
energies

Article

“Dust in the Wind...”, Deep Learning Application to
Wind Energy Time Series Forecasting

Jaume Manero 1,2,* , Javier Béjar 1,2 and Ulises Cortés 1,2

1 Universitat Politècnica de Catalunya—BarcelonaTECH, 08034 Barcelona, Spain; bejar@cs.upc.edu (J.B.);
ia@cs.upc.edu (U.C.)

2 Barcelona Supercomputing Center, 08034 Barcelona, Spain
* Correspondence: jaume.manero@upc.edu; Tel.: +34-934-137-840

Received: 29 May 2019; Accepted: 13 June 2019; Published: 21 June 2019
����������
�������

Abstract: To balance electricity production and demand, it is required to use different prediction
techniques extensively. Renewable energy, due to its intermittency, increases the complexity and
uncertainty of forecasting, and the resulting accuracy impacts all the different players acting around
the electricity systems around the world like generators, distributors, retailers, or consumers.
Wind forecasting can be done under two major approaches, using meteorological numerical prediction
models or based on pure time series input. Deep learning is appearing as a new method that can be used
for wind energy prediction. This work develops several deep learning architectures and shows their
performance when applied to wind time series. The models have been tested with the most extensive
wind dataset available, the National Renewable Laboratory Wind Toolkit, a dataset with 126,692 wind
points in North America. The architectures designed are based on different approaches, Multi-Layer
Perceptron Networks (MLP), Convolutional Networks (CNN), and Recurrent Networks (RNN). These
deep learning architectures have been tested to obtain predictions in a 12-h ahead horizon, and the
accuracy is measured with the coefficient of determination, the R² method. The application of the models
to wind sites evenly distributed in the North America geography allows us to infer several conclusions
on the relationships between methods, terrain, and forecasting complexity. The results show differences
between the models and confirm the superior capabilities on the use of deep learning techniques for
wind speed forecasting from wind time series data.

Keywords: wind energy forecasting; time series; deep learning; RNN; MLP; CNN; wind speed
forecasting; wind time series; time series; multi-step forecasting

1. Introduction

The development of clean electricity is one pivotal area for the transition to a de-carbonized
world, and for this reason, the electricity systems are under a process of transformation from a
heavily-centralized network, based on large uranium, coal, gas or gas-oil generation plants, to a new
decentralized model with small wind or solar units that require high coordination, accomplished
by the intensive use of computer algorithms [1]. The quintessential renewable energy source has
always been the hydro-based generation, found in many forms, from very large dams that produce
hundreds of MW, to small units that output a few KW of electricity from running water sources. Hydro
energy is inexpensive and secure, and by adding different versions of pumped-storage technologies,
dams can be transformed into electricity storage systems, helping to regulate the electricity systems
around the world [2]. However, this energy depends on water, a resource not always available or
scarce, and cannot be ramped up to cover the energy needs of the world, opening the door for other
clean sources. Solar and wind show the fastest growth around the globe. Both technologies share the
intermittency issues inherent to renewables; hence, forecasting becomes a critical process to integrate all

Energies 2019, 12, 2385; doi:10.3390/en12122385 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000$-$0002-4814-4535X
https://orcid.org/0000$-$0001-5281-3888
https://orcid.org/0000$-$0003$-$0192-3096
http://dx.doi.org/10.3390/en12122385
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/12/12/2385?type=check_update&version=2

Energies 2019, 12, 2385 2 of 20

these new sources while keeping the grid stable. There are different studies regarding the importance
of forecasting in the grid integration like [3] or [4], which show, with modeling performed at the
European level, how relevant the forecasting processes are, for short-, mid- and long-term, to assure
grid stability [5].

Wind energy prediction can be classified into two major approaches depending on the origin
of the input, meteorological or time series. The first class, also known as physical forecasting [6],
is based on the use of Numerical Weather Prediction models (NWP) as an input, while the time series
prediction is based only on using time-stamped past observations. In this work, the focus is on the
second approach, as the objective of this research is to determine how some deep learning architectures
can learn wind patterns from past observations.

Wind speed time series, from the statistics standpoint, have some characteristics that define their
prediction as a complex problem (for an analysis of wind energy prediction, see [7]). The wind series
show non-linearity and, most of the time, also non-stationarity (see Section 2.1), which makes the
use of linear modeling methods like Auto-Regressive methods (AR), Moving Average Methods (MA),
or combinations of both (ARIMA) inaccurate for commercial use, unless they are complemented with
additional tools to cope with the non-linearity like Nonlinear Auto-Regressive Exogenous models
(NARX) [8], or by combining methods with decomposition of the wind wave, like using Fourier
or wavelet transformations [9]. Another approach consists of using combinations of methods or
ensembles [10].

The introduction of machine learning algorithms in the wind prediction field has occurred in
parallel with the development of software tools to use these models on a large scale. These new
tools have allowed the design of approaches with good accuracy results applied to wind time series.
Machine learning in wind approaches has been documented using different conceptual paths like
Bayesian approaches in [11–13], k-Nearest Neighbor (k-NN) algorithms in [14] or [15], and Support
Vector Machines (SVM) in [16,17] (see a complete literary review in [18]).

Neural network methods started slowly due to some concerns about their applicability to
time series, but in the last few years, they have shown traction with some Multi-Layer Perceptron
models (MLP) [19–21]. More recently, deep learning architectures are showing their potential in wind
time series forecasting [22], with applications of recurrent neural networks [23–25] or convolutional
networks in [26,27] (for a complete review of deep learning architectures applied to wind energy
forecasting, see [28]).

The objective of wind energy forecasting is to predict the energy generated by a wind turbine
or by a wind farm (set of turbines) in a future time horizon. The conversion of the wind energy into
electricity is based on the air kinetic conversion principle (see Equation (1)).

E =
1
2

ρAtv3 (1)

where ρ is air density, A is blade swept area, v is wind speed, and t is time. In this formula, it can
be observed that the major input contributor is wind speed (v3). In practice, the conversion from
wind speed to energy is not as direct as this formula implies, as there are many factors acting in the
transformation from speed to energy (wind direction, turbine maintenance, specifics of the generation
engine, etc.), as this conversion is obtained by applying a turbine-specific power curve function, which
is non-linear and has some uncertainty ([29,30]).

Predicting energy output of a turbine is a two step process, the first one is to forecast the wind
speed, while the second one consists of applying the power curve to this value. As the power curve has
a cut-in (wind speed point where the turbine starts generating), a cut-out (wind speed point where the
turbine stops generating as it is too fast), and the curve shape has a steep slope, the error propagation
between the wind speed and energy is non-trivial, as this slope and these cut points can decrease or
amplify the error intensity. In addition to these issues, the turbine has mechanical components that can
impact generation if they lack in maintenance, have wear of parts, and small damages. Altogether, it is
clear that the theoretical power curve needs to be adjusted to the technical situation of the turbine [31].

Energies 2019, 12, 2385 3 of 20

This work focuses on the wind speed forecasting process by developing several deep learning
models (see Table 1) to predict wind speed at a 12-h ahead horizon, a time window that can be
considered mid-term in the wind forecasting field. The experiments were executed on the NREL
dataset (with 126,692 wind sites), and the cumulative values of accuracy were measured with the
coefficient of determination or R2.

Table 1. Models developed in the experiments with short description and abbreviation used in article.

