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A B S T R A C T   

Efficient and accurate prediction of renewable energy sources (RES) is an interminable challenge in efforts to 
assure the stable and safe operation of any hybrid energy system due to its intermittent nature. High integration 
of RES especially wind energy into the existing power sector in recent years has made the situation still chal
lenging which draws the attention of many researchers in developing a computationally efficient forecast model 
for accurately predicting RES. With the advent of Neural network based methods, ELM -Extreme Learning Ma
chine, a typical Single Layer Feedforward Network (SLFFN), has gained a significant attention in recent years in 
solving various real-time complex problems due to simplified architecture, good generalization capabilities and 
fast computation. However, since the model parameters are randomly assigned, the conventional ELM is 
frequently ranked as the second-best model. As a solution, the article attempts to construct a unique optimized 
Extreme Learning Machine (ELM) based forecast model with improved accuracy for wind speed forecasting. A 
novel swarm intelligence technique- Lévy flight Chaotic Whale Optimization algorithm (LCWOA) is utilized in 
the hybrid model to optimize different parameters of ELM. Despite having a appropriate convergence rate, WOA 
is occasionally unable to discover the global optima due to imbalanced exploration and exploitation when using 
control parameters with linear variation. An improvement in the convergence rate of WOA can be expected by 
incorporating chaotic maps in the control parameters of WOA due to their ergodic nature. In addition to this, 
Lévy flight can significantly improve the intensification and diversification of the Whale Optimization algorithm 
(WOA) resulting in improvised search ability avoiding local minima. The prediction capability of the suggested 
hybrid Extreme Learning Machine (ELM) based forecast model is validated with nine other existing models. The 
experimental study affirms that the suggested model outperform existing forecasting methods in a variety of 
quantitative metrics.   

1. Introduction 

1.1. Motivation 

Ever since the industrial revolution and urbanization, a steep in
crease in the energy demand has put the electricity market highly 
competitive in developing technologies to meet the substantial energy 
requirement preserving the potential social, economic, and environ
mental impacts. However conventional fossil fuel-based power genera
tion has led to severe environmental impacts like global warming and 
subsequent deterioration in biodiversity. In efforts to reduce the 

greenhouse gas emission and carbon footprint, most countries have 
taken a worldwide perspective of upgrading their energy sector with 
potential RES as a sound alternative to the conventional sources. 
Decarbonizing the energy sector and supporting global initiatives to 
curtail global warming are highly crucial in the current scenario. Wind 
energy being a clearly in-exhaustive clean renewable source has drawn 
an accelerated penetration level in the existing electrical power system 
in recent years. With 837 GW of global wind power capacity now in 
2022, the world will be able to avoid more than 1.2 billion tons of CO2 
every year [1]. But due to the intermittent character of wind speed, the 
power system has become more unreliable with the increased 
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integration of wind power into the existing power system. This crucial 
problem draws the attention of many researchers in developing a 
computationally efficient forecast model for accurately predicting wind 
energy for efficient power system planning, operation management and 
control [2,3]. Researchers have extensively developed a variety of wind 
speed prediction systems over the last 20 years to increase the prediction 
accuracy. 

1.2. Literature Review 

There are practically two methods to forecast wind energy: (1) direct 
forecasting of the wind turbine output, and (2) indirect forecasting in 
which wind turbine output is estimated from the wind speed forecast. 
Indirect forecasting is more advantageous as the same wind speed 
forecast model could be utilized to forecast the power output of different 
turbine models with varying capacity [4]. In the recent few decades, 
many forecasting models have been suggested that are broadly catego
rized into mainly two categories: Physical models and Data-driven 
models. The Physical models are usually established with the aid of 
Numerical Weather Prediction (NWP) along with terrain details. The 
accuracy of Physical model in short term forecasting is poor as resolu
tion of NWP is low [5,6]. The Data-driven models utilize historical data 
in developing the forecast models that make them more effective in 
short-term forecasting. The Data-driven models are further categorized 
into two groups: statistical models and artificial intelligence or neural 
network-based methods. Various statistical models like AR, ARMA, 
ARIMA, VAR etc. Analyses patterns in the historical dataset to establish 
a linear model that fail to characterize the nonlinear relationships 
resulting in high prediction errors [7–10]. With the recent drastic 
development in information technology, a lot of artificial 
intelligence-based techniques including ANN [11–14], SVM [15], RNN, 
LSTM [16–19], GRU [20] are extensively used in wind speed predictions 
as they accurately map the nonlinearity enabling short-term forecasting. 

Conventional ANN models utilize gradient descent learning that re
quires a lot of computational time due to iterative tuning of the model 
parameters that sometimes results in the convergence to a local mini
mum. In 2006, G.B. Hang et al. [21] proposed ELM-Extreme Learning 
Machine, a fast-computing Single Layer Feedforward Network (SLFFN) 
that addresses the slow training and local minima convergence of 
traditional neural networks. Additionally, the computational time 
requirement of ELM is significantly low when compared to conventional 
techniques as the hidden layer parameters like biases, input weights are 
randomly initialized, and the output weights are mathematically 
determined with a simplified matrix inverse calculation [22,23]. 
Extensive research is pitching to exploit the applicability of ELM in 
numerous research fields in classification and regression including wind 
speed forecasting [24–27]. In the article [24], V. Nikoli et al. used the 
Extreme Learning Machine (ELM) in developing a wind turbine 
parameter-based sensor less wind speed estimation model which was 
robust to air density variations. The article [25] has proved the better 
computational efficiency of ELM in wind speed forecasting over con
ventional Backward Propagation Neural Networks (BPNN). In the article 
[26], a new ELM based hybrid prediction model for wind speed is 
devised in which ICEEMDAN-ARIMA ensemble method is used for error 
correction that further improved the prediction accuracy. A novel pre
diction model based on LSTM, ELM, Singular Spectrum Analysis and 
Variational Mode Decomposition is evaluated for short-term wind power 
forecasting in the article [27]. In article [28] a hybrid framework is 
developed using a probabilistic regularized extreme learning machine 
(PRELM) and PSO (particle swarm optimization) with improved pre
diction accuracy for predicting wind speed. The article [29] suggests 
three effective and precise wind power prediction models namely the 
ridge ELM (RELM), the online sequential ELM (OSELM), and the hybrid 
neural network (HNN) that essentially improve the learning speed rate 
and computational scalability. The article [30] shows that regression 
problems can be effectively addressed using a unique ELM called 

residual compensation ELM (RC-ELM), which has a multilayer frame
work with the baseline layer serving as the foundation for iteratively 
developing the input-output feature mapping. A unique non-iterative 
fast multilayer extreme learning machine (ML-ELM) is proposed and 
evaluated in article [31]. Studies prove the efficacy of ML-ELM over the 
conventional deep learning models like RNN, LSTM and CNN due to the 
random feature mapping process. In article [32], a robust ELM (R-ELM) 
is developed and analyzed to enhance the modelling power and 
robustness with Gaussian and non-Gaussian noise to model data ob
tained from uncertain environments that irrelevantly add unknown 
noise. The mixture of Gaussian (MoG) method is used in R-ELM to create 
a modified objective function that fits the noise and roughly approxi
mates any continuous distribution. These detailed research studies 
demonstrate the better modelling capability of ELM over the other 
alternative forecasting models in terms of forecasting accuracy and 
computational performance. 

Unfortunately, the benefits of ELM are at odds with the time required 
to study numerous parameter combinations to create an optimal ELM 
structure. Moreover, research proves that ELM requires a greater num
ber of hidden neurons in many applications. To overcome this drawback 
of ELM, some researchers have proposed a variant of ELM, evolutionary 
ELM that exploits the advantage of evolutionary meta-heuristic algo
rithms in optimizing the different ELM parameters like biases and input 
weights, number of hidden nodes to get the best prediction model [33]. 
The swarm intelligence algorithm is an emerging evolutionary algo
rithm that mimics the group conduct of socially organized animals to 
accomplish a required task, in the optimization process. Swarm-based 
algorithms have some advantages when compared to other algorithms 
like less input parameters and memory requirement that marks its 
applicability in solving complex problems in various domains. These 
algorithms begin with a set of random possible solution/outcome and 
then efforts are made to improve the solution quality using a defined 
fitness function. According to a defined set of natural laws, the current 
solutions are continually tweaked to improve the fitness function value. 
This procedure can efficiently scan the search to converge to an optimal 
solution. Each metaheuristic algorithm differs primarily in how they hit 
a balance between global and local search. In the paper [34], an ELM 
based wind speed prediction model optimized by PSO- Particle Swarm 
Optimization is analyzed, which shows excellent prediction accuracy. 
Similar forecasting methodology is shown in Ref. [35], where ELM 
model is utilized to estimate wind speed first and then an enhanced Bat 
Algorithm optimized GRNN model is utilized to obtain the anticipated 
results. In the paper [36], the actual wind speed dataset is first divided 
into a group of intrinsic mode functions (IMFs) using complete ensemble 
empirical mode decomposition (CEEMD). IMFs are further modelled by 
multi-objective grey wolf optimization (MOGWO) optimized extreme 
learning machine (ELM) and finally the results are combined leading to 
excellent forecasting performance. 

