

A Deep Convolutional Neural Network for Time Series Classification with Intermediate
Targets

Taherkhani, A., Cosma, G., & McGinnity, T. M. (2023). A Deep Convolutional Neural Network for Time Series
Classification with Intermediate Targets. SN Computer Science, 4(6), 1-24. Advance online publication.
https://doi.org/10.1007/s42979-023-02159-4

Link to publication record in Ulster University Research Portal

Published in:
SN Computer Science

Publication Status:
Published online: 28/10/2023

DOI:
10.1007/s42979-023-02159-4

Document Version
Publisher's PDF, also known as Version of record

General rights
Copyright for the publications made accessible via Ulster University's Research Portal is retained by the author(s) and / or other copyright
owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these
rights.

Take down policy
The Research Portal is Ulster University's institutional repository that provides access to Ulster's research outputs. Every effort has been
made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in
the Research Portal that you believe breaches copyright or violates any law, please contact pure-support@ulster.ac.uk.

Download date: 17/11/2023

https://doi.org/10.1007/s42979-023-02159-4
https://pure.ulster.ac.uk/en/publications/9a562c51-6cfa-4b12-a57d-a59a184ef7e0
https://doi.org/10.1007/s42979-023-02159-4

Vol.:(0123456789)

SN Computer Science (2023) 4:832
https://doi.org/10.1007/s42979-023-02159-4

SN Computer Science

ORIGINAL RESEARCH

A Deep Convolutional Neural Network for Time Series Classification
with Intermediate Targets

Aboozar Taherkhani1  · Georgina Cosma2 · T. M. McGinnity3,4

Received: 12 May 2021 / Accepted: 18 July 2023
© The Author(s) 2023

Abstract
Deep Convolutional Neural Networks (CNNs) have been successfully used in different applications, including image recogni-
tion. Time series data, which are generated in many applications, such as tasks using sensor data, have different characteristics
compared to image data, and accordingly, there is a need for specific CNN structures to address their processing. This paper
proposes a new CNN for classifying time series data. It is proposed to have new intermediate outputs extracted from different
hidden layers instead of having a single output to control weight adjustment in the hidden layers during training. Intermediate
targets are used to act as labels for the intermediate outputs to improve the performance of the method. The intermediate targets
are different from the main target. Additionally, the proposed method artificially increases the number of training instances using
the original training samples and the intermediate targets. The proposed approach converts a classification task with original
training samples to a new (but equivalent) classification task that contains two classes with a high number of training instances.
The proposed CNN for Time Series classification, called CNN-TS, extracts features depending the distance of two time series.
CNN-TS was evaluated on various benchmark time series datasets. The proposed CNN-TS achieved 5.1% higher overall accu-
racy compared to the CNN base method (without an intermediate layer). Additionally, CNN-TS achieved 21.1% higher average
accuracy compared to classical machine-learning methods, i.e., linear SVM, RBF SVM, and RF. Moreover, CNN-TS was on
average 8.43 times faster in training time compared to the ResNet method.

Keywords  Classification · Convolutional neural network · Intermediate targets · Time series analysis

Introduction

Time series (TS) datasets are obtained by recording a series of
time-dependent observations. TS covers a broad range of appli-
cations, such as investigation of market prices, prediction of

epidemic spread, speech signal processing, electrocardiogram
(ECG) investigation, understanding the brightness of a target
star, manufacturing, and weather forecasting [18, 42, 47, 48,
82]. Time Series Classification (TSC) is an important part of
TS data mining that has been used in many areas. For example,
in medical science, classification of TS datasets generated from
Electrocardiogram (ECG) data has been used for heart disease
diagnosis [59, 73], and Electroencephalogram (EEG) signal
data are used as a primary tool for seizure onset detection [3].
TSC has been used for different applications, such as activity
recognition [2, 57, 69]; and in industry, classification of TS
generated from different sensors such as gas pressure sensors,
and thermometers play important roles in industrial control
processes [47, 48].

Deep learning (DL) algorithms have exhibited impressive
capabilities in image processing and big data analysis [61,
70]. DL uses several layers of processing elements to extract
high-level abstraction from input data. One of the most popu-
lar approaches in DL is the Convolutional Neural Network
(CNN). CNN is inspired by biological visual systems and has

 *	 Aboozar Taherkhani
	 aboozar.taherkhani@dmu.ac.uk

 *	 Georgina Cosma
	 g.cosma@lboro.ac.uk

	 T. M. McGinnity
	 tm.mcginnity@ulster.ac.uk

1	 School of Computer Science and Informatics, De Montfort
University, Leicester, UK

2	 Department of Computer Science, Loughborough University,
Loughborough, UK

3	 School of Science and Technology, Nottingham Trent
University, Nottingham, UK

4	 Intelligent Systems Research Centre, Ulster University,
Derry, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-023-02159-4&domain=pdf
http://orcid.org/0000-0002-3627-6362

	 SN Computer Science (2023) 4:832 832   Page 2 of 24

SN Computer Science

been used in various machine vision tasks [20, 40, 42, 65, 72].
The CNN has gained much interest and popularity due to its
capabilities of processing raw data, eliminating the require-
ment to pre-process data using feature extraction methods.
Indeed, the feature extraction property of convolutional layers,
and the powerful training methods of the CNN, are reasons for
the high performance of CNNs on image classification. CNNs
have been widely used in computer vision tasks [16, 33], object
detection [35], bioinformatics [54], economics [33], and natu-
ral language processing [75].

The focus of deep CNNs has mainly been on image process-
ing, and the application of CNNs for TS data is only now start-
ing to emerge [4]. TS datasets have different characteristics
compared to images, and therefore, specific CNN structures
are required to optimally process such data [47, 48].

Deep CNNs usually have numerous learning parameters
and consequently need large training datasets. Some TS tasks,
such as EEG classification, usually do not have large volumes
of data for training deep learning algorithms with good gen-
eralizing ability. Yannick et al. [78] found that many authors
who adopt deep learning methods for EEG processing have
suggested that more training data would improve the perfor-
mance of their deep models. Additionally, the number of train-
ing data is important when intra-subject models are used. In
intra-subject models, the data of a single subject are used to
train the model related to the subject. The data of intra-subject
models have less variability which can lead to high perfor-
mance [78]. However, in intra-subject models, each model is
trained with a limited number of training samples, correspond-
ing to a single subject, which often contains a small number
of signal recordings. This need for a large training sample set
poses a specific problem for intra-subject situations [46, 60].
However, in general, there are many application areas where
the collection of large training datasets may not be feasible.
For example, in medical situations where data are collected
in hospitals from patients with epilepsy, it may be difficult
to collect a high number of training samples from a specific
patient. Collecting such data could include years of recordings
collected from different subjects with a specific disease [78].

Moreover, a deep CNN usually uses a supervised learning
approach that requires labeled data, and labeling is a time-con-
suming task, particularly for large datasets. Therefore, there is
a need for new techniques that can be used to train deep neural
networks with a relatively small number of training samples.
Liu et al. [49] have highlighted that designing deep learning
models to learn from fewer training samples will have a sig-
nificate effect on the future progress of deep learning methods.

In this paper, inspired by the intermediate concept of the
brain [43], intermediate outputs are constructed to control
learning in hidden layers of a deep learning method to improve

the performance of the method. It is proposed to have new
intermediate outputs extracted from different hidden layers
instead of having a single output to control weight adjustment
in the hidden layers during training. Intermediate targets which
are different from the main target are used as labels to train
the intermediate outputs. The intermediate targets control the
creation of features in the hidden layers of deep learning meth-
ods to generate more informative features in hidden layers.
Consequently, they improve accuracy of the deep learning.
Additionally, the proposed CNN artificially increases the num-
ber of training instances using the original training samples.
The proposed CNN-TS approach converts a classification task
with original training samples to a new (but equivalent) clas-
sification task that contains two classes with a high number
of training instances. The proposed method receives two TS
as inputs, and it extracts features from the two applied inputs
using intermediate outputs and subtracts the features to meas-
ure the distance of two TS. Distance-based methods are well-
known methods in classical TSC but have not been explored
in detail in the deep learning domain.

The structure of the paper is as follows. In the section
“Related Works” a brief review of TSC methods is presented.
The proposed method, CNN-TS, is described in the section
“Proposed Method”. Simulation results are demonstrated in
the section “Results” before the conclusion in the section “Dis-
cussion and Conclusion”.

Related Works

Time Series Classification

The high-dimensional and ordered properties of TS data and
the redundancy in TS resulting from their highly autocor-
related properties make TSC a challenging task [46]. TSC
requires machine-learning methods that are compatible with
the characteristics of TS to process a sequence of observations
following each other in time [46]. There exist different meth-
ods to classify TS data, which can be summarized into three
main categories: model-based, feature-based, and distance-
based techniques [37, 76, 82].

In model-based classification methods, a collection of TS
data is used to build a model. Usually, a model is built for each
class using the TS belonging to that class. Then the class of an
unknown data sample is determined by each model (i.e., built
for each class) to evaluate which is the best fit for the unknown
data sample [37, 76]. For example, the Autoregressive model
is a model-based method that is used for TSC. In Autoregres-
sive models, it is assumed that the TS satisfies the stationary
assumption, which cannot be followed in every situation [82].

SN Computer Science (2023) 4:832 	 Page 3 of 24  832

SN Computer Science

The Markov Model (MM) and the Hidden Markov Model
(HMM) are two other model-based methods which are used
for non-stationarity TS [5].

Feature-based techniques are commonly used in classical
TSC approaches to reduce the dimensionality of samples in TS
data using different feature extraction methods. Simple statisti-
cal methods such as mean and variance, or more complicated
methods such as spectral feature extraction methods can be
used in the feature-based techniques [46]. Discrete Fourier
Transform and Discrete Wavelet Transform (DWT) are two
examples of spectral feature extraction methods. The spectral
methods usually transform the time domain into the frequency
domain and take a number of low-frequency harmonics that
contain most of the TS energy. Eigenvalue methods, such as
Principal Component Analysis (PCA) and Singular Value
Decomposition (SVD), are other dimensionality reduction
methods that can be applied to TS; these usually have better
performance compared to spectral methods as they are cal-
culated in an optimal way. However, they are not suitable for
large datasets [37].

In distance-based classification methods, distances between
TS are measured, and a method such as k-Nearest Neighbors
(k-NN) is used to classify an unknown sample [46]. The dis-
tances between an unknown sample and the training samples
are calculated and the unknown sample is classified based on
its distances from the training samples [7]. Euclidean distance
and a Dynamic Time Warping distance (DTW) have also been
successfully used with one nearest-neighbor classifier for TSC
[34]. DTW has been shown to be robust to TS variation gener-
ated by translations or dilations and it is considered a strong
solution for TS distance measurement. DTW performs a local
comparison instead of measuring similarity by considering the
high-level structure in a long TS [7].

In addition to the above-mentioned k-NN distance-based
classification method, the distance features method for TSC
is another main distance-based TSC. In distance features
method, new representations of TSs are created using the dis-
tance between TSs. In the global distance features method,
the distances between a time series and other time series in
the training data are calculated, for the full length of time
series, to extract global distance features, which are then used
as a feature vector to represent the time series. This learning
method is from a general learning approach which is called
learning in dissimilarity space [10, 62]. Gudmundsson et al.
[25] have used two distance measure methods based on DTW
to create global distance features. Then, an SVM model is used
to classify the global features. Kate [36] has used different
distance measures including DTW and Euclidian Distance
(ED) to construct global distance features to be classified by
SVM. Giusti et al.’s [22] generalized Kate’s [36] approach
by extending the distance features method to other domains,
such as frequency, which is different from the time domain in

the previous global distance feature method. The computa-
tion cost of the global distance feature method is a significant
drawback of the method. A high number of training samples
and consequently a high number of pairs lead to a large input
dimensions. Jain and Spiegel [32] proposed to use Principal
Component Analysis (PCA) to reduce the dimensionality of
global distance features created using DTW method to be clas-
sified by SVM. Kenji et al. [38] reduce the computation cost
by calculating the distance between a time series and n subset
of time series as prototypes out of the total time series. They
consider the prototype selection as a feature selection method.

Local Distance Features (LDFs) are used as another
sub-group of distance features method for TSC [1]. In LDF
methods, the distance between some local patterns is calcu-
lated. Ye and Keogh [79] have proposed an important LDF
method where sub sequences of time series called shapelets
are selected to represent different classes. Specific shapes in
time series, i.e., specific subsequence of time series, can be
determined by experts and they can be used to identify the
class of the time series. The original shapelets method [79]
enumerates all possible subsequences of time series to find
the appropriate shapelets; this has a high computation cost.
Consequently, other works have been carried out to reduce the
computational cost of the shapelets method [28, 56, 64, 80],
and to learn appropriate shapelets [23]. Hills et al. [29] pro-
posed a method for finding the most discriminative shapelets.
Then, a vector of feature matrices is constructed by the dis-
tance between each time series and the selected shapelets. The
minimum distance between a shapelet and all the subsequences
of a time series with the size of the shapelet is considered as
the distance between the time series and the shapelet. Li and
Lin [44] have used an evolutionary method to find shapelets
called Separating References (SRs) that effectively separate
different classes. The distance between the SRs and the series
from different classes are such features that can separate the
classes with large margins. Despite the research summarized
above, there remains room for applying distance features
approaches to deep learning neural networks for TSC.