Model Description Abbr Used

Multi-Layer Perceptron MLP sequence to sequence MLP
Multi-Layer Perceptron MLP with Direct regression MLP Dir
Convolutional Network CNN sequence to sequence CNN
Recurrent Neural Network RNN Encoder Decoder RNN ED
Recurrent Neural Network RNN seq2seq RNN
k-NN k-NN neighbors k-NN
Persistence Traditional persistence Pers

The main contribution consists not only of the definition of novel deep learning architectures,
but in the application of these models extensively on the largest publicly-available wind dataset.
The NREL data offer wind sites distributed evenly in North America, and this allows going far beyond
the traditional application of some methods to a single wind farm or to a small number of sites.
The variability of the sites’ topology allows us to observe geographical relationships between sites and
wind complexity and to draw inferences connecting the best method accuracy with site location.

The availability of computing power has been made possible by the collaboration with the
Barcelona Super-computing Center (BSC) [32], which has provided their infrastructure (MinoTauro
GPU cluster) to support the experiments.

As a summary, this work looks into the capabilities of deep learning in understanding past
patterns of wind observations in order to predict future wind behavior. Wind is formed by a complex
interaction of several natural phenomena and local features; the intricacy of its formation explains
its prediction difficulty, and for this new set of algorithms to understand the subtlety of its patterns,
they need to be able to learn from insignificant pieces of information that are not apparent, like
meaningless dust specks in the wind, like the metaphorical “Dust in the Wind” in the well-known
song from Kansas.

The organization of the paper is as follows: It starts with Section 2 with the introduction of the
wind forecasting problem, then develops the time series approach plus the principles of deep learning
for forecasting, closing with the description of the data used for experimentation. Section 3 analyzes
the different methods used for data pre-processing, architecture design, and error measurement,
including the analysis of the hyper-parameter setting process and the overall experimental setup.
Section 4 compares and analyzes all the experimental results, and finally, Section 5 analyzes the overall
work, developing conclusions and future lines of work.

2. Wind Time Series Forecasting

2.1. Wind Time Series Characteristics

Wind time series are based on multiple observations performed at a specific location or wind site
(in wind generation, these data are usually generated by the turbine sensor devices). In this work,
the time series contains five dimensions, which are wind speed, temperature, humidity, pressure,
and direction, recorded every 5 min (see Table 2).

Wind time series have two relevant characteristics, the first one being stationarity, which is a time
series property found when the series has a mean or variance (or both) that does not change over
time, and the second being linearity, observed in a time series when linear modeling can represent the
co-variance structure of the series [33] (linear modeling like Auto-Regressive (AR) or Moving Average

Energies 2019, 12, 2385 4 of 20

(MA) methods). As wind time series in most cases do not show stationarity or linearity, they must be
modeled using non-linear approaches.

Table 2. Variables in an NREL wind dataset time step.

Variable Description

Time Time stamp in UTC
Wind Speed Wind speed measured in m/s at a 100-m height
Wind Direction Wind direction at a 100-m height (0–360°)
Temperature Temperature at 2 m from the ground level in K
Barometric Pressure Pressure at a 100-m height in Pa
Air Density Air density at a 100-m height in kg/m3

2.2. Multiple-Step-Ahead Forecasting

One challenging problem with time series forecasting is to obtain predictions in a horizon beyond
the next time step, a problem that is defined as multiple-step-ahead forecasting.

Multiple-step-ahead forecasting can be interpreted as a multiple regression problem, where the
past data are used to obtain multiple prediction steps in the future. There are several methods to
approach this problem, which can be summarized into two [34]. The first one is the recursive approach
where one model is trained to estimate the first step ahead, and then, the successive steps are computed
recursively using each generated step as an input value. The main disadvantage of this method lays in
the fact that the error of the prediction is propagated to successive predictions. Usually, this method
does not yield the best results.

The second method is the direct forecasting, a strategy with two different approaches depending
on how the predictions are obtained. The first one is to obtain a model for each step on the horizon
that has to be predicted. This means that a different model is trained to minimize the error for each
time step separately, a computationally-expensive approach. The second method consists of a model
that generates multiple outputs by training the model to minimize the error for all the time steps in the
horizon at the same time. This method is also known as the Multiple Input Multiple Output (MIMO)
approach. A compromise between the two approaches is also possible by obtaining separate models
that predict subsets of steps.

As the MIMO approach input is a sequence and the output is another sequence, in the deep
learning field, it is commonly defined as sequence to sequence or seq2seq. For the sake of clarity
in this article, the seq2seq nomenclature will be used, taking into account that it is understood as a
synonym of MIMO.

2.3. Forecasting Time Series with Deep Learning

Given a time series X of n elements [x1, x2, x3, · · · , xn], a prediction is obtained for H (horizon)
steps ahead Ŷ =

[
ŷn+1, ŷn+2, · · · , ŷn+H

]
. To train the DLarchitectures, a set of examples is generated

Z = [z1, z2, · · · , zk]. The set of examples Z is formed by elements zi that contain sections of the wind
series of length lag. To have better accuracy, the larger the set of examples Z is, the better. It is well
known that deep learning architectures do not generalize well from a small number of examples, and
they require large amounts of data for training [35].

The deep models are trained with the example set Z and then are able to perform predictions for
horizon H steps with real input from the series. In this work, the predictions and measures of accuracy
(see Section 3.3) are made on the test and validation datasets by analyzing the distance between the
predicted Ŷ values and the real observations [xn+1, xn+2, xn+3, · · · , xn+H] that are found in the dataset.
For some comparisons in this work, the sum of the 12 step values is used as a single performance
measure of the accuracy ∑12

i R2
i .

Energies 2019, 12, 2385 5 of 20

2.4. Data: The National Renewable Laboratory Wind Dataset

To forecast wind energy with deep learning, access to large amounts of observations is required.
The data from wind turbines usually belong to the turbine owner company and, as it may have
some commercial value, is locked and not available to the research community [36], making it almost
impossible for researchers to access open and large datasets of wind data.

This explains why in the wind prediction field, there is not a standard wind/energy dataset
available, constraining each researcher to use small available sets from different geographies and short
periods. This situation is difficult to understand as the investment in wind parks is heavily subsidized
with public funds in many countries.

Nevertheless, the National Renewable Energy Laboratory in the U.S. (NREL) has developed a
large wind dataset and made it publicly available. This dataset offers production and meteorological
data (wind speed, wind direction, temperature, pressure, humidity, and energy) synthesized from
meteorological global models for over 129,962 sites evenly placed in the U.S. geography. This dataset
has been created with meteorological data from weather research and using the forecasting (WRF)
model Version 3.4.1 [37], down-sampled to a 2-km and 5-min resolution for the interval 2007–2013.
Then, some additional features were added, like model terrain, roughness, and some soil properties
from the U.S. Geological Survey GTOPO30 data. The modeled result was validated with real
observations to reduce errors and prove the final quality of the dataset [38]. Each item in a wind site
time series contains the information shown in Table 2.

This dataset is the largest public dataset on wind, and its main advantage consists of its size and
the geographical site distribution across all the latitudes and longitudes of the U.S.

The original data were sampled at 5-min intervals. A design decision in the experimentation has
been to down-sample the dataset to 1-h intervals by computing hourly means, as the experimental
results were not impacted and the amount of data managed was reduced by a factor of 12, reducing
the resource requirements of the overall experimental process. This down-sampling is also justified by
the fact that in practical scenarios of wind production, an hourly forecast is a reasonable figure.

3. Methods

In this section, the components of the research work are described, being the data preprocessing
process, the architectures, the accuracy measurement, and a discussion on the computing side of the
work, plus a description on how the parameters of each model have been determined.

