

Control

Controller

Resource

Controller

Resource

System

Control

Controller

Resource

Controller

Resource

Production Program

Goal Negotiation

Local Decision

Making

Material Flow

Co-ordination

Figure 6: Goal-Driven approach to production control - Cooperative, adapted from (Bussman,

Jennings and Wooldridge 2004)

2.2.2 Control Needs

The previous production control model, requires being distributed and not centralised,

cope with environment changes and act upon, interact proactively with other controllers

to achieve goals. Listing these characteristics results:

1. Distributed

2. Reactive

3. Autonomous

4. Proactive

5. Social

A controller with the aforementioned characteristics is an Agent (López Orozco and

Martínez Lastra 2007). Proactive stands for its own initiative in performing operations,

reactive for its reactions to environment events, social because it has the capability of

interacting with other agents and autonomous since it manages to achieve its own goals.

Theoretical Background 16

2.3 Multi-Agent Systems

2.3.1 Overview

Computer hardware developed significantly in the last decade at reduced price came

along. Due to these facts and specially the price factor, computing has gone into places

and devices that were unthinkable just a few years ago, thus we are living towards a

new computing paradigm, the ubiquitous computing which is characterized by

processing capacity everywhere. With processing capacity everywhere, the possible

abstraction level is higher on control systems, making them become more intelligent. Of

relevance is that due to the ubiquitous paradigm, each device has its own controller with

processing capacity which leads to a distributed way of computing (Becta 2007).

One thing that needs to be changed towards the future is the machine-oriented view of

programming to a more human abstract view, like concepts and metaphors since having

a good evolution in terms of hardware is not enough, it is necessary to use software

paradigms that go in the same direction. As computer systems evolve, there is a need for

them to be controlled towards our interests while interacting with other systems or

users. However, computer hardware has evolved towards distributed systems but

implementing the previous paradigms is still not a simple task. Joining these two

concepts means that systems and users with different goals need to interact in order to

achieve goals. One way of doing it is by means of cooperation and agreements, the

same way we, humans, do it in everyday life.

Tools for developing distributed computing are already developed but tools that model

our interest and allow for interaction with other systems or users in a distributed

environment are a relatively recent research topic and are known by Multi-Agent

Systems.

A Multi-Agent System is an environment in which agents interact with each other in

order to achieve goals. These interactions are typically message exchange supported by

a computer network infrastructure. To achieve goals, agents in this environment have to

cooperate, coordinate and negotiate with other agents similarly to the way humans do it

(Wooldridge 2002).

As explained before, agents are reactive, autonomous, proactive and social, the issue is

how to develop a control with agent characteristics (Bussman, Jennings and Wooldridge

2004).

2.3.2 State-of-the-art on Multi-Agent Systems Development

Methodologies

There are several proposed methodologies within the scope of Multi-Agent Systems,

however only some of them are relevant for the development of this thesis.

Theoretical Background 17

Some of the identified methodologies, relevant for the scope of this thesis, are the

methodology of Kinny and Georgeff, the GAIA methodology and its extensions, and an

Agent-Oriented methodology by Elammari and Lalonde due to the representation of the

concepts of roles, responsibilities, services and interactions.

2.3.2.1 Kinny’s and Georgeff methodology

Analysing responsibilities leads to the identification of services which agents can

provide and the authors proposed a methodology divided in internal and external

perspectives.

The external perspective models purpose, responsibilities, services and interactions of

an agent; the internal perspective is based on specific agent architecture and models

beliefs, goals and plans.

The external outlook is composed by two models that are independent of the

architecture used for the internal outlook.

 An agent model - describes the hierarchical relationship among different abstract

and concrete agent classes.

 An interaction model - describes the responsibilities of an agent class, the

services it provides, the interactions it engages in, and the control relationships

between the agent classes.

The steps towards the analysis of external models are:

1. Identify roles in the application domain and elaborate an agent class hierarchy.

2. For each role, identify the associated responsibilities and the services provided

to fulfil those responsibilities and decompose agent classes to the service level.

3. For each service identify the interactions associated with the provision of the

service, the speech acts required for those interactions and their information

content.

4. Identify events and conditions to be considered, actions to be performed and

other information requirements.

5. Determine the control relationships between agents.

6. Refine the agent hierarchy and the control relationships.

Agent identification is guided by the identified roles, however these are not completely

defined before the roles have been decomposed to the service level. Hence system

structure can be optimized due to the reorganization of the agents at the service level.

During or after this phase, each agent is modelled in terms of the goals it is intended to

achieve, the beliefs it may adopt and the plans to achieve the goals (Kinny and Georgeff

1997).

Theoretical Background 18

2.3.2.2 The GAIA methodology

The GAIA methodology proposes an analysis and design of agent systems based on the

abstraction of roles and responsibilities, it also considers social and agent levels without

assuming any specific agent architecture.

The agent based system is modelled in terms of agent roles where each role is

characterised by three attributes: responsibilities, permissions, and protocols. The

responsibilities of a role define its functionality or what it is supposed to do; the

permissions of a role define the allowed resources to carry out a role, and the protocols

of a role define the interaction of agents in order to accomplish their goals.

To create the role models, first identify the roles in the system, then for each role

identify and document the associated protocols and finally develop the role models

based on the protocol model. Afterwards, the created models are transformed into three

types of models: an agent, a service and an acquaintance model.

The agent model defines agents by associating roles and creating an agent-type

hierarchy. The service model specifies the services of each role and also its properties

such as preconditions and results. The acquaintance model defines which agents

communicate directly to each other.

To create an agent model, it is necessary to associate roles into agent types and refine

them to form an agent-type hierarchy, then document the instances of each agent-type.

To create a services model, it is necessary to examine protocols and, safety and liveness

properties of roles. Finally, create an acquaintance model based on the interaction and

the agent model (Wooldridge, Jennings and Kinny 2005). Figure 7 presents the models

of the Gaia methodology.

Requirements

Specification

Role Model
Interaction

Model

Agent Model Service Model
Acquaintance

 Model

Analysis

Design

Figure 7: The Gaia model, adapted from (Bussman, Jennings and Wooldridge 2004)

2.3.2.3 Extension of the Gaia Methodology

The Gaia methodology does not specify how to model social roles, other methodologies

do it, due to that the present methodology complements the Gaia methodology.

Societies in Open and Distributed Agent (SODA) spaces methodology introduces social

Theoretical Background 19

roles and assigns tasks to individual roles and therefore to single agents, for social tasks

a group of agents is assigned to it. Agents in the group play a social role and interact in

order to achieve the social task. The complete methodology can be found at (Juan,

Pearce and Sterling 2002).

2.3.2.4 Elammari and Lalonde, an Agent Oriented methodology

Elammari and Lalonde propose a methodology that ranges from high-level to

implementable models. This methodology is composed by two phases, discovery and

definition, and it generates five models:

1. High-level model – identifies agents and their high-level behaviour.

2. Internal agent model – describes an agent internal behaviour and structure.

3. Relationship model – captures dependencies and jurisdictional relationships.

4. Conversational model – describes the co-ordination between agents.

5. Contract model – defines a structure for commitments between agents.

The discovery phase provides a high-level model that identifies roles and

responsibilities, it provides as well a view with the causal sequences of the system

which allow the identification of active roles in the problem description.

The remaining four models are created in the definition phase. The internal agent model

defines the internal structure of a model in terms of goals, beliefs, plans and tasks. The

relationship model describes the relationships between agents and consists in two sub-

models:

 Dependency diagram – an agent provides a service requested by other.

- Goal dependency – an agent depends on other to achieve a certain goal

- Task dependency – an agent requires other agents to perform a task

- Resource dependency – an agent depends on another that provides a resource

- Negotiated dependency – an inter-agent negotiation is required

 Jurisdictional diagram – describes the authority status of agents with respect to

other agents.

The conversational model defines the necessary messages to be exchanged between

agents for the relationship model, i.e., the exchanged messages for the dependency and

jurisdictional diagrams.

The contract model defines the obligations and authorizations among agents. A contract

specifies participants, authorisations, obligations, beliefs and policies, thus it helps

agents defining their expectations about their relationships with other agents (Elammari

and Lalonde 1999).

2.3.2.5 Conclusions

The concept of roles or responsibilities is present in all methodologies, as well as the

concept of communication or interaction among agents which is justified since agents

Theoretical Background 20

exist inside a society and depend on the activity of other agents to achieve goals

whether as a server, provider or both.

The solution that this thesis provides, in respect to the Multi-Agent System includes the

concept of agents as service providers from the methodology of Kinny and Georgeff

where agents have specific roles; the concept of roles and responsibilities from the Gaia

methodology which add the concept of responsibility to an agent; the concept of

dependency and interaction from the methodology of Elammari and Lalonde since

agents depend on other agents to achieve goals (ex: to perform a task, to acquire a

resource), and require a way of interaction to reach other agents, by negotiation.

2.3.3 Applications in the Factory Automation Domain

Several Multi-Agent System methodologies have already been developed this section

presents some application cases in which MAS were applied in order to perform control

within the factory automation domain.

The methodology named designing agent-based control systems, consists in a MAS

applied to control the blackboard welding shop; it assembles through the welding of

sheets the blackboard of the truck driver‘s cab. This methodology was implemented at

the DaimlerChrysler truck plant at Worth, Germany (Bussman, Jennings and

Wooldridge 2004).

The methodology Coalition Based Approach for Shop floor Agility consists in a MAS

architecture based on the concepts of collaborative organizations that give support for

evolvable assembly systems. Its agent architecture is composed by resource agents,

coordinator agents, cluster manager agents and broker agent, and this approach has been

implemented in the NovaFlex manufacturing system (Barata, Camarinha-Matos and

Onori 2005).

The Actor-Based Assembly System (ABAS) is a methodology characterised by the

unitary actor, the assembly actor. From the point of view of a MAS each actor is an

Agent. This methodology was implemented in a highly dynamic reconfigurable testbed

system present at the Tampere University of Technology (Lastra and Colombo 2006).

An application of an agent system to control a real scale based prototype of chilled-

water system of the US Navy can be found in (Maturana, Staron and Hall 2005).

Factory Broker
TM

 is a solution to Holonic Control Systems where a holon is a

production equipment capable of performing manufacturing operations, and its

controller has agent‘s characteristics. The solution is a holarchy for industrial

automation where holons are functionally decomposed. The holarchy is composed by

workpiece, machine, transport, loader, shift table and unloader holons, and is

implemented at DaimlerChrysler, Germany, in a flexible manufacturing transfer line

(Colombo, Neuberg e Schoop s.d.)

Theoretical Background 21

FABMAS is an Agent-Based System for Production Control of Semiconductor

Manufacturing Processes, where its agent architecture is composed by resource, lot,

work area, work center, preventive maintenance, monitoring and scheduler agents, and

is implemented in a discrete event simulation scenario (Mönch, Stehli e Zimmermann

2004).

Another application of MAS is a simulation-based benchmarking platform based on a

real test case scenario, developed at the university of Karlsruhe, where the application

of agents prove that planning quality increases for a well-defined shop floor scenario. Its

architecture is composed by Product, Resource, Order and Staff agents (Frey, et al. June

2003).

2.4 Agent Platforms

Multi-Agent Systems require a platform that gives support to agent life-cycle, message

transportation, and also to register and look up actions. This platform should be a

reference in the domain according to standards and since the promotion of standards in

the agent domain is provided by the Foundation for Intelligent Physical Agents (FIPA),

the chosen platform should be FIPA compliant.

Table 4: Comparison between Java-based agent platforms

Platform
Available Open Complexity of

use
Support Mobility

Documentation Source

JADE Good Yes Simple
FIPA, MTP, RMI

Weak
IIOP, XML

AgentBuilder Good No Complex KQML, TCP/IP Strong

Jack Limited No Simple FIPA No

MadKit Limited Yes Simple CORBA No

Zeus Good Yes Complex FIPA, KQML No

Aglets Good Yes Simple ATP Weak

Ajanta Good No Complex
JMI, RMI

Weak
ATP, XML

Tryllian Good No Simple

FIPA, SOAP,

XML, JXTA Strong
 JNDI

Grasshopper Good No Simple FIPA, RMI, IIOP Weak

FIPA-OS Good Yes Simple
FIPA, IIOP

Limited
RMI, XML

Theoretical Background 22

Among the platforms found, the Java-based ones provide support for standards and due

to that other platforms were not considered, exception for MadKit, it supports agents

developed in other languages such as Python, Scheme (Kawa), BeanShell and JESS.

Table 4 presents a comparison between those platforms (Gutknecht, Ferber and Michel,

et al. 2000) , (FIPA-OS 1999), (Tryllian Agent Development Kit 1998), (Nguyen, et al.

2002), (Inc 2004), (Gungui, Martelli and Mascardi 2008), (Ricordel and Demazeau

2000), (Gutknecht and Ferber 2000), (Glanzer, Hammerle and Geurts 2001), (Dale,

Knottenbelt and Labo n.d.).

For the scope of this thesis, the agent platform Java Agent Development Framework

(JADE) was chosen since it is open-source, supports FIPA and several other standards

and protocols, it has been used in several projects, has good documentation and it is also

well accepted within the community of users.

3. Manufacturing System Control Solution

This chapter presents the developed work organized in six sub-chapters: Use Case,

Architecture, Physical Scenario, Ontology, Multi-Agent System, Interface to physical

controller and Testbed. The Use Case sub-chapter presents the system‘s use case

diagram; the architecture sub-chapter presents an overview of the solution‘s

architecture; the Physical Scenario sub-chapter presents the physical scenario to the

applied solution; the Ontology sub-chapter presents the developed ontology which

represents the system; the Multi-Agent System sub-chapter presents the control of the

system using reactive, autonomous, proactive and sociable concepts; the sub-chapter

interface to physical controller presents how the MAS interacts with the physical

devices and finally a testbed sub-chapter where a test to the solution is presented.

