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Abstract
Deep Convolutional Neural Networks (CNNs) have been successfully used in different applications, including image recogni-
tion. Time series data, which are generated in many applications, such as tasks using sensor data, have different characteristics 
compared to image data, and accordingly, there is a need for specific CNN structures to address their processing. This paper 
proposes a new CNN for classifying time series data. It is proposed to have new intermediate outputs extracted from different 
hidden layers instead of having a single output to control weight adjustment in the hidden layers during training. Intermediate 
targets are used to act as labels for the intermediate outputs to improve the performance of the method. The intermediate targets 
are different from the main target. Additionally, the proposed method artificially increases the number of training instances using 
the original training samples and the intermediate targets. The proposed approach converts a classification task with original 
training samples to a new (but equivalent) classification task that contains two classes with a high number of training instances. 
The proposed CNN for Time Series classification, called CNN-TS, extracts features depending the distance of two time series. 
CNN-TS was evaluated on various benchmark time series datasets. The proposed CNN-TS achieved 5.1% higher overall accu-
racy compared to the CNN base method (without an intermediate layer). Additionally, CNN-TS achieved 21.1% higher average 
accuracy compared to classical machine-learning methods, i.e., linear SVM, RBF SVM, and RF. Moreover, CNN-TS was on 
average 8.43 times faster in training time compared to the ResNet method.

Keywords  Classification · Convolutional neural network · Intermediate targets · Time series analysis

Introduction

Time series (TS) datasets are obtained by recording a series of 
time-dependent observations. TS covers a broad range of appli-
cations, such as investigation of market prices, prediction of 

epidemic spread, speech signal processing, electrocardiogram 
(ECG) investigation, understanding the brightness of a target 
star, manufacturing, and weather forecasting [18, 42, 47, 48, 
82]. Time Series Classification (TSC) is an important part of 
TS data mining that has been used in many areas. For example, 
in medical science, classification of TS datasets generated from 
Electrocardiogram (ECG) data has been used for heart disease 
diagnosis [59, 73], and Electroencephalogram (EEG) signal 
data are used as a primary tool for seizure onset detection [3]. 
TSC has been used for different applications, such as activity 
recognition [2, 57, 69]; and in industry, classification of TS 
generated from different sensors such as gas pressure sensors, 
and thermometers play important roles in industrial control 
processes [47, 48].

Deep learning (DL) algorithms have exhibited impressive 
capabilities in image processing and big data analysis [61, 
70]. DL uses several layers of processing elements to extract 
high-level abstraction from input data. One of the most popu-
lar approaches in DL is the Convolutional Neural Network 
(CNN). CNN is inspired by biological visual systems and has 
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been used in various machine vision tasks [20, 40, 42, 65, 72]. 
The CNN has gained much interest and popularity due to its 
capabilities of processing raw data, eliminating the require-
ment to pre-process data using feature extraction methods. 
Indeed, the feature extraction property of convolutional layers, 
and the powerful training methods of the CNN, are reasons for 
the high performance of CNNs on image classification. CNNs 
have been widely used in computer vision tasks [16, 33], object 
detection [35], bioinformatics [54], economics [33], and natu-
ral language processing [75].

The focus of deep CNNs has mainly been on image process-
ing, and the application of CNNs for TS data is only now start-
ing to emerge [4]. TS datasets have different characteristics 
compared to images, and therefore, specific CNN structures 
are required to optimally process such data [47, 48].

Deep CNNs usually have numerous learning parameters 
and consequently need large training datasets. Some TS tasks, 
such as EEG classification, usually do not have large volumes 
of data for training deep learning algorithms with good gen-
eralizing ability. Yannick et al. [78] found that many authors 
who adopt deep learning methods for EEG processing have 
suggested that more training data would improve the perfor-
mance of their deep models. Additionally, the number of train-
ing data is important when intra-subject models are used. In 
intra-subject models, the data of a single subject are used to 
train the model related to the subject. The data of intra-subject 
models have less variability which can lead to high perfor-
mance [78]. However, in intra-subject models, each model is 
trained with a limited number of training samples, correspond-
ing to a single subject, which often contains a small number 
of signal recordings. This need for a large training sample set 
poses a specific problem for intra-subject situations [46, 60]. 
However, in general, there are many application areas where 
the collection of large training datasets may not be feasible. 
For example, in medical situations where data are collected 
in hospitals from patients with epilepsy, it may be difficult 
to collect a high number of training samples from a specific 
patient. Collecting such data could include years of recordings 
collected from different subjects with a specific disease [78].