3.1. Data Preprocessing

To have easier access to the data, the NREL dataset was subjected to preprocessing in order to ease
the learning convergence of the models and to obtain more informative results from the executions.

The wind dataset had 126,692 wind sites with five measures (see Table 2) and contained seven
years of data. For this work, it was divided into 3 subsets, training, test, and validation. The training
subset contained five years (2007–2011) of information and was composed of the five measures
averaged hourly. One year (2012) was reserved for testing and used to adjust the parameters of the
models during the training, and the final year (2013) was reserved for validation of the different
approaches. The objective of the experiments was to obtain wind speed predictions (in a twelve-hour
horizon); this goal makes the wind speed the primary variable in the datasets, while the other
4 dimensions (wind direction, temperature, barometric pressure, and air density) were added as
auxiliary variables. All the subsets of data were subjected to a preprocessing, which consisted of
z-standardization of the data. This normalization was made by adjusting the scale of the values to
obtain a mean of zero and a variance (σ2) of one. This is a usual data transformation process used
when the data are used for neural network training [35].

Energies 2019, 12, 2385 6 of 20

A special mention is required for wind direction, as it has a special treatment because the raw
degree averages might induce errors; for this reason, the values were transformed from the original
degree to their sine and cosine.

3.2. The Architecture Components

Architectures are deep learning neural networks defined either with direct or with seq2seq (see
Section 2.2) approaches. These architectures are built up from four components (see Figure 1).

• Fully-connected MLP
• CNN 1D temporal architecture
• RNN all sequence output
• RNN summary state output

Fully Connected MLP 1D Temporal CNN RNN
All Sequence Output

RNN
Summary State Output

MLP seq2seq CNN seq2seq RNN Encoder-Decoder RNN

Components

MIMO Architectures

-

Figure 1. Multiple Input Multiple Output (MIMO or seq2seq) deep learning architectures’ testing.
MLP: Multi-Layer Perceptron seq2seq (see Section 3.2.1); CNN: Convolutional Network seq2seq (see
Section 3.2.2); RNN seq2seq and RNN encoder-decoder (ED) (see Section 3.2.3).

With combinations of these components, 4 architectures were developed: a deep MLP with
fully-connected layers (MLP), a CNN combined with an MLP to obtain a sequence output (CNN
seq2seq), a RNN combined with an MLP that obtains a sequence and a recurrent neural network (RNN
seq2seq), and an RNN with the Encoder Decoder mechanism (RNN ED) (see Figure 1 and Table 3).

Energies 2019, 12, 2385 7 of 20

Table 3. Mean and standard deviation of each experiment probability distribution.

Architecture Mean St. Dev. Comments

Persistence 2.69 1.95 Some sites have even negative values
k-NN 4.91 1.01 Results from 1000 sites
MLP Dir 6.83 0.8 Results from 1000 sites
MLP seq2seq 7.06 0.79 Results from 1000 sites
MLP seq2seq 7.05 0.81 Results from all sites
CNN seq2seq 6.90 0.81 Results from all sites
RNN seq2seq 6.85 0.81 Results from all sites
RNN ED 6.86 0.81 Results from all sites

3.2.1. Multi-Layer Perceptron

The multi-layer perceptron or feed forward network can be considered as the traditional neural
network. The MLP network is organized into neurons (sometimes called nodes) and different layers
named input (initial layer), hidden (intermediate layers), and output (final layer). All the neurons
are fully connected to the next layer, and information flows from input to output; for this reason,
these structures are also named feed forward networks. In the nodes, an activation function processes
the inputs coming from the previous nodes and calculates the value to propagate to the connected
nodes. Different non-linear activation functions can be used, and the best one for this architecture has
been chosen by hyperparameter searching (see Section 3.4). For this MLP architecture, the mathematical
formulation for a layer of an MLP is:

xi = gi(bi + W ixi−1) (2)

where i is the ith layer, xi−1 is the vector of inputs from the previous layer, gi is the activation function
of the layer, W i is the weight matrix of the neurons in the layer, and bi the vector for the independent
terms, or bias for this layer.

As the number of parameters in these architectures is quite large, a structured strategy needs to be
defined to optimize the different components; in this case, a hyper-parameter search (see Section 3.4) for
the MLP is performed considering the parameter depth of the network (number of layers), the number
of neurons on each layer, the lag of the input examples, and the activation function used.

3.2.2. Convolutional Networks

Convolutional networks are extensively used for image recognition tasks. Their main capacity is
the application of filters to matrices of data that specialize in identifying some specific patterns located
in small areas of the matrix or image. In addition to the traditional pattern recognition, there have
been recent applications of CNN to time series data, by considering the sequences of data as patterns
with good results as in [39], and they have been applied with some success to wind speed, as can be
seen in [26,27].

Convolutional networks apply a convolution operation allowing the network to focus on local
regions of the input. This is obtained by replacing the weighted sums (see Equation (2)) of the MLP
network by the convolution. In each layer, the input is convoluted with the filter weight matrix,
creating a feature map. The filter matrix moves on the input and computes the dot product between
the input and the filter. For a given filter, all the nodes in the layer detect the same pattern or feature
(see Figure 1).

In this work, the CNN architecture was developed using the seq2seq strategy, and the proposed
architecture combines a CNN and an MLP structure. The first part of the model consists of several
layers of CNN that use one-dimensional convolutions with causal padding (causal padding is a filter
that generates a dilated causal convolution, which means that at time step t, only the inputs previous
to t are used [40]). The output of the CNN layers is connected to an MLP that computes the prediction
as multiple regression.

Energies 2019, 12, 2385 8 of 20

For the CNN architecture, the main parameters optimized in the hyperparameter searching (see
Section 3.4) include the number of filters, the stride and the size of the convolution kernels, the number
of CNN layers, the number of layers, the number of neurons, and the activation functions in the MLP.

3.2.3. Recurrent Networks

Recurrent Neural Networks (RNN) are feed forward networks able to process sequences.
The structure of an RNN layer is similar to the perceptron, but also with connections that span
through time. This means that the computations are done to an element of a sequence depending on
the computations from previous elements of the same sequence. This architecture is more natural for
time series as it assumes a causal relationship among the data.

One of the hard problems for am RNN architecture to solve is to learn long dependencies
among the elements of the sequence. In order to reduce the difficulties of training these architectures,
additional mechanisms are added to the basic RNN construct. In the current literature, the Long
Short-Term Memory (LSTM) cells [41] and the Gated Recurrent Units (GRU) cells [42] are used in most
applications of RNNs to sequential modeling problems.

Two different strategies have been defined with recurrent networks in this work, based on the
different ways of obtaining multiple outputs from an RNN. The first possibility is to use the same
approach as the one used with the CNN architecture using the output of a multi-layer RNN directly.
In this case, each time step of the sequence generates an output that can be used as the input of an
MLP. The second possibility, called as RNN ED (Encoder-Decoder) ([41]), is composed of two sets of
RNN layers. The encoder layers process the input and generate an output from the sequence that
summarizes (encodes) their information. This summary is used as the input of the second RNN
that generates the output sequentially, so the previously-generated elements influence the next ones.
This makes this architecture slightly different from the rest. Instead of generating all the output at
the same time, the relationships among the elements of the generated sequence are also used for
the prediction.

The hyperparameter search (see Section 3.4) for the RNN and RNN ED is performed on several
dimensions like the type of the recurrent units used (LSTM or GRU), the number of neurons on the
recurrent layers, or the number of layers. For the RNN seq2seq or RNN network, as it has a final MLP
that combines the two outputs, the output MLP model parameters have been optimized by searching
for the best combination of layers and neurons. For the RNN ED, given that there are two groups of
recurrent layers, different combinations of layers for the decoder and the encoder have been searched
in the hyperparameter setting process.