3.1 Functional View of the Proposed Solution

System

Manufacture

User Ontology

System Representation

 - Devices

 - Control

 Agents

 Products

*

* *

*

Figure 8: Use Case diagram

The proposed solution consists of a MAS control system applied to a manufacturing

system based on an ontology. Figure 8 presents its use case diagram.

The solution‘s use case is composed by two actors and the system; the actors are a user

and the ontology; the system is the MAS, the physical controllers and the manufacturing

system; the user wants to manufacture products and the ontology reflects the desired

products as well as a system representation in terms of devices and control which also

includes a representation of the MAS.

3.2 Technical Architecture

The proposed architecture is composed of a MAS which controls the physical system

based on an ontology which represents the physical system as well as its control. The

physical system is composed by devices which are controlled by a centralized

programmable logic controller (PLC) where each device is controlled independently.

Solution 25

MAS

Agent 1 Agent 2 Agent N

Ontology

Device and

Agent

Ontology 1

Device and

Agent

Ontology 2

Device and

Agent

Ontology N

Interface to Physical System

Physical System

*

*

*

*

*

*

*
*

*
*

*
*

*
*

Figure 9: Solution Architecture

For the MAS to control the physical system it requires sensing and actuating, and to

accomplish that an interface handles those interactions which are supported by a

dedicated Ethernet network. Figure 9 presents solution‘s architecture.

3.3 The Physical Scenario

The physical system used for testing the proposed solution consists of two symmetric

robotic cells that are connected through a conveyor system. Each cell has a conveyor

that goes in its working area and another that avoids it. To connect to the other cell there

is another conveyor that connects the end of the previous conveyors to the entrance of

the other cell. The conveyor that goes through the cell and the one that avoids it are

parallel and are connected on their entrance and exit points. Figure 10 presents the

schematic of the previous mentioned descriptions of the manufacturing system and

Figure 11 presents a picture of the testbed located at the FAST laboratory in the

facilities of the Tampere University of Technology. These cells are mainly used for the

manufacture and assembly of the automotive industry electronics and consumer

products. For the specific case of this testbed cells were previously dedicated to the

manufacture and assembly of covers for mobile phones.

Solution 26

Figure 10: Manufacturing system's schematic

Figure 11: Manufacturing system's picture at the FAST Lab Manufacturing System

The Service Conveyor is presented in Figure 12 has two stoppers where each one has an

RFID reader and a sensor of presence attached to.

Solution 27

Figure 12: Service Conveyor

A ByPass Conveyor has one stopper and one sensor of presence attached to and both are

positioned close to the exit of the conveyor as can be seen in Figure 13.

Figure 13: ByPass Conveyor

An InterCell Conveyor has the same configuration as the ByPass Conveyor and is

presented in Figure 14.

Solution 28

Figure 14: InterCell Conveyor

In order to route pallets allowing them to go through the Service Conveyor or through

the ByPass Conveyor there is a diverter in charge of that operation. It is located at the

entrance of the cell which coincides with the end of the InterCell Conveyor of the

previous cell, as presented in Figure 15.

Figure 15: Diverter

Each cell has one high-speed assembly robot SONY SRX 611 as shown in Figure 16.

Solution 29

Figure 16: SCARA Robot

Each cell has several devices and to actuate on them directly, a centralized unit named

programmable controller (PLC) is assigned for that operation.

Lastly, pallet is the device that carries the materials or products and it circulates in the

system through the use of the conveyors. Figure 17 presents an example of a pallet from

the testbed scenario.

Figure 17: Pallet

Solution 30

3.4 Manufacturing System Ontology

A requirement to control a manufacturing system independently of the physical

manufacturing system is to have a system specification and a specification-based

control, i.e. a control which performs based on a system specification therefore

independent of the physical manufacturing system.

In order to develop a system specification, a formal representation of the manufacturing

system is required, it should be understood by both machines and humans so that

automated operations can be performed, so an ontology is the best option to create the

system specification.

As previously mentioned the ontology language that better suits modelling for the

factory automation domain is OWL-DL due to the added expressiveness of the

description logics and the supporting tools available. Therefore an ontology

representing the physical system is presented in the following sub-chapters, using the

tool Protégé
2
.

Based on the requirements for developing an ontology presented in the sub-chapter

2.1.4, the ontology represents each device present in the manufacturing system and

then, by joining the several device ontologies create the representation of the

manufacturing system. The representation of each device contemplates also the

processes and functionalities associated with it and lastly, a specification of the control

entities is also appended to the ontology. Representing each device alone means that

each device ontology can stand outside the scope of the manufacturing system since it

represents only the device.

Before presenting the ontology it is important to review some ontology‘s concepts such

as property, restriction, namespace prefix, literal and individual. Properties introduce

the required expressiveness for the reasoning capabilities since they create relationships

among classes and also with datatypes; restrictions specify what and the amount that

can be filled in a property assigned to a class. Restriction types are:

 allValuesFrom, specify that all the values of the property are from a specific

class however the amount is not specified.

 someValuesFrom, specify that individuals from the class to which the property

applies has at least one individual from the class to which this property refers to.

 hasValue mentions directly the value of the property either an individual or a

literal.

 cardinality, minCardinality and maxCardinality specify the amount of

individuals or values, depending on property‘s type that the property has.

2 The Protégé Ontology Editor and Knowledge Acquisition System available at

http://protege.stanford.edu, last visit on August 2009.

Solution 31

Individuals are instances of classes and represent the objects in the domain of interest;

literals are the datatype values that properties have; namespace prefix is used as an

abbreviation of the ontology‘s namespace. Namespace is an URI and is used to identify

an ontology, besides that it is also useful to refer to a specific ontology when is added to

another and for querying purposes.

The knowledge from the domain that gave support to modelling the ontology is

presented in Appendix A, and is the reference that gave support for the decision making

process of choosing the right taxonomy and important knowledge to develop the

ontology.

3.4.1 Generic Device Ontology

Based on domain knowledge and during devices ontology development metadata was

perceived due to found equivalences, it means that same concepts apply to different

devices. Therefore, the Generic Device Ontology is the base ontology to develop any

device‘s ontology and the class taxonomy is presented in Figure 18.

Classes

This ontology is represented by the classes Types, Skills and Properties, as sub-classes

of these, the classes State, ControlOperations and CostOfOperation are present under

the class Properties. Regarding the reuse of ontologies Dimensions ontology, Effector

ontology, Location ontology and Unit ontology were reused for each device‘s

ontology. The Unit ontology was found at OntoSelect‘s website
3
 and the respective owl

file at
4
.

The class Types represent all types of the device; for example, a robot can be a SCARA

robot, a humanoid robot or other type, thus it is possible to differentiate them using this

class where each type may have a sub-class or a sub-sub-class associated with. The

class Skills represent the processes or operations the device is able to perform. The class

Properties relates to all properties that describe a device. In terms of sub-classes, the

class State relates to possible states that a device can have, the class of

ControlOperations relates to the control operations that are available to control the

device, and the class of CostOfOperation represents the cost associated in performing a

device‘s operation. This is a generic cost and it is relevant since an operation has an

associated cost, whether it is a monetary cost, time cost or other cost type. Other classes

or sub-classes can be added in order to complete the ontology.

3 OntoSelect website - http://olp.dfki.de/ontoselect?wicket:bookmarkablePage=wicket-

0:de.dfki.ontoselect.SearchOntologies
4 OWL Unit ontology - http://www.loria.fr/~coulet/ontology/unit/version1.9/unit.owl

Solution 32

Figure 18: Class Taxonomy of the Generic Device Ontology

The Dimensions ontology represents a device‘s dimension, the Effector ontology

represents the concept of the effector of a device or in other words the device‘s actuator.

The Location ontology represents the concept of location of a device and finally the

Unit ontology represents the concept of unit to classify the required datatype values

associated with an individual. The Dimensions ontology represents the concept with 3

sub-classes that are directly related with a three dimensional representation and those

classes are height, width and length. The Effector ontology represents the concept

through four effectors: electric, mechanic, pneumatic and hydraulic, where each is

defined as a sub-class. The decision support to define these sub-classes is based on the

devices present in the manufacturing system namely, electric effector devices,

pneumatic effector devices, mechanic effector devices and hydraulic effector devices. In

the present manufacturing system there is no hydraulic effector device, however it is

highly used in heavy manufacturing systems. The Location ontology represents the

concept of location in terms of the distance of the device to a referential. Due to that, the

Location ontology is composed by the classes x, y and z. The remaining classes are

intended to give information regarding the space orientation of the thing that is being

represented.

Solution 33

Properties

To relate the mentioned classes or datatypes with the main instance of a device ontology

properties are used. The developed properties are hasSkill, hasProperty,

hasControlOperation, hasCostOfOperation and hasState. Each property is defined

with a ―has‖ part in its name, meaning that the individuals in which the restriction to the

property applies have a relationship with other individual(s) from other class.

In order to add dimension, effector, location and unit information to a device‘s instance,

the defined properties are hasUnit, hasLocation and hasLocationUnit, hasDimensions

and hasDimensionsUnit, and hasEffectorType where these also follow the previous

approach regarding the naming. The properties hasLocationUnit and

hasDimensionsUnit are related with adding unit information to respectively location

and dimension‘s information. The properties hasDimensions and hasLocation have

sub-properties that relate each of their sub-classes so that direct properties can be

associated and more meaningful knowledge can be represented. Figure 19 presents the

previous mentioned properties of the generic device ontology.

Figure 19: Properties from Generic Device Ontology

To represent the knowledge of a device, its main individual is created under the class or

a sub-class of the class Types, then by defining restrictions to the class, properties are

associated to it so that information is added to the instance (to the device).

Restrictions

The restrictions that apply to this ontology specify the properties that a generic device

ontology has. Mainly these are defined under the class Types since that is the class in

which the main instances of the device are created and thus, is where all the knowledge

is associated with the main individual and where other restrictions apply in order to add

knowledge to the main individual.

In order to define the skills of a device, a restriction to the property hasSkill with the

type someValuesFrom is defined, i.e. the individual from that class have at least one

individual from that relationship. Since skills instances are created under the class

Skills, the target individuals of this restriction belong to its class. A device has at least

Solution 34

one state and to specify that, the property hasState is assigned to a restriction type

someValuesFrom where the target individuals belong to the class State. In order to

represent the operations of a device the property hasControlOperation is associated

with a restriction type someValuesFrom, since a device has at least one control

operation. Control operation‘s individuals are created under the class

ControlOperations which is restriction‘s target class. In order to add other properties to

the device a restriction type someValuesFrom is assigned to the property hasProperty

where the target class is the class Properties.

The Generic Device ontology reuses other ontologies such as Dimensions, Location,

Effector and Unit and since this knowledge is of importance to the main instance

restrictions apply to add that knowledge. A device has a physical dimension and it can

be represented in terms of its height, length and width, and to add that specification the

properties hasHeight, hasLength and hasWidth are assigned to a restriction. Since a

physical device is defined by each of those components and one of each component, the

restriction type is cardinality one which means that for that property only one individual

or literal can be assigned to it. Since these properties relate to values, unit information

can be added through the property hasDimensionsUnit assigned also to a restriction

type cardinality one where unit is the target class. Other characteristic of a device is its

actuator, and to represent it the property hasEffectorType is assigned to a restriction

type cardinality one since a device has only one actuator type. In respect to the devices

present at the testbed scenario devices have actuator however devices out of the range of

this scenario may not have an actuator and therefore this restriction does not apply for

those cases. Finally, a device has a location and it can be represented in terms of its

distance to a coordinates referential and thus the properties hasLocationX,

hasLocationY and hasLocationZ are assigned to a restriction which type is cardinality

one since only one of each specify the distance in terms of its coordinates to the

referential. These properties relate to literal values, and thus unit information is added

through the property hasLocationUnit with a restriction type cardinality one where the

target class is the Unit class. Figure 20 presents the restrictions mentioned previously.

Figure 20: Restrictions of Types class belonging to the Generic Device Ontology

Solution 35

In the manufacturing domain, a cost is associated with the act of performing a control

operation on a device and to represent this cost, the property hasCostOfOperation is

assigned to a restriction type cardinality one since one operation has exactly one cost.

CostOfOperation class is the target class of this property, its restriction is presented in

Error! Reference source not found..

3.4.2 Conveyor Ontology

The conveyor system present in the physical system is composed by conveyor belts, due

to that a sub-class ConveyorBelt is defined under the class Types which belongs to the

Generic Device ontology. Regarding properties that characterize a conveyor it has

capacity, a specification of the dimensions that it is able to carry, the directions in which

it can work, the range in speed that it is able to perform transportation and also the

weight that it can transport. Using the Generic Device Ontology as the base for

developing conveyor‘s ontology and adding the mentioned characteristics under the

class Properties it results in the class taxonomy of Figure 21.

Figure 21: Class Taxonomy from Conveyor Ontology

Properties

To add the knowledge of conveyor domain, it requires adding properties to its ontology;

the properties are hasCapacity and hasDirectionType as presented by Figure 22.

Adding these properties avoids using the more general property hasProperty and thus it

increases the detail level of the available knowledge.

Solution 36

Figure 22: Added properties of the Conveyor Ontology

Restrictions

The restrictions that apply to this ontology relate directly to the previous mentioned

properties and the added classes to the Properties class. In order to specify the capacity

and the working direction of a conveyor, Types class has a restriction type cardinality

one that applies to the property hasCapacity as well as for the property

hasDirectionType. Figure 23 presents the mentioned restrictions.