The tedious task in the framework development of any optimization 
algorithm is to obtain an appropriate balance between local and global 
search. The major issue in most swarm-based meta-heuristic algorithms 
is the early convergence into local optima. Popular research topics in 
algorithm research include methodology to curtail local optima 
convergence, and exploration-exploitation balance during the optimi
zation phase. In 2016, Australian researcher Seyedali Mirjalili unveiled 
Whale Optimization Algorithm (WOA), a new swam based bio-inspired 
algorithm that model the hunting strategy of humpback whales [37]. 
The benefits of its straightforward structure, limited number of control 
parameters, and extensive avoidance of local optima made it superior to 
other swarm based meta-heuristic algorithms. Many stochastic and 
continuous optimization problems have already been solved using this 
algorithm, demonstrating its superiority to the most popular 
meta-heuristics algorithms. In the study [38], WOA is thoroughly dis
cussed in terms of algorithmic background, its traits, constraints, alter
ations, possible hybrids, and application in various fields. The survey 
results show that WOA outperforms most popular evolutionary 
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algorithms in convergence speed and the ability to achieve harmony 
between exploitation and exploration. The article [39] suggests an 
ultra-short-term forecasting model based on the VMD and Whale Opti
mized ELM for wind speed forecasting that outperform five conventional 
models in terms of prediction accuracy. An enhanced WOA is applied to 
optimize a hybrid wind-solar-hydroelectric system to precisely offer the 
ideal operation strategy [40]. The photovoltaic model parameters were 
estimated using the revised WOA method, and the results prove the ef
ficiency of WOA over other optimization algorithms [41,42]. The 
maximum power point tracking (MPPT) of wind turbines is achieved 
using the enhanced WOA in the article [43] that shows a superior per
formance than the existing algorithms. Clearly, studies prove the supe
riority of WOA in laying the groundwork for the optimization of the ELM 
parameters. 

Despite having an acceptable convergence rate, WOA is unable to 
identify the global optima that still influences the algorithm’s conver
gence rate. To alleviate this impact and thereby improve the perfor
mance efficiency, the Chaotic WOA (CWOA) [44] algorithm was 
developed by incorporating chaos into primary parameter p, which aids 
in regulating exploration and exploitation, to boost the WOA perfor
mance. Due to its periodicity and non-repetition characteristics, chaotic 
maps can execute broad searches at faster rates than stochastic searches 
that largely rely on probability. The chaos approach can enhance the 
effectiveness of global search. In Ref. [45], the proposed Chaotic WOA 
algorithm when applied for the array synthesis of MIMO radar gives 
better solution in lesser number of steps. In Ref. [46], the CWOA is 
utilized for the evaluation of solar cell parameters. The experimental 
studies support the suggested method’s effectiveness in terms of preci
sion and robustness. A Chaotic WOA is utilized to address the transient 
stability-constrained optimal power flow problem of the power system 
accounting for numerous contingencies in Ref. [47]. The findings 
demonstrate that chaotic WOA enhances the power system’s transient 
performance through a harmonious and balanced interaction between 
exploration and exploitation phase. The research [48] presents a new 
chaotic whale optimization algorithm (CWOA), which utilizes chaos 
parameter into search iteration. Studies on ten relevant datasets reveal 
that the state-of-the-art CWOA is successful in discovering essential 
features with good classification performance and few features. A new 
whale optimization algorithm based on chaos mapping and weight 
factor (WOACW) is analyzed in the paper [49] that significantly im
proves the convergence speed. In this work, initialization of the popu
lation uses chaos strategy to boost its diversity. The introduction of the 
weight factor speeds convergence and thereby increases accuracy by 
regulating influence of the present best solution in the formulation of 
new individuals. The effectiveness of WOACW is assessed with 13 
mathematical functions, and the statistical outcomes are compared with 
the original WOA, three other WOA variants (IWOA, WOAWC), and two 
cutting-edge algorithms (SSA, GWO). 

Lévy flight is a category of specialized random walk with heavy 
power law tailed step lengths. Large steps usually aid an algorithm to 
perform an effective global search. Since Lévy flight trajectory exhibits 
large steps, a possible improved exploration-exploitation balance can be 
visualized by incorporating Lévy Flight in WOA. The article [50] sug
gests a Lévy flight whale optimization algorithm (LWOA) in which Lévy 
flight aids in minimizing early convergence, enhancing population di
versity, and enhancing the local search capability. The paper [51] in
troduces an enhanced Lévy flight whale optimization algorithm (LWOA) 
to address various complex optimization problems. The model outcomes 
show effectiveness of the LWOA method in solving complex constrained 
real time problems with unexplored search spaces. Using 23 benchmark 
functions, the LWOA and other nature-inspired algorithms are further 
compared, and the statistical study reveals that for majority of the 
benchmark functions, the LWOA outperforms the other algorithms, 
especially for high dimensional optimization problems. 

1.3. Research Contributions 

Following are summaries of the in-depth analysis of related literature 
review considered.  

1. Formulation of an efficient forecast model for accurately predicting 
wind energy is crucial for stable and safe operation of any hybrid 
energy system.  

2. Due to its simplicity in structure and computation, the ELM-based 
prediction model can be one of the best choices for predicting 
wind speed.  

3. Whale optimization algorithm (WOA) proves to be competent 
enough to optimize ELM model due to its simple structure, limited 
number of control parameters, and extensive avoidance of local 
optima.  

4. WOA can be further enhanced by using Lévy flight trajectory and 
chaotic maps as they avoid early convergence, increase diversity in 
population and thereby promoting global search. 

Considering the aforementioned information, Lévy-flight Chaotic 
Whale optimized Extreme Learning Machine (LCWOA-ELM) is devel
oped in this article for wind speed forecasting. In LCWOA-ELM, a hybrid 
variant of WOA-Lévy flight Chaotic Whale Optimization (LCWOA) is 
used to finetune the parameters of ELM. In the study, one-year hourly 
average wind speed collected from weather station setup in Kasavana
halli, Bengaluru, India is utilized for modelling and the efficiency of the 
developed model is evaluated with other existing models. Further, to test 
the proposed model’s robustness and efficacy over unseen data, multi
step ahead forecasting is additionally developed using recursive fore
casting mechanism, and one day ahead hourly wind speed is also 
predicted. 

The paper is drafted in a way that section 2 details the principles and 
methodology used in the proposed hybrid model. Section 3 describes the 
experimental analysis done while implementing proposed model in 
wind speed forecasting. Section 4 describes the performance evaluation 
of the suggested model with other existing models. Section 5 describes 
the performance of the model in multi-step ahead recursive forecasting 
mechanism. Section 6 concludes the paper with the research limitation 
and provides recommendations for future study. 

2. Methodology 

2.1. Extreme Learning Machine(ELM) 

ELM-Extreme Learning Machine is a fast-computing Single Hidden 
Layer Feedforward Network (SLFFN) formulated by G.B Hang in 2006, 
which trims down the shortcomings of conventional neural network like 
local minima and slow training [21]. The model involves random setting 
of the hidden layer weights and biases and using a simplified Moore 
Penrose inverse operation to obtain the output. Consequently, compu
tational speed of the algorithm is improved. Fig. 1 shows the typical 
structure of ELM. 

For N different training samples (xi, yi)
N
i=1 considered where xi and yi 

are the input and resultant output vector for the ith sample represented 
by xi = [xi1 xi2……xin]

T and yi = [yi1 yi2……yin]
T for i = 1, 2, 3, . . N 

respectively, the mathematical model of standard SLFFN is expressed as 
follows 

yj = f
(
xj
)
=

∑K

i=1
βih

(
ωixj + bi

)
j= 1, 2, 3….N 

bi and ωi are the bias and weight parameter values of the ith hidden 
node respectively. 

xj is a jth sample of input data. 
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h is the hidden node activation function used like tanh, sigmoid etc. 
βi is the weight parameter between the ith hidden node and the 

output node. 
The above formula can be consolidated as in Eqn. 1 

Y=Hβ (1)  

Where the output data matrix is Y, the hidden layer matrix is H and 
output weight matrix is β 

H =

⎛

⎝
h(ω1x1 + b1) ⋯ h(ωKx1 + bK)

⋮ ⋱ ⋮
h(ω1xN + b1) ⋯ h(ωKxN + bK)

⎞

⎠ (2)  

Y=

⎛

⎜
⎜
⎝

yT
1

⋮
yT

N

⎞

⎟
⎟
⎠ (3)  

β=

⎛

⎜
⎜
⎝

βT
1

⋮
βT

K

⎞

⎟
⎟
⎠ (4)  

In ELM, bias and weight a of the ith hidden nodes bi and ωi are assigned 
at random without taking into account of the input data. Finally the 
output weights β are analytically evaluated by a simplified inverse 
calculation as in Eq. (5), since the matrix H is invertible 

β=H† Y (5)  

where the Moore-Penrose generalised inverse of H is H† [H† =

(HTH)
− 1HT] 

Inoder to improve balance between the training accuracy and model 
complexity, Regularization parameter C is introduced in ELM and 
optimal problem is now formulated as 

min :
1
2
‖Hβ − Y‖2

+
C
2
‖β‖2 (6) 

Optimal solution β for this function is now evaluated based on Kuhn 
Tucker conditions as 

β=
(
HTH + CI

)− 1HT Y (7)  

2.2. Whale Optimization Algorithm(WOA) 

WOA-Whale Optimization Algorithm is an effective swarm-based 
bio-inspired algorithm developed by Seyedali Mirjalili et al. [37] in 
2016. WOA is developed by simulating the typical hunting behavior of 
humpback whales that mostly prey on a school of small fish or krill. After 
locating the herd of prey near sea surface, whale dives to the depth of the 

sea around 12m–15 m from the prey and then upstream to sea surface in 
shrinking circle/spiral path creating characteristic bubbles along a spiral 
circular path as depicted in Fig. 2. 