3.3. Error/Accuracy Measurement

Given that predictions are generated for a large number sites and using a large number of method
combinations, using a non-standardized measure of error like, for instance, MSE (Mean Standard
Error) is not practical because the error values for each site would depend on the specific range of
values contained in the time series measures, so it would be statistically challenging to compare results
between different sites. To avoid this problem, R2 (coefficient of determination) was used across all
the experiments.

This accuracy measure compares the sum of the square of the residuals and the total sum of
squares that is proportional to the variance of the data.

The R2 is be characterized as:

R2 = 1− ∑N
i=1(ŷi − yi)

2

∑N
i=1(yi − ȳ)2

(3)

Energies 2019, 12, 2385 9 of 20

The experiments calculated the R2 for each time step (hour). In order to perform the sites’
comparisons, an aggregated measure has been defined by adding the individual R2 values for the
12 steps.

Each experiment obtained an error distribution across all the sites. This distribution was then
used for statistical analysis and comparisons using sites, methods, and combinations of both.

The data were z-normalized in a pre-processing phase before training (see Section 3.1), and as a
consequence, the value obtained for the MSE was also normalized; as a consequence, the R2 was equal
to 1 − MSE. MSE can be considered an error measure, while R2 is an accuracy measure, where the
closer to 1, the more accurate is the result.

This measure has an intuitive interpretation as it represents the proportion of variance of the
fitted model relative to the mean of the real curve, which basically tells us how well the model fits the
prediction [43]. The values that express a good fit depend on the domain and the specific application,
and for this reason, baseline statistical results were calculated beforehand (see Section 4.1); from the
results, it is concluded that a value around 7 (being 12 the maximum) (obtained by adding the R2

values for each step) was reasonable, as it was well over persistence and 25% better than the baseline
statistical models tested.

In the wind energy literature, other error measures like Mean Absolute Percentage Error (MAPE),
Mean Absolute Error (MAE), or Root Mean Squared Error (RMSE) are possibly more common [10],
but to perform the statistical comparisons among the different experiments, taking into account the
high number of wind sites available and the variability of the values of the wind series, R2 is considered
as more adequate.

3.4. Hyper-Parameter Setting Using a Structured Approach

The first activity with each architecture was to find the best hyper-parameter combination. Then,
the test executions for all the sites were performed (see Figure 2).

Figure 2. Prediction methodology used in this work.

Deep learning uses complex networks, and this generates a very large number of parameter
to tune in the experimentation. The exploration of parameters has to be done with a systematic
strategy to obtain an effective set of values with the best accuracy. With a small set of parameters,
a strategy of manual test and try exploration can be adequate, but with a high number of combinations,
we require a more structured approach [44]. In this work, a Sequential Model-Based Optimization
(SMBO) strategy has been defined for the hyperparameter setting search. Specifically, the algorithm

Energies 2019, 12, 2385 10 of 20

chosen is an adaptation of the Sequential Model-Based Algorithm Configuration (SMAC) developed
by Hutter et al. in [45]. This implementation consists of a structured approach to the hyperparameter
setting that assures the generation of a good parameter configuration set in acceptable time. It has
been selected for its proven effectiveness and for its capability to manage parameters that have
categorical values.

The Bayesian strategy consists of setting a quality criterion and estimating from the results of the
parameter combinations a function for this criterion able to predict the quality of new candidate
parameters. This function is used to guide the exploration of the configuration space. In this
implementation, the sum of R2 for the prediction horizon is used as the quality criterion, and the
estimation is obtained using random forest regression ([46]).

Some parameters are manually set like the optimizer, where the choice is an adaptive gradient
descent search method (Adamax) [47]. All experiments have limited the number of training epochs to
200 with an early stopping strategy that ends the optimization when the accuracy is not improved for
10 epochs. For a detailed description of each architecture component, see Table 3.

3.5. Some Notes about the Implementation

For the architecture testing, a test-bench has been developed that allows repetition of the
experiments using different architectures and parameters over the target dataset or over some selected
sites (see Figure 2).

The experiments have been run on the Barcelona Supercomputer (BSC) [32] in a cluster of
39 Nvidia K80 GPUs. Each model trained in 20 s in the CNN/MLP models and 2 min in the RNN.
As there were 126,692 sites, the training time was 175 GPU/days for each RNN model and 30 days
for each MLP/CNN model. If we include the hyperparameter searching, around 200,000 executions
must be added. In total, the estimation was around 600 days of GPU adding all the resources used in
this article.

The experimental framework was implemented in Python 3.6 and the deep learning architectures
using Keras-Tensorflow [48,49]. Scikit-learn [50] was used for the statistical learning algorithms
like the random forest classifier for hyperparameter setting or the k-nearest neighbors to obtain a
prediction baseline. Numpy/Scipy [51] has been used for the statistical analysis of the results like the
Kolmogorov–Smirnov tests, Tukey’s variance tests, etc.

A copy of the code used for this work is available upon request, with the raw code used to develop
the models, and different notebooks with the statistical comparisons and conclusions.

For tuning the models, an iterative structured exploration of the parameter space was applied
(see Section 3.4). The final parameter set for each one of the architectures has been tested over the
126,692 wind sites available in the dataset.

4. Results

The research was performed in phases, firstly with the development of a baseline with persistence
and statistical learning methods, secondly choosing the best multi-step forecast regression approach
between direct and multiple, and thirdly testing the deep learning architectures with the complete set
of data. With all the results, a set of statistical analysis has been applied to obtain graphical results and
to infer the conclusions presented in this article. The summary of the architectures and their parameter
settings can be seen in Table 4.

Energies 2019, 12, 2385 11 of 20

Table 4. Architecture details.

Architecture Description

MLP Dir

MLP with two hidden layers with 1024 and 512 neurons with the ReLU activation function
and dropout layers of 0.2 and one output layer with one neuron with linear output.
This architecture requires being used as many times as time steps to forecast, 12 times (for
horizon 12 h) in this work.

MLP s2s
MLP with two hidden layers with 258 and 128 neurons with the ReLU activation function
and dropout layers of 0.4 and one output layer with 12 neurons (equal to the the prediction
horizon of 12 h) with linear output.

CNN

One 1D convolutional layer with the ReLU activation function, 256 filters with a stride of 1
and a kernel size of 5, followed by an MLP with an input layer of 32 neurons with the linear
activation function and one output layer with as many neurons as the prediction horizon with
the linear output, in this case 12, as the horizon is 12 h.

RNN s2s

Two recurrent layers with 32 neurons each, using GRU units with the hard sigmoid recurrent
activation function, ReLU activation, and recurrent dropout of 0.1 followed by an MLP with
an input layer of 512 neurons with the sigmoid activation, a dropout of 0.1, and a final linear
output layer with as many neurons as the prediction horizon, in this case 12, as the horizon is
12 h.

RNN ED

An RNN encoder with two layers of GRU units of 96 neurons and a RNN decoder with one
layer of GRU units with 64 neurons both with the hard sigmoid recurrent activation function,
ReLU activation function, and a dropout of 0.3, each time step of the prediction horizon being
computed with a linear activation function.

4.1. Phase 1: Baseline Obtention

Persistence and k-NN have been used as baseline methods for this research. Persistence has been
applied to all the sites, but k-NN has been computed for a subset of 1000 sites.