Moreover, a deep CNN usually uses a supervised learning 
approach that requires labeled data, and labeling is a time-con-
suming task, particularly for large datasets. Therefore, there is 
a need for new techniques that can be used to train deep neural 
networks with a relatively small number of training samples. 
Liu et al. [49] have highlighted that designing deep learning 
models to learn from fewer training samples will have a sig-
nificate effect on the future progress of deep learning methods.

In this paper, inspired by the intermediate concept of the 
brain [43], intermediate outputs are constructed to control 
learning in hidden layers of a deep learning method to improve 

the performance of the method. It is proposed to have new 
intermediate outputs extracted from different hidden layers 
instead of having a single output to control weight adjustment 
in the hidden layers during training. Intermediate targets which 
are different from the main target are used as labels to train 
the intermediate outputs. The intermediate targets control the 
creation of features in the hidden layers of deep learning meth-
ods to generate more informative features in hidden layers. 
Consequently, they improve accuracy of the deep learning. 
Additionally, the proposed CNN artificially increases the num-
ber of training instances using the original training samples. 
The proposed CNN-TS approach converts a classification task 
with original training samples to a new (but equivalent) clas-
sification task that contains two classes with a high number 
of training instances. The proposed method receives two TS 
as inputs, and it extracts features from the two applied inputs 
using intermediate outputs and subtracts the features to meas-
ure the distance of two TS. Distance-based methods are well-
known methods in classical TSC but have not been explored 
in detail in the deep learning domain.

The structure of the paper is as follows. In the section 
“Related Works” a brief review of TSC methods is presented. 
The proposed method, CNN-TS, is described in the section 
“Proposed Method”. Simulation results are demonstrated in 
the section “Results” before the conclusion in the section “Dis-
cussion and Conclusion”.

Related Works

Time Series Classification

The high-dimensional and ordered properties of TS data and 
the redundancy in TS resulting from their highly autocor-
related properties make TSC a challenging task [46]. TSC 
requires machine-learning methods that are compatible with 
the characteristics of TS to process a sequence of observations 
following each other in time [46]. There exist different meth-
ods to classify TS data, which can be summarized into three 
main categories: model-based, feature-based, and distance-
based techniques [37, 76, 82].

In model-based classification methods, a collection of TS 
data is used to build a model. Usually, a model is built for each 
class using the TS belonging to that class. Then the class of an 
unknown data sample is determined by each model (i.e., built 
for each class) to evaluate which is the best fit for the unknown 
data sample [37, 76]. For example, the Autoregressive model 
is a model-based method that is used for TSC. In Autoregres-
sive models, it is assumed that the TS satisfies the stationary 
assumption, which cannot be followed in every situation [82]. 
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The Markov Model (MM) and the Hidden Markov Model 
(HMM) are two other model-based methods which are used 
for non-stationarity TS [5].

Feature-based techniques are commonly used in classical 
TSC approaches to reduce the dimensionality of samples in TS 
data using different feature extraction methods. Simple statisti-
cal methods such as mean and variance, or more complicated 
methods such as spectral feature extraction methods can be 
used in the feature-based techniques [46]. Discrete Fourier 
Transform and Discrete Wavelet Transform (DWT) are two 
examples of spectral feature extraction methods. The spectral 
methods usually transform the time domain into the frequency 
domain and take a number of low-frequency harmonics that 
contain most of the TS energy. Eigenvalue methods, such as 
Principal Component Analysis (PCA) and Singular Value 
Decomposition (SVD), are other dimensionality reduction 
methods that can be applied to TS; these usually have better 
performance compared to spectral methods as they are cal-
culated in an optimal way. However, they are not suitable for 
large datasets [37].

In distance-based classification methods, distances between 
TS are measured, and a method such as k-Nearest Neighbors 
(k-NN) is used to classify an unknown sample [46]. The dis-
tances between an unknown sample and the training samples 
are calculated and the unknown sample is classified based on 
its distances from the training samples [7]. Euclidean distance 
and a Dynamic Time Warping distance (DTW) have also been 
successfully used with one nearest-neighbor classifier for TSC 
[34]. DTW has been shown to be robust to TS variation gener-
ated by translations or dilations and it is considered a strong 
solution for TS distance measurement. DTW performs a local 
comparison instead of measuring similarity by considering the 
high-level structure in a long TS [7].