Figure 23: Added restrictions of Types class belonging to the Conveyor Ontology

The sub-class CarryDimensions of the class Properties specify the dimensions which

the conveyor is able to transport and to represent it hasDimensions properties are

required, namely hasHeight, hasWidth, hasLength and hasDimensionsUnit, with a

restriction type cardinality one. Figure 24 presents the mentioned restrictions of the

class CarryDimensions.

Figure 24: Restrictions of CarryDimensions class from Conveyor Ontology

Individuals

To add more detailed knowledge to the ontology, classes can be instantiated and in

Figure 25 the classes ControlOperations, CostOfOperation, Direction, State and Skills

are instantiated to specify the knowledge of the conveyor.

The skill of a conveyor is the provision of a transport operation; the possible working

directions of the conveyors present in the conveyor system is one; the cost associated to

Solution 37

the provision of a transport operation is not valuably specified; the available working

speeds of the conveyor are two; the allowed control operations are activate or deactivate

conveyor, and define one of two possible speeds; the possible states are on, off, with an

error and working with a fast or a slow speed. Figure 25 presents the mentioned

characteristics in terms of instance creation.

Figure 25: Properties and Skills individuals of the Conveyor Ontology

3.4.3 Diverter Ontology

A diverter is a device that can perform routing operation in a conveyor system. Since it

is a device, the Generic Device Ontology applies to represent it as the base ontology for

development. The diverter present in the physical system has two possible options of

delivering pallets, one allows pallets to go in the cell and the other avoids it. Reasoned

by that, its type is binary and Figure 26 presents its class taxonomy. In terms of

properties, no properties are added to this ontology.

Individuals

The diverter has two different working positions, thus it has two control operations, one

for each position and since the operations are symmetric there is a cost associated to

both operations. In terms of device‘s state, it can be working or not working, in respect

to its working position it can be sending pallets in the cell or by passing them, or it can

also have an error. Figure 27 presents the individuals created with the mentioned

characteristics.

Solution 38

Figure 26: Class Taxonomy of the Diverter Ontology

Figure 27: Properties and Skills individuals bellonging to Diverter Ontology

3.4.4 Tool Ontology

A tool is a device used to perform a specific task and like the previous devices, it is

developed based on the Generic Device Ontology. The tool present in the physical

system is a gripper for a robotic SCARA arm and what it does is opens and closes its

fingers. Characteristics of the tool are its opening range and the maximum pressure

applied in its fingers. Figure 28 presents the mentioned characteristics.

Properties

To represent the case of a tool being attached to a device, the property hasTool is

defined.

Solution 39

Figure 28: Class Taxonomy of the Tool Ontology

Individuals

The tool present in the physical system is a gripper and to control it, is possible to

perform the operations of open and close its fingers; in terms of the cost of performing

these operations a specific cost is associated to each operation. The states that

characterize a gripper are activated, deactivated, closed, opened, and lastly the error

state. Figure 29 the instances of the classes Properties and Skills are presented.

Figure 29: Properties and Skills individuals of the Tool Ontology

3.4.5 Robot Ontology

A robot is a machine designed to execute one or more tasks repeatedly, with speed and

precision, therefore it can be modelled using the Generic Device Ontology as a

developing base. The available robot in the physical system is a SCARA robot.

Solution 40

Robots have tools to perform specific tasks, require arms to make tools reach certain

positions, have a working space, a working environment, an accuracy in terms of its

moving parts as well as speed and payload, and there are also several different types of

robot. Figure 32 presents the class taxonomy of the Robot ontology.

Properties

To relate the new sub-classes of Robot ontology, the properties hasArm, hasJoint and

hasLink are defined, allowing to relate an arm to a robot or several joints and links to

an arm. Figure 30 presents the previous properties.

Figure 30: Properties of the Robot Ontology

Restrictions

A manipulator robot has an arm, an arm is composed of links and joints, and it can also

have a tool, its position varies compared to robot‘s location, therefore restrictions to

properties are required to specify the previous conditions. One restriction was added to

specify that a manipulator has at least one arm.

To represent that an arm is composed of at least one link, has at least one tool and has a

location, restrictions apply respectively to the properties hasLink, hasTool as well as

for location properties. Figure 31 presents the mentioned restrictions to properties.

Figure 31: Restrictions of the Arm class from the Robot Ontology

As mentioned previously, the manipulator present in the physical system is a SCARA

robot, is composed by four links and thus a restriction of type cardinality four is applied

to the property hasLink.

With respect to the type SCARA robot, it is characterised by having an arm which type

is SCARA, therefore restrictions mentioning these conditions are necessary under the

sub-class Scara. The restriction type AllValuesFrom apply to the hasArm property

with a target class ScaraArm specifying that the property only relates with individuals

from the class ScaraArm. To specify that a SCARA robot only has one arm, the

restriction type cardinality one is applied to the same property, Figure 33 presents these

restrictions.

Solution 41

Figure 32: Class Taxonomy from Robot Ontology

Figure 33: Restriction of the Scara class of the Robot Ontology

Solution 42

A link is a rigid body which maintains a fixed relationship between joints of a robot

arm, thus connects at least one joint and a maximum of two. Its dimension is of relevant

importance since it influences arm‘s size and to represent it restrictions apply to the

property hasJoint and dimensions properties. Figure 34 presents the previous described

restrictions that apply to class Link.

Figure 34: Restrictions of Link class of the Robot Ontology

A joint specifies the connection between two links, or between one link and a fixed

base. In order to specify these conditions two restrictions of type cardinality one and

two are applied to the property hasLink and presented in Figure 35.

Figure 35: Restrictions of Joint class of the Robot Ontology

Individuals

Individuals of this ontology relate with the specification of robots and are two since are

the available robots at the physical system. The operations of a robot are, move one

determined link, move its end effector to a specified position, pick and place, and

assemble parts 1 or 2. In respect to their arms, these are composed by three links and

three joints and in terms of the available operations are move a determined link, move to

a specified position, pick and place. To each of these operations there is a cost

associated. Finally, in terms of states, a robot can be activated or deactivated, busy,

performing an operation and it can also be in an error state. Figure 36 presents the

individuals previously described instantiated in the respective classes.

Solution 43

Figure 36: Properties and Skills individuals of the Robot Ontology

Solution 44

3.4.6 Sensor Ontology

A sensor is an electronic device that is used to measure a physical quantity. In the

physical system there are presence sensors and RFID sensors, since these are devices, to

create its ontology the Generic Device Ontology is the developing base.

As mentioned previously, the sensors in the physical system are of two types, presence

or RFID sensors; the presence sensors belong to the electromagnetic type and are

inductive sensors; RFID sensors are composed by a reader and a tag where the reader

reads tag‘s information and are wireless sensors. In order to model that in the ontology,

sub-classes of the class Types specify these different types of sensor. In terms of the

skills of a sensor, in this scenario sensors can give presence information for the case of

the inductive sensors, indicating if there is or not a metal piece. For the RFID sensors it

can read or write a value in the tag when it is within reader‘s working area.

Regarding their characteristics, a sensor can be characterised in terms of different

aspects such as accuracy, excitation, housing material, memory information, physical

resistance, repeatability, saturation, hysteresis, transfer function, working distance,

working conditions, and others. Figure 37 presents the complete developed class

taxonomy of the Sensor ontology with the mentioned descriptions.

Properties

The properties of this ontology can be added in terms of the property hasProperty and

due to that no other properties regarding the creation of relationships with the class

Properties are defined. There is one added property that represents the notion of

complementary part of a sensor. An example is that a sensor alone does not give any

information, it requires a complementary part, for the RFID sensor is the tag; however

this does not apply to all type of sensors.

Restrictions

Since an RFID reader has a complement part, a tag, it is necessary to have that

represented in the RFID individuals. The restriction type allValuesFrom apply to the

property hasComplement specifying that a RFID reader has complement type only Tag.

In terms of skills, what it can do is read and write on a tag.

Solution 45

Figure 37: Class Taxonomy of the Sensor Ontology

Solution 46

In respect to the inductive sensors, what they do is detect a component and for that, the

restriction in Figure 38 represents it. The first restriction specify that for the hasSkill

property it does not relate with individuals from other classes than the

DetectComplement class, however it does not specify anything with respect to the

amount of individuals that it can relate. To specify the number of individuals in which

that property can relate, the second restriction specifies that the property relates with at

least one individual from the DetectComponent class, i.e. is only related with detecting

components.

Figure 38: Indutive sensor class restrictions of the Sensor Ontology

Individuals

RFID sensors present at the physical system can perform read or write operations,

presence sensors are able to detect the presence of a metal piece. The operations that

control a sensor are read and write for a RFID sensor and presence checking for a

presence sensor and each of these operations have a cost associated. RFID readers have

E2PROM memories with 256 bytes of capacity. The states of a sensor are activated,

deactivated and for the cases of error, an error state. Figure 39 presents the individuals

of the classes Properties and Skills based on the previous descriptions.

Solution 47

Figure 39: Properties and Skills individuals of the Sensor Ontology

Solution 48

3.4.7 The Stopper Ontology

A stopper is a device that is used to block pallets in a transport system. In the present

physical system there is one type of stopper and when active it stops pallets, to let a

pallet continue its path the stopper has to release it. Therefore, the operations that are

applied to a stopper are block or unblock the stopper, where each operation is

considered to have the same cost since those are symmetric. A stopper can be blocking

or not blocking and thus it is a binary stopper. In terms of states, a stopper can be

activated, deactivated, blocking or not blocking and also with an error. Activated or

deactivated is in respect to the device being turned on or off for the cases where before

using a stopper it is necessary to turn it on, otherwise blocking or none blocking is

enough.

A Stopper is a device and reasoned by that it is modelled based on the Generic Device

Ontology, class‘s instances are added based on the previous descriptions and are

presented in Figure 40.

Figure 40: Properties and Skills individuals of the Stopper Ontology

3.4.8 Product Ontology

A product is what is created, assembled or developed in a production system. A product

is not a device and to create its representation the complete Generic Device ontology is

not useful for modelling this ontology, therefore only part of it is used. Figure 41

presents the class taxonomy of the Product ontology where the Effector ontology and

the classes Skills, ControlOfOperations and CostOfOperation were removed. The

reason for that is that a product does not provide any operations to the manufacturing

system therefore its information is useless. Other classes such as Properties, State and

Types are kept so that any product‘s property, state or type can be represented in the

ontology. However it is of relevance to mention that the product modelled for this

testbed is quite simple and therefore its representation is also quite limited.

Solution 49

Figure 41: Class Taxonomy from the Product Ontology

Properties

In order to represent the manufacturing processes that a product requires the property

hasManufacturingProcess allows the relationship between a product individual and

manufacturing processes, since products have different priorities in a manufacturing

system, priority specification is also required and for that the datatype property

hasPriority specifies the relationship between a product‘s individual and a priority

value.

In this ontology there are no individuals since products only exist during execution

time.

3.4.9 Pallet Ontology

Figure 42: Class Taxonomy bellonging to the Pallet Ontology

A pallet is a portable platform on which goods are placed for storage or transporting

purposes, its size can vary depending on the number of goods and in terms of types,

there are wooden, plastic, metal or paper pallets. A pallet is a device and thus the

Generic Device ontology is used as the modelling base, Figure 42 presents its class

taxonomy based on previous descriptions.

Solution 50

Properties

Pallets carry goods, its representation relate the Pallet class with the goods class. In this

case scenario, goods are the products therefore, the property hasProduct is defined and

used for this relationship. In the physical system, pallets have RFID tags that can be

used for identification and to represent it, the property hasRfidTagValue is defined, it is

a datatype property so that it represents RFID tag value. Figure 43 presents the added

properties.

Figure 43: Added properties of the Pallet Ontology

Restrictions

In order to specify that pallets have products a restriction applies to the property

hasProduct and, for this case scenario a pallet carries one product therefore, its

restriction type is cardinality one. Pallets have a RFID tag value and to represent that

the restriction cardinality one applies to the property hasRfidTagValue. The mentioned

restrictions apply to the Types class and these are the added restrictions to the Generic

Device Ontology as presented in Figure 44.

Figure 44: Added restrictions of the Pallet Ontology

Individuals

Pallets carry products or are used for storage purposes. In the physical system pallets are

used to carry products to which manufacturing operations are performed, therefore

pallet‘s skill is carry products. In terms of the its states, a pallet can have or not a

product and it can be in the system when is carrying a product or not for the case when

it is out of the system. Figure 45 presents the instances based on previous descriptions.

Solution 51

Figure 45: Properties and Skills individuals of the Pallet Ontology

3.4.10 Production System Ontology

The previous presented ontologies represent each of the devices present in a

manufacturing system for the specific case of the physical scenario. Using all those

ontologies in an ontology creates the representation of a production system and thus

Figure 46 presents the class taxonomy of the production system ontology.

Figure 46: Class Taxonomy of the Production System Ontology

Properties

A production system has devices and for the case of the conveyors those are connected

with each other forming a transport system due to that a relationship between them is

required to represent transport system connections. Since a production system has

several devices a unique identifier is also required so that all different devices are

uniquely identified.

Solution 52

In order to represent that a production system has devices, the property hasDevice

allows the relationship between Production System class and the respective device‘s

class. Besides that, it is also used to represent the attached devices of a device.

Specifying the transport system for the production system consists in representing the

physical connections of the transport devices and for that the property hasConnection

represents the transport device to which it is connected to, or in other words, the

transport device that is physically after it.

Finally, in order to represent the unique identifier of a device it is required to create a

relationship from a device to a string so that the string uniquely identifies the device.