Deep Neural Networks for Time Series Classification

Classical feature-based methods for TSC do feature extrac-
tion and classification separately, and their performance relies
on the quality of the extracted features. There is no specific
method for extracting high-quality features for different TS,
and different tasks need particular expertise to extract appro-
priate features [46]. However, a CNN can merge feature extrac-
tion and classification into a single process and the network is
trained to extract appropriate features to improve the network’s
performance. For instance, Lin et al. [46] proposed an end-to-
end deep learning structure called Group-Constrained Con-
volutional Recurrent Neural Network (GCRNN) for TSC. A

	 SN Computer Science (2023) 4:832 832   Page 4 of 24

SN Computer Science

network of convolutional layers is used to extract features from
the input TS. The extracted features are input to a recurrent net-
work to capture the temporal characteristics of TS. The output
of the recurrent network is fed to a fully connected network
with sparse group lasso regularization.

Long Short-Term Memory (LSTM) is a recurrent neural
network that is designed for analyzing TS. LSTM requires
more computing resources than CNN, and training an LSTM
is more computationally expensive than training a CNN. Addi-
tionally, recent research has shown that certain convolutional
architectures for different applications, such as audio synthesis,
machine translation, and skeleton-based action prediction, can
reach state-of-the-art accuracies [15, 17, 19, 21, 48, 58]. For
instance, Liu et al. [77] have proposed a CNN for fault diagno-
sis by proposing a dislocate layer at the input level. Their pro-
posed layer extracts windows of TS in different intervals of an
original signal. Liu et al.’s [77] experimental results have shown
that their proposed CNN-based method has good performance
in such industrial applications.

The end-to-end Multi-scale Convolutional Neural Network
(MCNN) [13] applies different transformations using down-
sampling transformation in the time domain; additionally, it
performs spectral transformation in the frequency domain on
an input signal. Then, different convolutional layers are used
to extract high-level features from the original input and the
transformed versions of the input. The extracted features are
fed to a fully connected layer, and then, a Softmax output layer
is used to classify the input.

Liu et al. [47, 48] proposed a deep learning method called
Multivariate Convolutional Neural Network (MVCNN) that
considers the multivariate properties of TS data. They utilized
a 1 × 1 convolution filter for layers that are close to the input
layer to extract features that specifically come from each vari-
ant. However, the shared filter among different variants can
mix the data from different sources during training.

The main property of the above-mentioned methods in
this section is the use of a CNN’s ability for automatic feature
extraction, and for this reason, they can be considered as fea-
ture-based techniques for TSC using the deep learning method.

In model-based classifiers or generative models, the first
goal is to find a suitable representation of TS before training a
classifier [17, 41]. In a model-based method, an unsupervised
method is often used to model the TS. For example, some
deep learning methods used stacked denoising auto-encoders
(SDAEs) to model input signals [8, 30]. RNN auto-encoders
have also been used to generate a representative TS, and then,

a classifier such as SVM was used for classification [52, 53,
63]. Echo State Networks (ESNs) project the input TS inside
a reservoir of a recurrent neural network to reconstruct a rep-
resentation of the input TS, and then, the learned representa-
tion of input TS is used for classification [6, 9, 12, 51]. Anto-
niades et al. [3] have proposed an Asymmetric–Symmetric
Autoencoder (ASAE) to map a scalp EEG to an intracranial
EEG (iEEG), since recording an iEEG is an invasive method
to record the brain activity and is also expensive to imple-
ment. The model is used for the classification of Intracranial
Epileptic Discharges (IEDs) and non-IED. Wang et al. [68]
and Mittelman [55] have designed deep neural networks that
reconstruct a multivariate TS using a deconvolutional opera-
tion followed by an upsampling method.

In summary, the literature shows that there exist several
deep learning methods to extract features and to classify TS.
These methods, like feature-based methods in classical TSC,
are focused on features that are extracted by a number of con-
volution layers. Additionally, the literature review revealed that
there exist a considerable number of deep learning methods
that classify TS using model-based techniques. Although dis-
tance-based classification of TS data is thoroughly investigated
in traditional TSC methods, distance-based methods have not
been investigated in the deep learning field as much as they
have been studied in classical methods for classification of TS.
The review shows that it would be useful to design deep learn-
ing methods that are based on the principle of distance-based
classification methods. This paper proposes a CNN that takes
as input a pair of TS, evaluates their distance, and predicts
whether these two TS are close enough to be in the same class.
The ability of the proposed CNN to take two TS as inputs
increases the number of different instances that are available to
train the proposed network. The proposed method is described
in detail in “Time Series Classification”.

Proposed Method

In this section, a technique to synthetically increase the num-
ber of training instances and create an extended dataset is first
described. Then, a CNN called CNN-TS is proposed to classify
the extended TS data. The structure of the proposed CNN is
designed to be compatible with the extended dataset.

SN Computer Science (2023) 4:832 	 Page 5 of 24  832

SN Computer Science

A Method for Synthetically Increasing the Number
of Training Samples

Suppose a training dataset is X = {
(

x1, c1
)

, ...,
(

xN , cN
)

} ,
where xi is a p-dimensional input vector, i.e., xi ∈ Rp , and
ci is the output corresponding to xi , and ci ∈ {1, 2,… ,K} ,
where K is the total number of classes. xi contains p sequen-
tial elements of a TS. N is the number of training samples in
the dataset. The training goal is to fit a classifier, C(x) , using
training data. The trained classifier can then be used to find
the class labels of unseen testing data samples.

Different permutations with replacement of two samples
from the original dataset, X , are picked to construct a new
training dataset called Xn . Each instance from the new train-
ing set, Xn , contains two samples from the original dataset,
X . Therefore, the new dataset has T = PR(N, r = 2) = Nr

=N2 training instances, where PR stands for Permutations
with Replacement, N is the number of samples in the original
dataset, and r = 2 is the number of samples that are selected.
Therefore, the newly constructed dataset has a higher number
of training instances, Nr compared to N , which is suitable for
a deep neural network since it needs a high number of training
samples.

The structure of a constructed training dataset is shown in
(1)

where X̃n consists of several data arrangements denoted as
(

xi, xj, ci, cj
)

 , where xi and xj , are two training samples from
the original dataset, X , along with ci and cj which are the
labels corresponding to each input, respectively. The two
inputs, xi and xj , within an arrangement could belong to the
same class or they could belong to two different classes. A
third label, cij , is constructed based on this arrangement, and
it shows whether xi and xj belong to the same class. The new
training set is as follows:

where

(1)

X̃n =
{(

x1, x1, c1, c1
)

,
(

x1, x2, c1, c2
)

…
(

x2, x1, c2, c1
)

,
(

x2, x2, c2, c2
)

…
(

xN , x1, cN , c1
)

,
(

xN , x2, cN , c2
)

…
(

xN , xN , cN , cN
)}

,

(2)

Xn =
{(

x1, x1, c1, c1, c11
)

,
(

x1, x2, c1, c2, c12
)

…
(

x2, x1, c2, c1, c21
)

,
(

x2, x2, c2, c2, c22
)

…
(

xN , x1, cN , c1, cN1
)

,
(

xN , x2, cN , c2, cN2
)

…
(

xN , xN , cN , cN , cNN
)}

,

Therefore, a new binary classification task emerges
from the original multi-class classification task. In the
new training set shown in (2) each training instance, i.e.,
(

xi, xj, ci, cj, cij
)

 , includes: the first sample, xi , and the second
sample, xj , and their corresponding labels, ci andcj , from
the original dataset, X . Additionally, each training instance
contains the fifth element, cij , which holds a binary value, 1
if xi and xj belong to the same class and 0 otherwise. Note
that in this paper, ‘sample’ is used to refer to each item in the
original dataset, i.e., X , and ‘instance’ is used to refer to each
item in the newly constructed dataset, i.e., Xn . A figure-based
description of the permutation on the input samples used

(3)cij =

{

1, ci = cj
0, ci ≠ cj

i, j = 1,… ,N.

.

.

.

.

.

.

.

.

.

.

.

.

(,)

(,)

.

.

.
(,)

(,)

(,)

.

.

.
(,)

.

.

.

(,)

(,)

.

.

.
(,)

Fig. 1   A figure-based description of the permutation on the input
samples used to construct the new large data described in (2)

	 SN Computer Science (2023) 4:832 832   Page 6 of 24

SN Computer Science

to construct the new large data described in (2) is shown in
Fig. 1.

The method increases the number of training samples by
N2 training instances that are generated by selecting 2 sam-
ples from an original training dataset of N samples but may
excessively boost the number of training data if N is large.
When N grows, the number of samples for the proposed
method grows by the power of 2, i.e., N2 . Given the impact
of N2 , an original training dataset with a high number of
training samples could increase the number of generated
training instances substantially, and not all the newly gen-
erated training instances may be required. To control the
number of generated training instances, an under-sampling
method can be used to control the number of newly gener-
ated instances. Thus, instead of selecting two samples from
all the original training samples, a subset of representative
samples that has similar characteristics as the original sam-
ples are selected using the under-sampling technique pro-
posed by Zhang and Mani [81]. This approach controls the
number of generated training instances, especially when the
original training dataset has a high number of training sam-
ples. It helps to continue the learning for higher numbers of
training epochs in shorter time duration, because of a lower
number of training instances. If the number of representative
samples is M which is smaller than N, then the total number
of new instances being generated for the proposed method is
N ×M < N2 . The proposed method can increase the number
of training instances intensively for small data by setting a
high value for M , while providing a smaller increase in the
number of training instances for datasets that already have
a high number of training samples, by setting M to a small
value.

Proposed Method for Time Series Classification
Using Synthetically Extended Training Samples

In this section, a structure for CNN is designed to be trained
on the new training set, Xn , which contains a high number
of training instances. Then, proposed intermediate targets are
described. The proposed network has two inputs, In1 and In2,
and it accepts two training samples, xi and xj which are in
each instance of Xn , i.e.,

(

xi, xj, ci, cj, cij
)

 . The structure of the
proposed deep neural network is shown in Fig. 2. The network
compares the two inputs, In1 and In2 , and returns a main out-
put, i.e., Om . The main output, i.e., Om, corresponds to label cij.

Block 1 and Block 2 in the CNN network shown in Fig. 2
are composed of a number of layers of neurons including con-
volutional layers, and the blocks extract high-level features
from pairs of TS inputs. The extracted features are subtracted
to make a set of features that reflect the distance of the two
inputs to assist the network to make an accurate comparison
between the two inputs.

Then, the extracted features are processed by the next three
components (Block 3, Block 4, and Global Average Pooling)
to generate the main output, Om . The network generates the
main output based on the comparison of the two inputs. The
main output, Om , shows whether the two applied inputs belong
to the same class.

The structure inside each block used in the previous net-
work (see Fig. 2) is shown in Fig. 3. The structure is inspired
by ResNet (deep Residual Network) [27] blocks. ResNet is a
deep CNN that uses shortcut connections in its blocks, which
are called residual blocks. The shortcut connections help the
gradient flow directly to the bottom layers. ResNet [27] is a
well-known deep structure for CNN and it has achieved state-
of-the-art results in image processing tasks. Note that the net-
work shown in Fig. 2, which has been designed to be trained on
the increased number of training instances in Xn by accepting
two inputs, is called the base network. The base network does
not have the proposed intermediate targets which are described
in the next section. The structure of the residual blocks which
are used in this paper is shown in Fig. 3. The main branch
is composed of three pairs of a 1-dimensional convolutional

Block 2

Block 4

Block 1

Subtraction

Block 3

Global Average

Pooling

Fig. 2   The structure of the base deep neural network which is trained
on the new training dataset which uses the synthetically increased
training samples. The structure of Blocks 1–4 is shown in Fig. 3. The
base network does not have intermediate targets

SN Computer Science (2023) 4:832 	 Page 7 of 24  832

SN Computer Science

layer (1D-Conv) coupled with batch normalization. The out-
puts of the first two pairs are passed through ReLU (Rectified
Linear Unit) activation function, as shown in Fig. 3. The short-
cut connection on the right side of Fig. 3 comprises a pair of
1D-Conv and a batch normalization layer. The outputs of the
main branch and the shortcut connection are added. The results
are passed through an ReLU activation function to make the
output of the block.

CNN‑TS: Proposed Intermediate Target Concept for TSC
Using CNN

Convolutional neural networks (CNNs) are end-to-end learn-
ing machines. During the learning process on a usual CNN, an
input is applied to the first end, and a label at the other end is
used to calculate loss and to tune the learning parameters. Usu-
ally, in CNN, inherent intermediate representation is gener-
ated without control and observation. However, human visual
systems work based on perceptual organization. The process
of extraction of low-level features in the intermediate level of
the vision system has been referred by different names, such as
perceptual organization, or feature grouping [66]. Determining
how emerging low-level features in the intermediate levels of
vision systems leading to perceptual organization remains a

challenging problem in vision research. Perceptual organiza-
tion is not generated randomly and it follows some rules [43].
In this work, applying controls on the intermediate features in
a CNN can improve the processing ability of the CNN while
making it similar to its natural counterpart. In this work, the
proposed method is used for TS processing.

In this paper, in addition to the method to increase the
number of training instances described in “Time Series
Classification”.A, intermediate targets are constructed to
improve the performance of CNN for TSC. The intermediate
targets are used to train hidden layers of the CNN. The original
CNN without intermediate targets shown in Fig. 2 is used as
a base network, while the concept of “intermediate targets” is
used to design a novel CNN structure for classification of TS,
which is called CNN-TS.