In addition to the above-mentioned k-NN distance-based 
classification method, the distance features method for TSC 
is another main distance-based TSC. In distance features 
method, new representations of TSs are created using the dis-
tance between TSs. In the global distance features method, 
the distances between a time series and other time series in 
the training data are calculated, for the full length of time 
series, to extract global distance features, which are then used 
as a feature vector to represent the time series. This learning 
method is from a general learning approach which is called 
learning in dissimilarity space [10, 62]. Gudmundsson et al. 
[25] have used two distance measure methods based on DTW 
to create global distance features. Then, an SVM model is used 
to classify the global features. Kate [36] has used different 
distance measures including DTW and Euclidian Distance 
(ED) to construct global distance features to be classified by 
SVM. Giusti et al.’s [22] generalized Kate’s [36] approach 
by extending the distance features method to other domains, 
such as frequency, which is different from the time domain in 

the previous global distance feature method. The computa-
tion cost of the global distance feature method is a significant 
drawback of the method. A high number of training samples 
and consequently a high number of pairs lead to a large input 
dimensions. Jain and Spiegel [32] proposed to use Principal 
Component Analysis (PCA) to reduce the dimensionality of 
global distance features created using DTW method to be clas-
sified by SVM. Kenji et al. [38] reduce the computation cost 
by calculating the distance between a time series and n subset 
of time series as prototypes out of the total time series. They 
consider the prototype selection as a feature selection method.

Local Distance Features (LDFs) are used as another 
sub-group of distance features method for TSC [1]. In LDF 
methods, the distance between some local patterns is calcu-
lated. Ye and Keogh [79] have proposed an important LDF 
method where sub sequences of time series called shapelets 
are selected to represent different classes. Specific shapes in 
time series, i.e., specific subsequence of time series, can be 
determined by experts and they can be used to identify the 
class of the time series. The original shapelets method [79] 
enumerates all possible subsequences of time series to find 
the appropriate shapelets; this has a high computation cost. 
Consequently, other works have been carried out to reduce the 
computational cost of the shapelets method [28, 56, 64, 80], 
and to learn appropriate shapelets [23]. Hills et al. [29] pro-
posed a method for finding the most discriminative shapelets. 
Then, a vector of feature matrices is constructed by the dis-
tance between each time series and the selected shapelets. The 
minimum distance between a shapelet and all the subsequences 
of a time series with the size of the shapelet is considered as 
the distance between the time series and the shapelet. Li and 
Lin [44] have used an evolutionary method to find shapelets 
called Separating References (SRs) that effectively separate 
different classes. The distance between the SRs and the series 
from different classes are such features that can separate the 
classes with large margins. Despite the research summarized 
above, there remains room for applying distance features 
approaches to deep learning neural networks for TSC.

Deep Neural Networks for Time Series Classification

Classical feature-based methods for TSC do feature extrac-
tion and classification separately, and their performance relies 
on the quality of the extracted features. There is no specific 
method for extracting high-quality features for different TS, 
and different tasks need particular expertise to extract appro-
priate features [46]. However, a CNN can merge feature extrac-
tion and classification into a single process and the network is 
trained to extract appropriate features to improve the network’s 
performance. For instance, Lin et al. [46] proposed an end-to-
end deep learning structure called Group-Constrained Con-
volutional Recurrent Neural Network (GCRNN) for TSC. A 
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network of convolutional layers is used to extract features from 
the input TS. The extracted features are input to a recurrent net-
work to capture the temporal characteristics of TS. The output 
of the recurrent network is fed to a fully connected network 
with sparse group lasso regularization.

Long Short-Term Memory (LSTM) is a recurrent neural 
network that is designed for analyzing TS. LSTM requires 
more computing resources than CNN, and training an LSTM 
is more computationally expensive than training a CNN. Addi-
tionally, recent research has shown that certain convolutional 
architectures for different applications, such as audio synthesis, 
machine translation, and skeleton-based action prediction, can 
reach state-of-the-art accuracies [15, 17, 19, 21, 48, 58]. For 
instance, Liu et al. [77] have proposed a CNN for fault diagno-
sis by proposing a dislocate layer at the input level. Their pro-
posed layer extracts windows of TS in different intervals of an 
original signal. Liu et al.’s [77] experimental results have shown 
that their proposed CNN-based method has good performance 
in such industrial applications.

