11,693 research outputs found

    Satellite-matrix-switched, time-division-multiple-access network simulator

    Get PDF
    A versatile experimental Ka-band network simulator has been implemented at the NASA Lewis Research Center to demonstrate and evaluate a satellite-matrix-switched, time-division-multiple-access (SMS-TDMA) network and to evaluate future digital ground terminals and radiofrequency (RF) components. The simulator was implemented by using proof-of-concept RF components developed under NASA contracts and digital ground terminal and link simulation hardware developed at Lewis. This simulator provides many unique capabilities such as satellite range delay and variation simulation and rain fade simulation. All network parameters (e.g., signal-to-noise ratio, satellite range variation rate, burst density, and rain fade) are controlled and monitored by a central computer. The simulator is presently configured as a three-ground-terminal SMS-TDMA network

    Study of optoelectronic switch for satellite-switched time-division multiple access

    Get PDF
    The use of optoelectronic switching for satellite switched time division multiple access will improve the isolation and reduce the crosstalk of an IF switch matrix. The results are presented of a study on optoelectronic switching. Tasks include literature search, system requirements study, candidate switching architecture analysis, and switch model optimization. The results show that the power divided and crossbar switching architectures are good candidates for an IF switch matrix

    A TDM synchronization system for multiple access satellite communication

    Get PDF
    Time Division Multiple Access /TDMA/ system for satellite communication with ground station syste

    Satellite range delay simulator for a matrix-switched time division multiple-access network simulator

    Get PDF
    The Systems Integration, Test, and Evaluation (SITE) facility at NASA Lewis Research Center is presently configured as a satellite-switched time division multiple access (SS-TDMA) network simulator. The purpose of SITE is to demonstrate and evaluate advanced communication satellite technologies, presently embodied by POC components developed under NASA contracts in addition to other hardware, such as ground terminals, designed and built in-house at NASA Lewis. Each ground terminal in a satellite communications system will experience a different aspect of the satellite's motion due mainly to daily tidal effects and station keeping, hence a different duration and rate of variation in the range delay. As a result of this and other effects such as local oscillator instability, each ground terminal must constantly adjust its transmit burst timing so that data bursts from separate ground terminals arrive at the satellite in their assigned time slots, preventing overlap and keeping the system in synchronism. On the receiving end, ground terminals must synchronize their local clocks using reference transmissions received through the satellite link. A feature of the SITE facility is its capability to simulate the varying propagation delays and associated Doppler frequency shifts that the ground terminals in the network have to cope with. Delay is achieved by means of two NASA Lewis designed and built range delay simulator (RDS) systems, each independently controlled locally with front panel switches or remotely by an experiment control and monitor (EC/M) computer

    Reference broadcast synchronization and time division multiple access implementation on WSN

    Get PDF
    Various kinds of technology have been developed to assist obtain information. One of them is a Wireless Sensor Network (WSN). WSN is a wireless network consisting of multiple nodes connected wirelessly. WSN nodes on a device have small resources in the form of batteries. The main problem which owned by WSN was in the data collection process possible collisions data, there are nodes that transmit data at the same time. Time Division Multiple Access (TDMA) was able to provide data on the delivery schedule of each node. So no nodes that transmit data at the same time. But in order to apply the system each node should have equal time. One method that able to provide equalization time was Reference Broadcast Synchronization (RBS). This method synchronizes multiple nodes that have different local time (on the receiver) with the help of node that provides synchronization marks (beacons). Hence this each node was able to transmit data in accordance with the TDMA method that has been implemented. In addition time synchronization performed using RBS give equal time with accuracy up to microseconds. That case certainly makes the WSN node able to provide accurate information to guarantee the absence of errors due to data collisions. This research succesfully sending data delivery schedule by time slots that provided by RBS and time synchronization by TDMA average time delay 2285.9 microseconds

    Time Division Multiple Access/TDMA/ system, phase 2 Final report

    Get PDF
    Performance of synchronized time division multiple access system for satellite communication with ground station

    Service offerings and interfaces for the ACTS network of Earth stations

    Get PDF
    The Advanced Communications Satellite (ACTS) is capable of two modes of communication. Mode 1 is a mesh network of Earth stations using baseband-switched, time-division multiple-access (BBS-TDMA) and hopping beams. Mode 2 is a mesh network using satellite-switched, time-division multiple-access (SS-TDMA) and fixed (or hopping) beams. The purpose of this paper is to present the functional requirements and the design of the ACTS Mode 1 Earth station terrestrial interface. Included among the requirements are that: (1) the interface support standard telecommunications service offerings (i.e., voice, video and data at rates ranging from 9.6 kbps to 44 Mbps); (2) the interface support the unique design characteristics of the ACTS communications systems (e.g., the real time demand assignment of satellite capacity); and (3) the interface support test hardware capable of validating ACTS communications processes. The resulting interface design makes use of an appropriate combination of T1 or T3 multiplexers and a small central office (maximum capacity 56 subscriber lines per unit)

    Characterization of two MMIC GaAs switch matrices at microwave frequencies

    Get PDF
    Monolithic GaAs microwave switch matrices for use in satellite switched, time division multiple access communication systems were developed. Two monolithic GaAs MESFET switch matrices were fabricated; one for switching operation at intermediate frequencies, 3.5 to 6.0 GHz, and another for switching at radio frequencies, 17.7 to 20.2 GHz. Key switch parameters were measured for both switch matrices
    corecore