Persistence is the naive method for a time series 〈x1, x2, · · · , xn〉 and uses the value xn as a
prediction for a Ŷ series with horizon H like xn+1 = xn+2 = · · · = xn+h = xn.

Persistence, as was expected from the literature [10], generated results that showed a steep
accuracy (R2) deterioration as the time steps increase, becoming negative for some wind sites,
indicating inferior predictive results at 12 h. When the results (∑ R2 of each wind site for the 12-h
steps) were positioned on a map, the areas with more variability of winds can be observed graphically
(see Figure 3); comparing these areas with wind resource studies of the U.S. geography, (like the global
wind atlas [52]), it can be observed that where the persistence ratings were rather poor, the variability
of winds was very high. The most significant errors were geographically located in areas with complex
terrains (Rocky Mountains) and with high wind variability (West Coast and Central Plains). As a result
of this comparison, a research question arises. Is the error in persistence an indication of the terrain
complexity of the site?

The second experimental baseline consisted of the application of a k-Nearest Neighbors (k-NN)
method. For this model, the number of neighbors and the combination of their predictions were
explored. The best k-NN model used pre-processed examples data with time windows of 6 h in length,
with 15 nearest neighbors (applying Euclidean distance) and with prediction obtained by unweighted
averaging of the next 12 h of each neighbor. The baseline k-NN accumulated accuracy results (adding
the accuracy of the 12 steps ∑ R2) were 4.91 on average, much better than persistence, but with worse
results than the DL architectures, as can be seen in the next sections.

Auto-regressive or moving average methods have been discarded, as they cannot cope with the
wind time series non-linearity.

Energies 2019, 12, 2385 12 of 20

5/24/2019 Persistence-test.html

file:///C:/Users/Manero/Persistence-test.html 1/1

Ex

Persistence-test Box Select

Figure 3. This map shows the 126,692 wind sites on a map of the U.S. The colors indicate the error
measures as the sum of R2 for applying a persistence method 12 h ahead for all the sites. Dark is low
error, while lighter color is higher error, a measure that is an indication of the forecast complexity of
the site.

4.2. Phase 2: Multi-Step-ahead Regression Strategy Comparison

Section 2.2 describes different strategies for a multi-step-ahead forecast. The objective of this
phase is to analyze the best regression approach for the wind forecasting problem, which can be the
direct, recursive, simple regression, and multiple regression or sequence to sequence (seq2seq) method.
The direct regression is compared to the sequence to sequence approach, while the recursive approach
has been discarded based on literature conclusions that have already concluded that it has poorer
accuracy when compared with direct regression [34].

An experiment with the MLP architecture was developed to test the two approaches (direct and
seq2seq regression). The experiment consisted of an execution on 1000 sites (architectures of two layers
in depth and examples with a lag of 12).

The distributions obtained by the two approaches were quite close, and in order to determine if
they were statistically comparable, a Kolmogorov–Smirnov test for equality of the distribution was
performed, which obtained a result statistic = 0.175, p-value = 0.0037. With this results, we can conclude
that the distribution predictions were not identical and could be compared.

The comparison determined that the seq2seq approach was slightly better, and taking into account
the higher computational requirements (as every step in the horizon prediction required an individual
model) for the direct regression, the conclusion was to use the seq2seq approach in all the models.
This decision was aligned with other research works found in the literature like [53].

Figure 4 offers a graphical comparison of the distributions.

Energies 2019, 12, 2385 13 of 20

3 4 5 6 7 8 9 10

test
12

i = 1
R2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

De
ns

ity

Dir vs S2S
MLP dir
MLP s2s

Figure 4. Probability distribution function comparison between MLP’s direct regression distribution
and MLP (MLP seq2seq shows marginally better results).

4.3. Phase 3: Deep Learning Model Result Analysis

Four major approaches were finally chosen from the experimentation, Multi-Layer Perceptron
seq2seq (MLP), Convolutional Network seq2seq (CNN), Recurrent Neural Network seq2seq (RNN),
and Recurrent Network with the Encoder-Decoder architecture (RNN ED), and the experimental
architectures parameters have defined by hyperparameter searching using a selection of controlled
sites and then tested with the whole dataset (see Section 3.4).

The question to answer is: Which method performs best? After performing all the experiments,
a set of result distributions was obtained (see Table 3 with the average results). A R2 probability
distribution for each model is obtained, as it can be seen for MLP in Figure 5.

The first issue would be how to compare the different distributions, and this was accomplished by
performing an Analysis Of Variance (ANOVA) test, which determines if there are significant statistical
differences between the means of all the obtained distributions.

The test result obtained an F-value of 2.655 and a p-value of 0.0317, meaning that there were
significant differences among the group of means. To assess the individual differences, Tukey’s
honestly significant difference test was performed (see Table 5). This test compares the distributions
assessing the pair differences.

Energies 2019, 12, 2385 14 of 20

3 4 5 6 7 8 9 10
12

i = 1
R2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

De
ns

ity

MLP
test
val

4 5 6 7 8 9
12

i = 1
R2 test

3

4

5

6

7

8

9

12 i=
1R

2 v
al

id
at

io
n

Figure 5. Distribution of the sum R2 using MLP for the test and validation datasets and linear regression
for both results.

Table 5. Distribution comparison between the experiment using Tukey’s honestly significant difference
test, Family wise error rate FWER = 0.05, after the ANOVA test of a F-value of 2.655 and a p-value
of 0.0317.

Group 1 Group 2 Meandiff Lower Upper Reject

CNN MLP 0.1485 0.1402 0.1568 True
CNN RNN −0.0566 −0.0649 −0.0483 True
CNN RNN ED −0.0409 −0.0491 −0.0326 True
MLP RNN −0.2051 −0.2134 −0.1968 True
MLP RNN ED −0.1894 −0.1976 −0.1811 True
RNN RNN ED 0.0158 0.0075 0.0241 True

The results showed the MLP method as the better overall one, with a more significant positive
difference in the mean compared to the other methods. CNN was better than both RNN variations
while RNN encoder-decoder was marginally better than RNN sequence to sequence. From the
closeness of the results, it was observed that the worse and best models were not very far from
one another.

It could seem counter intuitive that recurrent models do not have the best performance in this
domain given that they are specifically tailored to process sequential data. There has been recent
literature questioning the necessity of recurrent models in certain domains including time series
prediction where long dependencies are not needed [54,55] or because the recurrent models used are
stable (no gradient problems during the optimization) and can be approximated by feed forward
models [56]. Some feed forward and convolutional architectures have been shown also to outperform
recurrent architectures in tasks like automatic translation [57] and speech synthesis [39].

A boxplot of the distribution of R2 for each time horizon (see Figures 6 and 7) show also some
relevant characteristics. The RNN and CNN models performed better in the short term (1–2 h) than
the MLP ones, which showed better results in the 3–12-h interval. In this sense, it is observed that
RNN and CNN are better at learning the short-term characteristics of the series, while MLP is more
consistent in the full 12-h prediction. Again, the differences were small, but relevant, as calculated on
the 126,692 sites, and showed a valid trend.

Energies 2019, 12, 2385 15 of 20

1 2 3 4 5 6 7 8 9 10 11 12
hour

0.2

0.4

0.6

0.8

1.0

R
2

MLP vs. CNN
test MLP
test CNN

Figure 6. Boxplot comparing the hourly distribution of R2 error results between the MLP and CNN methods.

1 2 3 4 5 6 7 8 9 10 11 12
hour

0.2

0.4

0.6

0.8

1.0

R
2

MLP vs. RNN ED
test MLP
test RNN ED

Figure 7. Boxplot comparing the hourly distribution of R2 error results between the MLP and RNN
ED methods.