For that, the datatype property hasUniqueID is defined and Figure 47 presents the

previous mentioned properties of the production system ontology.

Figure 47: Properties of the Production System Ontology

Restrictions

To specify that a production system is composed of several types of devices, the

property hasDevice is used, restricted by a restriction type someValuesFrom which

mean that it has at least one relationship with an individual from the target class. The

target class is not one but several since production systems are composed of different

types of devices. Figure 48 presents the restrictions that apply to the Production System

class.

Figure 48: Restrictions of Production System class of the Production System Ontology

Several devices have other devices attached to, an example are conveyors which have

stoppers and sensors attached to, and in order to represent that relationship the property

hasDevice applies under the restriction type someValuesFrom where the target class is

the default since any device applies specifically to it. Figure 49 presents the mentioned

restriction that applies to the class Types of each device that has devices attached.

Figure 49: Restriction of Types class added to each device’s ontology to represent its attached

devices, from the Production System Ontology

Solution 53

In order to represent that devices‘ individuals have a unique identifier the restriction

type cardinality one applies to the property hasUniqueID and this restriction applies to

all devices ontologies. This restriction is created in Types class since device‘s main

instance is created there, Figure 50 present this restriction.

Figure 50: Restriction to all Types classes of the devices belonging to the Production System

Ontology

Conveyor devices have a physical organization representing their interconnection and to

represent that in Production System ontology the restriction type cardinality one applies

to the property hasConnection. Diverters are also part of the transport system since they

perform routing operation, therefore it requires the specification of the following

transport devices. A diverter can have several following transport devices and due to

that restriction is not cardinality one but someValuesFrom which is also applied to the

property hasConnection. This restriction applies to Types class of the respective

transport device ontology. Figure 51 presents the previous mentioned restriction for the

conveyor ontology and Figure 52 presents the restriction for diverter ontology.

Figure 51: Restriction to conveyor Types class of the Production System Ontology

Figure 52: Restriction to diverter class of the Production System Ontology

Individuals

In this ontology, device‘s individuals represent the devices present in the physical

system, these are associated with the production system individual through the addition

of device‘s individual to the property hasDevice of production system individual.

As mentioned in chapter 3.3 - The Physical Scenario, the system is symmetric where

each cell has the same devices. Each cell has three conveyors, one service conveyor that

goes in the working area of the cell, one that avoids it called bypass conveyor and

another that connects to the other cell named inter cell conveyor; it has also a diverter, a

robot, and several sensors and stoppers. A robot has an arm and an arm has a tool so

that it performs operations. For the system to have a flow of goods it needs pallets

which can carry products in the system. Figure 53 presents the individuals created

within the production system ontology according to the physical devices.

When creating the individuals of the main devices it is necessary to fill in the properties

that characterized the device. With respect to conveyors, a service conveyor has two

physical modules attached to it, composed by stopper, presence sensor and RFID

reader; a bypass conveyor has one physical module composed by stopper and presence

sensor, as well as for an inter cell conveyor, the diverter has one module composed by

Solution 54

stopper and RFID reader. For robots to perform operations on pallet‘s products it

requires a way to know when and which pallet is there since pallets have RFID tags

robots have RFID readers to get pallets information.

The physical modules in the different configurations present in the physical system are

modelled as physically in the same location. Due to that, location‘s properties are filled

with the same values. Conveyors‘ location is considered to be its beginning point to

perform the transport, for others devices its centre is considered.

Figure 53: Individuals of the Production System Ontology

In order to create the representation of the location it is necessary to specify its

referential axis in the physical system, Figure 54 presents its position.

Solution 55

Figure 54: Referential axis of the physical system

3.4.10.1 Control Representation

The physical system requires control in order to perform its operation. The control

paradigm applied to this system is integrated through distributed, autonomous,

proactive, social and reactive entities known as agents where these are assigned

individually to control each device. Since devices have other devices attached to, the

agents are not assigned strictly to all devices but rather to main devices and these are the

devices where the control is applied in order to provide its complete functionality. One

example of that is the agent applied to control a conveyor, it requires sensor‘s

information to sense its environment and actuate on the stoppers to control the pallets

on it, therefore the controller entity assigned to control the conveyor it also controls its

attached devices, in this case sensors and stoppers.

In order to represent this knowledge in the ontology, a class is added. Figure 55 presents

the control class of the production system ontology.

Properties

In order to specify the device to which the controller is assigned, the property

controlsDevice is defined.

In the transport system there are cases where conveyors have a common area with

another, to represent that the property hasSharedResource allows its representation and

the property hasSharedResourceAgent specifies the agent that controls or competes for

the shared area. Figure 56 presents the previous mentioned properties.

Solution 56

Figure 55: Class Taxonomy of the control from the Production System Ontology

Figure 56: Properties for the control class of the Production System Ontology

Restrictions

In order to specify the controlled devices by the controlling entities a restriction type

someValuesFrom applies to the property controlsDevice. In order to represent the

shared area of a conveyor, a restriction type cardinality one applies for both properties

hasSharedResource and hasSharedResourceAgent. In terms of scalability if a shared

area has more than two conveyors, then another controller should be assigned to handle

the decision making process of that location. As devices have a unique identifier,

controllers also have one, therefore a restriction type cardinality one applies to the

property hasUniqueID. Figure 57 presents the mentioned restriction that applies to the

Control class.

Figure 57: Restrictions for the control class that belongs to the Production System Ontology

Individuals

The individuals of the Control class represent the control entities present in the system.

The control is represented in terms of the main devices present in the physical system,

these are each of the conveyors and diverters that belong to the transport system where

the controller of a diverter is called decision point since a routing decision is made at

Solution 57

that location. A controller is also assigned to each robot and pallet, where pallets require

to be served by the system.

As mentioned previously in terms of scalability for the case of conveyor‘s shared areas,

if there are more than two conveyors the controller that is assigned to those locations is

a decision point agent. Figure 58 presents the individuals of the Control class.

Figure 58: Control individuals of the Production System Ontology

The association of the agents belonging to the Control class to the respective devices to

which they apply the control is presented in Figure 59.

Figure 59 Schematic of the devices and respective controlling agents

Solution 58

3.5 Multi-Agent System

The desired control to apply to the system is in terms of a goal-oriented approach, the

paradigm that permits this has to fulfil also the concepts of autonomy, reactivity,

sociability, proactivity and distributional. As mentioned in chapter 2.2.2 - Control

Needs, the paradigm that suits these needs is the Agent paradigm; however hardware

still needs to evolve so that controllers are physically distributed.

Agent’s Solution

Taking the concepts of roles and interactions from the methodologies presented in the

sub-chapter 2.3.2 - State-of-the-art, the methodology for the multi-agent system consists

in each agent plays a role in the system and through interaction it provides services to

other agents.

Being this the case, agents are service providers, and in this case scenario agents are in

charge of controlling conveyors, diverters, robots, pallets and their attached devices

such as stoppers and sensors as presented in Figure 59. Assigning an agent per device as

a service provider, makes a conveyor agent as a transport service provider, a robot agent

as an assembly, disassembly or other related service provider, and a diverter agent as a

routing service provider. At this point, there is no trigger in the system, there is no entity

requesting any of the provided services, therefore agents provide services and perform

the control of their devices. The trigger is made by the pallet agent which interacts with

other agents in order to fulfil the necessary operations of the product that is carried on

the pallet that it controls.

Connection to the Ontology

As mentioned previously, one of the things that is necessary to have so that the control

of a manufacturing system is independent of its physical system is to have a system‘s

specification. Giving this specification to the control permits it to perform the control

based on it, being a specification-based control instead of a control specific for a

physical system. For each agent to have the knowledge representation of the physical

system it requires making that knowledge available, at launch time, the agent is loaded

with its associated knowledge so that when it starts its operation it has the knowledge of

the device that is in charge of controlling. A specific agent is assigned to this task,

launching all other agents with the associated knowledge, its name is the launcher agent.

This approach solves the problem of having multiple accesses to a shared resource that

in this case is the ontology.

In order to access the knowledge present in the ontology it is required to use an OWL

API, which for this thesis Jena API is the option since is developed in Java and it can be

obtained under an open source licence. In order to make the knowledge useful, it is

necessary to use an inference engine so that it allows the execution of queries and the

Solution 59

inference of knowledge. In respect to that, Pellet‘s API was used for this thesis and is

also Java-based and is open source.

3.5.1 Communication between Agents

Agents need to interact in order to achieve own goals and thus have to communicate and

understand each other. In order for them to communicate they have to speak the same

language; however speaking the same language does not make them understand each

other, for that the content of the language has also to be defined. With a language

defined, agents can exchange messages; however those will not be understood since

agents do not share a common syntax and semantics. Having a common syntax and

semantics, agents enables agents to understand messages and its content and thus, are

enables them to communicate and understand each other. For the scope of this thesis the

agent communication language used is the Agent Communication Language (FIPA

2002) developed by FIPA, and in terms of the syntax and semantics an ontology for the

communication between agents is presented below in the sub-chapter 3.5.1.2.

Through message exchange, agents can Request, Query, Inform, Refuse or send other

type of messages. FIPA also specifies standards for interaction protocols between

agents and for the scope of this thesis the protocols of interest are the Request (FIPA

2002) and the Query (FIPA 2002) protocol standards.

3.5.1.1 Agent Ontology - Concepts, Predicates and AgentActions

Agents are able to communicate among themselves, however to understand each other

they require knowing communication‘s syntax and semantics. To overcome this

problem, agents can share an ontology. An ontology in JADE is represented in terms of

concepts, predicates and agentactions.

Concepts are expressions that represent entities with a complex structure which are

defined in slots like (Person :name John :age 31), concepts are meaningful when

referenced in other concepts or predicates otherwise concepts are meaningless.

Example: (Car :model Astra :brand Opel :owner (Person :name John :age 31)) (Caire

and Cabanillas 2006).

Predicates are expressions that refer to the status of the world either true or false.

Example: specifying that Peter works for the company FastLab results in the predicate

(Works-for (Person :name Peter :age 23) (Company :name FastLab)), therefore

predicates can be meaningfully used as message‘s content (Caire and Cabanillas 2006).

AgentActions are a special concept that specifies actions which can be performed by

agents. Example: (MakeHole (Robot :name ABB_1) (Place :name Platform_1)). This

specification is useful when requesting other agents (Caire and Cabanillas 2006).

Solution 60

3.5.1.2 Ontology for Agent’s communication

The ontology developed for agent‘s communication is based in the OWL ontology

developed for the physical system and is adapted to agent communication requirements.

Concepts

The UML class diagram representing the concepts of the ontology for the

communication between agents is presented in Figure 60.

Thing, is the generic concept and is composed by a name and a unique identifier. This

concept is the base for all the other concepts.

AgentOnto, represents the concept of an agent, it is extended from the concept Thing

and it adds an agent identifier. PalletAgentOnto, is the concept of pallet agent and it

extends the concept of AgentOnto since it is also an agent. It adds pallet‘s information

such as the RFID tag value and priority, which are extracted from the product that the

pallet device carries. Working Area class, represents the concept of a working area in

the physical system, it extends the concept of Thing and it adds location information.

Location concept is described below. Service class specifies a description of a service,

is an extension to the concept Thing and it adds location and type information. Product

and Manufacturing Process classes represent respectively the concepts of product and

manufacturing processes and are an extension of the concept Thing.

In order to represent devices there is another concept named Device, which is also an

extension of the concept Thing. Device‘s concept adds type‘s information, and to

represent each of the devices present in the physical system consists in extending the

concept Device where class and type are named with device‘s name and type

respectively. Therefore the concept Conveyor is an extension of the concept Device and

its slot type is also fulfilled with its device‘s type, conveyor. The concept of other

devices present in the physical system follows the same procedure besides the device

pallet. Pallet extends the concept Device and it adds RFID value, priority and location

which are extracted from the product that it carries. Location corresponds to the desired

destination so that the manufacturing process is performed on the product that is being

carried.

In order to represent properties the concept Property is defined. Skill, State,

ControlOperation and Cost represent their concepts respectively and are described in

terms of the name that its concept represents. Location class represents a physical

location in terms of the distance to a referential axis and in terms of the coordinates x, y

and z.

Solution 61

Figure 60: UML Class Diagram of the Ontologies for Agent Communication

Solution 62

Predicates

hasService specifies the relationship between the agents and its provided services and is

represented by the concepts AgentOnto and a list of Service.

hasControlOperation represents the control operations that can be applied to a device,

it is described by the concepts of Device and a list of ControlOperations.

hasDevice represents the attached devices of a device, it is described by the concept

Device where a device is related to a list of devices representing the attached ones.

hasFollowingTransportAgent this predicate represents the two agents of the transport

devices that are connected; its slots are the concept of AgentOnto for the previous and

following agent description.

hasLocation specifies the location of a thing, its representation consists in a slot for the

concept Thing and other for the concept of Location.

hasManufacturingProcesses it describes the relationship between a product and the

manufacturing processes that it needs. Its representation is specified by the concepts of

Product and a list of the concept ManufacturingProcess.

hasPallets represents the pallets that are under the domain of one device‘s agent,

usually for conveyor agent. Its description consists in the description of the agent, using

the concept AgentOnto and a list of the pallets that it has, fulfilled with the concept

Pallet.

hasProduct describes the relationship between a pallet and the products that it carries

physically. It is represented by a pallet‘s description and a list of products where the

concepts Pallet, Device and Product are used respectively.

hasProperty represents a generic relation between a thing and a property that classifies

it. The concepts Thing and Property describe them respectively.

hasSkills is intended to specify the skills that a device has, its slots are a device

description and a list with the associated skills. The concepts of Device and Skill apply

respectively to each of the intended slots.

hasState describes the state of a thing, its slots are thing and state where each one

represents its concept, Thing and State.

hasTool represents the tool which is attached to a device, its slots are a description of

the device that has the tool and the respective tool.