The proposed network has two intermediate outputs, which
are shown by O1 and O2 in Fig. 4. The two intermediate out-
puts, i.e., O1 and O2 , are used to guide the training of the layers
in Block 1 and Block 2, respectively. The labels of the training
samples that are applied to In1 are used for O1 . Therefore, the
features generated in the output of Block1 are controlled by the
label of In1 , and they contain information about the label of In1.

On the other hand, the labels of the input samples which are
applied to In2 are used for O2. Therefore, the features gener-
ated at the output of Block 2 are affected by the label of In2 ,
and generate features that contain information about label of
In2 . The output features of Block 1 and Block 2 that reflect
the labels of the two samples applied to the two inputs are
subtracted. The subtracted features which reflect the distance
of the two applied inputs are processed by Block 3 and Block
4 and Global Average Pooling to generate the main output Om ,
and then, the main output is trained to evaluate whether the two
inputs are from the same class or not.

When using deep neural networks for TSC where there are a
high number of layers in the network, the error back propagated
from the final output of the network should travel through a high
number of layers to reach the input layer, and this could vanish the
propagated error. Consequently, the training of the layers far from
the outputs was not effective as it is expected. Using the intermedi-
ate outputs helps the learning algorithm to control the errors for
the intermediate layers and creates more accurate backpropagated
errors to train the network.

Training the Proposed CNN‑TS with Class‑Related
Coefficients

In the proposed CNN-TS, the inputs are first applied to their cor-
responding CNN layer. The CNN layer maps an input to a feature
map with shared weights called a kernel, i.e., W . In the lth layer,
there are a number of feature maps, and (4) calculates the output
of the ith feature map in the lth layer, yl

i

1D-Conv: Kernel size=8

1D-Conv: Kernel size=5

Batch Normalization

Batch Normalization

1D-Conv: Kernel size = 3

Batch Normalization

1D-Conv: Kernel size =1

Batch Normalization

ReLU

ReLU

+
ReLU

Fig. 3   The structure of each block used in this research

	 SN Computer Science (2023) 4:832 832   Page 8 of 24

SN Computer Science

where wl
i,j

 is the convolutional kernel used to map the jth
feature map in the (l − 1)th layer to the ith feature map in the
next layer (the lth layer), bl

i
 is the bias related to the ith fea-

ture map in the lth layer. The ‘*’ is the convolutional opera-
tor sign. As shown in Fig. 3, there is a batch normalization
layer after each convolution layer. The batch normalization
layer normalizes the output of its previous layer to maintain
the mean and standard deviation (Std.) close to 0 and 1,
respectively.

After a batch normalization, ReLU function is used to gener-
ate the activation for the next layer (see Fig. 3). The activation
is passed through different 1D-Conv, Batch normalization lay-
ers, and ReLU functions before reaching the three outputs of the
proposed network (see Fig. 4). Figure 4 shows that before each
output layer, there is a Global Average Pooling (GAP) layer [23].

(4)yl
i
=
∑

j

(wl

i,j
∗ yl−1

j
+ bl

i
),

In the GAP layer, the average of each feature map is calculated to
represent the feature map to reduce the number of features. After
this operation, the number of outputs returned by the GAP layer
is reduced to the number of feature maps in the previous layer.

Three logistic regression models are placed on the top of the
previous layers to construct three categorical outputs (see Fig. 4).
A SoftMax function is used for the kth output as shown in (5)

where Ok is the output vector of the kth output of the pro-
posed network, and k ∈ {1, 2,m} as the network has three
outputs (see Fig. 4). The number of elements in Ok is equal
to the number of classes for the kth output. For instance, the
main output has two classes, and Ok=m has two elements. GK
is the output of the GAP layer before the kth output layer, Wk
is the weight matrix that connects the output of the previous
corresponding GAP layer to the kth output layer, and bk is
the bias related to the kth output layer.

Adam (A Method for Stochastic Optimization [39]) for back-
propagation learning is used to train the proposed CNN. Cate-
gorical cross-entropy is used to calculate loss function to train the
network. Three loss functions corresponding to the three outputs
of the proposed method are used to generate the total value of the
loss of the network, i.e., L

where �k is a coefficient that weights the effect of the loss
related to the kth output on the total value of the loss.
As Ok=m is the main output, �k=m = 1 and the coefficients
related to the two intermediate targets are set to 0.5, i.e.,
�1 = �2 = 0.5 , which are half the value for the main output.
Lk is categorical cross-entropy loss related to the kth output.

The increased number of instances generated from the
original data results in an imbalanced dataset, in Om . Addi-
tionally, real-world data are more likely to be imbalanced.
Accordingly, class-related coefficients are used in the loss
function of each output to improve the ability of the pro-
posed method to process imbalanced data. Equation (7)
shows the loss function of the kth output for the ith input
instance, i.e., Li

k
 , that includes the class-related coefficient

where Nk is the number of classes for the kth output, tc,i
k

 is
the cth element of the label vector corresponding to the kth
output for the ith input instance, zc,i

k
 is the cth element of the

predicted output vector related to the kth output for the ith
input instance, and Ci

k
 is a class-related coefficient related

to the class of the ith input instance in the kth output. Lk

(5)Ok = sof tmax
(

Wk
(

Gk
)T

+ bk
)

,

(6)L =
∑

k∈{1,2,m}

�kLk,

(7)Li
k
= −Ci

k

Nk
∑

c=1

t
c,i

k
log

(

z
c,i

k

)

,

Block 2

Block 5

Block 4

Block 6

Block 1

Subtraction

Block 3

Global Average

Pooling

Global Average

Pooling

Global Average

Pooling

Fig. 4   The proposed method with intermediate targets. The labels
related to the two inputs applied to In1 and In2 are used as labels for
the two intermediate targets, O1 and O2, respectively. The main tar-
get shows if the two inputs are from the same class or from different
classes

SN Computer Science (2023) 4:832 	 Page 9 of 24  832

SN Computer Science

for each batch of data is calculated by summing Li
k
 over the

number of samples in the batch of training instances.
The class-related coefficient has a high value when there

are a low number of training samples in its corresponding
class. The high value for a minority class causes a high loss
value generated for an error related to the minority class,
and consequently, the proposed method puts more attention
on the class with a low number of instances. The class coef-
ficient, Ci

k
 , is calculated using (8)

where T is the total number of training instances, and Ti
k
 is

the number of training instances out of the total number of
training instances that have the same class as the ith input
instance for the kth output. All the samples that belong to
the same class according to the label for the kth output have
the same class-related coefficient.

Note that selecting pairs of inputs from different classes
to find if they are or they are not from the same class could
result in an imbalanced classification task. Suppose that there
are Nc classes in the original dataset with equal numbers of
training samples in different classes, i.e., t1 = ⋯ = tNc

= t
where ti is the number of training samples in the ith class,
and the total number of training samples in the original train-
ing set is T = t1 +⋯ + tNc

 . In this case, the total number of
training instances for the generated data corresponding to
the main output is Tt = T × T = T2 . The number of pairs of
training samples that are from the same class can be calcu-
lated using (9)

where Ts is the number of pairs of inputs that are from the
same class. On the other hand, the number of pairs of inputs
that are from different classes, i.e., Td , can be calculated
using (10)

The two different values for the number of instances in
the two classes related to the main output, i.e., Ts and Td ,
imply that the resulted classification task is an imbalanced
classification problem when Nc>2. When the number of
classes in the original data is increased, i.e., Nc ≫ 2 , the
level of imbalance will be increased. The proposed method
used (7) to overcome the imbalance in the generated data.

Classifying a Test Input Based on the Main Output

During testing, a similar data structure described by (1) and
(2) for training will be used. A test sample, xt

i
 , is applying

(8)Ci
k
=

Ti
k

T
,

(9)Ts = Nc(t × t) = Nct
2,

(10)
Td = Nc(t × (T − t)) = Nc(tT − t2) = Nc(t(Nct) − t2) =

(

Nc − 1
)

Nct
2
.

to the first input, i.e., Ini , and the representative subset of
training samples that are selected to be applied to the second
input for training the network is used. While a test sample is
applied to the first input, each of the training samples in the
representative subset is applied to the second input and the
main output of the network predicts if the testing sample, xt

i
 ,

is from the class of a sample from the representative subset.
Whenever it is predicted that an applied sample (from rep-
resentative subset of the training data) has the same class
as the testing sample, the class of the test sample will be
predicted based on the class of the sample from the repre-
sentative subset of training data.

A subset of representative samples from the training dataset
was selected using an under-sampling called NearMiss method
[31, 81]. Two samples from each class were selected using the
method. The number of samples in the representative subset
is set to be small, i.e., 2 samples from each class, to prevent
an intense increase in the number of input pairs. To obtain the
results for the proposed method in Tables 2, 3, and 4, each test-
ing sample is compared with the samples in the representative
subset. Then, using the final output of the proposed method, it
is predicted that the applied test sample has the same class label
as one of the samples in the subset. If the applied test sample
is predicted to have a similar class with more than one sample
from the subset, it is assigned based on the vote appointed by
the samples from the subset that is predicted to have the same
class as the applied test input.

During testing, a test input is applied to In1 (see Fig. 4), and
N training samples from the original training dataset, i.e., X , are
applied to In2 one by one, and the network predicts whether the
test data are from the same class as each training sample which
is applied to In2 . Therefore, the number of predicted main out-
puts, Om , for a testing input is equal to the number of the training
data applied to In2 , i.e., N . The training samples out of the N
samples applied to In2 that are predicted to have the same class
as the testing sample are considered to decide about the label
of the testing input. Suppose that Ns training samples out of the
N samples are predicted to have the same class as the testing
input. The Ns training samples may belong to different classes
because of the prediction error. The testing input is assigned to
a class according to the maximum voting over the label of the
Ns training samples.

Results

The experimental results are presented in this section. First,
the datasets, which are used in the experiments, are introduced.
Then, the proposed method is compared with the base method,
as shown in Fig. 2. In the subsection, the effect of the inter-
mediate targets is investigated. In the third part of this sec-
tion, the proposed method is compared to other state-of-the-art

	 SN Computer Science (2023) 4:832 832   Page 10 of 24

SN Computer Science

methods. Finally, the effect of the number of training samples
is investigated.

Dataset

The experiments in this section are run on TS datasets obtained
from the UCR Time series Classification Archive [14]. The
characteristics of the datasets, which are used in the following
experiments, are provided in Table 1. The first column of the
table shows the type of TS. The name of each dataset is shown
in the second column. Each dataset has a training set and a
testing set, and the number of training and testing samples is
shown in columns four and five, respectively. The number of
classes in each dataset is shown in the fifth column. The length
of TS in each dataset is shown in the last column of Table 1.

Comparison of CNN‑TS with the Base Deep Neural
Network

Table 2 compares the accuracy of the final proposed method
(Fig. 4) with the base network that does not have the interme-
diate output (Fig. 2). Note that the base method is essentially
the standard approach, which is trained by a large set of training
instances generated by the proposed approach, i.e., both methods
are trained with the same number of training instances. In the fol-
lowing experiments, down-sampling is used to select 2 samples,
i.e., M = 2 , from each class of a training dataset to construct new
instances for the proposed network. For instance, Table 1 shows

that the ‘InsectWingbeatSound’ [14] dataset contains 220 train-
ing samples. 2202 = 48, 400 different pairs of samples can be
selected from the training dataset to be applied to the two inputs
of the proposed network. However, if the number of instances
for the second input is restricted to 22, the number of samples
in the new dataset (composed of two inputs) is 220 × 22 = 4840
which is 10 times smaller than the previous situation—hence,
training can be performed by 10 times less computation cost. In
this section, the effect of the intermediate targets is investigated
on different TS datasets, and the results are shown in Table 2.
The results show that in most datasets (17 out of 20), the pro-
posed method with intermediate targets has higher accuracy
compared to when the intermediate targets are removed from
the proposed structure. The proposed CNN-TS method achieved
an average accuracy of 80.6%, outperforming the base method
which achieved an average accuracy of 77.1%. The bold numbers
in Table 2 show the largest values of Accuracy (A), precision
(P), and recall (R) in each row. As shown in Table 2, intermedi-
ate targets have increased the classification accuracy by 22.40%
on the ‘InlineSkate’ dataset, and from 91.67 to 97.37% on the
‘ToeSegmentation1’ dataset.