The hunting strategy of the whale is mathematically modelled with 
three stages - prey encircling, bubble-net attacking and prey search as 
described below [37]. 

2.2.1. Prey encircling 
Initially after locating the prey, humpback whales surround or 

encircle their prey. In WOA, the best search agent position (best whale 
location) is optimum prey position or very close to that, as the optimal 
position is unknown at the outset. The other whales will then update 
their position close to the best position in every iteration until the 
maximum number of iterations. Eqns. (8)–(12) describe the mathe
matical formulation of this prey encircling mechanism. 

D= |CX∗(t) − Xi(t)| (8)  

Xi(t+ 1)=X∗(t) − AD (9)  

a= 2 −
2t

Maxiter
(10)  

A= 2ar − a (11)  

C= 2r (12)  

where X∗(t) is the fittest whale position, and Xi(t) is the ith search agent/ 
whale position in the tth iteration. By changing the coefficients, A and C 
in Eqns. (11) and (12), the present location Xi(t) is updated based on the 
optimal whale position X*(t), where r is a random number in the range 
[0,1] and ‘a’ is linearly reduced from 2 to 0 throughout the duration of 
iteration as in Eqn. (10). The whale/the search agent modify its position 
close to the best solution at any given time as in Eqn. (9) replicating the 
encircle-prey mechanism. Fig. 3 clearly shows this location update of 
search agents in a 2-dimensional and 3-dimensional space. By altering 
the coefficients, A and C, several positions relative to the best search 
agent can be attained. It is mentionable that by including random 
parameter ‘r’ in the equations, any position between the search space’s 
key points is reachable as depicted in Fig. 3. The same idea can be used 
to an n-dimensional search space, where whale can wander near the best 
positions in hyperplanes found during that iteration. 

2.2.2. Exploitation phase(Bubble-net attack method) 
The following two techniques are devised to statistically simulate 

how humpback whales attack the prey with bubble nets. 

2.2.2.1. Shrinking encircling technique. The shrinking encircling action 
of humpback whales for reaching the prey can be modelled by a linear 

Fig. 2. Hunting strategy of humpback whales [37].  Fig. 1. Extreme learning machine model.  
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decrease of parameter ‘a’ from 2 to 0 throughout the duration of itera
tion as in Eqn. (10). Consequently, coefficient ‘A’ will be a random 
number in the range [− 1, 1]. The search agent is further repositioned to 
any position between the present best search agent position and the 
initial position as shown in Fig. 4 (a). Individual whales reach the cur
rent optimal solution when |A| <1. 

After detecting the target, whales first determine the distance of prey 
from them. Following that, they proceed toward the prey in a loga
rithmic spiral motion, updating its location in accordance with the spiral 
flight path depicted in Fig. 4 b, that can be mathematically modelled as 
in Eqn. (12) & (13). 

L= |X∗(t) − Xi(t)| (12)  

Xi(t+ 1)=L.ebl .cos (2πl ) + X∗(t) (13)  

where the spacing between the whale and best whale position is 
modelled by L, shape parameter of logarithmic spiral is b and l repre
sents a random number in the range [-1, 1]. 

Naturally, whales are observed to swim simultaneously in a spiraling 
path and a diminishing circle around their prey in their natural habit. 
The following mathematical model illustrates this natural behavior by 
choosing a probability parameter p which clearly indicates 50% chance 
between the spiral position updating and shrinking encircling mecha
nisms to update whale in each iteration. 

Xi(t+ 1)=X∗(t) − AD if p< 0.5 (14)  

Xi(t+ 1)=L. ebl .cos(2πl )+X∗(t) if p ≥ 0.5, (15)  

where p is a random number in the range [0, 1]. 

2.2.3. Exploration phase(Prey search) 
In the exploration phase, present whale locations are rearranged in 

accordance with a random whale Xrand in place of best whale position in 
exploitation phase. This method assists the WOA algorithm in carrying 
out an effective global search, resolving the convergence into local op
tima. To boost the exploration capability (global search), parameter ‘A’ 
can be utilized in the exploration phase with random number greater 
than 1 or less than − 1 to place the search agent farther from randomly 
chosen reference search agent/whale. The mathematical model for find 
new whale position is described in Eqns. (16) & (17): 

D= |C.Xrand(t) − Xi(t)| (16)  

Xi (t+ 1)=Xrand − AD (17)  

In conclusion, the algorithm begins with a list of possible positions/so
lutions. The search agents are then repositioned with respect to either 
the previously identified best search agent or a random search agent 
depending on the value of the parameter ‘A’ at the end of every iteration. 
The WOA algorithm can smoothly switch between exploration and 
exploitation phase with adaptive change of the parameter ‘A’. The best 
search agent is picked if |A| < 1 and a random search agent if |A| > 1 to 
switch the various search agents’ positions. The parameter ‘a’ is linearly 

Fig. 3. Possible positions of whales/search agents in a) 2D space b) 3D space [37].  

Fig. 4. (a) Shrinking encircling technique (b) spiral updating [37] b) Spiral updating technique.  
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reduced from 2 to 0 for the smooth conduction of exploration and 
exploitation phase. In WOA, alternation between spiraling mode and a 
shrinking circular mode is decided by probability parameter ‘p’. The 
WOA algorithm is finally stopped when a termination requirement is 
met, and the best search agent ultimately determines the result. In a 
summary, the parameters A, C, p and l controls the exploitation phase, 
while the parameters A and C determine the shrinking encircling 
behavior of whales in the algorithm. The parameter p determines the 
switching between the Spiral position-updating mode or the shrinking 
encircling mechanism, whereas the parameter l controls the spiral 
model. In short the convergence rate of WOA is determined by the four 
control parameters-A,C,p and l . Algorithm 1 describes the detailed 
stepwise framework of WOA.  

Algorithm 1- Framework of WOA 
Set the generation counter t to zero, maximum iteration, the number of whales N, and 

the dimensions determining the position 
Initialize randomly the N search agents/whales’ position Xj where j = 1, 2 … N in 

accordance with the dimensions. 
while (t < maximum iteration) 

for individual whale/search agent 
Verify and correct any whale/search agents if go outside the search space. 
Determine fitness of whale/search agent by defined function. 
Modify best whale/search agent X* provided a better result is found 
Update the parameters A, C, p and l 
if (p < 0.5) | 

if (|A| < 1) 
Adjust the present whale/search agent position using the encircling 

mechanism described in Eqn. 14 
else if (|A| ≥ 1) 

Identify a random whale/search agent (Xrand) 
Adjust the present whale/search agent position using the encircling 

mechanism as described in Eqn. 17 
end if 

else if (p ≥ 0.5) 
Adjust present whale/search agent position by spiral equation Eqn. 13 

end if 
end for 

t = t + 1 
end while 
return best whale position/search agent X*  

2.3. Levy Flight 

Lévy Flight is a typical random walk with steps matching the typical 
Lévy distribution, a probability distribution with heavy tails. Lévy-flight 

was formulated by Paul Lévy, a French mathematician in 1937 and later 
modified and described in detail by Benoit Mandelbrot [52]. Various 
research shows that the flight character of many animals and insects in 
search of food has typical nature of randomness in choice of direction 
that can be formulated as Lévy-flight [53–56]. In the article [57], Rey
nolds et al. explored the behavior of fruit flies searching their area 
through a set of straight paths disrupted by an abrupt 90◦ turn, resulting 
in a scale-free intermittent Lévy-flight search pattern. In the article [58], 
P Barthelemy and others have demonstrated that Lévy-flight can be used 
to mimic specific light phenomena. Lévy Flight can be characterized as a 
random walk process with infinite variance and mean as in Eqn. (18). 