Solution 63

AgentAction

ServiceAction, specifies the service that is requested by an agent, it is described by the

respective service and the agent requester. The slots are fulfilled with the respective

concepts description.

Vocabulary

The vocabulary used to fulfil the string slots is defined in a vocabulary section so that

when an agent is aware of the ontology is also aware of its vocabulary.

3.5.2 Launcher agent

The Launcher agent is the agent in charge of launching the complete Multi-Agent

System that controls the physical system, its operation starts by getting the control

representation of the system from the ontology in terms of the agents that will control it.

Then it gets the respective device information of each agent as well as the attached

devices, and with this information launches each of the agents.

Agent‘s behaviour is presented in Figure 61 and it starts by loading the ontology, then it

queries to get controller agents that are in charge of controlling the physical system; for

each controller agent, it performs queries to get its knowledge in terms of device

information and attached devices. Since each agent can have different information other

queries are performed to get specific agent‘s information and Figure 62 presents its

activity diagram. Once required information is loaded the agent is launched, and after

launching all the controlling agents the sensorial and monitor agent are launched.

The operation of querying the ontology to get specific agent‘s information consists in

getting information that is only represented for that agent which is the case of the

conveyor, decision point and pallet agents, the transport agents.

Transport agents have the information in respect to the physical connection to other

transport devices, therefore when launching a transport agent its neighbouring agents

are obtained, respective to the neighbouring devices. For a conveyor agent, information

regarding the existence of a shared area is also obtained; for the decision point agent,

information in terms of the position locations available at the destination transport

agents is obtained to be aware of the possible working areas; for a pallet agent, its RFID

tag value, name, priority and the manufacturing processes required from the carried

product are also queried.

In terms of reconfigurability adding or removing devices to the system is allowed and it

does not interfere with the normal operation of its control, as long as these devices are

not transport devices in which the case this thesis does not provide a solution but some

ideas that could be implemented in the future.

Solution 64

Figure 61: Activity Diagram of Launcher Agent

Adding a new device to the running system consists in updating system‘s ontology with

the new device and then launch its agent using the Launcher agent. Removing an agent,

is simple as removing the device and agent, and also updating the ontology, the device

Solution 65

must not be under operation otherwise it will ruin the operation. Remember, adding or

removing devices on the fly is not possible for transport agents.

Figure 62: Query Specific Agent Information of the Launcher Agent

3.5.3 Transport Agents

Transport agents provide a service related to the movement of pallets in the

manufacturing system, these are the conveyor agents and the decision point agents.

Transport agents are aware of to which transport devices have a physical connection, so

that a pallet can be routed through the complete transport system.

Conveyor agents control a conveyor device and provide a transport service, decision

point agents control a diverter device and provide a routing service, however diverter

agent can also be assigned to places or devices where a routing decision is required.

Through interaction with other agents it is possible to request transport agent services

and query information about its state. Behaviours of a transport agent are present in

Figure 63. Transport agent operation starts by initializing the agent, where its

knowledge is analysed, then the agent registers itself, which corresponds to the act of

registering agent name and services which are device skills. Then agent launches its

three main operating behaviours which operate during agent lifecycle and these are

service responder, receive informs and query responder; service responder behaviour

handles service requests from other agents; the query responder handles queries

regarding agent state; finally receive informs behaviour handles reception of

information such as the end of operation in a pallet at a specific conveyor position,

information of a pallet that has been delivered to the following transport agent and also

sensor information.

Solution 66

Figure 63: Behaviour sequence of a Transport Agent

Service requests require an interaction protocol so that agents are able to Request a

services and Query information, Figure 64 presents service request interaction protocol

and Figure 65 presents Query free places interaction protocol.

Figure 64: Service Request from Service Responder behaviour, adapted from FIPA Request IP

The service request interaction protocol is generic to all service requests within the

MAS where the answer can be adapted to the service that is being requested. Request

has an AgentAction called ServiceAction and is composed by a Service description and

its Requester; Service description consists in name, type, unique identifier and desired

destination location, Requester description consists in name, agent identifier and unique

identifier. The Answer depends on the Request, if message‘s content is incorrect, the

service is not provided or the agent is busy, the Answer is of type Refuse, otherwise is

Agree followed by a message type Inform for a successful request.

The Query free places interaction protocol is a protocol which message content has a

description of the queried transport agent and State description has value ―empty‖

specifying that the query regards empty places. In terms of answers to this interaction

protocol, if there are no free places answer message type is Refuse and its content

Solution 67

specifies full, otherwise is Agree followed by an Inform type message with the number

of available places in the state description. When Request message content is not the

expected one, answer message type is also Refuse and state description mentions

unknown.

Figure 65: Query free places from Query Responder Behaviour, adapted from FIPA Query-If IP

The following sub-chapters describe in more detail the conveyor and the decision point

agents which are transport agents.

3.5.3.1 Conveyor agent

A conveyor agent has the objective of controlling a conveyor device, manage pallets

and provide a transport service to the multi-agent system. Its behaviour diagram is

presented in Figure 63 and its description is presented below.

When a conveyor agent is launched its operation starts by analyzing the knowledge that

was loaded with it. The information regards conveyor‘s device and its attached devices,

and it ranges from device‘s skills, control operations, location and unique identifier. In

terms of conveyor capacity, it is obtained through the organization of attached devices

by location, ordered according to the flow of products. Capacity corresponds to the

different working positions due to the attached devices. Taking the service conveyor

from the physical system as an example, it has two presence sensors, two RFID readers

and two stoppers, physically distributed in two groups with have two different locations,

thus it has capacity two. With the location of each position it is also possible to

represent the order and position of each working area where pallets can be stopped.

As explained before, the behaviours which describe a transport agent are service

responder, receive informs and query responder. Each one has a specific function and

for the conveyor agent query responder behaviour gives also other answers such as

query shared area and query pallets information.

The query shared area is used to query if conveyor‘s shared area is free, it is a common

area which a conveyor can have in its end and related to other conveyor. In order to

Solution 68

avoid collisions in the shared area, the conveyor agent queries the other agent about the

availability of the shared area before releasing a pallet to the following transport agent.

Figure 66 presents the interaction protocol of the query shared area of the query

responder behaviour. The first message is of type Query and its content has the

predicate hasState since the question relates with the state of the shared area. The

hasState predicate is composed of a device description together with a state description,

the device in this case represents the exclusive resource, its name and unique identifier

are specific to the area in case. The desired state is empty, therefore content‘s state is

―empty‖. In terms of the answers to this protocol, when the shared area is occupied the

answer is negative, message type is Refuse and the content is the same as the query

message changed the state field mentioning full. On the other hand, if the shared area is

not occupied there is a positive answer and a message type Agree is sent, then to

confirm it a message type Inform which content is the same type as the initial Query is

sent.

Figure 66: Query Shared Area from Query Responder, adapted from FIPA Query-If IP

The shared area is also the area between transport agents where both control agents do

not have sensorial information in respect to the pallet since it is transiting from one

transport device to the other.

In order to know the information of the pallet present in a conveyor, the interaction

protocol from Figure 67 describes it. This interaction protocol belongs to the query

responder behaviour of the agent. The message that starts the interaction protocol is of

type Query-if and its content is the predicate hasPallets that is composed by an agent

description respective to the conveyor agent and a list of pallets with its information.

The first message corresponds to a question to know pallets information present at the

conveyor and after a positive feedback, with a message type Agree, an Inform message

is sent where its content is a hasPallets with a list describing the pallets. Pallet‘s

description is characterised by name, type pallet, unique identifier, priority, RFID tag

value and the location destination.

Other behaviour that a conveyor agent has is the receive informs which is characterised

by handling the reception of inform type messages which inform the agent with respect

Solution 69

to finished operations at specific working areas, delivered pallets to the following

transport agent and other information. Figure 68 presents behaviour‘s activity diagram

where all the cases are described.

Figure 67: Query pallets’ information interaction from Query Responder, adapted from FIPA

Query-If IP

Its operation starts when it receives a message that is according to the specified template

of the receiving operation, its template defines that the message is of type inform and

not Query-if or Request.

The expected messages are sensor‘s information, working area information and also

information about a pallet that has been delivered to the following transport agent.

Sensor‘s information message corresponds to a message sent by the agent that manages

sensor‘s information. The arrival of a message of this type means that a physical event

has occurred; therefore, it updates sensorial information and a decision making process

is made to actuate on the physical device.

The delivered inform message has the information regarding the delivery of a pallet

previously sent to the following transport device and agent. After analyzed conveyor‘s

occupation is checked, if the conveyor is empty then it is turned off in order to save

energy.

The working area inform message, gives information in terms of the working area and it

can inform that a pallet is going to have an operation at that location and thus it has to

be stopped or that an operation at that location has ended. The working area information

is verified in terms of the validity of its location, if it corresponds to a location that does

not exist the message is discarded. After the arrival of a message of this type location

state information is updated.

Solution 70

Figure 68: Behaviour’s Activity Diagram of Receive Informs

When a pallet is in the last position of a conveyor, it has to be delivered to the following

transport device and agent. For that it is required to know if the transmission or shared

area is free and that the following transport device has space for the pallet. In order to

achieve that, it is necessary to query the agent that is competing for the shared area and

then query the following transport device agent. For the cases where there is no shared

area only the following transport agent is queried, for both cases if a negative answer is

received the process is repeated until the agent is served. Being the agent served, the

pallet is sent to the destination transport device. Figure 69 presents the sequence of

operations that represent the mentioned process.

Solution 71

Figure 69: Activity Diagram of the Conveyor Agent depicting the delivery of a pallet to the

following Transport agent

3.5.3.2 Decision Point Agent

A decision point agent is a transport agent since it belongs to the agents that provide

services related to the transportation of pallets, more specifically a decision point agent

provides a routing service given a set of entrance and exit points; a decision point agent

is assigned a location and manages the delivery of pallets to the correct exit point

according to pallet‘s desired destination.

Figure 63 presents the behaviour sequence which characterize this agent. In the

initialization behaviour, knowledge is obtained and it consists in device‘s information,

attached devices, and information regarding the previous and following transport

agents; the following behaviour is where the agent registers itself and the provided

services which correspond to device‘s skills; then, the behaviours which characterise

agent‘s operation are launched, namely service responder, receive informs and query

responder. Service responder behaviour answers service requests through the interaction

protocol present in Figure 64; query responder behaviour provides answer to queries

regarding the free places of the diverter as presented in Figure 65; finally the receive

informs behaviour handles information messages which can be sensor‘s or pallet

delivery information and its behaviour is presented in Figure 70.

Decision point agent starts operation upon receiving a message matching a specified

template from the receiving behaviour, the template defines a message type Inform and

not Query-if or Request, the expected messages are sensor and pallet delivery

Solution 72

information where sensor information represent a physical event and pallet delivery

information the delivery of a pallet to another transport agent.

Figure 70: Behaviour’s Action Diagram of the Receive Informs from agent Decision Point

In this physical system the decision point agent is assigned to diverters which have

RFID sensor and stopper as attached devices. When receiving sensor information, it

means that a new pallet is present at agent‘s working area and thus it requires

Solution 73

acknowledging the previous transport agent which confirms the delivered pallet. In

order to know pallet‘s desired destination it requires having requested the service first,

if that is the case, the decision making process starts, otherwise the pallet is routed out

of the system since it is not synchronized. This operation is done by the exit handler and

if the pallet has a controlling agent this one is killed, pallet checking is made through its

RFID sensor value, and once validated the desired destination is known. The decision

making process considers traffic in previous and following transport devices, and for

that queries are made in order to obtain information regarding pallets with the same

destination and higher priority, followed by querying the availability of desired

destination transport agent. If the free places are more than the higher priority pallets,

the pallet is routed to the transport agent which takes it to the desired destination;

otherwise is routed to the alternative transport device since higher priority pallets are

coming after. In the present system alternative path is the bypass conveyor. Before

delivering the pallet to the alternative transport it queries it in order to get information in

respect to free places. In both cases, when the transport device and agent are chosen the

pallet agent is informed about it.

3.5.4 Robot Agent

Robot agents provide manufacturing operations to pallets, it not only controls a robot

device but it also provides the controlled operations as a service to the multi-agent

system. Its operation consists in performing a manufacturing process to a pallet which

has previously requested the service, the operation is performed once the pallet is within

robot‘s working area.

Figure 71: Behaviour sequence of Robot Agent

Agent behaviour starts by analysing the knowledge that has been loaded, followed by

the registration of the agent and the provided services. Being these behaviours

completed the behaviours the behaviours service responder and receive informs are

launched and these characterize agent‘s operation as presented in Figure 71.

Solution 74

Figure 72: Service Responder Interaction of the Robot Agent, adapted from FIPA Request IP

Service responder behaviour is used to receive service requests and its interaction

protocol is presented in Figure 72, the interaction protocol starts by sending a message

type Request which content are a service and requester description, where service

description is an AgentAction named ServiceAction used to request any service within

the multi-agent system. A negative answer, Refuse type message, is provided for cases

where the robot is busy or the requested service is not available or provided; otherwise a

positive answer is sent to the requester; first in terms of an Agree type message, and

then confirming the request with an Inform type message which content specifies the

location to which the requester agent has to go in order to be served. Providing location

information in terms of the place where to perform the operation gives freedom to the

agent providing the service to choose the best location, especially for the cases where it

has more than one working area since it can distribute the work load.