The end-to-end Multi-scale Convolutional Neural Network 
(MCNN) [13] applies different transformations using down-
sampling transformation in the time domain; additionally, it 
performs spectral transformation in the frequency domain on 
an input signal. Then, different convolutional layers are used 
to extract high-level features from the original input and the 
transformed versions of the input. The extracted features are 
fed to a fully connected layer, and then, a Softmax output layer 
is used to classify the input.

Liu et al. [47, 48] proposed a deep learning method called 
Multivariate Convolutional Neural Network (MVCNN) that 
considers the multivariate properties of TS data. They utilized 
a 1 × 1 convolution filter for layers that are close to the input 
layer to extract features that specifically come from each vari-
ant. However, the shared filter among different variants can 
mix the data from different sources during training.

The main property of the above-mentioned methods in 
this section is the use of a CNN’s ability for automatic feature 
extraction, and for this reason, they can be considered as fea-
ture-based techniques for TSC using the deep learning method.

In model-based classifiers or generative models, the first 
goal is to find a suitable representation of TS before training a 
classifier [17, 41]. In a model-based method, an unsupervised 
method is often used to model the TS. For example, some 
deep learning methods used stacked denoising auto-encoders 
(SDAEs) to model input signals [8, 30]. RNN auto-encoders 
have also been used to generate a representative TS, and then, 

a classifier such as SVM was used for classification [52, 53, 
63]. Echo State Networks (ESNs) project the input TS inside 
a reservoir of a recurrent neural network to reconstruct a rep-
resentation of the input TS, and then, the learned representa-
tion of input TS is used for classification [6, 9, 12, 51]. Anto-
niades et al. [3] have proposed an Asymmetric–Symmetric 
Autoencoder (ASAE) to map a scalp EEG to an intracranial 
EEG (iEEG), since recording an iEEG is an invasive method 
to record the brain activity and is also expensive to imple-
ment. The model is used for the classification of Intracranial 
Epileptic Discharges (IEDs) and non-IED. Wang et al. [68] 
and Mittelman [55] have designed deep neural networks that 
reconstruct a multivariate TS using a deconvolutional opera-
tion followed by an upsampling method.

In summary, the literature shows that there exist several 
deep learning methods to extract features and to classify TS. 
These methods, like feature-based methods in classical TSC, 
are focused on features that are extracted by a number of con-
volution layers. Additionally, the literature review revealed that 
there exist a considerable number of deep learning methods 
that classify TS using model-based techniques. Although dis-
tance-based classification of TS data is thoroughly investigated 
in traditional TSC methods, distance-based methods have not 
been investigated in the deep learning field as much as they 
have been studied in classical methods for classification of TS. 
The review shows that it would be useful to design deep learn-
ing methods that are based on the principle of distance-based 
classification methods. This paper proposes a CNN that takes 
as input a pair of TS, evaluates their distance, and predicts 
whether these two TS are close enough to be in the same class. 
The ability of the proposed CNN to take two TS as inputs 
increases the number of different instances that are available to 
train the proposed network. The proposed method is described 
in detail in “Time Series Classification”.

Proposed Method

In this section, a technique to synthetically increase the num-
ber of training instances and create an extended dataset is first 
described. Then, a CNN called CNN-TS is proposed to classify 
the extended TS data. The structure of the proposed CNN is 
designed to be compatible with the extended dataset.
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A Method for Synthetically Increasing the Number 
of Training Samples

Suppose a training dataset is X = {
(

x1, c1
)

, ...,
(

xN , cN
)

} , 
where xi is a p-dimensional input vector, i.e., xi ∈ Rp , and 
ci is the output corresponding to xi , and ci ∈ {1, 2,… ,K} , 
where K is the total number of classes. xi contains p sequen-
tial elements of a TS. N is the number of training samples in 
the dataset. The training goal is to fit a classifier, C(x) , using 
training data. The trained classifier can then be used to find 
the class labels of unseen testing data samples.

Different permutations with replacement of two samples 
from the original dataset, X , are picked to construct a new 
training dataset called Xn . Each instance from the new train-
ing set, Xn , contains two samples from the original dataset, 
X . Therefore, the new dataset has T = PR(N, r = 2) = Nr

=N2 training instances, where PR stands for Permutations 
with Replacement, N is the number of samples in the original 
dataset, and r = 2 is the number of samples that are selected. 
Therefore, the newly constructed dataset has a higher number 
of training instances, Nr compared to N , which is suitable for 
a deep neural network since it needs a high number of training 
samples.

