446 research outputs found

    Exploring Interpretable LSTM Neural Networks over Multi-Variable Data

    Full text link
    For recurrent neural networks trained on time series with target and exogenous variables, in addition to accurate prediction, it is also desired to provide interpretable insights into the data. In this paper, we explore the structure of LSTM recurrent neural networks to learn variable-wise hidden states, with the aim to capture different dynamics in multi-variable time series and distinguish the contribution of variables to the prediction. With these variable-wise hidden states, a mixture attention mechanism is proposed to model the generative process of the target. Then we develop associated training methods to jointly learn network parameters, variable and temporal importance w.r.t the prediction of the target variable. Extensive experiments on real datasets demonstrate enhanced prediction performance by capturing the dynamics of different variables. Meanwhile, we evaluate the interpretation results both qualitatively and quantitatively. It exhibits the prospect as an end-to-end framework for both forecasting and knowledge extraction over multi-variable data.Comment: Accepted to International Conference on Machine Learning (ICML), 201

    Deep learning architectures applied to wind time series multi-step forecasting

    Get PDF
    Forecasting is a critical task for the integration of wind-generated energy into electricity grids. Numerical weather models applied to wind prediction, work with grid sizes too large to reproduce all the local features that influence wind, thus making the use of time series with past observations a necessary tool for wind forecasting. This research work is about the application of deep neural networks to multi-step forecasting using multivariate time series as an input, to forecast wind speed at 12 hours ahead. Wind time series are sequences of meteorological observations like wind speed, temperature, pressure, humidity, and direction. Wind series have two statistically relevant properties; non-linearity and non-stationarity, which makes the modelling with traditional statistical tools very inaccurate. In this thesis we design, test and validate novel deep learning models for the wind energy prediction task, applying new deep architectures to the largest open wind data repository available from the National Renewable Laboratory of the US (NREL) with 126,692 wind sites evenly distributed on the US geography. The heterogeneity of the series, obtained from several data origins, allows us to obtain conclusions about the level of fitness of each model to time series that range from highly stationary locations to variable sites from complex areas. We propose Multi-Layer, Convolutional and recurrent Networks as basic building blocks, and then combined into heterogeneous architectures with different variants, trained with optimisation strategies like drop and skip connections, early stopping, adaptive learning rates, filters and kernels of different sizes, between others. The architectures are optimised by the use of structured hyper-parameter setting strategies to obtain the best performing model across the whole dataset. The learning capabilities of the architectures applied to the various sites find relationships between the site characteristics (terrain complexity, wind variability, geographical location) and the model accuracy, establishing novel measures of site predictability relating the fit of the models with indexes from time series spectral or stationary analysis. The designed methods offer new, and superior, alternatives to traditional methods.La predicció de vent és clau per a la integració de l'energia eòlica en els sistemes elèctrics. Els models meteorològics es fan servir per predicció, però tenen unes graelles geogràfiques massa grans per a reproduir totes les característiques locals que influencien la formació de vent, fent necessària la predicció d'acord amb les sèries temporals de mesures passades d'una localització concreta. L'objectiu d'aquest treball d'investigació és l'aplicació de xarxes neuronals profundes a la predicció \textit{multi-step} utilitzant com a entrada series temporals de múltiples variables meteorològiques, per a fer prediccions de vent d'ací a 12 hores. Les sèries temporals de vent són seqüències d'observacions meteorològiques tals com, velocitat del vent, temperatura, humitat, pressió baromètrica o direcció. Les sèries temporals de vent tenen dues propietats estadístiques rellevants, que són la no linearitat i la no estacionalitat, que fan que la modelització amb eines estadístiques sigui poc precisa. En aquesta tesi es validen i proven models de deep learning per la predicció de vent, aquests models d'arquitectures d'autoaprenentatge s'apliquen al conjunt de dades de vent més gran del món, que ha produït el National Renewable Laboratory dels Estats Units (NREL) i que té 126,692 ubicacions físiques de vent distribuïdes per total la geografia de nord Amèrica. L'heterogeneïtat d'aquestes sèries de dades permet establir conclusions fermes en la precisió de cada mètode aplicat a sèries temporals generades en llocs geogràficament molt diversos. Proposem xarxes neuronals profundes de tipus multi-capa, convolucionals i recurrents com a blocs bàsics sobre els quals es fan combinacions en arquitectures heterogènies amb variants, que s'entrenen amb estratègies d'optimització com drops, connexions skip, estratègies de parada, filtres i kernels de diferents mides entre altres. Les arquitectures s'optimitzen amb algorismes de selecció de paràmetres que permeten obtenir el model amb el millor rendiment, en totes les dades. Les capacitats d'aprenentatge de les arquitectures aplicades a ubicacions heterogènies permet establir relacions entre les característiques d'un lloc (complexitat del terreny, variabilitat del vent, ubicació geogràfica) i la precisió dels models, establint mesures de predictibilitat que relacionen la capacitat dels models amb les mesures definides a partir d'anàlisi espectral o d'estacionalitat de les sèries temporals. Els mètodes desenvolupats ofereixen noves i superiors alternatives als algorismes estadístics i mètodes tradicionals.Arquitecturas de aprendizaje profundo aplicadas a la predición en múltiple escalón de series temporales de viento. La predicción de viento es clave para la integración de esta energía eólica en los sistemas eléctricos. Los modelos meteorológicos tienen una resolución geográfica demasiado amplia que no reproduce todas las características locales que influencian en la formación del viento, haciendo necesaria la predicción en base a series temporales de cada ubicación concreta. El objetivo de este trabajo de investigación es la aplicación de redes neuronales profundas a la predicción multi-step usando como entrada series temporales de múltiples variables meteorológicas, para realizar predicciones de viento a 12 horas. Las series temporales de viento son secuencias de observaciones meteorológicas tales como, velocidad de viento, temperatura, humedad, presión barométrica o dirección. Las series temporales de viento tienen dos propiedades estadísticas relevantes, que son la no linealidad y la no estacionalidad, lo que implica que su modelización con herramientas estadísticas sea poco precisa. En esta tesis se validan y verifican modelos de aprendizaje profundo para la predicción de viento, estos modelos de arquitecturas de aprendizaje automático se aplican al conjunto de datos de viento más grande del mundo, que ha sido generado por el National Renewable Laboratory de los Estados Unidos (NREL) y que tiene 126,682 ubicaciones físicas de viento distribuidas por toda la geografía de Estados Unidos. La heterogeneidad de estas series de datos permite establecer conclusiones válidas sobre la validez de cada método al ser aplicado en series temporales generadas en ubicaciones físicas muy diversas. Proponemos redes neuronales profundas de tipo multi capa, convolucionales y recurrentes como tipos básicos, sobre los que se han construido combinaciones en arquitecturas heterogéneas con variantes de entrenamiento como drops, conexiones skip, estrategias de parada, filtros y kernels de distintas medidas, entre otros. Las arquitecturas se optimizan con algoritmos de selección de parámetros que permiten obtener el mejor modelo buscando el mejor rendimiento, incluyendo todos los datos. Las capacidades de aprendizaje de las arquitecturas aplicadas a localizaciones físicas muy variadas permiten establecer relaciones entre las características de una ubicación (complejidad del terreno, variabilidad de viento, ubicación geográfica) y la precisión de los modelos, estableciendo medidas de predictibilidad que relacionan la capacidad de los algoritmos con índices que se definen a partir del análisis espectral o de estacionalidad de las series temporales. Los métodos desarrollados ofrecen nuevas alternativas a los algoritmos estadísticos tradicionales.Postprint (published version