The learning parameters of the hidden layers in Block 1 are
affected by the O1 and Om during training. The error generated
in O1 is backpropagated to Block 1 through Block 5. The inter-
mediate output O1 controls the output of Block1 (based on the
labels provided for O1 ), and therefore, the intermediate output
O1 keeps the features in Block 1 that contain information about
the label of In1 . Similarly, the output O2 controls the features

Table 1   Characteristic of Time
series Datasets, i.e., the number
of samples in the training and
test data, the number of classes,
and the length of time series in
each dataset

a http://​www.​times​eries​class​ifica​tion.​com/​descr​iption.​php?​Datas​et=​Arrow​Head

Type Dataset # Train # Test # Class Length

TS Imagesa ArrowHead 36 175 3 251
Food spectrographs Beef 30 30 5 470
Sensor Car 60 60 4 577
ECG ECG200 100 100 2 96
Food spectrographs Ham 109 105 2 431
TS Images Herring 64 64 2 512
Sensor ItalyPowerDemand 67 1029 2 24
Sensor Lightning2 60 61 2 637
Sensor Lightning7 70 73 7 319
Sensor MoteStrain 20 1252 2 84
Motion ToeSegmentation1 40 228 2 277
Sensor Earthquakes 139 322 2 512
Motion Haptics 155 308 5 1092
Motion InlineSkate 100 550 7 1882
Sensor InsectWingbeatSound 220 1980 11 256
Simulated Mallat 55 2345 8 1024
Sensor CinC_ECG_torso 40 1380 4 1639
TS Images SwedishLeaf 500 625 15 128
TS Images FaceAll 560 1690 14 131
Sensor ChlorineConcentration 467 3840 3 166

http://www.timeseriesclassification.com/description.php?Dataset=ArrowHead

SN Computer Science (2023) 4:832 	 Page 11 of 24  832

SN Computer Science

generated by ‘Block 2’ to generate features that have informa-
tion about the label of the second input. This strategy helps the
network make more accurate decisions on whether two inputs
belong to the same class.

Comparison of CNN‑TS with Other Methods

In this section, the proposed method, CNN-TS, is compared
with different methods. First, three classical machine-learning
methods are trained on different time series data sets. The three
methods are a linear Support Vector Machine (SVM) with a
linear kernel, SVM with the Radial Basis Function (RBF) ker-
nel, and a Random Forest (RF) with 50 estimators. Raw time
series data have high dimensionality and cannot be directly fit-
ted using classical machine-learning methods. Time-domain,
frequency-domain, and time–frequency-domain features which
are employed in [83] are extracted from each time series, and
the three classical machine-learning methods are trained by the
extracted features. Root mean square (RMS), Variance, the Maxi-
mum value, Skewness, Kurtosis, and Peak-to-Peak difference are

six features in time domain that are utilized. Spectral Skewness,
Kurtosis and power, which are calculated using the Fast Fourier
transform (FFT), are the three frequency-domain features that
are used in this research. Wavelet Energy is also used to extract a
time–frequency-domain feature. The accuracies of these methods
relative to the proposed method, when applied to various data-
sets obtained from the USR database, are shown in Table 3. The
last row, i.e., ‘Wins’ row, in Table 3 shows the number of times
each method reached the highest accuracy among the other meth-
ods. The proposed method has achieved the highest accuracy on
18 datasets, followed by the SVM with linear Kernel method,
which reached the highest accuracy on 2 datasets. The ‘Aver-
age’ row in Table 3 shows the mean value of accuracy achieved
by each method across all datasets. The results show that, on
average, the proposed CNN-TS achieved the highest accuracy,
i.e., 80.6%, followed by the RF method which achieved an aver-
age accuracy of 59.5%, i.e., on average, the proposed CNN-TS
approach achieves 21.1% higher accuracy compared the best
results achieved among the three methods. Note that the proposed
method was directly applied to raw time series data with a high

Table 2   The effect of the
intermediate targets on the
proposed method

Accuracy (A), precision (P), and recall (R) for the proposed CNN-TS, and the Base DNN were reported
a With intermediate targets
b Without intermediate targets

Dataset Proposed CNN-TSa Base DNNb CNN-TS vs.
Base DNN dif-
ference

A P R A P R dA

ArrowHead 79.4 0.827 0.827 76.0 0.820 0.810 3.4
Beef 90.0 0.920 0.920 87.0 0.910 0.900 3
Car 88.3 0.930 0.930 90.0 0.960 0.857 − 1.7
ECG200 90.0 0.880 0.880 85.0 0.890 0.870 5
Ham 77.1 0.793 0.793 73.3 0.760 0.760 3.8
Herring 53.1 0.452 0.452 46.9 0.470 0.470 6.2
ItalyPowerDemand 96.4 0.967 0.967 96.0 0.960 0.960 0.4
Lightning2 77.1 0.802 0.805 75.4 0.733 0.751 1.7
Lightning7 82.2 0.872 0.858 76.7 0.870 0.780 5.5
MoteStrain 89.4 0.924 0.916 83.4 0.903 0.897 6
ToeSegmentation1 97.4 0.957 0.955 91.7 0.800 0.770 5.7
Earthquakes 82.0 0.564 0.525 81.7 0.910 0.510 0.3
Haptics 47.7 0.428 0.397 45.8 0.470 0.460 1.9
InlineSkate 53.1 0.216 0.223 30.7 0.330 0.320 22.4
InsectWingbeatSound 62.5 0.641 0.641 60.7 0.640 0.640 1.8
Mallat 97.3 0.968 0.968 96.9 0.960 0.960 0.4
CinC_ECG_torso 93.3 0.940 0.933 95.4 0.960 0.960 − 2.1
SwedishLeaf 95.5 0.968 0.968 94.4 0.950 0.950 1.1
FaceAll 82.1 0.963 0.957 79.9 0.930 0.930 2.2
ChlorineConcentration 78.4 0.395 0.541 74.2 0.850 0.770 4.2
Average 80.6 0.770 0.773 77.1 0.804 0.767 3.4
Std. 15.3 0.234 0.227 18.3 0.187 0.191 3
Win 17 12 15 3 8 5

	 SN Computer Science (2023) 4:832 832   Page 12 of 24

SN Computer Science

dimension; however, the classical machine-learning methods
used the features extracted from the specified feature extraction
methods (because the dimension of the raw time series data is
high, such approaches cannot directly be applied to the raw data).

In the next experiments, the proposed method is com-
pared with other methods that can directly be applied to raw
data. Table 4 presents the results when applying the pro-
posed method and other methods to TS benchmark datasets.
In Table 4, ‘MLP’ stands for Multi-Layer Perceptron (MLP)
which is a traditional form of DNN. The MLP for TSC pro-
posed by Wang et al. [74] is used in the comparison. The MLP
has 4 fully connected layers and a Softmax layer as the output
layer of the network. ‘FCN’ stands for Fully Convolutional
Neural Network (FCN) [50], and it is extended by Wang et al.
[74] for TSC. FCNs do not have any pooling layers and contain
5 layers. ‘ResNet’ is a deep Residual Network (ResNet) for
TSC proposed in [74]. The ResNet has 11 layers and it is the
deepest architecture used in this paper. The original ResNet
[27] has achieved state-of-the-art results in image processing,
and it is a well-known method.

‘Encoder’ is the Encoder network [67] with 5 layers include
3 convolutional layers. Encoder is similar to FCNs [50]; how-
ever, it uses Parametric Rectified Linear Unit (PReLU) activa-
tion function where an additional parameter is added to enable
learning of the slop of each function. Additionally, the Encoder

network uses dropout regularization and max-pooling opera-
tion. MCNN is the Multi-scale Convolutional Neural Network
(MCNN) [13] which comprises 4 layers. t-LeNet is the Time
Le-Net [26] which has 4 layers. MCDCNN is a Multi-Channel
Deep Convolutional Neural Network [84]. Time-CNN [17]
has 3 layers, uses the mean-squared error loss function with a
Fully Convolutional layer with sigmoid activation function in
its final layer. Finally, ‘TWIESN’ is a Time Warping Invariant
Echo State Network [71] with 3 layers.

Table 4 shows that the proposed method has reached the
highest accuracy on 8 datasets, followed by the ResNet [74]
which has reached the highest accuracy on 7 datasets. The
results in Table 4 show that, on average, the proposed method
has achieved the highest accuracy, i.e., 80.6%, followed by
the ResNet method which achieved an average accuracy of
79.0%. Table 4 also compares the Precision, and Recall of the
proposed method and ResNet.

The critical difference diagram (CDD) used in [17] was imple-
mented to statistically compare all the classifiers over all the data
sets. The code in https://​github.​com/​hfawaz/​cd-​diagr​am was used
to do the statistic test. First, Friedman test was performed to reject
a null hypothesis, i.e., there are no differences between the accura-
cies to depict the CDD. After the rejection of the null hypothesis,
Wilcoxon–Holm method was used to perfume a post hoc analy-
sis. The result is reported in Fig. 5. The thick horizontal lines in

Table 3   Comparison of the
proposed CNN-TS method with
three classical machine-learning
methods

Dataset Proposed method SVM (linear) SVM (RBF) RF

A P R A P R A P R A P R

ArrowHead 79.4 0.827 0.827 53.1 54.9 51.9 54.3 58.0 52.9 64.0 65.3 63.9
Beef 90.0 0.920 0.920 40.0 44.8 40.0 36.7 34.3 36.7 30.0 9.3 0.0
Car 88.3 0.930 0.930 50.0 54.9 49.2 21.7 5.4 5.0 68.3 71.6 8.7
ECG200 90.0 0.880 0.880 76.0 75.7 70.3 70.0 67.7 63.2 80.0 80.3 75.3
Ham 77.1 0.793 0.793 61.0 63.7 60.2 54.3 54.9 53.5 58.1 58.1 57.9
Herring 53.1 0.452 0.452 59.4 29.7 50.0 59.4 29.7 50.0 64.1 62.7 59.4
ItalyPowerDemand 96.4 0.967 0.967 91.3 91.5 91.3 49.9 24.9 50.0 90.4 90.5 90.4
Lightning2 77.1 0.802 0.805 78.7 79.5 77.9 57.4 59.6 54.4 75.4 77.8 74.0
Lightning7 82.2 0.872 0.858 56.2 59.4 55.9 38.4 38.9 32.4 54.8 51.4 51.3
MoteStrain 89.4 0.924 0.916 81.0 81.4 80.4 74.8 75.6 73.8 78.0 77.9 77.8
ToeSegmentation1 97.4 0.957 0.955 72.4 73.2 71.8 54.0 53.7 53.7 64.5 64.5 64.5
Earthquakes 82.0 0.564 0.525 82.0 41.0 50.0 82.0 41.0 50.0 78.3 57.4 54.5
Haptics 47.7 0.428 0.397 41.2 43.8 41.2 29.9 24.1 28.8 37.0 37.9 36.6
InlineSkate 53.1 0.216 0.223 22.6 35.6 21.1 18.2 8.8 16.3 29.5 28.5 28.8
InsectWingbeatSound 62.5 0.641 0.641 17.2 18.4 17.2 13.7 7.4 13.7 13.9 3.8 3.9
Mallat 97.3 0.968 0.968 68.2 69.0 68.3 12.3 1.5 12.5 74.8 76.5 74.9
CinC_ECG_torso 93.3 0.940 0.933 52.4 55.3 52.4 42.8 32.0 42.9 55.9 60.5 55.9
SwedishLeaf 95.5 0.968 0.968 67.5 67.1 67.1 22.6 13.8 24.0 72.2 71.7 72.2
FaceAll 82.1 0.963 0.957 45.8 45.7 52.1 25.9 32.5 30.3 46.9 47.5 52.7
ChlorineConcentration 78.4 0.395 0.541 54.5 51.3 35.2 54.9 51.4 35.7 53.3 45.7 42.4
Average 80.6 0.770 0.773 58.5 56.8 55.2 43.6 35.8 40.0 59.5 58.4 57.2
Std. 15.33 0.234 0.227 18.95 18.2 18.5 20.1 21.3 16.6 19.3 19.4 18.8
Wins 18 15 16 2 2 1 1 1 0 1 2 3

https://github.com/hfawaz/cd-diagram

SN Computer Science (2023) 4:832 	 Page 13 of 24  832

SN Computer Science

Ta
bl

e 
4  

C
om

pa
ris

on
 o

f t
he

 p
ro

po
se

d
C

N
N

-T
S

m
et

ho
d

w
ith

 th
e

st
at

e-
of

-th
e-

ar
ts

 m
et

ho
ds

D
at

as
et

Pr
op

os
ed

 m
et

ho
d

M
LP

 [7
4]

FC
N

 [7
4]

Re
sN

et
 [7

4]
En

co
de

r [
67

]
M

C
N

N
 [1

3]
t-L

eN
et

 [2
6]

M
C

D
C

N
N

 [8
4]

Ti
m

e-
C

N
N

 [1
7]

TW
IE

SN
 [7

1]

A
P

R
A

P
R

A
P

R
A

P
R

A
P

R
A

P
R

A
P

R
A

P
R

A
P

R
A

P
R

A
rr

ow
H

ea
d

79
.4

0.
82

7
0.

82
7

77
.8

0.
67

3
0.

65
8

84
.3

0.
83

6
0.

82
8

84
.5

0.
85
4

0.
85
8

80
.4

0.
79

4
0.

79
8

33
.9

0.
10

0
0.

33
3

30
.3

0.
10

1
0.

33
3

68
.5

0.
70

1
0.

60
8

72
.3

0.
73

0
0.

73
3

65
.9

0.
62

1
0.

61
8

B
ee

f
90
.0

0.
92
0

0.
92
0

72
.0

0.
70

3
0.

70
0

69
.7

0.
68

3
0.

66
7

75
.3

0.
77

6
0.

76
7

64
.3

0.
71

7
0.

63
3

20
.0

0.
05

4
0.

25
0

20
.0

0.
04

0
0.

20
0

56
.3

0.
04

0.
20

0
76

.3
0.

80
5

0.
73

3
53

.7
0.

45
3

0.
43

3

C
ar

88
.3

0.
93

0
0.
93
0

76
.7

0.
76

6
0.

76
9

90
.5

0.
94
5

0.
92

6
92
.5

0.
93

2
0.

91
1

75
.8

0.
77

9
0.

77
7

24
.0

0.
05

4
0.