Receive informs behaviour, is used to receive information from other agents that in this

case is sensorial information, its activity diagram is presented in Figure 73. It starts

when a message according to the specified template arrives, the template specifies that

the message is of type Inform and not Query-if or Request, the expected content is

sensor‘s information and at the arrival of a sensor message, sensor value and location

are extracted. Its information can range from an end operation to the pallet‘s RFID tag

value. Upon receiving an end operation message, it requires informing pallet agent as

well as respective conveyor so that both are aware of the ended operation. Then, if

pallets are waiting for an operation to be performed, the first from the list is served. For

the case of the sensor value being an RFID tag value it corresponds to a pallet tag

number, if this number corresponds to a pallet that has previously registered within the

robot agent, the requested operation is performed if the robot is free. Once the operation

starts, robot agent informs pallet agent about the beginning of operation. If the robot is

not free then pallet‘s information is queued.

Solution 75

Figure 73: Receive Informs Activity Diagram of the Robot Agent

3.5.5 Pallet Agent

Pallet agent is in charge of the pallet device, where a pallet carries a product which has a

number of manufacturing processes that need to be performed in order to manufacture

the product. To achieve that, requires the agent to manage in order to get the

manufacturing processes done by other devices and thus it needs a way to request the

processes and also to reach them, to request operations require knowing where those

operations are listed and how to request them.

Pallet agents provide a carrying service and during operation serves manufacturing

processes following product required operations list. To get the manufacturing

Solution 76

processes served requires searching it and then request it, based on the provided location

information route the pallet to the specified location. In order to get to the specified

location it also has to request transport agents, upon completed operation, agent repeats

the process for the remaining operations.

Figure 74: Behaviour of Pallet Agent

The behaviour of a pallet agent is characterised in Figure 74, it starts by analyzing the

loaded knowledge, then registers itself as well as the provided services which are

device‘s skills. In order to start its operation, it searches for the manufacturing process

that the product requires and with the search result it requests one of the providers then,

with the location information provided in the answer it starts the routing in order to

physically reach the service provider and for better behaviour understanding Figure 75

presents the activity diagram searching and routing in order to get the manufacturing

process.

The process of searching for a manufacturing process consists in looking up in the

service repository for a specific service, if exists the service is requested and if accepted

routing location destination is updated where its interaction protocol is presented in

Figure 72. In the case of a request failure, other providers, if any, are requested and for

the case of no providers the search is delayed for a small amount of time, for a possible

availability in the system. During delay time routing destination is updated with no

destination so that the pallet is hanging around the system waiting for the availability of

the service, if the service does not become available, it is discarded and the following

one is performed.

Agent‘s main behaviour is named receive informs and its activity diagram is presented

in Figure 76, it starts at the arrival of a message that is according to a template which

Solution 77

defines message type Inform and not Query-if or Request, its information content can

range from working area to following transport agent information; upon reception of a

working area information message, its content represents working area‘s status, its

location is validated according to desired operation location; working area‘s status can

range from begin to end of operation; when receiving a begin of operation, operation

status is updated; for the case of an end of operation received, the following

manufacturing process has to be requested and thus the get next manufacturing process

behaviour is launched.

Figure 75: Get next Manufacturing Process Activity Diagram of the Pallet Agent

Upon receiving following transport agent information message, means that the pallet is

physically going to the following transport device; therefore, uses it to request the

following transport device, interaction protocol is presented in Figure 64 and its

operation continues repeatedly until the last operation is performed on the pallet.

For a pallet to reach a desired destination, it requests transport agents one after the other

until it reaches destination, this way pallet agent do not have any routing decision since

Solution 78

that is done by the transport agents which carry the pallet, therefore pallet agent is less

complex since all the routing complexity is at the transport agent side.

Figure 76: Receive Informs Activity Diagram of the Pallet Agent

3.5.6 Exit Handler Agent

Figure 77: Behaviours of Exit Handler Agent

Exit handler is the agent in charge of routing out a pallet that is not synchronized in the

system and is launched by a decision point agent. The behaviours that characterize the

agent are present in Figure 77, it starts by analysing the knowledge loaded with the

Solution 79

agent which corresponds to pallet information; on the following behaviour, agent

registers itself and the provided services, and finally the last behaviour describes agent‘s

main operation which consists in receiving informative messages and act upon.

Main behaviour is triggered by the arrival of messages, namely receiving information

which corresponds to the following transport agent provided by the current transport

agent while exit handler agent is routing out the pallet. With the information of the

following transport agent, exit handler agent performs request operations to the

following transport agent using the interaction protocol present in Figure 64, and once it

reaches the exit point its operation ends. Figure 78 presents main behaviour activity

diagram, the receive informs behaviour activity diagram.

Figure 78: Receive Informs Activity Diagram of the Exit Handler Agent

3.5.7 Sensorial Agent

The sensorial agent is in charge of getting sensor‘s information from the physical

system. Due to that it has to distribute sensor‘s information to the other agents. Its

behaviours are presented in Figure 79.

The agent starts by initializing agent‘s information, then registers itself and the provided

services that for this case it consists in providing sensor‘s information. The following

behaviours characterize agent‘s operation and are get sensors info and heartbeat

signalling; heart beat signalling is used to send a ―liveness signal‖ and its behaviour is

described in Figure 80; get sensors info behaviour is in charge of managing all sensor‘s

data and is present in Figure 81.

Solution 80

Heartbeat behaviour sends messages periodically and is based in the protocol IPC 2541

where periodic messages are sent to specify that this agent is not blocked, this means

that the standard is encapsulated over an ACL message so that is FIPA compliant. This

behaviour is implemented in this agent since the complete MAS relies on the

information it provides and thus requires being always working. With the behaviour of

sending periodic messages, it is possible to check when the agent is blocked and act

upon since for those cases no message is sent. Considering an agent for the task of

monitoring increases robustness, its name is Sensorial agent and is presented below.

Figure 79: Behaviours of the Sensorial Agent

The behaviour for managing sensor‘s information consists in getting all sensor data,

analyse it by comparing to the previous sample, if has changes send the information to

the respective agents, once all sensor data e checked the process is repeated.

Figure 80: HeartBeat Signaling Activity Diagram of the Sensorial Agent

The Sensorial agent solves the problem of concurrent access to a shared resource since

no other agent accesses the physical system to get sensor information therefore,

information is more reliable with the disadvantage making the system less robust to

failures since the complete system depends on its operation. However heartbeat

signalling behaviour and the monitor agent reduce risks.

Solution 81

Figure 81: Get sensor info Activity Diagram of the Sensorial Agent

3.5.8 Monitor Agent

The monitor agent is the agent that checks if other agents are blocked or have died, its

operation is based in the protocol IPC 2541. The protocol is not implemented but rather

its concept of sending liveness messages, on the other side, the entity that receives

messages periodically checks the arrival of those messages and once there is no

message it means that the agent had a problem, therefore it has to be replaced. Agent‘s

reaction to a missing message consists in killing the agent which message was expected

and then launch a new one. The agent is killed since it was not performing as expected

when failing to send the message on time whether because it was blocked or for any

other reason.

Figure 82: Activity Diagram of the Monitor Agent

Solution 82

The activity diagram that represents agent‘s behaviour is presented in Figure 82, it starts

with agent‘s initialization where the agent knowledge is analyzed, then it registers itself

and the provided services, and finally the two behaviours that represent agent main

behaviour are launched, namely receive heartbeat signals and monitoring.

Figure 83: Heart Beat Activity Diagram of the Monitor Agent

Receive heartbeat signals behaviour has the simple task of receiving periodic messages

from other agents, specifying that the sender is alive and working, its activity diagram is

presented in Figure 83.

Figure 84: Monitoring Activity Diagram of the Monitor Agent

The monitoring behaviour performs the validation of the last received message, for any

out of date message, the respective sender agent is substituted, its activity diagram is

present in Figure 84. The behaviour consists in getting all agents information regarding

Solution 83

the previous sent messages and verifying if at the present time the last received message

is still valid, if not, the agent is deleted and a new one is launched.

3.6 Interface to physical controller

The physical controller is an Omron PLC CS1G-CPU43H with an Ethernet unit CS1W-

ETN01 assigned to each cell. For the system to be controlled, requires handling

commands from the MAS, therefore it requires a solution so that both controllers

receive agent commands. Of relevance is those commands belong to the available

operations present at the class ControlOperations from device‘s ontology so that the

MAS knows how to control the physical system. To better understand the position of

the required interface in the system verify Figure 85.

Figure 85: Interaction between agents and the physical system

The solution for agents to send controlling commands is based in a DLL which perform

the communication with the PLC, from PLC‘s point of view it requires a way to receive

orders and actuate upon. Actuation consists in writing to specific PLC‘s memory

positions which are assigned to control each device, therefore writing on those memory

positions actuate on devices, as such it creates a memory interface that is mapped to the

positions that effectively actuate on the system. Memory mapping is presented in Table

5, Table 6 and Table 7 and it is a memory area named CIO.

Solution 84

Table 5 Device's status memory mapping area

Bit Description Maps to

Reading

area

Presence

sensor area

10.00 S30_BES 3310.00

10.01 S31_BES 3310.01

10.02 SM10_Wenglor 3338.00

10.03 SM11_Wenglor 3338.01

10.04 SM12_SMC 3338.02

10.05 SM13_SMC 3338.03

10.06 SM14_Wenglor 3338.04

10.07 SM17_Wenglor 3338.07

10.08 SM18_Wenglor 3338.08

10.09 SM19_WenglorCell 3338.09

 10.10 /// ///////////////

Robot area

10.11 Robot (On/Off) 3340.03

10.12 Robot Initialized 3340.04

10.13 Robot Performing Task 3340.06

In respect to the memory area to actuate on the devices Table 6 shows it.

Table 6 Actuating memory mapping area

Bit Description Maps to

Actuating

area

20.00 YM10_StopperCell2 3238.00

21.00 YM11_Diverter 3238.01

22.00 YM12_Lifter 3238.02

23.00 YM14_Stopper 3238.04

24.00 YM17_Stopper 3238.07

25.00 YM18_Stopper 3238.08

26.00 U151_S1_ServConv2Motor 3244.06

27.00 U151_S2_ServConv2Speed 3244.07

28.00 U152_S1_ByPassConv2Motor 3244.08

29.00 U152_S2_ByPassConv2Speed 3244.09

30.00 Y21_InterCellConv2Motor 3210.06

31.00 Y22_InterCellConveyor2Speed 3210.07

32.00 /// ///////////////

33.00 Safety Switches

3244.04

and

3244.05

33.01 Signal Online Mode for Robot 3240.00

33.02 Select Robot Operation bit 1 3240.01

33.03 Select Robot Operation bit 2 3240.02

33.04 Enable Robot Operation 3240.03

Solution 85

In respect to the memory mapping for the RFID devices Table 7 presents it.

Table 7 Sensing and Actuating memory maping area of RFID

RFID 1

area

(Reading

and

Actuating)

Bit Description Maps to

11.00 Enable ID1 (Trigger) 3233.15

11.01 Read/Write ('0'/'1') 3233.14

11.02 Error bit 3333.13

Address Description Maps to

12 Read value (8bits) 3332

13 Write value (8bits) 3232

RFID 2

area

(Reading

and

Actuating)

Bit Description Maps to

14.00 Enable ID2 (Trigger) 3235.15

14.01 Read/Write ('0'/'1') 3235.14

14.02 Error bit 3335.13

Address Description Maps to

15 Read value (8bits) 3334

16 Write value (8bits) 3234

RFID 3

area

(Reading

and

Actuating)

Bit Description Maps to

17.00 Enable ID3 (Trigger) 3237.15

17.01 Read/Write ('0'/'1') 3237.14

17.02 Error bit 3337.13

Address Description Maps to

18 Read value (8bits) 3336

19 Write value (8bits) 3236

With methods for reading and writing operations based on commands, agents are able to

apply the control to the physical system. FINS commands are a proprietary solution

from PLC‘s manufacturer and it allows operations of reading and writing on server side

without the need of programming them, therefore FINS commands are the selected

solution to communicate with the PLC. Through writing operations it is possible to

change device‘s state and through reading operations it is possible to get device‘s state.

The communication is supported by a local ethernet network over which UDP packets

(User Datagram Packets) are exchanged with FINS commands, where the MAS is the

client-side and the PLC the server-side. The PLCs applied to control each of the cells is

the same therefore are differentiated in terms of the IP address.

With this approach agents have the tools to sense and actuate on the physical system,

for a more complete description of FINS commands or other specification of the

controller verify manufacturer‘s manual.

Solution 86

3.7 The Solution Testbed

The objective of the test consists in producing three products with the same

characteristics where the MAS cooperate in order to achieve that goal based on the

knowledge provided by the ontology. The product consists in three parallel pieces of

Lego and the required manufacturing processes consist in changing piece‘s order, to

manufacture products operation require being done in a specific order. Robots present in

the production system provide the same services therefore, when one robot is busy the

other can provide the service, if this one is also busy the pallet will be will be routed

around the system waiting robot‘s availability. System‘s entry point is considered to be

the Decision Point 2, and the exit point the end of the Inter Cell Conveyor 1, for both

cases pallets are added and removed manually.

The MAS is composed by an agent per main device and these are an agent per

conveyor, per diverter, per robot and per pallet.

4. The Testbed Results

This chapter presents the results of the testbed executed in order to prove the developed

solution.

The controlling MAS starts by launching the agents that compose the MAS, operation

done by the launcher agent, and Figure 86 presents its log window. Launcher agent

operation starts by registering itself, provided services, then launches all agents,

deregisters and ends its operation.