    Contribution to Financial Modeling and Financial Forecasting

    Get PDF
    This thesis consists of three chapters. Each chapter is independent research that is conducted during my study. This research is concentrated on financial time series modeling and forecasting. On first chapter, the research aims to prove that any abnormal behavior in debt level is a signal of future unexpected return for firms that is listed in indexes in this study, hence it is a signal to buy. In order to prove this theory multiple indexes from around the world were taken into consideration. This behavior is consistent in most of indexes around the word. The second chapter investigate the effect of United State president speech on value of United State Currency in Foreign Exchange Rate market. In this analysis it is shown that during the time the president is delivering a speech there is distinctive changes in USD value and volatility in global markets. This chapter implies that this effect cannot be captured by linear models, and the impact of the presidential speech is short term. Finally, the third chapter which is the major research of this thesis, suggest two new methods that potentially enhance the financial time series forecasting. Firstly, the new ARMA-RNN model is presented. The suggested model is inheriting the process of Autoregressive Moving Average model which is extensively studied, and train a recurrent neural network based on it to benefit from unique ability of ARMA model as well as strength and nonlinearity of artificial neural network. Secondly the research investigates the use of different frequency of data for input layer to predict the same data on output layer. In other words, artificial neural networks are trained on higher frequency data to predict lower frequency. Finally, both stated method is combined to achieve more superior predictive model