25
0

31
.7

0.
07

9
0.

25
0

73
.0

0.
63

6
0.

64
9

78
.2

0.
76

7
0.

76
0

78
.3

0.
75

3
0.

74
0

EC
G

20
0

90
.0

0.
88

0
0.

88
0

91
.6

0.
87

9
0.

85
8

88
.9

0.
87

3
0.

86
4

87
.4

0.
88

6
0.

85
2

92
.3

0.
91
7

0.
88
7

64
.0

0.
32

0
0.

50
0

64
.0

0.
32

0
0.

50
83

.3
0.

81
4

0.
78

7
81

.4
0.

77
7

0.
75

7
84

.2
0.

86
2

0.
81

0

H
am

77
.1

0.
79
3

0.
79
3

69
.1

0.
71

4
0.

71
4

71
.8

0.
72

4
0.

72
4

75
.7

0.
77

2
0.

77
1

72
.7

0.
73

9
0.

73
1

50
.6

0.
25

7
0.

50
0

51
.4

0.
25

7
0.

50
0

73
.3

0.
67

7
0.

67
5

71
.1

0.
70

7
0.

70
6

72
.3

0.
79

0
0.

77
8

H
er

rin
g

53
.1

0.
45

2
0.

45
2

52
.8

0.
60

0.
60

3
60

.8
0.
64
1

0.
63
2

61
.9

0.
58

8
0.

59
0

58
.6

0.
55

6
0.

53
0

59
.4

0.
29

7
0.

50
0

59
.4

0.
29

7
0.

50
0

60
.0

0.
29

7
0.

50
0

53
.9

0.
53

7
0.

53
4

59
.1

0.
59

3
0.

53
7

Ita
ly

Po
w

er
D

em
an

d
96

.4
0.

96
7

0.
96

7
95

.4
0.

96
2

0.
96

1
96

.1
0.

96
0

0.
96

0
96

.3
0.
96
8

0.
96
8

96
.5

0.
96

8
0.

96
8

50
.0

0.
25

1
0.

50
0

49
.9

0.
24

9
0.

50
0

95
.5

0.
94

8
0.

94
8

95
.5

0.
95

3
0.

95
2

88
.0

0.
92

4
0.

92
3

Li
gh

tn
in

g2
77
.1

0.
80
2

0.
80
5

67
.0

0.
70

3
0.

70
0

73
.9

0.
73

7
0.

73
3

77
.0

0.
75

3
0.

75
1

69
.2

0.
68

7
0.

65
6

55
.7

0.
27

1
0.

50
0

54
.1

0.
27

1
0.

50
0

63
.0

0.
75

2
0.

62
8

63
.6

0.
63

9
0.

62
9

70
.3

0.
64

8
0.

60
0

Li
gh

tn
in

g7
82

.2
0.
87
2

0.
85
8

63
.0

0.
58

1
0.

60
8

82
.7

0.
81

3
0.

79
6

84
.5

0.
85

6
0.

81
3

62
.5

0.
61

5
0.

60
2

31
.0

0.
03

7
0.

14
3

26
.0

0.
03

7
0.

14
3

53
.4

0.
56

7
0.

58
0

65
.1

0.
68

7
0.

69
5

66
.4

0.
80

5
0.

68
2

M
ot

eS
tra

in
89

.4
0.

92
4

0.
91

6
85

.8
0.

86
5

0.
86

0
93
.7

0.
92

9
0.

92
8

92
.8

0.
93
5

0.
93
3

84
.0

0.
85

3
0.

84
8

50
.8

0.
23

0
0.

50
0

53
.9

0.
27

0
0.

50
0

76
.5

0.
84

6
0.

81
4

88
.2

0.
90

1
0.

88
8

78
.5

0.
83

3
0.

82
9

To
eS

eg
m

en
ta

tio
n1

97
.4

0.
95
7

0.
95

5
58

.3
0.

59
6

0.
59

6
96

.1
0.

96
9

0.
96
9

96
.3

0.
95

6
0.

95
7

65
.9

0.
66

6
0.

66
4

50
.5

0.
26

3
0.

50
0

52
.6

0.
26

3
0.

50
0

49
.0

0.
56

3
0.

56
1

59
.5

0.
61

4
0.

61
4

86
.5

0.
90

5
0.

90
2

Ea
rth

qu
ak

es
82
.0

0.
56

4
0.

52
5

71
.7

0.
51

1
0.

50
4

72
.7

0.
58
2

0.
58
1

71
.2

0.
50

1
0.

50
0

74
.8

0.
56

6
0.

51
7

74
.8

0.
41

0
0.

50
0

74
.8

0.
41

0
0.

50
0

74
.9

0.
41

0
0.

50
0

70
.0

0.
54

2
0.

55
2

74
.8

0.
52

6
0.

50
7

H
ap

tic
s

47
.7

0.
42

8
0.

39
7

43
.3

0.
42

1
0.

43
6

48
.0

0.
54
0

0.
49
0

51
.9

0.
53

0
0.

48
2

42
.7

0.
41

8
0.

42
7

20
.9

0.
03

8
0.

20
0

20
.8

0.
04

2
0.

20
0

40
.4

0.
37

3
0.

39
6

36
.6

0.
37

4
0.

38
1

40
.4

0.
46

1
0.

42
9

In
lin

eS
ka

te
53
.1

0.
21

6
0.

22
3

33
.7

0.
36

1
0.

33
4

33
.9

0.
34

4
0.
35
0

37
.3

0.
25

3
0.

24
6

29
.2

0.
36

2
0.

31
2

16
.7

0.
02

6
0.

14
3

16
.5

0.
02

2
0.

14
3

21
.5

0.
28

8
0.

12
0

28
.7

0.
32

9
0.

31
3

33
.0

0.
49
2

0.
28

0

In
se

ct
W

in
gb

ea
tS

ou
nd

62
.5

0.
64

1
0.

64
1

60
.7

0.
65
5

0.
64
5

39
.3

0.
40

3
0.

39
9

50
.7

0.
51

4
0.

51
2

63
.3

0.
64

9
0.

64
2

15
.8

0.
00

8
0.

09
1

9.
1

0.
00

8
0.

09
1

58
.3

0.
59

3
0.

60
8

58
.3

0.
58

5
0.

58
7

43
.7

0.
36

0
0.

32
6

M
al

la
t

97
.3

0.
96

8
0.

96
8

91
.8

0.
93

0
0.

90
5

96
.7

0.
97
5

0.
97
3

97
.2

0.
97

3
0.

96
9

87
.6

0.
90

9
0.

87
3

13
.5

0.
01

5
0.

12
5

12
.3

0.
01

5
0.

12
5

90
.1

0.
94

3
0.

92
9

92
.0

0.
93

5
0.

92
3

59
.6

0.
55

6
0.

64
3

C
in

C
_E

C
G

_t
or

so
93
.3

0.
94

0
0.

93
3

84
.0

0.
86

4
0.

83
2

82
.4

0.
82

8
0.

82
7

82
.6

0.
78

8
0.

78
9

91
.1

0.
91

3
0.

89
7

38
.1

0.
06

2
0.

25
0

25
.0

0.
06

3
0.

25
0

73
.6

0.
95
2

0.
95
3

74
.5

0.
69

5
0.

60
9

30
.0

0.
28

6
0.

29
0

Sw
ed

is
hL

ea
f

95
.5

0.
96

8
0.

96
8

85
.1

0.
80

7
0.

78
2

96
.9

0.
97
1

0.
97
0

95
.6

0.
95

2
0.

94
9

93
.0

0.
93

0
0.

92
4

11
.8

0.
00

4
0.

67
6.

5
0.

00
4

0.
06

7
84

.6
0.

88
3

0.
88

7
88

.4
0.

87
0

0.
87

3
82

.5
0.

85
9

0.
81

8

Fa
ce

A
ll

82
.1

0.
96
3

0.
95

7
79

.3
0.

92
2

0.
96
2

94
.5

0.
92

3
0.

96
2

83
.9

0.
86

6
0.

92
7

79
.3

0.
82

0
0.

87
1

17
.0

0.
00

6
0.

07
1

8.
0

0.
00

6
0.

07
1

71
.7

0.
75

5
0.

80
4

76
.8

0.
75

6
0.

86
3

65
.7

0.
69

8
0.

76
3

C
hl

or
in

eC
on

ce
nt

ra
tio

n
78

.4
0.

39
5

0.
54

1
80

.2
0.

62
6

0.
40

4
81

.4
0.

79
1

0.
79

4
84
.4

0.
82
7

0.
82
5

57
.3

0.
60

9
0.

41
6

53
.3

0.
17

8
0.

33
3

53
.3

0.
17

8
0.

33
3

64
.3

0.
60

7
0.

59
5

60
.0

0.
63

5
0.

48
1

55
.3

0.
51

5
0.

36
1

A
ve

ra
ge

80
.6

0.
77

0
0.

77
3

72
.0

0.
70

7
0.

69
2

77
.7

0.
77

3
0.

76
9

79
.0

0.
77

4
0.

76
9

72
.0

0.
72

3
0.

69
9

37
.6

0.
14

4
0.

34
3

36
.0

0.
14

7
0.

31
0

66
.6

0.
63

2
0.

63
7

69
.5

0.
69

2
0.

67
9

64
.4

1
0.

64
7

0.
61

4

St
d.

15
.3

0.
23

4
0.

22
7

16
.4

0.
16

9
0.

18
1

19
.2

0.
19

1
0.

19
5

16
.9

0.
19

7
0.

20
1

17
.3

0.
17

1
0.

19
0

19
.5

0.
13

1
0.

18
0

21
.2

0.
13

2
0.

17
4

17
.4

0.
25

0
0.

22
9

17
.2

0.
16

8
0.

17
6

17
.4

61
0.

19
0

0.
20

8

W
in

s
8

6
5

0
1

2
2

6
7

7
4

4
3

1
1

0
0

0
0

0
0

0
1

1
0

0
0

0
1

0

	 SN Computer Science (2023) 4:832 832   Page 14 of 24

SN Computer Science

Fig. 5 show different groups of classifiers whose accuracies are
not significantly different.

The t-SNE visualization implemented in [11] is used to
intuitively evaluate the effectiveness of the proposed method.
The t-SNE visualization is applied to the O1 and Om output of
the proposed method to find the separability of the method.
Additionally, t_SNE visualization is applied to the output of
the ResNet. The t-SNE visualizations for different data sets are
reported in Figs. 6, 7, and Appendix 1.

Next, the computation time of the proposed method is com-
pared to ResNet, and the results are shown in Table 5. The
number of training epochs and the required time duration for
training both methods are shown in Table 5. The ‘Improvement’
column in Table 5 shows the difference between the time dura-
tion of ResNet and the proposed method, i.e., the time duration
of ResNet is subtracted from the time duration of the proposed
method. The last column ‘Times of Improvement’ in Table 5
shows how many times the time duration of ResNet is higher than
the time duration of the proposed method. ‘Times of Improve-
ment’ is obtained by dividing the time duration of ResNet by the
time duration of the proposed method.

The results in Table 5 show that for 18 out of 20 datasets, the
proposed method performs its learning in shorter time durations
than ResNet. ResNet can be trained in a shorter time than the
proposed method only for two datasets, i.e., ‘SwedishLeaf’ and
‘FaceAll’ datasets. Note that these two datasets, ‘SwedishLeaf’
and ‘FaceAll’, have 15 and 14 classes, respectively, and thus con-
tain a relatively high number of classes compared to the other
datasets (see Table 1). Therefore, there are 15 × 2 = 30 selec-
tions for the second input for ‘SwedishLeaf’ dataset. Note that
two samples are selected from each class using the mentioned
down-sampling described in “Time Series Classification”.A to
represent the class. As the ‘SwedishLeaf’ dataset contains 500
training samples, the new training dataset for the two inputs of
the proposed network has 500 × 30 = 15,000 instances, which is
a high number compared to the original training dataset that con-
tains 500 samples. The high number of available selections for the
second input (which occurs due to the high number of classes in
the dataset) increases the number of new training instances, and it
consequently increases the training computation time. Therefore,
the proposed method has a high training duration for datasets with
a high number of classes.

Using the mentioned down-sampling can reduce the num-
ber of training samples and consequently reduce the training

time. However, when the number of classes is increased, the
reduction in the number of training samples is limited; because
an appropriate number of training samples from each class is
required. The high number of classes prevents a reduction in
the number of generated training instances.

One method to further reduce the computation time for the
proposed method is to reduce the number of selections for the
second input from 30 to 15. To reach this aim, and thus to reduce
the number of selections for the second input, instead of selecting
two samples from each class, a single training sample will be
selected from each class—this consequently reduces the number
of instances from 1500 to 500 × 15 = 7500 which is the half of
the previous one. Therefore, the computation time can also be
reduced up to half. However, reducing the number of training
samples might impact the model’s accuracy (see the “Investiga-
tion of the Effect of the Number of Input Samples”).

For 18 out of 20 datasets in Table 5, the proposed method
performed the learning task in a shorter duration compared
to ResNet. For instance, the proposed method has a reduc-
tion of 24,425.7 s and 23,112.9 s in learning time duration
for ‘Mallat’ and ‘CinC_ECG_torso’ datasets, respectively,
while the proposed method can reach a higher accuracy than
ResNet on the datasets. In the last columns of Table 5, the
results show that the proposed method can reach up to 46.9
times faster processing time than ResNet. For instance, the
training time duration of ResNet for ‘ItalyPowerDemand’
dataset is 2673.7 s which is 15.3 times higher than of the
time duration required by the proposed method. The pro-
posed method only requires 175.0 s to reach an accuracy
higher than the ResNet accuracy.