Figure 86: Log Window of the Launcher Agent operation

Once all device agents are launched the system is ready to perform its operation where

launched agents are conveyor, decision point, and robot. At this stage, there is no

activity in the system since there is no trigger, launched agents are mainly service

providers. The trigger is introduced by pallet agent since it requires services from the

other agents, an example launching a pallet agent is present in Figure 87 and once again

its operation is performed by the launcher agent.

Figure 87: Log Window of the Launcher Agent launching a Pallet Agent

Results 88

Figure 88 presents the log window information of the operation of a pallet agent, it

starts by initializing the agent which consists in registering the agent as well as the

provided services, once registered it gets the first required manufacturing process to

perform on the product which name is AssemblePart1 and is served by AgentRobot1.

With the location information retrieved from the service request, the routing destination

is updated. With the updated location destination the agent then performs the requests to

the transport agents in order to get to the destination, an example of the service request

content is presented in Figure 89.

Figure 88: Log Window of a Pallet Agent running

As can be seen by ―ReceiveInfos‖ in Figure 88, it represents the information received

by pallet agent with respect to the transport agents which are proving it the transport

service. Upon reading desired working area the operation starts to being performed, as

such pallet agent and respective transport agent are informed in respect to operation

status. This cycle, searching for a service, reaching it provider and consume the service

are the fulfilled requirements of one manufacturing process, and it is repeated according

to the number of needed manufacturing processes.

Figure 89: Content of a Service Request Message

The operation of a bypass conveyor can be visualized in Figure 90 in terms of the agent

log window, its operation starts by receiving a Query message from the previous

transport agent since it wishes to know its availability. The messages received before

the Query message are in respect to sensor‘s information, and since the conveyor has

free places answers it positively and then, it accepts a service Request from the pallet

that has left the previous conveyor which is confirmed by the log ‗Pallet Registered‘.

Once the pallet gets on the conveyor there is new sensor information and after it, the

previous transport device is acknowledged with an Inform message, so confirm that the

pallet was correctly delivered.

Results 89

Figure 90: Log Window of the ByPass Conveyor 2 Agent running

ByPass conveyor has one working area and since the desired destination is not at this

location it has to act in order to deliver the pallet to the following transport agent. The

shared area is at its end, due to that the agent that competes for it has to be queried in

order to know if the area is free; for a positive answer, the area became reserved,

otherwise the procedure is delayed and repeated. Then, the following transport agent is

queried to know if is available for one more pallet, at the arrival of a positive answer,

the pallet agent is then informed with the following transport agent information to

requests it; otherwise the process is delayed and repeated.

For an inter cell conveyor, the operation is very similar since it also has one working

area but it do not having a shared area, the process of querying shared area agent does

not belong to its operation which is presented in Figure 91 in terms of its log window.

A conveyor that has more than one working area is the service conveyor; its working

operation is presented in Figure 92 and Figure 93. The presented log window does

respect to the provision of a service to a pallet that requested stopping at its second

working area. In Figure 92 it is possible to verify the service request from the pallet

agent and the conveyor turning on since it was empty; then, the previous transport agent

is informed about a successfully delivery and the pallet is blocked. Since it wishes to

stop at the second working area the pallet is released and stopped once again at the

second working area, it will be released upon receiving a message specifying an end of

operation at that working area. Once the operation is ended, it starts the process of

delivering the pallet to the following transport agent since pallet is in the last position.

Results 90

Figure 91: Log Window of the Agent Inter Cell Conveyor 2 running

Figure 92: Log Window of the Agent Service Conveyor 2 running 1

Figure 93: Log Window of the Agent Service Conveyor 2 running 2

Results 91

Other device that belongs to the transport system is the diverter as well as its agent

decision point is a transport agent, its operation is presented in Figure 94.

Figure 94: Log Window of the Agent Decision Point running

Figure 94 presents the log window for the Request of a pallet agent that wishes its

services, once registered the pallet gets to the diverter and it triggers new sensor‘s

information as can be seen on the log window its RFID value is 36, upon confirming

this value, it starts the decision making process to get destination transport agent and

when obtained pallet agent is informed.

For the case of a RFID tag value not corresponding to a registered pallet it means that

the present pallet is not synchronized or it does not belong to the system, therefore it has

to be routed to an exit point. To route the pallet to the exit point the agent exit handler is

lunched and its operation is present in Figure 95, if the pallet has an agent associated,

this one is deleted and the exit handler substitutes it.

Figure 95: Log Window of the Agent Decision Point 2 launching an Exit Handler Agent

The operation of an exit handler agent is presented in Figure 96. From the figure is

possible to check the path that it had since its log window contains the transport agents

to which the agent has been on, and once the exit point is reached, the agent deregisters

and deletes itself.

Results 92

Figure 96: Log Window of the Exit Handler Agent

The operation of the robot agent is divided into several figures, Figure 97 presents

initialization, Figure 98 the beginning of operation of a manufacturing process and

Figure 99 its end.

In the initialization phase, the robot is physically initialized, once ready it registers itself

and the provided services, then it starts its main operation. Upon receiving a service

Request from a pallet agent if accepted is answered positively and the agent became

then committed in proving the requested service, i.e. the request is registered. When the

pallet arrives at robot‘s working area the operation is started. The messages exchanged

for this task can be visualized in Figure 98. When the operation is accomplished, an

inform message is sent for the pallet and conveyor agent informing both of the end of

operation, its log window is presented in Figure 99.

Figure 97: Log Window of robot initialization of the Robot Agent

Results 93

Figure 98: Log Window of a start operation of the Robot Agent

Figure 99: Log Window of an end operation of the Robot Agent

Once the operations are performed on the product, the respective pallet agent reports

that it has ended its operation, its log window is presented by Figure 100.

Figure 100: Log Window of Pallet agent when operations completed

Results 94

In order to sensor data reach each agent, sensorial agent has to be running to get data

and distribute information through the MAS, a resume of its operation is presented in

Figure 101.

Figure 101: Log Window of the Sensorial Agent running

The operation performed by the sensorial agent is of great importance because the

operation of the complete system depends on it, the agent has to be running without

problems, and to guarantee that, the agent monitor is also running and its operation is

represented in terms of its log window in Figure 102 and Figure 103; Figure 102

presents the operation of receiving messages; Figure 103 presents the operation of

replacing sensorial agent.

Figure 102: Log Window of the Monitor Agent receiving messages

Figure 103: Log Window of the Monitor Agent subtituting Sensorial Agent

5. Conclusions and Future Work

The development of this thesis includes an applied effort in order to integrate different

technologies, from the higher level to the lowest with the purpose of:

1. Modelling the ontology and make it accessible and useful at the agents‘ domain.

2. Model the agents and make them interact with the controller of the physical

system

3. Control the physical system with its controller

With respect to the objectives stated in the sub-chapter 1.2.3.1 those have been achieved

as follows:

1. Creation of an ontology representing the manufacturing system in terms of its

devices and control entities.

2. Integration of the ontology with the control entities of the manufacturing system.

3. Development of a Multi-Agent System that controls the manufacturing system

in terms of its devices based on the knowledge obtained from the ontology.

4. Integrate the Multi-Agent System with the physical manufacturing system.

5. Application of the Multi-Agent System in a test case scenario to control the

manufacturing system based on the ontology.

Having a control that is independent of the physical system allows it to be applied to

different manufacturing systems with a much smaller setup time when compared to re-

configuring or changing, existing or legacy systems since the control rely on system‘s

ontology. For agents to actuate on the physical controller an interface is required which

is unique for each physical system, creating this interface is time consuming when

compared to developing a system‘s ontology, this is the solution‘s bottleneck. However,

solution‘s bottleneck require a smaller effort in opposite to the effort required to change

current or legacy manufacturing systems, these require a huge amount of

reprogramming and reconfiguring.

Other advantage of this solution is that controlling physical systems with agents instead

of a single physical controller enhances the level at which physical system‘s

information and control actions are available. With the system‘s information available at

this level it is easier for companies to integrate their Enterprise Resource Planning

(ERP) systems with the controlling system, it allows managers to access directly to the

shop floor‘s information, easily adapts to production plans and it also allows remote

control and monitoring of the manufacturing system.

Conclusions and Future Work 96

Due to the limitation of the physical system it was not possible to prove its scalability,

more specifically the decision point agents might need to route pallets from several

conveyors and deliver them to one of several possibilities.

In terms of future work there are key points to improve. Adding location information to

the pallet when performing requests to service providers can be valuable during the

decision making process of choosing the provider to request a service so that the closest

provider is requested, therefore increasing efficiency and performance.

Adding traffic information to the transport system could also be a good improvement as

well as for the transport system; however it is necessary to consider the amount of

network traffic that it adds to make this information available, several protocols from

telecommunications are developed and could be used at this point.

Also some changes could be done to the MAS in respect to the transport agents and

towards increasing the level of its adaptability to production reconfiguration. A possible

solution could be to define behaviours that allow changing the obtained knowledge at

launch time so that the transport system is not launched when changes are required.

Also the equivalent behaviours could be done to the agents that have devices attached

to, so that these could also be changed on the fly.

References 97

6. Bibliography

Barata, J., L. Camarinha-Matos, and M. Onori. ―A Multiagent Based Control Approach

for Evolvable Assembly Systems.‖ 3rd IEEE International Conference on Industrial

Informatics. IEEE, 2005. 478- 483.

—. ―A Multiagent Based Control Approach for Evolvable Assembly Systems.‖ 3rd

IEEE International Conference on Industrial Informatics. IEEE, 2005. 478- 483.

Becta. Emerging technologies for learning. Becta, 2007.

Bussman, S., N. Jennings, and M. Wooldridge. Multiagent Systems for Manufacturing

Control - A Design Methodology. Springer Series on Agent Technology, 2004.

Caire, Giovanni, and David Cabanillas. JADE TUTORIAL - APPLICATION-DEFINED

CONTENT LANGUAGES AND ONTOLOGIES. Tutorial, CSELT S.p.A. & Tilab

S.p.A., 2006.

Clark&Parsia. Pellet Features. 2004. http://clarkparsia.com/pellet/features (accessed

July 2009).

Colombo, Armando W., Ralf Neuberg, and Ronald Schoop. ―A Solution to Holonic

Control Systems.‖

Corcho, O., M. Fernández-Lopez, and A. Gómez-Pérez. Ontological Engineering:

Principles, Methods, Tools and Languages. Springer Berlin Heidelberg, 2006.

Dale, Jonathan, Johnny Knottenbelt, and Fujisu Labo. April Agent Platform.

http://design-

studio.lookin.at/research/relate%20survey/Survey%20Agent%20Platform/April%20Ag

ent%20Platform.htm (accessed 08 08, 2009).

DAML-OIL-W3C, World Wide Web Consortium. Annotated DAML+OIL Ontology

Markup. 18 December 2001. http://www.w3.org/TR/daml+oil-walkthru/ (accessed July

2009).

DIG Standard. http://dl.kr.org/dig/interface.html (accessed July 2009).

Elammari, M., and W. Lalonde. ―An Agent Oriented Methodology: High-Level and

Intermediate Models.‖ International Workshop on Agent-Oriented Information Systems.

Heidelberg, Germany, 1999.

References 98

—. ―An Agent Oriented Methodology: High-Level and Intermediate Models.‖

International Workshop on Agent-Oriented Information Systems. Heidelberg, Germany,

1999.

Finkenzeller, Klaus. RFID Handbook: Fundamentals and Applications in Contactless

Smart Cards and Identification. John Wiley & Sons, Ltd, 2003.

FIPA, Architecture Board. FIPA ACL Message Structure Specification. Standard

Specification, FIPA, 2002.

FIPA, Architecture Board. FIPA Query Interaction Protocol Specification. Standard

Specification, FIPA, 2002.

FIPA, Architecture Board. FIPA Request Interaction Protocol Specification. Standard

Specification, FIPA, 2002.

FIPA-OS. 1999. http://fipa-os.sourceforge.net/index.htm (accessed July 2009).

Fraden, Jacob. Handbook of Modern Sensors: Physics, Designs, and Applications.

Springer, 2004.

Franklin, S., and A. Graesser. ―Is It an agent, or just a program?: A taxonomy for

autonomous agents.‖ In Intelligent Agents III Agent Theories, Architectures, and

Languages, by Springer, 21-35. Springer Berlin / Heidelberg, 2006.

Frey, Daniel, Jens Nimis, Heinz Wörn, and Peter Lockemann. ―Benchmarking and

robust multi-agent-based production planning and control.‖ In Engineering Applications

of Artificial Intelligence Volume 16, Issue 4, by G. Morel and B. Grabot, 307-320.

Elsevier, June 2003.

Gasevic, D., D. Djuric, and V. Devedzic. Model Driven Architecture and Ontology

Development. Springer, 2006.

Glanzer, K., A. Hammerle, and R. Geurts. ―The application of ZEUS agents in

manufacturing environments.‖ 12th International Workshop on Database and Expert

Systems Applications. IEEE, 2001. 628-632.

Gruber, T. Ontology (Computer Science). 2007. http://tomgruber.org/writing/ontology-

definition-2007.htm (accessed July 31, 2009).

Gungui, I., M. Martelli, and V. Mascardi. ―DCaseLP: a Prototyping Environment for

Multi-Language Agent Systems.‖ In Languages, Methodologies and Development Tools

for Multi-Agent Systems, by Springer, 139-155. Springer Berlin / Heidelberg, 2008.

Gutknecht, O., and J. Ferber. ―MadKit: A generic multi-agent platform.‖ Fourth

international conference on Autonomous agents. ACM, 2000. 78-79.

References 99

Gutknecht, O., J. Ferber, F. Michel, and S. Mansour. MadKit. 2000.

http://www.madkit.org (accessed July 2009).

