11 research outputs found

    Classifying motion states of AUV based on graph representation for multivariate time series

    Get PDF
    Acknowledgement This work is supported by Natural Science Foundation of Shandong Province (ZR2020MF079) and China Scholarship Council (CSC).Peer reviewedPostprin

    Reservoir computing approaches for representation and classification of multivariate time series

    Get PDF
    Classification of multivariate time series (MTS) has been tackled with a large variety of methodologies and applied to a wide range of scenarios. Reservoir Computing (RC) provides efficient tools to generate a vectorial, fixed-size representation of the MTS that can be further processed by standard classifiers. Despite their unrivaled training speed, MTS classifiers based on a standard RC architecture fail to achieve the same accuracy of fully trainable neural networks. In this paper we introduce the reservoir model space, an unsupervised approach based on RC to learn vectorial representations of MTS. Each MTS is encoded within the parameters of a linear model trained to predict a low-dimensional embedding of the reservoir dynamics. Compared to other RC methods, our model space yields better representations and attains comparable computational performance, thanks to an intermediate dimensionality reduction procedure. As a second contribution we propose a modular RC framework for MTS classification, with an associated open-source Python library. The framework provides different modules to seamlessly implement advanced RC architectures. The architectures are compared to other MTS classifiers, including deep learning models and time series kernels. Results obtained on benchmark and real-world MTS datasets show that RC classifiers are dramatically faster and, when implemented using our proposed representation, also achieve superior classification accuracy

    Deep learning for time series classification: a review

    Get PDF
    Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.Comment: Accepted at Data Mining and Knowledge Discover
    corecore