Levy(γ)∼ u = t− 1− γ, (0 < γ≤ 2) (18) 

The Mantegna method [] is a useful algorithm for generating random 
step lengths with Lévy-flight-like behavior, as follows. 

s=
μ
|ν|

1
γ

(19)  

where μ and ν are stochastic normal distribution with μ ∼ N (0, σμ
2) and 

ν ∼ N(0, σν
2) and γ=1.5 

σν = 1  

σμ =

⎡

⎢
⎣

Γ(1 + γ) × sin
(
π × γ

2

)

(
Γ
[
(1+γ)

2

]
× γ × 2

(γ− 1)
2

)

⎤

⎥
⎦

1
β

(20) 

Γ is a gamma function where Γ(z) =
∫∞

0 tz− 1e− t dt 

2.4. Chaotic maps 

Chaos is a term used to describe the characteristic unpredictable 
behavior of a complex system. Chaotic map refers to associating or 
mapping chaos behavior to some parameter in the algorithm using a 
mathematical function. Chaotic maps are extensively used in optimiza
tion problems due to their ergodic nature. It aids in dynamically 
exploring the search space with a greater speed than stochastic searches 
which mainly rely on probability. It can be advantageous if the random 
components in any meta-heuristic algorithms are replaced by chaotic 
maps rather than conventional probability distributions. Chaos strategy 
improves the quality of searching global optimum by avoiding trapping 
in local optimum values. The eight unidimensional chaotic maps that are 
comprehensively examined in the paper to innovate the traditional WOA 
are listed in Table 1. 

2.5. Lévy-flight chaotic whale optimization Algorithm(LCWOA) 

Despite having an appreciable convergence rate, WOA is still unable 
to perform to its fullest potential in identifying the global optimal so
lution, which directly affects its computing efficiency. In the WOA 
exploration process, each whale location is altered on a small scale with 
respect to another whale, resulting in a limited search space for the 
solution. Lévy flight can be added into the exploration process, resulting 
in frequent smaller movements and occasional huge jumps to boost total 
exploration capabilities and widen the exploration zone. Lévy flight can 
considerably improve intensification and diversification of the WOA 
resulting in an improvised search ability avoiding local minima. In 
addition to this, using chaotic maps can have a favorable impact on 
WOA convergence rates because they encourage chaos in the viable 
region, which is predictable only for very brief initial times and sto
chastic for longer times. The use of chaotic maps in the WOA control 
parameters [A,C,p, l ] helps to speed up convergence with improved 
search ability. The different chaotic algorithms analyzed in the article is 
listed as follows. 

Table 1 
Unidimensional chaotic maps.  

Sl. 
No 

Map Definition 

1 Circle Map xk+1 = mod ((xk + b-
a
2π sin(2πxk)),1) a=0.5, b=0.2 

2 Logistic map xt+1 = 0.5xk (1 – xk) 
3 Tent map 

xk+ 1 =

⎧
⎪⎨

⎪⎩

xk

0.7
xk < 0.7

10
3

(1 − xk) xk ≥ 0.7 

4 Piecewise map 

xk+ 1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk

K
0 ≤ xk < K K = 0.4

(K − xk)

(0.5 − P)
K ≤ xk < 0.5

(1 − K − xk)

(0.5 − P)
0.5 ≤ xk < 1 − K

(1 − xk)

K
1 − K ≤ xk < 1 

5 Sinusoidal map xk+1 = 0.5xk
2 t sin(πxk) 

6 Sine map xk+1 =
b
4 

sin (πxk), 0 < b ≤ 4 

7 Mouse/Gauss 
map xk+1 =

⎧
⎪⎨

⎪⎩

1 xk = 0
1

mod(xk,1)
otherwise 

8 Singer Map xk+1=μ(7.86xk-23.31xk
2+28.75 xk

3-13.302875 xk
4) where 

μ=1.07  
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2.5.1. Chaotic maps in WOA’s shrinking circle technique (CWOA-S) 
In this algorithm, the parameters A and C that determine shrinking 

circle technique is assigned with the chaotic map c(t) rather than the 
random variable ‘r’ as shown in Eqns. (21) and (22). 

A= 2a c(t) – a (21)  

C= 2c(t) (22)  

2.5.2. Chaotic maps in WOA’s spiral position updating technique (CWOA- 
L) 

In this algorithm, the parameter ’ l ’ that determines the spiral 
updating location of the humpback whale are assigned using the chaotic 
map c(t) updating spiral equation as in Eqn. 23 

Xi (t+ 1)=L⋅ ebc(t) cos(2πc(t)) + X∗(t) (23)  

2.5.3. Chaotic maps in WOA’s probability parameter (CWOA-P) 
In this work, chaotic map c(t) replaces the probability parameter ‘p’ 

of opting either the spiral mode or shrinking circle mode to update 
whale positions in each iteration. 

Numerous studies suggest that including Lévy flight trajectory im
proves the exploration-exploitation balance in the WOA. In this work, 
Lévy flight is used to further modify the whale positions as in Eqn. (24). 

Xi (t+ 1)=Xi(t) + μ sign [r1 − 1 / 2]. Lévy(γ) (24) 

where X(t) represents ith whale position at tth iteration, r1 represents 
a randomly generated number in the range [0,1], μ represents a uniform 
distributed random number. The stochastic random walk equation, 
represented by Eq. (24), aids the WOA in ensuring that the search agent 
will effectively explore the search area, as its step length gets signifi
cantly greater in the longer run, removing local minima. In this work, 
the Lévy flight trajectory is introduced into the above three Chaotic 
Whale optimization algorithms, leading to the development of three 
enhanced WOA strategies, LCWOA-S, LCWOA-P, and LCWOA-L. 

Algorithm 2 shows the pseudocode for the LCWOA algorithm.  
Algorithm 2- Pseudocode for the LCWOA algorithm 
LCWOA Algorithm 
Set the generation counter t to zero, max iteration, the number of whales N, and the 

dimensions determining the position 
Initialize randomly the positions of the N search agents/whales Xj where j = 1, 2 …. N 

in accordance with the dimensions. 
Update the chaotic type and chaotic number to choose an appropriate chaotic map c 

(t). 
Determine each search agent’s fitness by defined function. 
while (t < max iteration) 

Verify and correct any search agents if it goes outside the search space. 
Determine fitness of each whale/search agent by defined function. 
Update best whale/search agent X* provided a better result is found 

for each whale/search agent X 
Modify parameter ‘a’ as in conventional WOA 
Update parameter either A&C, p or l according to chaotic type using chosen 

chaotic map and update the rest of parameter conventionally 
if (p < 0.5) | 

if (|A| < 1) 
Modify the present whale position/search agent by Encircling mechanism as 

in Eqn. (14) by incorporating values of A &C as in 
else if (|A| ≥ 1) 

Identify a random whale/search agent/(Xrand) 
Adjust the present whale/search agent by Encircling mechanism as Eqn. (17) 

by incorporating values of A &C as in 
end if 

else if (p ≥ 0.5) 
Adjust the present search agent/whale position by spiral equation as Eqn. 

23 
end if 

for each whale/search agent 
Adjust the present search agent/whale position using the Lévy flight as in Eqn. 24 

End 
t = t + 1 
end while 
return best whale position/search agent X*  

Fig. 5 describes the framework of LCWOA that starts with the 
initialization of the necessary whale population. Then, a suitable chaotic 

Fig. 5. The framework of the proposed LCWOA.  

S. Syama et al.                                                                                                                                                                                                                                  



Results in Engineering 19 (2023) 101274

8

type (LCWOA-S, LCWOA-P or LCWOA-L) is chosen to map the corre
sponding algorithm parameters with chaotic map chosen as explained 
above. The fitness of every whale initialized is assessed using the pre
defined fitness function. The best position/search agent at the end of 
each iteration is the whale with the highest fitness. When |A| < 1 and p 
< 0.5, the present best position/search agent will continue to update its 
position utilizing the encircling prey mechanism. When |A|> 1 and p <
0.5, the best position/search agent is updated based on a random whale 
position using the encircling prey mechanism. If p ≥ 0.5, the spiral 
updating position mechanism is used to update the present best search 
agent position. The present search agent positions will be modified 
further with Lévy flight at the end of each iteration and the fittest whale 
position is also updated. The LCWOA algorithm will view the best search 
agent position as the final optimal solution when the termination con
dition is reached. 

2.5.3.1. Validation of proposed LCWOA algorithm with benchmark 
functions. To ascertain the performance improvement, each novel opti
mization technique must be evaluated first with a set of well-defined 
mathematical functions. In this article, the proposed LCWOA has been 
evaluated using three unimodal functions- Sphere, Schwefel 2.21 and 
RosenBrock and two multimodal functions- Griewank and Pendalized. 

Unimodal benchmark functions are well suited for benchmarking 
exploitation phase as they have only a single optimum, while the 
multimodal benchmark functions serve as the testing framework for 
exploration due to their multiple optimal solutions. The details of 
unimodal and multimodal mathematical functions used are specified in 
Table 2. 