The structure of a constructed training dataset is shown in 
(1)

where X̃n consists of several data arrangements denoted as 
(

xi, xj, ci, cj
)

 , where xi and xj , are two training samples from 
the original dataset, X , along with ci and cj which are the 
labels corresponding to each input, respectively. The two 
inputs, xi and xj , within an arrangement could belong to the 
same class or they could belong to two different classes. A 
third label, cij , is constructed based on this arrangement, and 
it shows whether xi and xj belong to the same class. The new 
training set is as follows:

where

(1)

X̃n =
{(

x1, x1, c1, c1
)

,
(

x1, x2, c1, c2
)

…
(

x2, x1, c2, c1
)

,
(

x2, x2, c2, c2
)

…
(

xN , x1, cN , c1
)

,
(

xN , x2, cN , c2
)

…
(

xN , xN , cN , cN
)}

,

(2)

Xn =
{(

x1, x1, c1, c1, c11
)

,
(

x1, x2, c1, c2, c12
)

…
(

x2, x1, c2, c1, c21
)

,
(

x2, x2, c2, c2, c22
)

…
(

xN , x1, cN , c1, cN1
)

,
(

xN , x2, cN , c2, cN2
)

…
(

xN , xN , cN , cN , cNN
)}

,

Therefore, a new binary classification task emerges 
from the original multi-class classification task. In the 
new training set shown in (2) each training instance, i.e., 
(

xi, xj, ci, cj, cij
)

 , includes: the first sample, xi , and the second 
sample, xj , and their corresponding labels, ci andcj , from 
the original dataset, X . Additionally, each training instance 
contains the fifth element, cij , which holds a binary value, 1 
if xi and xj belong to the same class and 0 otherwise. Note 
that in this paper, ‘sample’ is used to refer to each item in the 
original dataset, i.e., X , and ‘instance’ is used to refer to each 
item in the newly constructed dataset, i.e., Xn . A figure-based 
description of the permutation on the input samples used 

(3)cij =

{

1, ci = cj
0, ci ≠ cj

i, j = 1,… ,N.

.

.

.

.

.

.

.

.

.

.

.

.

( , )

( , )

.

.

.
( , )

( , )

( , )

.

.

.
( , )

.

.

.

( , )

( , )

.

.

.
( , )

Fig. 1   A figure-based description of the permutation on the input 
samples used to construct the new large data described in (2)
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to construct the new large data described in (2) is shown in 
Fig. 1.

The method increases the number of training samples by 
N2 training instances that are generated by selecting 2 sam-
ples from an original training dataset of N samples but may 
excessively boost the number of training data if N is large. 
When N grows, the number of samples for the proposed 
method grows by the power of 2, i.e., N2 . Given the impact 
of N2 , an original training dataset with a high number of 
training samples could increase the number of generated 
training instances substantially, and not all the newly gen-
erated training instances may be required. To control the 
number of generated training instances, an under-sampling 
method can be used to control the number of newly gener-
ated instances. Thus, instead of selecting two samples from 
all the original training samples, a subset of representative 
samples that has similar characteristics as the original sam-
ples are selected using the under-sampling technique pro-
posed by Zhang and Mani [81]. This approach controls the 
number of generated training instances, especially when the 
original training dataset has a high number of training sam-
ples. It helps to continue the learning for higher numbers of 
training epochs in shorter time duration, because of a lower 
number of training instances. If the number of representative 
samples is M which is smaller than N, then the total number 
of new instances being generated for the proposed method is 
N ×M < N2 . The proposed method can increase the number 
of training instances intensively for small data by setting a 
high value for M , while providing a smaller increase in the 
number of training instances for datasets that already have 
a high number of training samples, by setting M to a small 
value.

Proposed Method for Time Series Classification 
Using Synthetically Extended Training Samples

In this section, a structure for CNN is designed to be trained 
on the new training set, Xn , which contains a high number 
of training instances. Then, proposed intermediate targets are 
described. The proposed network has two inputs, In1 and In2, 
and it accepts two training samples, xi and xj which are in 
each instance of Xn , i.e., 

(

xi, xj, ci, cj, cij
)

 . The structure of the 
proposed deep neural network is shown in Fig. 2. The network 
compares the two inputs, In1 and In2 , and returns a main out-
put, i.e., Om . The main output, i.e., Om, corresponds to label cij.