Investigation of the Effect of the Number of Input
Samples

Deep CNNs usually have a high number of layers of neurons, and
consequently, they have a high number of training parameters.
The high number of training parameters needs a high number
of training samples to train the neural network. The proposed
method combines different training samples and generates a
new training set with a high number of training samples, and
it increases the ability of the proposed method to learn with a
comparably low number of original training samples. In this sec-
tion, the ability of the proposed method is investigated when the
number of training samples is reduced. In this simulation, the

Fig. 5   CDD for comparing
the accuracy of the proposed
method with other learning
methods on different datasets.
Each thick line shows a group
of methods that do not have
significant differences in their
accuracies

SN Computer Science (2023) 4:832 	 Page 15 of 24  832

SN Computer Science

number of training samples in the ‘CinC_ECG_torso’ dataset
from the UCR data archive is reduced gradually, and then, the
accuracy of the proposed method is obtained for different reduced
numbers of training samples, i.e., the network is trained by the
remainder of the training set. The number of training samples is
reduced by 2, 4, 6, and 8. The first class in the ‘CinC_ECG_torso’
dataset has a small number of training samples (5 training sam-
ples), so it is kept unchanged and the training samples from the
second class which has a higher number of training samples are

reduced. The accuracy of the proposed method on the reduced
number of training samples is then compared to the base method.
Figure 8a shows that the accuracy of the base method is reduced
when the number of removed training samples is increased, i.e.,
the number of remaining training samples is reduced. However,
in comparison, the proposed method is relatively stable in accu-
racy values related to the reduced numbers of training samples
when it is compared to the base method. The proposed method
has 12.68% higher accuracy compared to the base method for

Fig. 6   The t-SNE projection of a the raw data, b O
m

 output of the proposed method, c O1 output of the proposed method, and d the output of
ResNet for ‘Beef’ data set

	 SN Computer Science (2023) 4:832 832   Page 16 of 24

SN Computer Science

the original dataset (‘# Reduced Samples = 0’) which contains all
the training samples. The improvement of the proposed method
is increased compared to the base method when the number of
training samples is reduced. For instance, when the number of
training samples is reduced from 40 to 32, the testing accuracy
of the proposed method is 20.29% higher than the base method.
The testing set in ‘CinC_ECG_torso’ contains 1380 samples.

The proposed method can recognize 280 more testing instances
correctly than the base method. The effect of the number of train-
ing samples is tested on other datasets and the results are shown
in Fig. 8.

Fig. 7   The t-SNE projection of a the raw data, b O
m

 output of the proposed method, c O1 output of the proposed method, and d the output of
ResNet for ‘Car’ data set

SN Computer Science (2023) 4:832 	 Page 17 of 24  832

SN Computer Science

Discussion and Conclusion

In this paper, a method (described in the section “A Method for
Synthetically Increasing the Number of Training Samples”) is
used to synthetically transform an initially labeled training dataset
to improve the training process for time series classification. In
particular, the method selects pairs of raw TS from the original
training dataset. The higher number of available selections of two
TS helps to increase the number of training instances. Therefore,
the method increases the number of training instances by the
power of two of the number of initial training samples. A deep
CNN is a data-hungry method and it needs a high number of
labeled training samples, and the proposed method makes more
training data available for CNNs.

Then, a new CNN, called CNN-TS, is proposed to work with
the increased number of training data. CNN-TS compares the
two TS in each pair and predicts whether the two TS are from
the same class. Moreover, the proposed CNN-TS benefits from
intermediate targets which are set based on the new learning
task. Two intermediate targets are set corresponding to the two
TS which are applied as inputs of the proposed method. The
intermediate targets supervise the intermediate features which
are extracted from each input to increase the overall classifica-
tion accuracy of the proposed method. The intermediate targets
use the label of their corresponding input to train the network.

The proposed method can be considered as a deep distance-
based TSC. In a classical distance-based TSC, a classification
is performed based on the distance between a test sample and
training samples. The main element in a classical distance-
based TSC is its distance measurement method. Measuring the
distance between two TS is not a straight-forward task, because
the method should be invariant against translation in the TS
or it should be insensitive to the speed of performing similar
tasks. In the classical method usually, the distance between
two samples is calculated, and then, an analysis is performed
on the measured distances to decide in which class a sample
belongs. However, the proposed method, CNN-TS, automati-
cally evaluates the distance between two TS and performs the
distance measurement and classification jointly in a network
to increases its accuracy and to improve CNN’s abilities. In
fact, the intermediate targets in the proposed method control the
features extracted in the intermediate layers to reflect informa-
tion related to the labels of the applied inputs as the labels are
available to the intermediate targets during training. Then, in
the next layer, the intermediate features are subtracted to gen-
erate features that reflect the distance between the two inputs.
In the following layers, the distance-related features are used
to decide whether the two inputs are from the same class. The
proposed method adjusts the learning parameters to learn the
distance and classification in a CNN for TSC.

Table 5   Comparison of computation time, i.e., duration

Dataset Proposed method ResNet Improvement (sec.) Times of
improvement

Epochs Duration (sec.) # Epochs Duration (Sec.)

ArrowHead 294 298.5 1492 1375.9 1077.4 4.6
Beef 277 304.1 1442 795.5 491.4 2.6
Car 298 709.6 1442 1005.5 295.9 1.4
ECG200 291 185.4 1398 729.4 544.0 3.9
Ham 184 380.9 1405 1231.9 851.0 3.2
Herring 298 310.3 1323 1037.1 726.8 3.3
ItalyPowerDemand 231 175.0 1487 2673.7 2498.7 15.3
Lighting2 243 325.1 1405 1739.4 1414.4 5.4
Lighting7 226 536.4 1433 1297.5 761.0 2.4
MoteStrain 286 166.5 1442 7814.5 7648.0 46.9
ToeSegmentation1 280 262.4 1429 1832.0 1569.6 7.0
Earthquakes 178 498.3 1159 3245.0 2746.6 6.5
Haptics 299 2457.3 1329 5530.3 3073.0 2.3
InlineSkate 299 3729.1 1358 11,050.0 7320.9 3.0
InsectWingbeatSound 296 2100.7 1498 7113.3 5012.6 3.4
Mallat 293 1305.9 1490 25,731.6 24,425.7 19.7
CinC_ECG_torso 296 829.5 1439 23,942.4 23,112.9 28.9
SwedishLeaf 287 3893.3 1440 2693.1 − 1200.2 1.2
FaceAll 263 4165.2 1487 3975.3 − 189.8 0.7
ChlorineConcentration 293 905.5 1451 6409.7 5504.1 1.0
Average 270.6 1177.0 1417.5 5561.2 4384.2 8.43
Std. 37.15 1305.8 77.2 6991.9 6880.0 11.20

	 SN Computer Science (2023) 4:832 832   Page 18 of 24

SN Computer Science

Siamese neural networks have the ability to evaluate
similarity between inputs [24]. A Siamese neural network
learns to determine the probability of its applied pair of
inputs belonging to the same class or different classes. The
Siamese neural network proposed in [24] does not take into
account the imbalance property which is generated as the
result of selecting pairs of inputs from different classes. The
severity of the imbalance will be increased when the number
of classes is increased [see (9) and (10)]. Additionally, the
method proposed in [24] does not use the extra knowledge
that exists in the labels of each input in an applied pair of
inputs to the network. However, the proposed method in this
paper deals with the imbalance in the generated data using
(7). Moreover, the proposed method in this paper has used
the labels of inputs in each pair as intermediate targets to
train hidden layers.

The proposed CNN-TS method is evaluated on different data-
sets obtained from the UCR time series classification archive.
First, CNN-TS is compared to a base method, which is a similar

CNN to the proposed method but without the intermediate tar-
gets. Experimental results show improvement in the accuracy
of the proposed method compared to the base method on 17 out
of 20 datasets. Additionally, the proposed method is compared
with three classical machine-learning methods namely linear
SVM, RBF SVM, and RF. The results show that, on average,
the proposed method achieved 21.1% higher accuracy than that
achieved by the other methods. The proposed method is also
compared to other state-of-the-art methods, and the experiment
results show that it has achieved higher accuracies on various
different datasets compared to the best results achieved by the
other methods. Moreover, CNN-TS achieved higher accuracies
with a shorter training time duration, which is on average 8.43
times shorter than the time duration required for the method
with the best accuracy among the other state-of-the-art methods,
i.e., ResNet.

Although the classical distance-based methods are known
to perform well in the traditional TSC, they have not been con-
sidered thoroughly in the literature of CNN methods for TSC

Fig. 8   Comparison of the accuracy of the proposed method and the
base method on a CinC_ECG_torso, b earthquakes, c car, and d Ham
data sets when the number of training samples is reduced. Note that

when ‘# Reduced Samples = 0’, there is no reduction in the number of
training samples, and thus, all the original training samples are used

SN Computer Science (2023) 4:832 	 Page 19 of 24  832

SN Computer Science

to date. Investigating the different aspects of distance-based
TSC and reflecting them in CNN can be a new direction for
future research. Experimental results have shown that interme-
diate targets can improve the performance of a CNN, because
intermediate targets supervise the generation of features in the
intermediate layers instead of allowing the features to gen-
erate without control. Thus, finding appropriate targets for

intermediate layers in different applications of CNN can be
another direction for future research.

Appendix 1: The t‑SNE Projection
on ‘ArrowHead’, ‘ECG200’, and ‘Ham’ Datasets

See Figs. 9, 10 and 11.

Fig. 9   The t-SNE projection of a the raw data, b O
m
 output of the proposed method, c O1 output of the proposed method, and d the output of

ResNet for ‘ArrowHead’ data set

	 SN Computer Science (2023) 4:832 832   Page 20 of 24

SN Computer Science

Fig. 10   The t-SNE projection of a the raw data, b O
m

 output of the proposed method, c O1 output of the proposed method, and d the output of
ResNet for ‘ECG200’ data set

SN Computer Science (2023) 4:832 	 Page 21 of 24  832

SN Computer Science

Author Contributions  AT: conceptualization, methodology, software,
formal analysis, investigation, writing—original draft, and visualization;
GC: conceptualisation, resources, writing—review and editing, project
administration, and funding acquisition; TMM: validation, resources,
writing—review and editing, and project administration.

Funding  The work was funded by The Leverhulme Trust Research Pro-
ject under Grant RPG-2016-252 entitled “Novel Approaches for Con-
structing Optimised Multimodal Data Spaces”.

Availability of Data and Materials  N/A.

Code Availability  Code will be available publicly in github after
acceptance.

Fig. 11   The t-SNE projection of a the raw data, b O
m
 output of the proposed method, c O1 output of the proposed method, and d the output of

ResNet for ‘Ham’ data set

	 SN Computer Science (2023) 4:832 832   Page 22 of 24

SN Computer Science

Declarations 

Conflict of Interest  On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

 References

	 1.	 Abanda A, Mori U, Lozano JA. A review on distance based time
series classification. Data Min Knowl Disc. 2019;33(2):378–412.
https://​doi.​org/​10.​1007/​s10618-​018-​0596-4.

	 2.	 Alani AA, Cosma G, Taherkhani A. Classifying imbalanced multi-
modal sensor data for human activity recognition in a smart home
using deep learning. Proc Int Jt Conf Neural Netw. 2020. https://​doi.​
org/​10.​1109/​IJCNN​48605.​2020.​92076​97.

	 3.	 Antoniades A, Spyrou L, Martin-Lopez D, Valentin A, Alarcon G,
Sanei S, Took CC. Detection of interictal discharges with convolu-
tional neural networks using discrete ordered multichannel intracra-
nial EEG. IEEE Trans Neural Syst Rehabil Eng. 2017;4320(c):1–10.
https://​doi.​org/​10.​1109/​TNSRE.​2017.​27557​70.

	 4.	 Antoniades A, Spyrou L, Martin-Lopez D, Valentin A, Alarcon G,
Sanei S, Took CC. Deep neural architectures for mapping scalp to
intracranial EEG. Int J Neural Syst. 2018;0(0):1850009. https://​doi.​
org/​10.​1142/​S0129​06571​85000​90.

	 5.	 Antonucci A, De Rosa R, Giusti A, Cuzzolin F. Robust classification
of multivariate time series by imprecise hidden Markov models. Int
J Approx Reason. 2015;56(PB):249–63. https://​doi.​org/​10.​1016/j.​
ijar.​2014.​07.​005.

	 6.	 Aswolinskiy W, Reinhart RF, Steil J. Time series classification
in reservoir- and model-space: a comparison. In: Schwenker F,
Abbas HM, El Gayar N, Trentin E, editors. Artificial neural net-
works in pattern recognition. Cham: Springer International Pub-
lishing; 2016. p. 197–208.

	 7.	 Baydogan MG, Runger G, Tuv E. A bag-of-features framework
to classify time series. IEEE Trans Pattern Anal Mach Intell.
2013;35(11):2796–802.

	 8.	 Bengio Y, Yao L, Alain G, Vincent P (2013) Generalized denois-
ing auto-encoders as generative models. Advances in neural infor-
mation processing systems, pp. 899–907.