The proposed three algorithms –LCWOA-P, LCWOA-S and LCWOA-L 
are compared with conventional WOA, LWOA and the variants of 
CWOA: CWOA-P, CWOA-S and CWOA-L for the above benchmark 
functions. The algorithm is run for 10 independent runs with 500 iter
ation for each of the benchmark function by assuming the whale pop
ulation as 30. The chaotic map utilized for the experimental analysis is 
Tent Map. Experimental statistical results like average execution time, 
average value and the standard deviation are described in Table 3. For 
the qualitative analysis, the convergence curves of the examined algo
rithms for various mathematical functions are also shown in Fig. 6. 
Experimental results prove the following that opens its applicability in 
various complex real time optimization problems.  

1. The performance of proposed three algorithms in unimodal functions 
proves improved exploitation phase as the convergence to local 
optimal point is achieved in the early iterations itself as shows in 

Table 2 
Mathematical functions for testing the proposed algorithm.  

Type Name Benchmark Function Dimension 
(D) 

Range Optimal minimum 
value 

Unimodal functions Sphere f(x)=
∑D

i=1xi
2 30 [-100,100] 0 

Schwefel 
2.21 

f(x) = Maxi{|xi|,1≤ i≤ n 30 [-100,100] 0 

RosenBrock f(x)=
∑D

i=1(xi+1 − xi
2 + ) + (xi − 1)2] 30 [-30, 30] 0 

Multimodal 
functions 

Griewank 
f(x)=

1
4000

∑D

i=1
xi

2 -
∏D

i=1
cos

xi

√i 
+1 

30 [-600, 600] 0 

Pendalized f(x) =
∑D

i=1u(xi,10,100,4) +
π
D
{10 sin2(3πyi) +

∑D− 1
i=1 (yi − 1)2[1 +

sin2(3πyi+1)] + (yD − 1)2}

yi = 1+
1
4
(xi + 1)

u(xi,b,p,n) =

⎧
⎨

⎩

p(xi − 1)n
, xi > b

0, − b ≤ xi ≤ b
p(− xi − 1)n

, xi < − b 

30 [-50, 50] 0  

Table 3 
Statistical Results of the performance of different optimization on unimodal and multimodal functions.  

Unimodal 
Function 

Algorithm Avg. Execution 
Time(s) 

Average 
(m/s) 

Standard 
deviation 

Multimodal 
function 

Algorithm Avg. Execution 
Time(s) 

Average 
(m/s) 

Standard 
deviation 

Sphere WOA 9.082954931 4.28E-73 1.28E-72 Griewank WOA 9.061406898 0 0 
LWOA 17.2641742 5.37 1.123209 LWOA 18.03122187 0.289 0.065001 
CWOAL 8.578726602 5.57 0.603143 CWOAL 9.076756787 0.251 0.026822 
LCWOAL 17.36981592 8.01E-75 2.40E-74 LCWOAL 18.21406369 0 0 
CWOAP 7.96443398 5.081773 0.938814 CWOAP 8.544021535 0.251274 0.052521 
LCWOAP 16.10405431 8.76E-72 2.57E-71 LCWOAP 16.75213632 0 0 
CWOAS 8.363842726 5.341515 0.607898 CWOAS 9.2675318 0.239653 0.062345 
LCWOAS 17.12451725 7.49E-73 1.85E-72 LCWOAS 18.30148549 0 0 

Schwefel 2.21 WOA 8.384887695 41.8 24.3088 Pendalized WOA 9.671176195 0.0344 0.048625 
LWOA 17.13437178 0.943 0.121311 LWOA 18.47025959 3.62 0.278857 
CWOAL 8.373312116 52 33.06374 CWOAL 9.814686441 3.58 0.208145 
LCWOAL 17.07849603 0.938 0.07752 LCWOAL 18.61118188 0.0191 0.015955 
CWOAP 7.821817636 51.24645 25.86167 CWOAP 9.068264127 3.520512 0.195481 
LCWOAP 16.13520086 0.965593 0.03677 LCWOAP 17.10897572 0.0192 0.011131 
CWOAS 8.471002388 44.2305 23.63903 CWOAS 10.02300293 3.469534 0.155106 
LCWOAS 17.70291631 0.925325 0.1147 LCWOAS 18.8127439 0.023833 0.01361 

RosenBrock WOA 8.649783301 438 55.03322      
LWOA 17.27140837 28 0.397501      
CWOAL 8.770069051 436 77.56729      
LCWOAL 17.35701697 27.9 0.436941      
CWOAP 8.158251357 416.5556 170.3582      
LCWOAP 16.34800425 27.76578 0.380215      
CWOAS 8.887092781 401.0974 63.03489      
LCWOAS 17.65434055 27.95003 0.415602       
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Fig. 6. For the Schwefel 2.21 function, it is more evident that the 
proposed three algorithms prove to be the most efficient as it avoids 
premature convergence.  

2. In Multimodal functions, the challenges prone to any algorithm is the 
increased local optima solution [that increases exponentially with 
dimensions] which tests the exploration capability of the algorithm. 
Statistical results and convergence curves prove that the proposed 

algorithm is either best converging or second-best converging. Re
sults clearly indicate that the integrated mechanism of Lévy flight 
and chaotic map accelerates the exploration phase by efficiently 
searching the search space. 

Fig. 6. Comparison of convergence curve of proposed algorithms with WOA, LWOA, CWOA for different mathematical functions.  
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3. LCWOA –ELM framework for Wind Speed Forecasting 

As discussed, ELM- Extreme Learning Machine is a fast-computing 
SLFFN used in numerous Engineering applications. However, the most 
significant flaw of ELM is its lack of generalizability due to the random 
introduction of initial biases and input weights. Although studies prove 
that the initial input weights do not adversely affect the efficiency of the 
ELM model, there is a high possibility that these weights and biases may 
not converge to best output weights. Moreover, in the conventional 
ELM, there is no opportunity for the coherent updating of biases and 
input weights that negatively diminish the computational efficiency of 
the model. 

The ELM model can be paired with an effective optimization tech
nique to fine-tune its model parameters to get around the limitations and 
increase the effectiveness of ELM. The suggested enhanced Lévy-flight 
Chaotic Whale optimization algorithm (LCWOA) is used to prune the 
key ELM parameters, such as input weights, biases, neurons in the hid
den layer, activation function and regularization parameter used. In the 
proposed LCWOA method, the position of whales is defined by above 
five parameters of ELM. As we are aiming the model performance in time 
series prediction, the fitness function for choosing best whale position is 
chosen as the RMSE between actual and predicted value. This method 
will assess how well the ELM model will perform for various combina
tions of the parameters. Consequently, each of these parameters can be 
updated, and finally, the best output weights are chosen leading to a 
reliable model. 

The proposed LCWOA –ELM framework for wind speed forecasting is 
shown in Fig. 7. The main steps in the framework include data 

acquisition, data preprocessing, ELM model development and training, 
prediction, and performance evaluation. 

3.1. Data Acquisition 

Acquiring real-time weather data is a crucial and difficult stage in 
developing a reliable forecasting model. The experimental study in the 
work was conducted in the one-year wind speed dataset acquired from 
weather station setup in Amrita School of Engineering, Kasavanahalli, 
Bengaluru, India (12◦53′41.6 N 77◦40′32.4 E) starting from December 
1st, 2020, to November 30th, 2021. An anemometer, mounted at a 
height of 50 m in the site is used to gather the data as depicted in Fig. 8. 
The four seasons: December–February, March–May, June–August, and 
September–November are selected as the forecasting periods from the 
obtained dataset to analyze the versatility of the proposed forecasting 
model. The wind speed series for all forecasting periods is depicted in 
Fig. 9. Table 4 shows the statistical wind speed details for the acquired 
datasets for different periods. 

3.2. Data Preprocessing 

Data Preprocessing is an essential step in any forecast model in which 
collected data is transformed into the desired format for processing 
without degrading the results. Cleaning and preparing the time series 
data is crucial because any model’s performance is impacted by the 
quality of the data. Initially the missing values in the dataset are 
replaced with mean values. Then the data is standardized using the Min- 
Max scaler to fall within the range (0,1) after missing values are 

Fig. 7. LCWOA –ELM framework for wind speed forecasting.  
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imputed. 

XNorm =
X − XMin

XMax − XMin
(25)  

where, the actual data is X, the normalized data of X is XNorm,XMin is the 
minimum value of X and XMax is the maximum value of X. This 
normalization on the data can improve the model performance due to 

the activation function’s increased sensitivity to the input variables. So, 
the input variables must be normalized prior to training as the activation 
functions are usually in that range of variation. Finally, the normalized 
data is segregated in such a way that 80% of the data is dedicated to the 
training phase and the remaining 20% is assigned to the testing phase. 

Fig. 8. Location and Weather station installed in the site.  

Fig. 9. Wind speed data for all the forecasting period.  

Table 4 
The statistical wind speed details of the acquired datasets for different periods.  