A map of the persistence accuracy across the North America geography has been presented
(see Figure 3), and with all the experimental results obtained, a new map was developed showing
the best architecture for each wind site (see Figure 8), allowing a graphical analysis of the results to
identify geographical patterns related to architectures.

• MLP showed better accuracy in most places
• CNN showed the best accuracy in the Rocky Mountains and the Florida and North Carolina

Atlantic Coastline.
• RNN (encoder-decoder) and RNN seq2seq became the best methods in the western area of the U.S.

between the Rockies and the Pacific West Coast, especially in the Nevada and Arizona deserts.

Energies 2019, 12, 2385 16 of 20

Figure 8. Graphical analysis of the best model for each site. Each site is colored with the best method
in that site and shows some geographical wind patterns in the U.S. geography, opening the discussion
of the relationship between wind typology and the deep learning method.

From the information on the comparison map (see Figure 8), a relationship between site location
(terrain and local characteristics) and the best model can be drawn. This relationship opens up some
possible new areas of research, which are analyzed in the conclusions, Section 5.

Is the accuracy constant over the years? If there are changes caused by drifting winds, seasonal
weather model modifications, and climate change, then the accuracy will vary over time. With seven
years of data available, five for the initial training, one year for test, and another for validation,
an analysis of the accuracy evolution was made. The comparison between the test and validation
datasets that used the sixth and seventh year respectively showed differences in their distributions.
In this case, applying a t-test for two related samples, given that the scores were computed for the same
population, resulted in a significant difference in means, as can be seen in Figure 5. Computing a linear
regression for predicting the validation scores with the test scores, it gave a value of 0.97 for the weight
of the test values. This means that even when there is a difference in the mean of the distributions,
the model is still consistent, making the initial training still valid. The conclusion is that the wind
regime changes slightly on this time frame (seven years), but not enough to interfere with the accuracy
of the methods. With this result, it is not possible to establish the variability of wind over time, at least
in series of seven years from 2007–2013.

Possibly with longer series, further analysis could be developed, as there are some findings in
climatology assuring that wind is speeding up its pattern changes due to the effect of climate change [58].

5. Discussion and Conclusions

In this work, a novel set of projects was developed that implemented and applied deep learning
architectures to wind time series. The results and discussion showed that deep learning is a useful
prediction tool for wind time series, outperforming other statistical methods for a 12-h-ahead
prediction. Forecasting wind speed using methods based exclusively on time series is not a common
application, because, for this window horizon, weather forecasting information is usually included;
however, this work shows that with the application of deep learning methods, the accuracy improves,
with potential to be introduced into the commercial set of tools for wind prediction. The conclusions
can be summarized with the following points:

Energies 2019, 12, 2385 17 of 20

• Deep learning methods showed better accuracy than the baseline statistical methods. This does
not come as a surprise as the nature of the task (predicting from time series data only) is extremely
difficult for linear statistical modeling.

• The best overall method was MLP seq2seq. This method obtained better averaged results over
the whole dataset than the other methods tested. However, the differences between the methods
were very small.

• MLP showed better overall results, but if a comparison hour per hour was performed, CNN and
RNN outperformed MLP for the short-term prediction (i.e., less than two hours).

• There were geographical areas where one method performed better than the others, showing the
geographical dependency between local wind behavior and the best method.

• The best architectures were not very deep, as the best results have been obtained by not very large
architectures (number of neurons and layers).

• The optimal length of examples was 18, a result that concludes that series do not need to be
very long to be useful; however, more examples will help to improve the networks. This limited
number of examples may explain why the RNN and CNN were slightly worse than MLP, as they
needed larger amounts of data

These conclusions sustain the affirmation that deep learning algorithms obtain meaningful results
in the wind prediction task. They obtain consistent results in 12-h-ahead prediction, beating other
traditional methods. The results have generated some new insights into understanding wind time
series and open a discussion on how the results can be improved with more complex architectures.

The first alternative, taking into account the geographical-spatial relationship of methods and sites,
would be to assemble different methods for each site, to obtain real improvements in accuracy [59] using
the best method for each architecture. This way, the overall accuracy improves. Another ensemble
development would be to integrate different methods for specific timelines; this would mean that a
12-h-ahead prediction will improve with the CNN/RNN input for the first hours, while MLP would be
the main contributor from the third to the twelfth hour, and by increasing complexity in the approach
(using a different method for each hour), a better accuracy result will be obtained overall.

One issue in the whole experimental process is that the data available were only seven years
long. This length can be considered as too short to learn from the complexity of a wind time series.
The data requirements of the deep learning algorithms, which perform better with very rich and long
inputs, may require more extended time series. As can be seen in Section 3, the best performing models
were not very deep, as a response to the mentioned data availability. To obtain the full value of the
deep learning application, longer series are required, but as has been already discussed in Section
2.4, larger sets of real data are not available for research. The optimal length of wind time series to be
used for deep learning has to be determined, as wind patterns change over time. This goal can be an
interesting area for further research.

This work has been done at the individual wind site (or turbine) level, but further work could
be performed developing models integrating sites located in the same areas, taking into account that
energy is not generated at isolated sites, but on wind farms that can be quite large. Wind farms have
additional dynamics due to two facts, the wake effect, which consists of the impact of the changes in
wind by the upstream turbines that impact the others downstream, or the technical loses in the park
due to connection issues, distances, or electricity transformation issues. By aggregating sites in clusters
or farms, more data examples can be obtained for training, and this fact will open new possibilities for
the application of deep learning, like the ones proposed in [15].

As a final conclusion, this work shows the validity of deep learning approaches for wind
forecasting, conclusions obtained with the application of the models to wind sites distributed in
all the North American geography. The variability of the 129,692 sites assures that the conclusions are
based on data that contain all the possible real wind conditions.

Wind energy generation is a growing area that will see a steep increase in the near future, and this
growth will increase the need to introduce novel deep learning tools to facilitate the management

Energies 2019, 12, 2385 18 of 20

and control of the energy generation. Energy prediction with deep learning models will be a relevant
application that will help the generation of periodical, accurate, and efficient forecasts of future
electricity generation.

Author Contributions: All authors contributed to this research. This article has been based partially on the
content of a PhD thesis (not yet published). Research performed by J.M. and advised by U.C. and J.B.

Funding: This work is partially supported by the Joint Study Agreement No. W156463 under the IBM/BSC
Deep Learning Center agreement, by the Spanish Government through Programa Severo Ochoa (SEV-2015−0493),
by the Spanish Ministry of Science and Technology through the TIN2015-65316-P project, and by the Generalitat
de Catalunya (Contract 2014-SGR-1051). Cortés is a member of the SNI, Level III CONACyT, Mexico.