Block 1 and Block 2 in the CNN network shown in Fig. 2 
are composed of a number of layers of neurons including con-
volutional layers, and the blocks extract high-level features 
from pairs of TS inputs. The extracted features are subtracted 
to make a set of features that reflect the distance of the two 
inputs to assist the network to make an accurate comparison 
between the two inputs.

Then, the extracted features are processed by the next three 
components (Block 3, Block 4, and Global Average Pooling) 
to generate the main output, Om . The network generates the 
main output based on the comparison of the two inputs. The 
main output, Om , shows whether the two applied inputs belong 
to the same class.

The structure inside each block used in the previous net-
work (see Fig. 2) is shown in Fig. 3. The structure is inspired 
by ResNet (deep Residual Network) [27] blocks. ResNet is a 
deep CNN that uses shortcut connections in its blocks, which 
are called residual blocks. The shortcut connections help the 
gradient flow directly to the bottom layers. ResNet [27] is a 
well-known deep structure for CNN and it has achieved state-
of-the-art results in image processing tasks. Note that the net-
work shown in Fig. 2, which has been designed to be trained on 
the increased number of training instances in Xn by accepting 
two inputs, is called the base network. The base network does 
not have the proposed intermediate targets which are described 
in the next section. The structure of the residual blocks which 
are used in this paper is shown in Fig. 3. The main branch 
is composed of three pairs of a 1-dimensional convolutional 

Block 2 

 

Block 4 

Block 1 

  

Subtraction 

Block 3 

Global Average 

Pooling 

Fig. 2   The structure of the base deep neural network which is trained 
on the new training dataset which uses the synthetically increased 
training samples. The structure of Blocks 1–4 is shown in Fig. 3. The 
base network does not have intermediate targets
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layer (1D-Conv) coupled with batch normalization. The out-
puts of the first two pairs are passed through ReLU (Rectified 
Linear Unit) activation function, as shown in Fig. 3. The short-
cut connection on the right side of Fig. 3 comprises a pair of 
1D-Conv and a batch normalization layer. The outputs of the 
main branch and the shortcut connection are added. The results 
are passed through an ReLU activation function to make the 
output of the block.

CNN‑TS: Proposed Intermediate Target Concept for TSC 
Using CNN

Convolutional neural networks (CNNs) are end-to-end learn-
ing machines. During the learning process on a usual CNN, an 
input is applied to the first end, and a label at the other end is 
used to calculate loss and to tune the learning parameters. Usu-
ally, in CNN, inherent intermediate representation is gener-
ated without control and observation. However, human visual 
systems work based on perceptual organization. The process 
of extraction of low-level features in the intermediate level of 
the vision system has been referred by different names, such as 
perceptual organization, or feature grouping [66]. Determining 
how emerging low-level features in the intermediate levels of 
vision systems leading to perceptual organization remains a 

challenging problem in vision research. Perceptual organiza-
tion is not generated randomly and it follows some rules [43]. 
In this work, applying controls on the intermediate features in 
a CNN can improve the processing ability of the CNN while 
making it similar to its natural counterpart. In this work, the 
proposed method is used for TS processing.

In this paper, in addition to the method to increase the 
number of training instances described in “Time Series 
Classification”.A, intermediate targets are constructed to 
improve the performance of CNN for TSC. The intermediate 
targets are used to train hidden layers of the CNN. The original 
CNN without intermediate targets shown in Fig. 2 is used as 
a base network, while the concept of “intermediate targets” is 
used to design a novel CNN structure for classification of TS, 
which is called CNN-TS.

The proposed network has two intermediate outputs, which 
are shown by O1 and O2 in Fig. 4. The two intermediate out-
puts, i.e., O1 and O2 , are used to guide the training of the layers 
in Block 1 and Block 2, respectively. The labels of the training 
samples that are applied to In1 are used for O1 . Therefore, the 
features generated in the output of Block1 are controlled by the 
label of In1 , and they contain information about the label of In1.

On the other hand, the labels of the input samples which are 
applied to In2 are used for O2. Therefore, the features gener-
ated at the output of Block 2 are affected by the label of In2 , 
and generate features that contain information about label of 
In2 . The output features of Block 1 and Block 2 that reflect 
the labels of the two samples applied to the two inputs are 
subtracted. The subtracted features which reflect the distance 
of the two applied inputs are processed by Block 3 and Block 
4 and Global Average Pooling to generate the main output Om , 
and then, the main output is trained to evaluate whether the two 
inputs are from the same class or not.