	 9.	 Bianchi FM, Scardapane S, Jenssen R. Reservoir computing
approaches for representation and classification of multivariate
time series. 2018. https://​arxiv.​org/​pdf/​1803.​07870.​pdf

	10.	 Chen Y, Garcia EK, Gupta MR, Rahimi A, Cazzanti L. Similarity-
based classification: concepts and algorithms. J Mach Learn Res.
2009;10:747–76.

	11.	 Chen Z, Liu Y, Zhu J, Zhang Y, Jin R, He X, et al. Time-frequency
deep metric learning for multivariate time series classification.
Neurocomputing. 2021;462:221–37. https://​doi.​org/​10.​1016/j.​
neucom.​2021.​07.​073.

	12.	 Chouikhi N, Ammar B, Alimi AM, Member S (2018) Genesis of
basic and multi-layer echo state network recurrent autoencoder
for efficient data representations. https://​arxiv.​org/​ftp/​arxiv/​papers/​
1804/​1804.​08996.​pdf

	13.	 Cui Z, Chen W, Chen Y. Multi-scale convolutional neural networks
for time series classification. 2016. https://​doi.​org/​10.​3724/​SP.J.​
1077.​2009.​00909

	14.	 Dau HA, Keogh E, Kamgar K, Yeh C-CM, Zhu Y, Gharghabi S et al.
The UCR Time Series Classification Archive. 2018. https://​www.​cs.​
ucr.​edu/​~eamonn/​time_​series_​data_​2018/

	15.	 Dauphin YN, Fan A, Auli M, Grangier D. Language modeling with
gated convolutional networks. In: The 34th international conference
on machine learning—volume 70 (ICML’17), 2017. (pp. 933–41).

	16.	 Ding C, Tao D. Robust face recognition via multimodal deep face
representation. IEEE Trans Multimedia. 2015;17(11):2049–58.
https://​doi.​org/​10.​1109/​TMM.​2015.​24770​42.

	17.	 Fawaz HI, Forestier G, Weber J, Idoumghar L, Muller P-A. Deep
learning for time series classification: a review. Data Min Knowl
Discov. 2019. https://​doi.​org/​10.​1007/​s10618-​019-​00619-1.

	18.	 Fu TC. A review on time series data mining. Eng Appl Artif Intell.
2011;24(1):164–81. https://​doi.​org/​10.​1016/j.​engap​pai.​2010.​09.​007.

	19.	 Gao Z, Wang X, Yang Y, Mu C, Cai Q, Dang W, Zuo S. EEG-based
spatio-temporal convolutional neural network for driver fatigue
evaluation. IEEE Trans Neural Netw Learn Syst. 2019. https://​doi.​
org/​10.​1109/​TNNLS.​2018.​28864​14.

	20.	 Garcia-Gasulla D, Parés F, Vilalta A, Moreno J, Ayguadé E, Labarta
J, et al. On the behavior of convolutional nets for feature extraction.
J Artif Intell Res. 2018;61:563–92.

	21.	 Gehring J, Auli M, Grangier D, Yarats D, Dauphin YN. Convolu-
tional sequence to sequence learning. Int Conf Mach Learn (ICML).
2017. https://​doi.​org/​10.​18653/​v1/​P16-​1220.

	22.	 Giusti R, Silva DF, Batista GEAPA. Improved time series classifica-
tion with representation diversity and SVM. In: Proceedings—2016
15th IEEE international conference on machine learning and appli-
cations, ICMLA 2016, 2016, (1), 1–6. https://​doi.​org/​10.​1109/​
ICMLA.​2016.​108

	23.	 Grabocka J, Schilling N, Wistuba M, Schmidt-Thieme L. Learning
time-series shapelets. In: Proceedings of the ACM SIGKDD inter-
national conference on knowledge discovery and data mining, 2014,
pp. 392–401. https://​doi.​org/​10.​1145/​26233​30.​26236​13

	24.	 Gregory K, Zemel R, Salakhutdinov R. Siamese neural networks
for one-shot image recognition gregorylation. In: 32th international
conference on machine learning, Vol. 37; 2013. Lille, France, p.
1355. https://​doi.​org/​10.​1136/​bmj.2.​5108.​1355-c.

	25.	 Gudmundsson S, Runarsson TP, Sigurdsson S. Support vector
machines and dynamic time warping for time series. In: 2008 IEEE
international joint conference on neural networks (IEEE World con-
gress on computational intelligence; 2008, pp. 2772–277662. https://​
doi.​org/​10.​4018/​978-1-​5225-​2498-4.​ch012.

	26.	 Le Guennec A, Malinowski S, Tavenard R. Data augmentation for
time series classification using convolutional neural networks. In:
ECML/PKDD workshop on advanced analytics and learning on
temporal data; 2016. Riva Del Garda.

	27.	 He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image
Recognition. In: IEEE conference on computer vision and pattern
recognition (CVPR); 2016, pp. 770–778. Las Vegas. https://​arxiv.​
org/​pdf/​1512.​03385.​pdf.

	28.	 He Q, Dong Z, Zhuang F, Shang T, Shi Z. Fast Time Series Clas-
sification Based on Infrequent Shapelets. In: In 2012 11th interna-
tional conference on machine learning and applications; 2012 (pp.
215–219). https://​doi.​org/​10.​1109/​ICMLA.​2012.​44

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10618-018-0596-4
https://doi.org/10.1109/IJCNN48605.2020.9207697
https://doi.org/10.1109/IJCNN48605.2020.9207697
https://doi.org/10.1109/TNSRE.2017.2755770
https://doi.org/10.1142/S0129065718500090
https://doi.org/10.1142/S0129065718500090
https://doi.org/10.1016/j.ijar.2014.07.005
https://doi.org/10.1016/j.ijar.2014.07.005
https://arxiv.org/pdf/1803.07870.pdf
https://doi.org/10.1016/j.neucom.2021.07.073
https://doi.org/10.1016/j.neucom.2021.07.073
https://arxiv.org/ftp/arxiv/papers/1804/1804.08996.pdf
https://arxiv.org/ftp/arxiv/papers/1804/1804.08996.pdf
https://doi.org/10.3724/SP.J.1077.2009.00909
https://doi.org/10.3724/SP.J.1077.2009.00909
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://doi.org/10.1109/TMM.2015.2477042
https://doi.org/10.1007/s10618-019-00619-1
https://doi.org/10.1016/j.engappai.2010.09.007
https://doi.org/10.1109/TNNLS.2018.2886414
https://doi.org/10.1109/TNNLS.2018.2886414
https://doi.org/10.18653/v1/P16-1220
https://doi.org/10.1109/ICMLA.2016.108
https://doi.org/10.1109/ICMLA.2016.108
https://doi.org/10.1145/2623330.2623613
https://doi.org/10.1136/bmj.2.5108.1355-c
https://doi.org/10.4018/978-1-5225-2498-4.ch012
https://doi.org/10.4018/978-1-5225-2498-4.ch012
https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1512.03385.pdf
https://doi.org/10.1109/ICMLA.2012.44

SN Computer Science (2023) 4:832 	 Page 23 of 24  832

SN Computer Science

	29.	 Hills J, Lines J, Baranauskas E, Mapp J, Bagnall A. Classification
of time series by shapelet transformation. Data Min Knowl Disc.
2014;28(4):851–81. https://​doi.​org/​10.​1007/​s10618-​013-​0322-1.

	30.	 Hu Q, Zhang R, Zhou Y. Transfer learning for short-term wind
speed prediction with deep neural networks. Renewable Energy.
2016;85:83–95. https://​doi.​org/​10.​1016/j.​renene.​2015.​06.​034.

	31.	 Imblearn. Class to perform under-sampling based on NearMiss
methods. 2003. https://​imbal​anced-​learn.​org/​stable/​refer​ences/​gener​
ated/​imble​arn.​under_​sampl​ing.​NearM​iss.​html?​highl​ight=​nearm​iss

	32.	 Jain B, Spiegel S. Dimension reduction in dissimilarity spaces for
time series classification. In: International workshop on advanced
analysis and learning on temporal data; 2015 (pp. 31–46).

	33.	 Jean N, Burke M, Xie M, Davis WM, Lobell BD, Ermon S. Com-
bining satellite imagery and machine learning to predict poverty.
Science. 2016;353(6301):790–4.

	34.	 Jeong YS, Jeong MK, Omitaomu OA. Weighted dynamic
time warping for time series classification. Pattern Recogn.
2011;44(9):2231–40. https://​doi.​org/​10.​1016/j.​patcog.​2010.​09.​
022.

	35.	 Jonathan T, Goroshin R, Jain A, LeCun Y, Bregler C. Efficient
object localization using convolutional networks. In: IEEE confer-
ence on computer vision and pattern recognition (CVPR); 2015
(pp. 648–656). Boston. https://​doi.​org/​10.​1109/​CVPR.​2015.​72986​
64.

	36.	 Kate RJ. Using dynamic time warping distances as features
for improved time series classification. Data Min Knowl Disc.
2016;30(2):283–312. https://​doi.​org/​10.​1007/​s10618-​015-​0418-x.

	37.	 Kaya H, Gündüz-Öʇüdücü Ş. A distance based time series classifica-
tion framework. Inf Syst. 2015;51:27–42. https://​doi.​org/​10.​1016/j.​
is.​2015.​02.​005.

	38.	 Kenji B, Frinken V, Riesen K, Uchida S. Efficient temporal pat-
tern recognition by means of dissimilarity space embedding with
discriminative prototypes. Pattern Recogn. 2017;64(January
2016):268–76. https://​doi.​org/​10.​1016/j.​patcog.​2016.​11.​013.

	39.	 Kingma DP, Ba J. Adam: a method for stochastic optimization. In:
The 3rd international conference on learning representations (ICLR);
2014 (pp. 1–15). Banff. https://​doi.​org/​10.​1145/​18304​83.​18305​03

	40.	 Krizhevsky A, Sutskever I, Geoffrey EH. ImageNet classification
with deep convolutional neural networks. In: Advances in neural
information processing systems 25 (NIPS2012) (pp. 1–9); 2012.
https://​doi.​org/​10.​1109/5.​726791.

	41.	 Längkvist M, Karlsson L, Loutfi A. A review of unsupervised feature
learning and deep learning for time-series modeling. Pattern Rec-
ogn Lett. 2014;42(1):11–24. https://​doi.​org/​10.​1016/j.​patrec.​2014.​
01.​008.

	42.	 LeCun Y, Bengio Y, Hinton G. Deep learning. Nature.
2015;521(7553):436–44. https://​doi.​org/​10.​1038/​natur​e14539.

	43.	 Li C, Zia MZ, Tran Q-H, Yu X, Hager GD, Chandraker MM. Deep
supervision with intermediate concepts. IEEE Trans Pattern Anal
Mach Intell. 2019;41(8):1828–43. https://​doi.​org/​10.​1109/​CVPR.​
2017.​49.

	44.	 Li X, Lin J. Evolving separating references for time series classifica-
tion. SIAM Int Conf Data Min SDM. 2018;2018:243–51. https://​doi.​
org/​10.​1137/1.​97816​11975​321.​28.

	45.	 Lin M, Chen Q, Yan S (2014). Network in network. In: International
conference on learning representations (ICLR) (pp. 1–10). Banff.

	46.	 Lin S, Runger GC. GCRNN: Group-constrained convolutional
recurrent neural network. IEEE Trans Neural Netw Learn Syst.
2018;29(10):4709–18. https://​doi.​org/​10.​1109/​TNNLS.​2017.​27723​
36.

	47.	 Liu CL, Hsaio WH, Tu YC. Time series classification with multi-
variate convolutional neural network. IEEE Trans Industr Electron.
2019;66(6):4788–97. https://​doi.​org/​10.​1109/​TIE.​2018.​28647​02.

	48.	 Liu J, Shahroudy A, Wang G, Duan L-Y, Kot AC. Skeleton-based
online action prediction using scale selection network. IEEE Trans

Pattern Anal Mach Intell. 2019;8828(c):1–15. https://​doi.​org/​10.​
1109/​CVPR.​2018.​00871.

	49.	 Liu W, Wang Z, Liu X, Zeng N, Liu Y, Alsaadi FE. A survey of
deep neural network architectures and their applications. Neurocom-
puting. 2017;234(October 2016):11–26. https://​doi.​org/​10.​1016/j.​
neucom.​2016.​12.​038.

	50.	 Long J, Shelhamer E, Darrell T. Fully convolutional networks for
semantic segmentation. Proc Int Jt Conf Neural Netw. 2015. https://​
doi.​org/​10.​1109/​IJCNN.​2017.​79663​67.

	51.	 Ma Q, Shen L, Chen W, Wang J, Wei J, Yu Z. Functional echo
state network for time series classification. Inf Sci. 2016;373:1–
20. https://​doi.​org/​10.​1016/j.​ins.​2016.​08.​081.

	52.	 Malhotra P, Vig L, Agarwal P, Shroff G. TimeNet: pre-trained
deep recurrent neural network for time series classification. In:
25th European symposium on artificial neural networks, compu-
tational intelligence and machine learning; 2017.

	53.	 Mehdiyev N, Lahann J, Emrich A, Enke D, Fettke P, Loos P. Sci-
enceDirect ScienceDirect time series classification using deep
learning for process planning: a case from the process industry.
Proc Comput Sci. 2017;114:242–9. https://​doi.​org/​10.​1016/j.​
procs.​2017.​09.​066.