Acknowledgments: The authors would like to thank the Barcelona Supercomputing Center (BSC) for the usage
of their resources and the United States National Renewable Laboratory (NREL) for the use of its Wind Toolkit
(wind datasets). We would also like to thank the anonymous reviewers for providing valuable comments that
helped to improve the quality of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Janocha, S.; Baum, S.; Stadler, I. Cost minimization by optimization of electricity generation and demand
side management. In Proceedings of the 2016 International Energy and Sustainability Conference, Kōln,
Germany, 30 June–1 July 2016; pp. 1–7. [CrossRef]

2. Rehman, S.; Al-Hadhrami, L.M.; Alam, M.M. Pumped hydro energy storage system: A technological review.
Renew. Sustain. Energy Rev. 2015, 44, 586–598. [CrossRef]

3. Dicorato, M.; Forte, G.; Trovato, M.; Caruso, E. Risk-Constrained Profit Maximization in Day-Ahead
Electricity Market. IEEE Trans. Power Syst. 2009, 24, 1107–1114. [CrossRef]

4. Linnemann, C.; Echternacht, D.; Breuer, C.; Moser, A. Modeling optimal redispatch for the european
transmission grid. In Proceedings of the 2011 IEEE Trondheim PowerTech, Trondheim, Norway,
19–23 June 2011; Sponsored by the IEEE Power & Energy Society. Organized by NTNU, Norwegian
University of Science and Technology, Dept. of Electric Power Engineering...; IEEE: Piscataway, NJ, USA,
2011; pp. 1–8. [CrossRef]

5. Fares, R. Energy Intermittency Explained, Challenges, Solutions and Opportunities. Sci. Am. 2015, 1–10.
6. Lange, M.; Focken, U. Physical Approach to Short-Term Wind Power Prediction; Springer: Berlin/Heidelberg,

Germany, 2006.
7. Costa, A.; Crespo, A.; Navarro, J.; Lizcano, G.; Madsen, H.; Feitosa, E. A review on the young history of the

wind power short-term prediction. Renew. Sustain. Energy Rev. 2008, 12, 1725–1744. [CrossRef]
8. Cadenas, E.; Rivera, W.; Campos-Amezcua, R.; Cadenas, R. Wind speed forecasting using the NARX model,

case: La Mata, Oaxaca, México. Neural Comput. Appl. 2016, 27, 2417–2428. [CrossRef]
9. Liu, H.; Tian, H.Q.; Pan, D.F.; Li, Y.F. Forecasting models for wind speed using wavelet, wavelet packet, time

series and Artificial Neural Networks. Appl. Energy 2013, 107, 191–208. [CrossRef]
10. Giebel, G.; Brownsword, R.; Kariniotakis, G.; Denhard, M.; Draxl, C. The State-Of-The-Art in Short-Term

Prediction of Wind Power: A Literature Overview, 2nd ed.; ANEMOS.plus: Copenhagen, Denmark, 2011.
[CrossRef]

11. Ibargüengoytia, P.H.; Reyes, A.; Romero-Leon, I.; Pech, D.; García, U.A.; Sucar, L.E.; Morales, E.F. Wind
Power Forecasting Using Dynamic Bayesian Models. In Nature-Inspired Computation and Machine Learning,
Proceedings of the 13th Mexican International Conference on Artificial Intelligence, MICAI 2014, Tuxtla Gutiérrez,
Mexico, 16–22 November 2014; Gelbukh, A., Espinoza, F.C., Galicia-Haro, S.N., Eds.; Springer International
Publishing: Cham, Switherland, 2014; pp. 184–197. [CrossRef]

12. Miranda, M.S.; Dunn, R.W. One-hour-ahead wind speed prediction using a Bayesian methodology.
In Proceedings of the 2006 IEEE Power Engineering Society General Meeting, Montreal, QC, Canada,
18–22 June 2006; pp. 1–6. [CrossRef]

13. Li, G.; Shi, J.; Zhou, J. Bayesian adaptive combination of short-term wind speed forecasts from neural
network models. Renew. Energy 2011, 36, 352–359. [CrossRef]

14. Yesilbudak, M.; Sagiroglu, S.; Colak, I. A new approach to very short term wind speed prediction using
k-nearest neighbor classification. Energy Convers. Manag. 2013, 69, 77–86. [CrossRef]

http://dx.doi.org/10.1109/IESC.2016.7569489
http://dx.doi.org/10.1016/j.rser.2014.12.040
http://dx.doi.org/10.1109/TPWRS.2009.2022975
http://dx.doi.org/10.1109/PTC.2011.6019442
http://dx.doi.org/10.1016/j.rser.2007.01.015
http://dx.doi.org/10.1007/s00521-015-2012-y
http://dx.doi.org/10.1016/j.apenergy.2013.02.002
http://dx.doi.org/10.11581/DTU:00000017
http://dx.doi.org/10.1007/978-3-319-13650-9_17
http://dx.doi.org/10.1109/PES.2006.1709479
http://dx.doi.org/10.1016/j.renene.2010.06.049
http://dx.doi.org/10.1016/j.enconman.2013.01.033

Energies 2019, 12, 2385 19 of 20

15. Heinermann, J.; Kramer, O. Machine learning ensembles for wind power prediction. Renew. Energy 2016,
89, 671–679. [CrossRef]

16. Zeng, J.; Qiao, W. Support vector machine-based short-term wind power forecasting. In Proceedings of the
2011 IEEE/PES Power Systems Conference and Exposition, Phoenix, AZ, USA, 20–23 March 2011; pp. 1–8.
[CrossRef]

17. Zhou, J.; Shi, J.; Li, G. Fine tuning support vector machines for short-term wind speed forecasting.
Energy Convers. Manag. 2011, 52, 1990–1998. [CrossRef]

18. Okumus, I.; Dinler, A. Current status of wind energy forecasting and a hybrid method for hourly predictions.
Energy Convers. Manag. 2016, 123, 362–371. [CrossRef]

19. Li, G.; Shi, J. On comparing three artificial neural networks for wind speed forecasting. Appl. Energy 2010,
87, 2313–2320. [CrossRef]

20. Shi, J.; Guo, J.; Zheng, S. Evaluation of hybrid forecasting approaches for wind speed and power generation
time series. Renew. Sustain. Energy Rev. 2012, 16, 3471–3480. [CrossRef]

21. Liu, Y.; Zhang, H. An Empirical Study on Machine Learning Models for Wind Power Predictions.
In Proceedings of the 2016 15th IEEE International Conference on Machine Learning and Applications
(ICMLA), Anaheim, CA, USA, 18–20 December 2016; pp. 758–763. [CrossRef]

22. Gamboa, J.C.B. Deep Learning for Time-Series Analysis. arXiv 2017, arXiv:1701.01887.
23. Cao, Q.; Ewing, B.T.; Thompson, M.A. Forecasting wind speed with recurrent neural networks. Eur. J.

Oper. Res. 2012, 221, 148–154. [CrossRef]
24. Liu, Z.; Gao, W.; Wan, Y.H.; Muljadi, E. Wind power plant prediction by using neural networks.

In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, USA,
15–20 September 2012; pp. 3154–3160. [CrossRef]

25. Khodayar, M.; Kaynak, O.; Khodayar, M.E. Rough Deep Neural Architecture for Short-Term Wind Speed
Forecasting. IEEE Trans. Ind. Inform. 2017, 13, 2770–2779. [CrossRef]

26. Díaz, D.; Torres, A.; Dorronsoro, J.R. Deep Neural Networks for Wind Energy Prediction. In Advances
in Computational Intelligence; Rojas, I., Joya, G., Català, A., Eds.; Springer International Publishing: Cham,
Switherland, 2015; pp. 430–443.

27. Wang, J.; Zong, Y.; You, S.; Træholt, C. A review of Danish integrated multi-energy system flexibility options
for high wind power penetration. Clean Energy 2017, 1, 23–35. [CrossRef]

28. Manero, J.; Béjar, J.; Cortés, U. Predicting Wind Energy Generation with Recurrent Neural Networks.
Lect. Notes Comput. Sci. 2018, 11314 LNCS, 89–98.