When using deep neural networks for TSC where there are a 
high number of layers in the network, the error back propagated 
from the final output of the network should travel through a high 
number of layers to reach the input layer, and this could vanish the 
propagated error. Consequently, the training of the layers far from 
the outputs was not effective as it is expected. Using the intermedi-
ate outputs helps the learning algorithm to control the errors for 
the intermediate layers and creates more accurate backpropagated 
errors to train the network.

Training the Proposed CNN‑TS with Class‑Related 
Coefficients

In the proposed CNN-TS, the inputs are first applied to their cor-
responding CNN layer. The CNN layer maps an input to a feature 
map with shared weights called a kernel, i.e., W . In the lth layer, 
there are a number of feature maps, and (4) calculates the output 
of the ith feature map in the lth layer, yl

i

1D-Conv: Kernel size=8 

1D-Conv: Kernel size=5 

Batch Normalization 

Batch Normalization 

1D-Conv: Kernel size = 3 

Batch Normalization 

1D-Conv: Kernel size =1 

Batch Normalization 

ReLU 

ReLU 

+ 
ReLU 

Fig. 3   The structure of each block used in this research
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where wl
i,j

 is the convolutional kernel used to map the jth 
feature map in the (l − 1)th layer to the ith feature map in the 
next layer (the lth layer), bl

i
 is the bias related to the ith fea-

ture map in the lth layer. The ‘*’ is the convolutional opera-
tor sign. As shown in Fig. 3, there is a batch normalization 
layer after each convolution layer. The batch normalization 
layer normalizes the output of its previous layer to maintain 
the mean and standard deviation (Std.) close to 0 and 1, 
respectively.

After a batch normalization, ReLU function is used to gener-
ate the activation for the next layer (see Fig. 3). The activation 
is passed through different 1D-Conv, Batch normalization lay-
ers, and ReLU functions before reaching the three outputs of the 
proposed network (see Fig. 4). Figure 4 shows that before each 
output layer, there is a Global Average Pooling (GAP) layer [23]. 

(4)yl
i
=
∑

j

(wl

i,j
∗ yl−1

j
+ bl

i
),

In the GAP layer, the average of each feature map is calculated to 
represent the feature map to reduce the number of features. After 
this operation, the number of outputs returned by the GAP layer 
is reduced to the number of feature maps in the previous layer.

Three logistic regression models are placed on the top of the 
previous layers to construct three categorical outputs (see Fig. 4). 
A SoftMax function is used for the kth output as shown in (5)

where Ok is the output vector of the kth output of the pro-
posed network, and k ∈ {1, 2,m} as the network has three 
outputs (see Fig. 4). The number of elements in Ok is equal 
to the number of classes for the kth output. For instance, the 
main output has two classes, and Ok=m has two elements. GK 
is the output of the GAP layer before the kth output layer, Wk 
is the weight matrix that connects the output of the previous 
corresponding GAP layer to the kth output layer, and bk is 
the bias related to the kth output layer.

Adam (A Method for Stochastic Optimization [39]) for back-
propagation learning is used to train the proposed CNN. Cate-
gorical cross-entropy is used to calculate loss function to train the 
network. Three loss functions corresponding to the three outputs 
of the proposed method are used to generate the total value of the 
loss of the network, i.e., L

where �k is a coefficient that weights the effect of the loss 
related to the kth output on the total value of the loss. 
As Ok=m is the main output, �k=m = 1 and the coefficients 
related to the two intermediate targets are set to 0.5, i.e., 
�1 = �2 = 0.5 , which are half the value for the main output. 
Lk is categorical cross-entropy loss related to the kth output.

The increased number of instances generated from the 
original data results in an imbalanced dataset, in Om . Addi-
tionally, real-world data are more likely to be imbalanced. 
Accordingly, class-related coefficients are used in the loss 
function of each output to improve the ability of the pro-
posed method to process imbalanced data. Equation (7) 
shows the loss function of the kth output for the ith input 
instance, i.e., Li

k
 , that includes the class-related coefficient

where Nk is the number of classes for the kth output, tc,i
k

 is 
the cth element of the label vector corresponding to the kth 
output for the ith input instance, zc,i

k
 is the cth element of the 

predicted output vector related to the kth output for the ith 
input instance, and Ci

k
 is a class-related coefficient related 

to the class of the ith input instance in the kth output. Lk 

(5)Ok = sof tmax
(

Wk
(

Gk
)T

+ bk
)

,

(6)L =
∑

k∈{1,2,m}

�kLk,

(7)Li
k
= −Ci

k

Nk
∑

c=1

t
c,i

k
log

(

z
c,i

k

)