Dataset Time period No of samples Max Value (m/s) Min Value (m/s) Std. Dev (m/s) Mean (m/s) 

Dataset1 Dec 1st, 2020–Feb 28th, 2021 2160 10.590 0.330 1.759 5.420 
Dataset2 Mar 1st, 2021–May 31st, 2021 2208 11.130 0.100 2.049 5.164 
Dataset3 June 1st, 2021–Aug 31st, 2021 2208 14.590 0.210 2.538 6.660 
Dataset4 Sep 1st, 2021–Nov 30th, 2021 2184 11.800 0.150 2.042 5.039  
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3.3. LCWOA-ELM model Development 

In this work, the Lévy-flight Chaotic Whale optimization algorithm 
(LCWOA) is utilized to prune the relevant parameters of ELM like input 
weights, biases, the activation function used, neurons in the hidden 
layer and regularization parameter. In the LCWOA algorithm, the po
sition of whales is determined by the mentioned five parameters of ELM. 
This process will analyze the performance of the ELM model for a set of 
possible values of the above-mentioned parameters. As a result, all these 
parameter values are updated effectively, and final output weights are 
determined in a way leading to a robust model. The mentionable 
advantage of the LCWOA algorithm is that it is dependent on only a few 
parameters like maximum number of iterations, whale population, 
chaotic type and chaotic map chosen as described in the algorithm. The 
relevant ELM parameter ranges initialized in the algorithm are specified 

in Table 5. The parameter setting of LCWOA algorithm is described in 
Table 6. 

For finding the optimal whale population, the algorithm is run for 
different whale population for 200 iterations. The RMSE variation for 
different whale populations is illustrated in Fig. 10. Table 7 shows the 
optimal whale population chosen for LCWOA with minimum RMSE for 
further tuning of ELM model. 

Generally, any forecast model is designed for one-step ahead pre
diction with the aid of a set of N input variables/lag value that must be 
properly chosen. Lag values are the observation at earlier time steps that 
are utilized as a key input feature for time series forecasting which 
predominantly determine the model accuracy. In this work, the pro
posed method is first evaluated for one-step ahead wind speed predic
tion that aims to predict the next time step values (xt+1) by considering 
historical time series with t lag observations (x1, x2, x3. ., xt) as the input 
features. For finding an optimal lag value, LCWOA-ELM algorithm is run 
for different time lags ranging from 1 to 30 and corresponding RMSE 
errors are noted against each time step. Fig. 11 shows the impact of time 
lag on the different wind speed series chosen. The time lag with mini
mum RMSE is chosen as optimal lag value for modelling the corre
sponding forecasting periods. The experimental results for determining 
optimum lag values are consolidated in Table 8. 

The performance of the ELM is checked for all three Lévy flight 
chaotic algorithms (LCWOA-S, LCWOA-P, and LCWOA-L) by properly 
choosing the chaotic type and position updating using Lévy-flight Tra
jectory in each case. Eight most significant unidimensional chaotic maps 
(as discussed in Table .1) have been analyzed for each algorithm to come 
up with a most efficient robust model. As we are aiming the model 

Table 5 
ELM model Parameter ranges.  

ELM parameter Range/value 

Weights between input layer and hidden 
layer (w) 

[-1,1] 

Hidden layer Bias (b) [0,1] 
Neurons/nodes in the hidden layer(n) [10,200] 
Activation Function [’sigmoid’, ‘relu’, ‘sin’, ‘tanh’, ‘leaky 

relu’] 
Regularization parameter (C) [0.1,1]  

Table 6 
Parameter setting of LCWOA algorithm.  

LCWOA parameter Value 

Maximum number 
of iterations 

200 

Whale population [10,20,30,40,50,60,70,80,90,100] 
Chaotic type LCWOA-S, LCWOA-P, and LCWOA-L 
Chaotic map [Circle map, Logistic map, Tent map, Piecewise map, 

Sinusoidal map, Sine map, Gauss/mouse map, Singer Map]  

Fig. 10. Effect of whale population on the fitness value.  

Table 7 
Optimal Whale population for LCWOA-ELM.  

Forecasting period Whale population 

Dec 1st, 2020–Feb 28th, 2021 80 
Mar 1st, 2021–May 31st, 2021 90 
June 1st, 2021–Aug 31st, 2021 90 
Sep 1st, 2021–Nov 30th, 2021 100  
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performance in time series prediction, the fitness function for choosing 
best whale position is the RMSE between predicted and actual value. As 
depicted in the flowchart shown in Fig. 5, each whale’s fitness value is 
determined for each iteration up to the maximum iteration. The whales 
reposition themselves based on the control parameters A, C, p, and l 

that are chaotically determined. The best whale position is also updated 
based upon fitness value evaluation that corresponds to minimum 
RMSE. At the end of each iteration new whale positions are further 
modified by Lévy-flight that improves population diversity. When the 
termination condition reaches, the best search agent position corre
sponds to the optimal parameters of ELM. 

3.4. Performance Evaluation 

Performance evaluation is the most crucial step in validating any 
model. Five performance assessment indices: MSE R2-score, MAE, MAPE 
and RMSE are utilized to model evaluation. The evaluation indices as 
indicated in Table 9 are computed for all the models in which xt is the 
actual value and ̂xt is the predicted value at time t. x is mean of all actual 
values considered for study. 

Additionally, the robustness of the proposed model with other ELM 
based models is evaluated with the Percentage Reduction in RMSE 
(PRMSE) as defined in Eqn. (26). 

PRMSE =
RMSE1 − RMSE2

RMSE1
× 100 (26)  

3.5. Forecasting Results and Analysis 

The prediction capability and performance of the suggested model is 
validated with nine other existing models like WOA-SVR(whale opti
mized Support Vector Regression), WOA-LSTM(whale optimized Long 
short term Memory),WOA-GRU(whale optimized Gated Recurrent 
Unit),ELM(Extreme learning Machine),WOA-ELM (Whale Optimized 
ELM), CWOA-S-ELM(Whale Optimized ELM with Chaotic Maps for 

Fig. 11. Plot of RMSE against lag values for different dataset.  

Table 8 
Optimal lag value for ELM modelling different fore
casting period.  

Forecasting period Time lag 

Dataset − 1 24 
Dataset − 2 19 
Dataset − 3 24 
Dataset − 4 16  

Table 9 
Evaluation metrics.  

Evaluation metrics Description Equation 

MSE Mean Square Error ∑
i(xt − x̂t)

2

n 
R2-score Coefficient of Determination 

1 −
(xt − x̂t)

2

(xt − x)2 

RMSE Root Mean Square Error ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

i(xt − x̂t)
2

n

√

MAE Mean Absolute Error |(xt − x̂t)|

n 
MAPE Mean Absolute Percentage Error 1

n 
∑

t

(xt − x̂t)

xt   
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Table 10 
Configuration Parameters of models used for comparison.  

Forecasting models WOA Parameters Model Parameters 

Parameter Value Parameter Value 

WOA-SVR random vector (r) [0,1] Kernel function Radial basis function (RBF) 
Cost [0.001,10] 

a linearly decreased from 2 to 0 over the iterations Gamma [0.001,10] 
Maximum number of 
iterations 

200 Hidden layers Number [1,4] 
WOA-LSTM Cells in hidden layer [10,200] 

Batch Size [10,200] WOA-GRU 
WOA-ELM, LWOA-ELM random vector (r) [0,1] Weights between input and hidden 

layer (w) 
[-1,1] 

a linearly decreased from 2 to 0 over the iterations Biases between input and hidden 
layer(b) 

[0,1] 

Maximum iteration 200 Neurons/nodes in the hidden layer(n) [10,200] 
Activation Function [’sigmoid’, ‘relu’, ‘sin’, ‘tanh’, 

‘leaky relu’] 
Regularization parameter C [0.1,1] 

CWOA-P-ELM, CWOA-L-ELM, 
CWOA-S-ELM 

random vector (r) [0,1] Weights between input and hidden 
layer (w) 

[-1,1] 

A linearly decreased from 2 to 0 over the iterations Biases between input and hidden 
layer(b) 

[0,1] 

Maximum iteration 200 Neurons/nodes in the hidden layer(n) [10,200] 
Chaotic map [Circle map, Tent map, Piecewise map, Logistic map, Sine map, Gauss/mouse map, 

Sinusoidal map, Singer Map] 
Activation Function [’sigmoid’, ‘relu’, ‘sin’, ‘tanh’, 

‘leaky relu’] 
Regularization parameter C [0.1,1]  
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Table 11 
The statistical results analysis of the performance of eight chaotic maps in improvising the conventional WOA–ELM model.  