	54.	 Min S, Lee B, Yoon S. Deep learning in bioinformatics. Brief Bio-
inform. 2017;18(5):851–69. https://​doi.​org/​10.​1093/​bib/​bbw068.

	55.	 Mittelman, R. Time-series modeling with undecimated fully
convolutional neural networks. 2015. https://​arxiv.​org/​pdf/​1508.​
00317.​pdf

	56.	 Mueen A, Young N (n.d.). Logical-Shapelets: an expressive primi-
tive for time series classification, 1154–62.

	57.	 Nweke HF, Teh YW, Al-garadi MA, Alo UR. Deep learning algo-
rithms for human activity recognition using mobile and wearable
sensor networks: state of the art and research challenges. Expert
Syst Appl. 2018;105:233–61. https://​doi.​org/​10.​1016/j.​eswa.​2018.​
03.​056.

	58.	 van den Oord A, Dieleman S, Zen H, Simonyan, K., Vinyals, O.,
Graves, A., et al. WaveNet: a generative model for raw audio. In:
Speech Synthesis Workshop (SSW); 2016 (pp. 1–15). https://​doi.​
org/​10.​1109/​ICASSP.​2009.​49603​64.

	59.	 Özbay Y, Ceylan R, Karlik B. A fuzzy clustering neural network
architecture for classification of ECG arrhythmias. Comput Biol
Med. 2006;36(4):376–88. https://​doi.​org/​10.​1016/j.​compb​iomed.​
2005.​01.​006.

	60.	 Page A, Shea C, Mohsenin T. Wearable seizure detection using
convolutional neural networks with transfer learning. In: Proceed-
ings—IEEE international symposium on circuits and systems,
2016-July, 2016, pp 1086–1089. https://​doi.​org/​10.​1109/​ISCAS.​
2016.​75274​33

	61.	 Peng S, Jiang H, Wang H, Alwageed H, Zhou Y, Sebdani MM,
Yao YD. Modulation classification based on signal constellation
diagrams and deep learning. IEEE Trans Neural Netw Learn Syst.
2018;30(3):718–27. https://​doi.​org/​10.​1109/​TNNLS.​2018.​28507​
03.

	62.	 Pw DR, Elzbieta P. Dissimilarity representation for pattern rec-
ognition, the: foundations and applications, Vol. 64; 2005. World
scientific, Singapore.

	63.	 Rajan D, Thiagarajan JJ. A Generative Modeling Approach to
Limited Channel ECG Classification. In: 40th annual international
conference of the IEEE engineering in medicine and biology soci-
ety (EMBC); 2018 (pp. 2571–2574).

	64.	 Rakthanmanon T (n.d.). Fast shapelets: a scalable algorithm for
discovering time series shapelets, pp. 668–676.

	65.	 Rios-Navarro A, Corradi F, Aimar A, Delbruck T, Milde MB,
Tapiador-Morales R, et al. NullHop: a flexible convolutional neu-
ral network accelerator based on sparse representations of feature
maps. IEEE Trans Neural Netw Learn Syst. 2018;30(3):1–13.
https://​doi.​org/​10.​1109/​tnnls.​2018.​28523​35.

https://doi.org/10.1007/s10618-013-0322-1
https://doi.org/10.1016/j.renene.2015.06.034
https://imbalanced-learn.org/stable/references/generated/imblearn.under_sampling.NearMiss.html?highlight=nearmiss
https://imbalanced-learn.org/stable/references/generated/imblearn.under_sampling.NearMiss.html?highlight=nearmiss
https://doi.org/10.1016/j.patcog.2010.09.022
https://doi.org/10.1016/j.patcog.2010.09.022
https://doi.org/10.1109/CVPR.2015.7298664
https://doi.org/10.1109/CVPR.2015.7298664
https://doi.org/10.1007/s10618-015-0418-x
https://doi.org/10.1016/j.is.2015.02.005
https://doi.org/10.1016/j.is.2015.02.005
https://doi.org/10.1016/j.patcog.2016.11.013
https://doi.org/10.1145/1830483.1830503
https://doi.org/10.1109/5.726791
https://doi.org/10.1016/j.patrec.2014.01.008
https://doi.org/10.1016/j.patrec.2014.01.008
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/CVPR.2017.49
https://doi.org/10.1109/CVPR.2017.49
https://doi.org/10.1137/1.9781611975321.28
https://doi.org/10.1137/1.9781611975321.28
https://doi.org/10.1109/TNNLS.2017.2772336
https://doi.org/10.1109/TNNLS.2017.2772336
https://doi.org/10.1109/TIE.2018.2864702
https://doi.org/10.1109/CVPR.2018.00871
https://doi.org/10.1109/CVPR.2018.00871
https://doi.org/10.1016/j.neucom.2016.12.038
https://doi.org/10.1016/j.neucom.2016.12.038
https://doi.org/10.1109/IJCNN.2017.7966367
https://doi.org/10.1109/IJCNN.2017.7966367
https://doi.org/10.1016/j.ins.2016.08.081
https://doi.org/10.1016/j.procs.2017.09.066
https://doi.org/10.1016/j.procs.2017.09.066
https://doi.org/10.1093/bib/bbw068
https://arxiv.org/pdf/1508.00317.pdf
https://arxiv.org/pdf/1508.00317.pdf
https://doi.org/10.1016/j.eswa.2018.03.056
https://doi.org/10.1016/j.eswa.2018.03.056
https://doi.org/10.1109/ICASSP.2009.4960364
https://doi.org/10.1109/ICASSP.2009.4960364
https://doi.org/10.1016/j.compbiomed.2005.01.006
https://doi.org/10.1016/j.compbiomed.2005.01.006
https://doi.org/10.1109/ISCAS.2016.7527433
https://doi.org/10.1109/ISCAS.2016.7527433
https://doi.org/10.1109/TNNLS.2018.2850703
https://doi.org/10.1109/TNNLS.2018.2850703
https://doi.org/10.1109/tnnls.2018.2852335

	 SN Computer Science (2023) 4:832 832   Page 24 of 24

SN Computer Science

	66.	 Sarkar S, Soundararajan P. Supervised learning of large perceptual
organization: graph spectral partitioning and learning automata.
IEEE Trans Pattern Anal Mach Intell. 2000;22(5):504–25. https://​
doi.​org/​10.​1109/​34.​857006.

	67.	 Serrà J, Pascual S, Karatzoglou A. Towards a Universal neural
network encoder for time series. Artif Intell Res Dev Curr Chal-
lenges New Trends Appl. 2018;308:120–9. https://​doi.​org/​10.​
3233/​978-1-​61499-​918-8-​120.

	68.	 Song W, Wang Z, Liu L, Zhang F, Xue J, Ye Y, et al. Represen-
tation learning with deconvolution for multivariate time series
classification and visualization. 2016. https://​arxiv.​org/​pdf/​1610.​
07258.​pdf.

	69.	 Taherkhani A, Cosma G, Alani AA, McGinnity TM. Activity rec-
ognition from multi-modal sensor data using a deep convolutional
neural network. Adv Intell Syst Comput. https://​doi.​org/​10.​1007/​
978-3-​030-​01177-2_​15.

	70.	 Taherkhani A, Cosma G, McGinnity TM. AdaBoost-CNN: an
adaptive boosting algorithm for convolutional neural networks to
classify multi-class imbalanced datasets using transfer learning.
Neurocomputing. 2020. https://​doi.​org/​10.​1016/j.​neucom.​2020.​
03.​064.

	71.	 Tanisaro P, Heidemann G. Time series classification using time
warping invariant Echo State Networks. In: Proceedings—2016
15th IEEE international conference on machine learning and
applications, ICMLA 2016; 2017, pp. 831–836. https://​doi.​org/​
10.​1109/​ICMLA.​2016.​166.

	72.	 Tian Y, Wang X, Wu J, Wang R, Yang B. Multi-scale hierar-
chical residual network for dense captioning. J Artif Intell Res.
2019;64:181–96.

	73.	 Wang J, Ping L, She MFH, Nahavandi S, Kouzani A. Bag-of-
words representation for biomedical time series classification.
Biomed Signal Process Control. 2013;8(6):634–44. https://​doi.​
org/​10.​1016/j.​bspc.​2013.​06.​004.

	74.	 Wang Z, Yan W, Oates T. Time series classification from scratch
with deep neural networks: a strong baseline. In: Proceedings of
the international joint conference on neural networks, 2017-May;
2017, pp. 1578–1585. https://​doi.​org/​10.​1109/​IJCNN.​2017.​79660​
39.

	75.	 Wu Y, Schuster M, Chen Z, Le QV, Norouzi M, Macherey W
et al. Google’s neural machine translation system: bridging the

gap between human and machine translation. 2016. http://​arxiv.​
org/​abs/​1609.​08144

	76.	 Xing Z, Pei J, Keogh E. A brief survey on sequence classification.
ACM SIGKDD Explorations Newsl. 2010;12(1):40. https://​doi.​
org/​10.​1145/​18824​71.​18824​78.

	77.	 Yang B, Liu R, Sun C, Meng G, Chen X. Dislocated time series
convolutional neural architecture: an intelligent fault diag-
nosis approach for electric machine. IEEE Trans Industr Inf.
2017;13(3):1310–20. https://​doi.​org/​10.​1109/​tii.​2016.​26452​38.

	78.	 Yannick R, Hubert B, Isabela A, Alexandre GHFT, Jocelyn F.
Deep learning-based electroencephalography analysis: a system-
atic review. 2019. http://​arxiv.​org/​abs/​1901.​05498

	79.	 Ye L, Keogh E. Time series Shapelets: a new primitive for data
mining. In: Proceedings of the 15th ACM SIGKDD international
conference on knowledge discovery and data mining; 2009. (pp.
947–956).

	80.	 Ye L, Keogh E. Time series shapelets : a novel technique that
allows accurate, interpretable and fast classification. Data
Min Knowl Disc. 2011;22:149–82. https://​doi.​org/​10.​1007/​
s10618-​010-​0179-5.

	81.	 Zhang J, Mani I. kNN approach to unbalanced data distributions:
a case study involving information extraction. In: Workshop on
learning from imbalanced datasets; 2003. Washington DC.

	82.	 Zhao B, Lu H, Chen S, Liu J, Wu D. Convolutional neural
networks for time series classification. J Syst Eng Electron.
2017;28(1):162–9. https://​doi.​org/​10.​21629/​JSEE.​2017.​01.​18.

	83.	 Zhao R, Yan R, Chen Z, Mao K, Wang P, Gao RX. Deep learning
and its applications to machine health monitoring. Mech Syst Sig-
nal Process. 2019;115:213–37. https://​doi.​org/​10.​1016/j.​ymssp.​
2018.​05.​050.

	84.	 Zheng Y, Liu Q, Chen E, Ge Y, Zhao JL. Exploiting multi-chan-
nels deep convolutional neural networks for multivariate time
series classification. Front Comp Sci. 2016;10(1):96–112. https://​
doi.​org/​10.​1007/​s11704-​015-​4478-2.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/34.857006
https://doi.org/10.1109/34.857006
https://doi.org/10.3233/978-1-61499-918-8-120
https://doi.org/10.3233/978-1-61499-918-8-120
https://arxiv.org/pdf/1610.07258.pdf
https://arxiv.org/pdf/1610.07258.pdf
https://doi.org/10.1007/978-3-030-01177-2_15
https://doi.org/10.1007/978-3-030-01177-2_15
https://doi.org/10.1016/j.neucom.2020.03.064
https://doi.org/10.1016/j.neucom.2020.03.064
https://doi.org/10.1109/ICMLA.2016.166
https://doi.org/10.1109/ICMLA.2016.166
https://doi.org/10.1016/j.bspc.2013.06.004
https://doi.org/10.1016/j.bspc.2013.06.004
https://doi.org/10.1109/IJCNN.2017.7966039
https://doi.org/10.1109/IJCNN.2017.7966039
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
https://doi.org/10.1145/1882471.1882478
https://doi.org/10.1145/1882471.1882478
https://doi.org/10.1109/tii.2016.2645238
http://arxiv.org/abs/1901.05498
https://doi.org/10.1007/s10618-010-0179-5
https://doi.org/10.1007/s10618-010-0179-5
https://doi.org/10.21629/JSEE.2017.01.18
https://doi.org/10.1016/j.ymssp.2018.05.050
https://doi.org/10.1016/j.ymssp.2018.05.050
https://doi.org/10.1007/s11704-015-4478-2
https://doi.org/10.1007/s11704-015-4478-2

	A Deep Convolutional Neural Network for Time Series Classification with Intermediate Targets
	Abstract
	Introduction
	Related Works
	Time Series Classification
	Deep Neural Networks for Time Series Classification

	Proposed Method
	A Method for Synthetically Increasing the Number of Training Samples
	Proposed Method for Time Series Classification Using Synthetically Extended Training Samples
	CNN-TS: Proposed Intermediate Target Concept for TSC Using CNN
	Training the Proposed CNN-TS with Class-Related Coefficients

	Classifying a Test Input Based on the Main Output

	Results
	Dataset
	Comparison of CNN-TS with the Base Deep Neural Network
	Comparison of CNN-TS with Other Methods
	Investigation of the Effect of the Number of Input Samples

	Discussion and Conclusion
	Appendix 1: The t-SNE Projection on ‘ArrowHead’, ‘ECG200’, and ‘Ham’ Datasets
	References