Haarslev, V., R. Möller, and M. Wessel. ―Querying the Semantic Web with Racer +

nRQL.‖ In Proceedings of the KI-2004 International Workshop on Applications of

Description Logics (ADL’04. 2004.

Horrocks, I., et al. OIL. 28 November 2008. http://www.ontoknowledge.org/oil/

(accessed July 2009).

IBM. What is ontology? Frequently asked questions. 2006.

http://www.alphaworks.ibm.com/contentnr/semanticsfaqs (accessed April 2009).

Inc, Achronymics. ―Reference Manual and User Guide of Agent Builder .‖ Reference

Manual and User Guide. Achronymics Inc, 2004.

Juan, Thomas, Adrian Pearce, and Leon Sterling. ―ROADMAP: extending the gaia

methodology for complex open systems.‖ International Conference on Autonomous

Agents. Bologna, Italy: ACM, 2002. 3-10.

Kaplunova, A., R. Möller, and M. Wessel. ―Leveraging the Expressivity of Grounded

Conjunctive Query Languages.‖ In On the Move to Meaningful Internet Systems 2007:

OTM 2007 Workshops, by Springer - Lectures Notes in Computer Science, 1176-1186.

Springer Berlin / Heidelberg, 2007.

Karp, P., V. Chaudhri, and J. Thomere. XOL. 31 August 1999.

http://www.ai.sri.com/pkarp/xol/xol.html (accessed July 2009).

Kidd, Paul T. ―Agile Manufacturing: A Strategy for the 21st Century.‖ IEE Colloquium

on Agile Manufacturing, 20 October 1995: 1-6.

Kinny, David, and Michael Georgeff. ―Modelling and design of multi-agent systems.‖

In Lecture Notes in Computer Science, by Springer, 1-20. Springer Berlin / Heidelberg,

1997.

Lastra, J., and A. Colombo. ―Engineering framework for agent-based manufacturing

control.‖ In Engineering Applications of Artificial Intelligence, 625-640. Elsevier, 2006.

Lastra, José. Reference Mechatronic Architecture for Actor-based Assembly Systems.

PhD Thesis, Tampere, Finland: Tampere university of Technology, 2004.

Lemaignan, S., A. Siadat, J.-Y. Dantan, and A. Semenenko. ―MASON: A Proposal For

An Ontology Of Manufacturing Domain.‖ Workshop on Distributed Intelligent Systems:

Collective Intelligence and Its Applications. IEEE, 2006. 195 - 200.

References 100

Lohse, N., S. Ratchev, and J. Barata. ―Evolvable Assembly Systems - On the role of

design frameworks and supporting ontologies.‖ International Symposium on Industrial

Electronics. IEEE, 2006. 3375-3380.

López Orozco, Omar J., and José L. Martínez Lastra. ―Agent-Based Control Model for

Reconfigurable Manufacturing Systems.‖ IEEE Conference on Emerging Technologies

and Factory Automation. IEEE, 2007. 1233-1238.

Martínez Lastra, José Luis, Ivan Mateo Delamer, and Fernando Ubiz Lopez. Domain

Ontologies for Reasoning Machines in Factory Automation. Report number 71,

Tampere University of Technology, 2007.

Masolo, C., S. Borgo, A. Gangemi, N. Guarino, and A. Oltramari. ―WonderWeb

Deliverable D18 - Ontology Library(final).‖ research project funded by the IST

Programme of the Commission of the European Communities as project number IST-

2001-33052, 2003.

Maturana, Francisco P., Raymond J. Staron, and Kenwood H. Hall. ―Methodologies and

Tools for Intelligent Agents in Distributed Control.‖ Special Issue of IEEE Journal of

Intelligent Systems, 2005.

Mehrabi, M., A. Ulsoy, and Y. Koren. ―Reconfigurable manufacturing systems: Key to

future manufacturing.‖ Journal of Intelligent Manufacturing, 2000: 403-419.

Mizoguchi, R., and Y. Kitamura. ―Foundation of Knowledge Systematization: Role of

Ontological Engineering.‖ In Industrial Knowledge Management - A Micro Level

Approach, by Rajkumar Roy Ed. 2000.

Mönch, L., and M. Stehli. ―An Ontology for Production Control of Semiconductor.‖ In

Multiagent System Technologies, by Springer. Springer, 2004.

Mönch, Lars, Marcel Stehli, and Jens Zimmermann. ―FABMAS: An Agent-Based

System for Production Control of Semiconductor Manufacturing Processes.‖ In Lecture

Notes in Computer Science, 258-267. Berlin: Springer, 2004.

Muller, J. The Design of Intelligent Agents: A Layered Approach. Springer-Verlag New

York, Inc., 1996.

Nguyen, G., T.T Dang, L. Hluchy, M. Laclavik, Z. Balogh, and I. Budinska. Agent

Platform Evaluation and Comparison. Pellucid 5FP IST-2001-34519, 2002.

olp.dfki.de. OntoSelect. http://olp.dfki.de/ontoselect?wicket:bookmarkablePage=wicket-

0:de.dfki.ontoselect.SearchOntologies (accessed February 2009).

Onori, M., J. Barata, and R. Frei. ―Evolvable Assembly Systems: Basic Principles.‖ In

Information Technology For Balanced Manufacturing Systems, by Springer, 317-328.

Springer, 2006.

References 101

OWL-W3C, World Wide Web Consortium. Web Ontology Language. 10 February

2004. http://www.w3.org/2004/OWL/ (accessed July 2009).

Pan, J.-Y., J. Tenenbaum, and J. Glicksman. ―A framework for knowledge-based

computer-integrated manufacturing.‖ In IEEE Transactions on Semiconductor

Manufacturing, 33 - 46. IEEE, 1989.

Pellet Reasoner. http://clarkparsia.com (accessed July 2009).

Pouchard, L., N. Ivezic, and C. Schlenoff. ―Ontology Engineering For Distributed

Collaboration In Manufacturing.‖ Proceedings of the Artificial Intelligence and

Simulation Conference. 2000.

Pretorius, A. ―Ontologies - Introduction and Overview.‖ Information Visualisation.

Eighth International . IEEE, 2004.

ProtégéWiki. Protégé Ontologies Library. 2006. http://protege.cim3.net/cgi-

bin/wiki.pl?ProtegeOntologiesLibrary (accessed July 2009).

RacerSystems. RacerPro. www.racer-systems.com (accessed July 2009).

RacerSystems, GmbH & Co. KG. ―Releace notes for RacerPro 1.9.2 beta.‖ 2007.

RDF-W3C, World Wide Web Consortium. RDF. February 1999.

http://www.w3.org/RDF/ (accessed July 2009).

Ricordel, P.M., and Y. Demazeau. ―From Analysis to Development – A Multi-agent

Platform Survey.‖ In Engineering Societies in the Agents World, by Spring, 93-105.

Springer Berlin / Heidelberg, 2000.

SHOE, Parallel Understanding Systems Group, Department of Computer Science,

University of Maryland at College Park. SHOE. 1999.

http://www.cs.umd.edu/projects/plus/SHOE/ (accessed July 2009).

Sirin, E., and B. Parsia. ―SPARQL-DL: SPARQL Query for OWL-DL.‖ 3rd OWLED:

Experiences and Directions Workshop (OWLED2007). Clark & Parsia, 2007.

Sirin, E., B. Parsia, B. Grau, A. Kalyanpur, and Katz Y. ―Pellet: A Practical OWL-DL

Reasoner.‖ Journal of Web Semantics, 2007.

SPARQL-W3C, World Wide Web Consortium. SPARQL Query Language for RDF. 15

January 2008. http://www.w3.org/TR/rdf-sparql-query/ (accessed July 2009).

Tryllian Agent Development Kit. 1998. http://www.tryllian.org/ (accessed July 2009).

UMBC, University of Maryland, Baltimore County. SOOGLE, Semantic Web Search.

2006. http://swoogle.umbc.edu/ (accessed July 2009).

References 102

Wooldridge. An Introduction to MultiAgent Systems. WILEY, 2002.

Wooldridge, Michael, Nicholas R. Jennings, and David Kinny. ―The Gaia Methodology

for Agent-Oriented Analysis and Design.‖ Autonomous Agents and Multi-Agent

Systems, 2005: 285-312.

XML-W3C, World Wide Web Consortium. XML. 1998. http://www.w3.org/XML/

(accessed July 2009).

Yusuf, Y.Y., M. Sarhadi, and A. Gunasekaran. ―Agile Manufacturing: The drivers,

concepts and attributes.‖ International Journal of Production Economics, 1999: 33-43.

Zhang, Y., R. Witte, J. Rilling, and V. Haarslev. Ontological approach for the semantic

recovery of traceability links between software artefacts. IET Software & IEEE, 2007.

ZHANG, Z. THE ONTOLOGY QUERY LANGUAGES FOR THE SEMANTIAC WEB: A

PERFORMANCE EVALUATION. Master of Science Thesis, Graduate Faculty of The

University of Georgia, 2005.

Appendix A – Knowledge from the domain

As mentioned in the sub-chapter 2.1.4 - Ontology Building, in order to create an

ontology it is first necessary to gain all the knowledge from the domain to be

represented. In this case the domain is manufacturing systems, and therefore, it is

necessary to get all the specifications in terms of the devices it has.

In the present scenario, the manufacturing system is composed by two robotic cells, a

conveyor system, several presence sensors, RFID sensors, stoppers, diverters and

pallets.

The first step towards getting good knowledge from the domain is by searching for

information from its manufacturer, and then from other sources such as websites, books,

standards, etc. The knowledge found then give help in the decision making process

regarding the creation of classes, properties, best taxonomy to use and other aspect of an

ontology.

Stating this, the following presents the sources that have given help to the decision

making process of creating the ontology for each device.

Regarding the identification of useful knowledge and taxonomy in the robots domain,

the following was found and used:

 Robot definition:

http://searchcio-midmarket.techtarget.com/sDefinition/0,,sid183_gci519835,00.html

 Manipulator definition

http://www.robots.com/faq.php?question=robot+manipulator

 SCARA definition:

http://www.motionnet.com/cgi-bin/search.exe?a=showdefinition&no=3626

 Specifications of the robot (Datasheet)

http://www.flexmont.hu/eng/fooldal.php?page=sony

http://www.exapro.eu/uk/produit-20658-sony-scara-robot-axis.html

http://www.lasermotion.com/sony611.html

 Types of robots

Appendix 9 – Robot Domain Ontology from (Martínez Lastra, Delamer and Ubiz

Lopez 2007)

 General descriptions regarding robots

Appendix A - Knowledge from the domain 104

ISO 8373 – 1994

http://prime.jsc.nasa.gov/ROV/types.html

http://www.eod.gvsu.edu/eod/mechtron/mechtron-417.html

With respect to the identification of useful knowledge and taxonomy in the sensors

domain, the following was found and used:

 Sensor Properties

Chapter 2 from (Fraden 2004) or at

http://books.google.com/books?hl=en&lr=&id=SB7glOc4VlAC&oi=fnd&pg=PR8

&dq=Handbook+of+Modern+Sensors&ots=6U8juLho5Z&sig=6aXwXJjdLd9B3E

N1K0jZZf4QL44#PPP1,M1

 Sensing Resource

From (J. Lastra 2004)

 Sensor definition

http://dictionary.reference.com/browse/sensor

 Inductive Sensor Definition:

http://www.nationmaster.com/encyclopedia/Inductive-sensor

 Information for the RFID

From (Finkenzeller 2003)

 Manufacturer‘s datasheets:

o BES inductive sensor

http://www.balluff-china.com/PDF/en/datenblaetter/BES%20516-325-G-E4-

Y-PU-05.pdf

o Wenglor inductive sensor (a compatible model for general descriptions)

http://www.wenglor.com/wenglor.php?Sprache=US&Land=USA&Start=Pro

duktdaten.php&P=Artikel_NR=IB040BM46VB8;;Kategorie=IN;;Benennun

g_Gesamt=Inductive%20Proximity%20Switch;;sort=Bauform

o RFID sensor (V600-HS51)

http://www.omron247.com/marcom/pdfcatal.nsf/PDFLookupByUniqueID/7

8C2C296F68DC2F08525702E0051AACA/$File/M09Z129E101A0505.pdf?

OpenElement

Appendix A - Knowledge from the domain 105

o SMC inductive sensor (D-A93 page 46)

http://www.smc.eu/portal/WebContent/resources/docs/atex/cat_en.pdf

Considering the identification of useful knowledge and taxonomy for the conveyors,

pallets and diverter domain, the following was found and used:

 Pallet definition

http://dictionary.reference.com/browse/pallet

 Manufacturer‘s datasheet

http://www.paro.ch/uploads/media/Flyer_transfers_e_02.pdf

 General Information

http://www.flexlink.com/wps/public/s/10000/c/1061714

http://www.flexlink.com/wps/public/s/10000/c/1061820

In order to obtain useful knowledge and taxonomy for the tool‘s domain, the following

was found and used:

 General information

http://whatis.techtarget.com/definition/0,,sid9_gci521693,00.html

Related with the identification of useful knowledge and taxonomy for the stopper

domain, the following was searched and used:

 General information

http://www.ferret.com.au/c/Festo/Stopper-cylinders-for-conveyor-systems-n681939

Finally, taking into account getting useful knowledge and taxonomy for the location

domain, the following was found and used:

 Definition by (J. Lastra 2004)

Other useful references are a dictionary referenced by (Martínez Lastra, Delamer and

Ubiz Lopez 2007) which link is

http://www.merriam-webster.com

and an acronym finder at

www.acronymfinder.com