Dataset-1(December–February) Dataset ¡2(March–May) 

Chaotic map CWOA-P- 
ELM 

CWOA-L- 
ELM 

CWOA-S- 
ELM 

LCWOA-P- 
ELM 

LCWOA-L- 
ELM 

LCWOA-S- 
ELM 

Chaotic map CWOA-P- 
ELM 

CWOA-L- 
ELM 

CWOA-S- 
ELM 

LCWOA-P- 
ELM 

LCWOA-L- 
ELM 

LCWOA-S- 
ELM 

Circle Map 0.037355 0.037463 0.038521 0.03654 0.03759 0.0368 Circle Map 0.030827 0.030785 0.030981 0.030729 0.030989 0.030697 
Logistics Map 0.037196 0.03702 0.037112 0.037404 0.03677 0.03852 Logistics Map 0.030443 0.030743 0.030989 0.030731 0.030762 0.030989 
Tent Map 0.037111 0.038361 0.038431 0.037125 0.037071 0.038517 Tent Map 0.030989 0.030818 0.030981 0.030847 0.030664 0.030989 
Piecewise Map 0.038521 0.036972 0.03852 0.0372 0.038481 0.037274 Piecewise Map 0.030989 0.030789 0.030989 0.030587 0.030989 0.030989 
Sinusoidal Map 0.037367 0.037366 0.037011 0.036655 0.038172 0.037459 Sinusoidal Map 0.030989 0.03098 0.03098 0.03059 0.030989 0.030989 
Sine Map 0.037692 0.037334 0.038419 0.037221 0.036937 0.037052 Sine Map 0.030698 0.030989 0.030989 0.030773 0.030837 0.030859 
Gauss/mouse 

Map 
0.037158 0.037128 0.037559 0.037231 0.038295 0.038002 Gauss/mouse 

Map 
0.030989 0.030893 0.030981 0.030989 0.030989 0.030989 

Singer Map 0.038134 0.037607 0.03701 0.037118 0.038166 0.037133 Singer Map 0.030603 0.03098 0.030761 0.030691 0.030989 0.030891 

Dataset-3(June–August) Dataset-4(September–November) 

Chaotic map CWOA-P- 
ELM 

CWOA-L- 
ELM 

CWOA-S- 
ELM 

LCWOA-P- 
ELM 

LCWOA-L- 
ELM 

LCWOA-S- 
ELM 

Chaotic map CWOA-P- 
ELM 

CWOA-L- 
ELM 

CWOA-S- 
ELM 

LCWOA-P- 
ELM 

LCWOA-L- 
ELM 

LCWOA-S- 
ELM 

Circle Map 0.0186 0.018679 0.018723 0.01874 0.018749 0.018636 Circle Map 0.02465 0.024635 0.024648 0.02465 0.024301 0.024298 
Logistics Map 0.0185 0.018788 0.01867 0.018708 0.018772 0.018663 Logistics Map 0.02465 0.024609 0.024655 0.02465 0.02465 0.02465 
Tent Map 0.018735 0.018737 0.018742 0.018878 0.018789 0.0186 Tent Map 0.024632 0.024634 0.024648 0.024105 0.02427 0.02465 
Piecewise Map 0.018585 0.018774 0.018684 0.01874 0.01871 0.018705 Piecewise Map 0.024653 0.02462 0.024708 0.02465 0.02465 0.02465 
Sinusoidal Map 0.018676 0.018728 0.018856 0.01876 0.01858 0.018773 Sinusoidal Map 0.024654 0.024635 0.024619 0.02437 0.02465 0.02465 
Sine Map 0.018633 0.018774 0.018766 0.01871 0.018642 0.018875 Sine Map 0.024659 0.024632 0.02466 0.02432 0.024268 0.02465 
Gauss/mouse 

Map 
0.0187 0.018808 0.018758 0.018786 0.018852 0.018773 Gauss/mouse 

Map 
0.024621 0.024646 0.024637 0.024405 0.02465 0.02465 

Singer Map 0.018771 0.018621 0.018886 0.018796 0.018797 0.01875 Singer Map 0.024667 0.02466 0.024655 0.024356 0.024099 0.024504  
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Shrinking Circle Mechanism),CWOA-P-ELM(Whale Optimized ELM with 
Chaotic Maps for Probability Parameter) and CWOA-L-ELM(Whale 
Optimized ELM with Chaotic Maps for Spiral Shaped Mechanism). The 
configuration parameters of benchmark models are specified in 
Table 10. 

The performance analysis of eight chaotic maps in improvising the 
conventional WOA –ELM model is done by comparing the normalized 
RMSE while incorporating different chaotic Map in the specific WOA 
parameter. Detailed result analysis is shown in Table 11 in which the 
value in bold represents best chaotic map for the specific algorithm for a 
particular dataset. The forecasting accuracy of various models for one- 
step forward wind speed prediction based on various statistical error 
indices is shown in Table 12. The numbers in bold type represent the 
minimum error attained. Fig. 12 shows the performance comparison of 
different models based on RMSE. 

Summary of the experimental findings are listed as follows. 

1. Among the twelve-forecasting model considered, the prediction ac
curacies of the proposed three models LCWOA-P-ELM, LCWOA-L- 
ELM and LCWOA-S-ELM are higher for all the four datasets consid
ered as the error metrics have the least value as indicated in Table 12. 
It clearly shows that Lévy-flight Trajectory based Chaotic WOA 
(LCWOA) has better performance in optimizing the parameters of 
ELM model when compared to the conventional model for wind 
speed prediction. 
a. For dataset 1, circle map and logistic map give a better perfor

mance in improvising the conventional WOA algorithm for tuning 
the parameters of ELM as shown in Table 11. Among all the hybrid 
models, LCWOA-P-ELM outperforms the other counterparts in 
prediction accuracy with least RMSE and MAE of 0.389538 and 
0.270316 respectively.  

b. For the dataset 2, circle map, tent map and piecewise map give a 
significant contribution in improvising LCWOA algorithms for 
ELM modelling. Among all the hybrid models, LCWOA-P-ELM 

gives a remarkable prediction accuracy with the least RMSE and 
MAE of 0.341748 and 0.244956 respectively.  

c. For the dataset 3, Sine map, sinusoidal map and tent map clearly 
improvise the LCWOA-ELM model as shown in Table 11. Among 
the hybrid model, LCWOA-S-ELM outperforms its counterpart in 
prediction accuracy with the least RMSE and MAE of 0.306178 
and 0.22188 respectively.  

d. For the dataset 4, sine map, sinusoidal map and tent map give a 
better performance in improvising the LCWOA-ELM model. 
Among all the hybrid models, LCWOA-L-ELM outperforms its 
counterpart in prediction accuracy with the least RMSE and MAE 
of 0.348796 and 0.247 respectively.  

2. The prediction models for dataset-3 have reported low error levels 
based on MAE and RMSE in contrast to the other datasets which 
emphasis on the fact that prediction accuracy depends on the data
sets and algorithms employed 

Figss. 13–16 show the one-step-ahead wind speed prediction curves 
obtained by the different models for different datasets considered for 
study. 

The computational improvement of the suggested LCWOA-ELM 
model in comparison to the traditional ELM model in terms of the per
centage reduction in RMSE (PRMSE) is shown in Table 13 and Fig. 17. 
Summary of the experimental findings are listed as follows .  

1. The suggested three LCWOA-ELM models significantly outperform 
other models due to their higher prediction accuracy in all the four 
scenarios. 

2. Incorporating chaotic maps in WOA for optimizing ELM has signifi
cantly shown an improvement of 3–4% for most of the cases, which 
clearly shows improvement due to local minima avoidance.  

3. Incorporating Lévy fight in WOA (LWOA) clearly shows an 
improvement in dataset − 1 and dataset-4, which justifies the idea of 
combining Lévy-flight and Chaotic maps in improvising WOA. 

Table 12 
Statistical error indices for one-step ahead wind speed prediction for different datasets.  

Dataset-1(December–January) Dataset-2(March–May) 

MODEL MSE R2 RMSE MAE MAPE MODEL MSE R2 RMSE MAE MAPE 

WOA-SVR 0.186584 0.961784 0.431953 0.310532 0.112808 WOA-SVM 0.134445 0.947855 0.366667 0.258738 0.041601 
WOA-LSTM 0.183556 0.962404 0.428434 0.315414 0.093001 WOA-LSTM 0.138213 0.946394 0.37177 0.258835 0.040836 
WOA-GRU 0.186876 0.961724 0.432291 0.327964 0.098309 WOA-GRU 0.153162 0.940595 0.39136 0.329789 0.057452 
ELM 0.180332 0.963064 0.424655 0.294012 0.097823 ELM 0.132277 0.948696 0.363698 0.26352 0.042779 
WOA-ELM 0.173319 0.964501 0.416316 0.292733 0.085484 WOA-ELM 0.12632 0.951006 0.355415 0.254975 0.041213 
LWOA-ELM 0.162509 0.966715 0.403123 0.282517 0.081237 LWOA-ELM 0.139844 0.945761 0.373957 0.277427 0.044942 
CWOA-P-ELM 0.160067 0.967215 0.400084 0.27266 0.077652 CWOA-P-ELM 0.119639 0.953597 0.345889 0.249846 0.040283 
CWOA-L-ELM 0.162726 0.96667 0.403393 0.278922 0.079075 CWOA-L-ELM 0.121919 0.952713 0.349168 0.252799 0.040817 
CWOA-S-ELM 0.160978 0.967028 0.401221 0.288824 0.087447 CWOA-S-ELM 0.117039 0.954606 0.34211 0.246527 0.039822 
LCWOA-P-ELM 0.15174 0.968921 0.389538 0.270316 0.078902 LCWOA-P-ELM 0.116792 0.954702 0.341748 0.244956 0.039558 
LCWOA-L-ELM 0.15226 0.968813 0.390210 0.263165 0.073983 LCWOA-L-ELM 0.116975 0.954631 0.342016 0.246911 0.039881 
LCWOA-S-ELM 0.154685 0.968317 0.3933 0.273218 0.076265 LCWOA-S-ELM 0.116796 0.9547 0.341755 0.246424 0.039792 