29. Sohoni, V.; Gupta, S.C.; Nema, R.K. A Critical Review on Wind Turbine Power Curve Modelling Techniques
and Their Applications in Wind Based Energy Systems. J. Energy 2016, 18. [CrossRef]

30. Shetty, R.P.; Sathyabhama, A.; Pai, P.S. Comparison of modeling methods for wind power prediction:
A critical study. Front. Energy 2018. [CrossRef]

31. Lange, M. On the Uncertainty of Wind Power Predictions–Analysis of the Forecast Accuracy and Statistical
Distribution of Errors. J. Sol. Energy Eng. 2005, 127, 177–184. [CrossRef]

32. Martorell, J.M. Barcelona Supercomputing Center: Science accelerator and producer of innovation.
Contrib. Sci. 2016, 12, 5–11. [CrossRef]

33. Montgomery, D.C.; Jennings, C.L.; Kulahci, M. Introduction to Time Series Analysis and Forecasting, 2nd ed.;
Wiley Series in Probability and Statistics; Wiley: Hoboken, NJ, USA, 2015.

34. Taieb, S.B.; Atiya, A.F. A bias and variance analysis for multistep-ahead time series forecasting. IEEE Trans.
Neural Netw. Learn. Syst. 2016, 27, 62–76. [CrossRef] [PubMed]

35. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
36. Kusiak, A. Renewables: Share data on wind energy. Nature 2016, 529, 19–21. [CrossRef] [PubMed]
37. Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the

Advanced Research WRF Version 3; National Center for Atmospheric Research: Boulder, CO, USA, 2008.
38. Draxl, C.; Clifton, A.; Hodge, B.M.; McCaa, J. The Wind Integration National Dataset (WIND) Toolkit.

Appl. Energy 2015, 151, 355–366. [CrossRef]
39. Oord, A.v.d.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.;

Kavukcuoglu, K. Wavenet: A generative model for raw audio. arXiv 2016, arXiv:1609.03499.
40. Yu, F.; Koltun, V. Multi-Scale Context Aggregation by Dilated Convolutions. arXiv 2015, arXiv:1511.07122.

http://dx.doi.org/10.1016/j.renene.2015.11.073
http://dx.doi.org/10.1109/PSCE.2011.5772573
http://dx.doi.org/10.1016/j.enconman.2010.11.007
http://dx.doi.org/10.1016/j.enconman.2016.06.053
http://dx.doi.org/10.1016/j.apenergy.2009.12.013
http://dx.doi.org/10.1016/j.rser.2012.02.044
http://dx.doi.org/10.1109/ICMLA.2016.0135
http://dx.doi.org/10.1016/j.ejor.2012.02.042
http://dx.doi.org/10.1109/ECCE.2012.6342351
http://dx.doi.org/10.1109/TII.2017.2730846
http://dx.doi.org/10.1093/ce/zkx002
http://dx.doi.org/10.1155/2016/8519785
http://dx.doi.org/10.1007/s11708-018-0553-3
http://dx.doi.org/10.1115/1.1862266
http://dx.doi.org/10:2436/20.7010.01.238
http://dx.doi.org/10.1109/TNNLS.2015.2411629
http://www.ncbi.nlm.nih.gov/pubmed/25807572
http://dx.doi.org/10.1038/529019a
http://www.ncbi.nlm.nih.gov/pubmed/26738579
http://dx.doi.org/10.1016/j.apenergy.2015.03.121

Energies 2019, 12, 2385 20 of 20

41. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to Sequence Learning with Neural Networks. In Advances in
Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2014.

42. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on
Sequence Modeling. arXiv 2014, arXiv:1412.3555.

43. Saunders, L.J.; Russell, R.A.; Crabb, D.P. The Coefficient of Determination: What Determines a Useful R 2
Statistic? Investig. Ophthalmol. Vis. Sci. 2012, 53, 6830–6832. [CrossRef]

44. Bergstra, J.S.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for Hyper-Parameter Optimization. In Advances
in Neural Information Processing Systems 24; Shawe-Taylor, J., Zemel, R.S., Bartlett, P.L., Pereira, F.,
Weinberger, K.Q., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2011; pp. 2546–2554.

45. Hutter, F.; Hoos, H.H.; Leyton-Brown, K. Sequential Model-Based Optimization for General Algorithm
Configuration. In Learning and Intelligent Optimization; Coello, C.A.C., Ed.; Springer: Berlin/Heidelberg,
Germany, 2011; pp. 507–523.

46. Breiman, L. Statistical Modeling: The Two Cultures. Stat. Sci. 2001, 16, 199–231. [CrossRef]
47. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
48. Chollet, F. Keras. Available online: https://keras.io (accessed on 1 March 2019).
49. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean,

J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015.
Available online: tensorflow.org (accessed on 1 March 2019).

50. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer,
P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011,
12, 2825–2830.

51. Oliphant, T. NumPy: A Guide to NumPy; Trelgol Publishing: Spanish Fork, UT, USA, 2006.
52. Badger, J.; Davis, N.; Hahmann, A.; Larsen, X.G.; Badger, M.; Kelly, M.; Olsen, B.T.; Mortensen, N.G.;

Joergensen, H.E.; Troen, I.; et al. The Global Wind Atlas; Final Report Technical University of Copenhagen;
Danish Technical University (DTU): Copenhagen, Denmark, 2015.

53. Ben Taieb, S.; Sorjamaa, A.; Bontempi, G. Multiple-output Modeling for Multi-step-ahead Time Series
Forecasting. Neurocomputing 2010, 73, 1950–1957. [CrossRef]

54. Sharan, V.; Kakade, S.; Liang, P.; Valiant, G. Prediction with a short memory. In Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of Computing—STOC 2018, Los Angeles, CA, USA,
25–29 June 2018. [CrossRef]

55. Bai, S.; Kolter, J.Z.; Koltun, V. An Empirical Evaluation of Generic Convolutional and Recurrent Networks
for Sequence Modeling. arXiv 2018, arXiv:1803.01271.

56. Miller, J.; Hardt, M. Stable Recurrent Models. arXiv 2018, arXiv:1805.10369.
57. Gehring, J.; Auli, M.; Grangier, D.; Yarats, D.; Dauphin, Y.N. Convolutional Sequence to Sequence Learning.

arXiv 2017, arXiv:1705.03122.
58. Pryor, S.; Barthelmie, R. Climate change impacts on wind energy: A review. Renew. Sustain. Energy Rev.

2010, 14, 430–437. [CrossRef]
59. Hastie, T.; Tibshirani, R.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference,

and Prediction, 2nd ed.; Springer Series in Statistics; Springer: Berlin/Heidelberg, Germany, 2009.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1167/iovs.12-10598
http://dx.doi.org/10.1214/ss/1009213726
https://keras.io
tensorflow.org
http://dx.doi.org/10.1016/j.neucom.2009.11.030
http://dx.doi.org/10.1145/3188745.3188954
http://dx.doi.org/10.1016/j.rser.2009.07.028
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Wind Time Series Forecasting
	Wind Time Series Characteristics
	Multiple-Step-Ahead Forecasting
	Forecasting Time Series with Deep Learning
	Data: The National Renewable Laboratory Wind Dataset

	Methods
	Data Preprocessing
	The Architecture Components
	Multi-Layer Perceptron
	Convolutional Networks
	Recurrent Networks

	Error/Accuracy Measurement
	Hyper-Parameter Setting Using a Structured Approach
	Some Notes about the Implementation

	Results
	Phase 1: Baseline Obtention
	Phase 2: Multi-Step-ahead Regression Strategy Comparison
	Phase 3: Deep Learning Model Result Analysis

	Discussion and Conclusions
	References