    “Dust in the wind...”, deep learning application to wind energy time series forecasting

    Get PDF
    To balance electricity production and demand, it is required to use different prediction techniques extensively. Renewable energy, due to its intermittency, increases the complexity and uncertainty of forecasting, and the resulting accuracy impacts all the different players acting around the electricity systems around the world like generators, distributors, retailers, or consumers. Wind forecasting can be done under two major approaches, using meteorological numerical prediction models or based on pure time series input. Deep learning is appearing as a new method that can be used for wind energy prediction. This work develops several deep learning architectures and shows their performance when applied to wind time series. The models have been tested with the most extensive wind dataset available, the National Renewable Laboratory Wind Toolkit, a dataset with 126,692 wind points in North America. The architectures designed are based on different approaches, Multi-Layer Perceptron Networks (MLP), Convolutional Networks (CNN), and Recurrent Networks (RNN). These deep learning architectures have been tested to obtain predictions in a 12-h ahead horizon, and the accuracy is measured with the coefficient of determination, the R² method. The application of the models to wind sites evenly distributed in the North America geography allows us to infer several conclusions on the relationships between methods, terrain, and forecasting complexity. The results show differences between the models and confirm the superior capabilities on the use of deep learning techniques for wind speed forecasting from wind time series data.Peer ReviewedPostprint (published version

    Wind Power Forecasting Methods Based on Deep Learning: A Survey

    Get PDF
    Accurate wind power forecasting in wind farm can effectively reduce the enormous impact on grid operation safety when high permeability intermittent power supply is connected to the power grid. Aiming to provide reference strategies for relevant researchers as well as practical applications, this paper attempts to provide the literature investigation and methods analysis of deep learning, enforcement learning and transfer learning in wind speed and wind power forecasting modeling. Usually, wind speed and wind power forecasting around a wind farm requires the calculation of the next moment of the definite state, which is usually achieved based on the state of the atmosphere that encompasses nearby atmospheric pressure, temperature, roughness, and obstacles. As an effective method of high-dimensional feature extraction, deep neural network can theoretically deal with arbitrary nonlinear transformation through proper structural design, such as adding noise to outputs, evolutionary learning used to optimize hidden layer weights, optimize the objective function so as to save information that can improve the output accuracy while filter out the irrelevant or less affected information for forecasting. The establishment of high-precision wind speed and wind power forecasting models is always a challenge due to the randomness, instantaneity and seasonal characteristics

    Application of Machine Learning to Predict Electricity Demand from Electric Vehicles in Workplace Settings

    Get PDF
    As sustainability-oriented policies begin to be implemented across the world, adapting the current electric power system (EPS) to meet the demands required by those poli- cies is key to meeting emissions targets. Part of those policies includes the continued expansion of the electrification of national transportation systems. This electrifica- tion of transportation will require the vast expansion of electric vehicle (EV) usage as well as the charging networks that will give them power. The consequent growth in anticipated energy demand must be included in infrastructure planning. As a result, forecasting the charging demand of EVs will be a vital tool to plan for the develop- ment of EPS infrastructure. The identification of the best forecasting methods is a key field of research supporting this effort. This thesis analyzed several statistical models and state-of-the-art (SoA) deep learning (DL) machine learning models to determine relevant forecasting tools for predicting EV charging loads in the context of workplace charging. Workplace charging was identified as a gap in research, where fewer attempts to model EV demand at office buildings and places of work had been recorded. The data set chosen was the NREL workplace charging data set, which included daily charging load from 2017-2020. The time series forecasting models tested include ARIMA, SARIMA, XGBoost, LightGBM, RNN, LSTM, GRU, TFT, and N-BEATS. A machine learning modelling pipeline was developed for each model. Results of modelling determined that the SoA DL models TFT and N-BEATS were the top performing models with a mean average percentage error (MAPE) score of 18.9% and 19.5%, respectively, followed by XGBoost with an MAPE of 21.1%. From a residual error analysis, it was found that TFT poorly estimated peak consumption, but was able to more consistently predict the general trends, as compared to XGBoost and N-BEATS, which performed better with extreme fluctuations, but struggled with non-extreme value
    corecore