Dataset 3(June–August) Dataset-4(September–November) 

MODEL MSE R2 RMSE MAE MAPE MODEL MSE R2 RMSE MAE MAPE 

WOA-SVR 0.1279 0.968576 0.357631 0.274307 0.057471 WOA-SVR 0.139775 0.966497 0.373865 0.255214 0.047093 
WOA-LSTM 0.127384 0.968702 0.356908 0.253628 0.053641 WOA-LSTM 0.137461 0.967051 0.370757 0.249566 0.047437 
WOA-GRU 0.16118 0.960399 0.401473 0.299839 0.055767 WOA-GRU 0.13731 0.967088 0.370554 0.248601 0.047761 
ELM 0.12331 0.969703 0.351155 0.264015 0.053081 ELM 0.166839 0.96001 0.408459 0.275484 0.050277 
WOA-ELM 0.100126 0.975399 0.316427 0.225703 0.044878 WOA-ELM 0.129899 0.968864 0.360416 0.244223 0.045391 
LWOA-ELM 0.1049 0.974227 0.323882 0.233626 0.04638 LWOA-ELM 0.124487 0.970161 0.352826 0.239089 0.044607 
CWOA-P-ELM 0.100782 0.975238 0.317462 0.231717 0.04615 CWOA-P-ELM 0.120141 0.971203 0.346614 0.235312 0.043945 
CWOA-L-ELM 0.101318 0.975107 0.318304 0.227721 0.045232 CWOA-L-ELM 0.121432 0.970894 0.348471 0.236065 0.0441 
CWOA-S-ELM 0.101037 0.975176 0.317863 0.226537 0.044986 CWOA-S-ELM 0.121636 0.970845 0.348764 0.236463 0.04415 
LCWOA-P-ELM 0.094158 0.976866 0.306852 0.220444 0.044059 LCWOA-P-ELM 0.118808 0.971523 0.344685 0.23632 0.044276 
LCWOA-L-ELM 0.095594 0.976513 0.309182 0.221821 0.043918 LCWOA-L-ELM 0.117566 0.97182 0.342879 0.238393 0.044703 
LCWOA-S-ELM 0.093745 0.976967 0.306178 0.22188 0.044566 LCWOA-S-ELM 0.121659 0.970839 0.348796 0.247 0.046157  
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Fig. 12. Comparison of different models based on RMSE.  
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Fig. 13. Wind speed prediction curves obtained by the different models for Dataset-1[first 100 points].  

Fig. 14. Wind speed prediction curves obtained by the different models for Dataset-2[first 100 points].  

Fig. 15. Wind speed prediction curves obtained by the different models for Dataset-3[first 100 points].  

S. Syama et al.                                                                                                                                                                                                                                  



Results in Engineering 19 (2023) 101274

19

4. For the dataset-1 and 2, the forecasting accuracy LCWOA-P-ELM is 
better when compared to other models as the RMSE reduces to 
8.269% and 8.612% respectively. Similarly, for dataset-3, LCWOA-S- 
ELM proves to better with 12.208% reduction in RMSE, while 
LCWOA-L-ELM turns up to be best for dataset-4 with 16.055% 
reduction in RMSE.  

5. Clearly results prove that performance of WOA can be improved by 
incorporating Chaotic maps and Lévy flight together in the 
algorithm. 

4. Multistep ahead forecasting 

To access the effectiveness of the model over unseen data, multistep 
ahead forecasting is evaluated for the proposed model, by recursive 
forecasting mechanism. The recursive forecasting mechanism involve 
the usage of previous time step prediction result in the prediction of next 
time step value as depicted in Fig. 18. The computational efficiency of 
proposed model for one day ahead [24-h ahead] forecast scenarios are 
evaluated and compared with benchmark models. The performance 
comparison in terms of RMSE(m/s) for different models in 24-h ahead 
wind speed prediction is indicated in Table 14.The one day ahead 
forecast plot of wind speed for all models using recursive prediction 
analyzed is depicted in Fig. 19. 

The experimental analysis of multistep ahead prediction by different 
models for different dataset proves the following. 

1. In one day ahead hourly wind speed prediction by recursive fore
casting, the proposed three models of LCWOA-ELM outperform the 
other models for all the four datasets as the RMSE is the least.  

2. LCWOA-P-ELM model provides greater prediction accuracy for 
datasets 1 and 2, whereas LCWOA-L-ELM and LCWOA-S-ELM, 
respectively, provide superior results for datasets 3 and 4.  

3. Experimental results affirm the fact that incorporating improved 
versions of WOA in optimizing ELM modelling clearly improves the 
prediction capability of model in recursive forecasting. 

5. Conclusion 

In this paper, a hybrid Lévy Flight Chaotic Whale Optimized ELM is 
suggested for wind speed forecasting. The suggested hybrid model em
ploys Lévy flight Chaotic Whale Optimization algorithm (LCWOA) to 
prune the ELM model parameters. The performance of the proposed 
model is thoroughly assessed using various statistical error metrics. The 
prediction capability of the proposed model is validated with nine other 
existing benchmark models and results prove the efficacy of the sug
gested model and affirms the fact that performance of WOA can be 
improved by incorporating Chaotic maps and Lévy flight in the algo
rithm. To check the robustness of the proposed model over unseen data, 
recursive multi-step ahead forecasting is also analyzed, and results 
clearly prove its efficiency. 

The following are the drawbacks of the suggested model for pre
dicting the wind speed that can be thought as potential future research 
paths. 

1. The proposed work concentrates on univariate wind speed fore
casting model. In the future, correlated features like pressure, tem
perature, humidity, wind direction etc. Can also be incorporated as 
the input features to develop and evaluate multivariate ELM models.  

2. It is also recommended that usage of hybrid data decomposition 
techniques can significantly improve the accuracy of the proposed 
model. In the future, the effectiveness of such models can also be 
investigated. 

3. To further improve the prediction accuracy, a suitable error correc
tion algorithm can be devised to post process the errors and the ef
ficacy of the proposed model with error correction can be analyzed in 
future. 

Fig. 16. Wind speed prediction curves obtained by the different models for Dataset-4[first 100 points].  

Table 13 
Percentage reduction in RMSE(PRMSE) for different models.   

PRMSE (%) 

Model Dataset-1 Dataset-2 Dataset-3 Dataset-4 
WOA-ELM 1.963648 4.958268 9.889595 11.76211 
LWOA-ELM 5.070337 2.743155 7.766606 13.62013 
CWOA-P-ELM 5.786041 7.505512 9.594844 15.14103 
CWOA-L-ELM 5.006776 6.628624 9.35506 14.68656 
CWOA-S-ELM 5.518271 8.516155 9.480623 14.6148 
LCWOA-P-ELM 8.269581 8.612887 12.61647 15.61338 
LCWOA-L-ELM 8.111216 8.541232 11.95271 16.05542 
LCWOA-S-ELM 7.383627 8.611159 12.80829 14.60692  
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Fig. 17. Comparison of models based on P_RMSE  

Fig. 18. Recursive forecasting mechanism.  

Table 14 
RMSE(m/s) of 24-h ahead wind speed prediction by recursive Forecasting for different models.   

WOA- 
SVR 

WOA- 
LSTM 

WOA- 
GRU 

ELM WOA- 
ELM 

LWOA- 
ELM 

CWOA-P- 
ELM 

CWOA-L- 
ELM 

CWOA-S- 
ELM 

LCWOA-P- 
ELM 

LCWOA-L- 
ELM 

LCWOA-S- 
ELM 

RMSE(m/s) 

Dataset-1 1.03701 1.02671 1.04197 1.25259 1.19064 0.90626 1.16274 1.05818 0.92100 0.71065 0.84482 0.91487 
Dataset-2 0.47470 0.94374 2.15489 0.51993 0.41966 0.42869 0.43034 0.42951 0.42494 0.42766 0.42912 0.42868 
Dataset-3 1.84138 1.63572 2.01947 0.92431 0.78222 0.67898 0.84186 0.65008 0.84186 0.66941 0.56994 0.71951 
Dataset-4 0.52564 1.26887 1.36137 0.57181 0.87579 0.83984 0.91073 0.88845 0.87443 0.8738 0.85427 0.71078  
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Fig. 19. One-day ahead hourly average wind speed forecast by Recursive Forecasting.  
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