,

Block 2 

Block 5 

 

 

 

Block 4 

Block 6 

Block 1 

  

Subtraction 

Block 3 

Global Average 

Pooling 

Global Average 

Pooling 
 

Global Average 

Pooling 
 

Fig. 4   The proposed method with intermediate targets. The labels 
related to the two inputs applied to In1 and In2 are used as labels for 
the two intermediate targets, O1 and O2, respectively. The main tar-
get shows if the two inputs are from the same class or from different 
classes



SN Computer Science           (2023) 4:832 	 Page 9 of 24    832 

SN Computer Science

for each batch of data is calculated by summing Li
k
 over the 

number of samples in the batch of training instances.
The class-related coefficient has a high value when there 

are a low number of training samples in its corresponding 
class. The high value for a minority class causes a high loss 
value generated for an error related to the minority class, 
and consequently, the proposed method puts more attention 
on the class with a low number of instances. The class coef-
ficient, Ci

k
 , is calculated using (8)

where T  is the total number of training instances, and Ti
k
 is 

the number of training instances out of the total number of 
training instances that have the same class as the ith input 
instance for the kth output. All the samples that belong to 
the same class according to the label for the kth output have 
the same class-related coefficient.

Note that selecting pairs of inputs from different classes 
to find if they are or they are not from the same class could 
result in an imbalanced classification task. Suppose that there 
are Nc classes in the original dataset with equal numbers of 
training samples in different classes, i.e., t1 = ⋯ = tNc

= t 
where ti is the number of training samples in the ith class, 
and the total number of training samples in the original train-
ing set is T = t1 +⋯ + tNc

 . In this case, the total number of 
training instances for the generated data corresponding to 
the main output is Tt = T × T = T2 . The number of pairs of 
training samples that are from the same class can be calcu-
lated using (9)

where Ts is the number of pairs of inputs that are from the 
same class. On the other hand, the number of pairs of inputs 
that are from different classes, i.e., Td , can be calculated 
using (10)

The two different values for the number of instances in 
the two classes related to the main output, i.e., Ts and Td , 
imply that the resulted classification task is an imbalanced 
classification problem when Nc>2. When the number of 
classes in the original data is increased, i.e., Nc ≫ 2 , the 
level of imbalance will be increased. The proposed method 
used (7) to overcome the imbalance in the generated data.

Classifying a Test Input Based on the Main Output

During testing, a similar data structure described by (1) and 
(2) for training will be used. A test sample, xt

i
 , is applying 

(8)Ci
k
=

Ti
k

T
,

(9)Ts = Nc(t × t) = Nct
2,

(10)
Td = Nc(t × (T − t)) = Nc(tT − t2) = Nc(t(Nct) − t2) =

(

Nc − 1
)

Nct
2
.

to the first input, i.e., Ini , and the representative subset of 
training samples that are selected to be applied to the second 
input for training the network is used. While a test sample is 
applied to the first input, each of the training samples in the 
representative subset is applied to the second input and the 
main output of the network predicts if the testing sample, xt

i
 , 

is from the class of a sample from the representative subset. 
Whenever it is predicted that an applied sample (from rep-
resentative subset of the training data) has the same class 
as the testing sample, the class of the test sample will be 
predicted based on the class of the sample from the repre-
sentative subset of training data.

A subset of representative samples from the training dataset 
was selected using an under-sampling called NearMiss method 
[31, 81]. Two samples from each class were selected using the 
method. The number of samples in the representative subset 
is set to be small, i.e., 2 samples from each class, to prevent 
an intense increase in the number of input pairs. To obtain the 
results for the proposed method in Tables 2, 3, and 4, each test-
ing sample is compared with the samples in the representative 
subset. Then, using the final output of the proposed method, it 
is predicted that the applied test sample has the same class label 
as one of the samples in the subset. If the applied test sample 
is predicted to have a similar class with more than one sample 
from the subset, it is assigned based on the vote appointed by 
the samples from the subset that is predicted to have the same 
class as the applied test input.

During testing, a test input is applied to In1 (see Fig. 4), and 
N training samples from the original training dataset, i.e., X , are 
applied to In2 one by one, and the network predicts whether the 
test data are from the same class as each training sample which 
is applied to In2 . Therefore, the number of predicted main out-
puts, Om , for a testing input is equal to the number of the training 
data applied to In2 , i.e., N . The training samples out of the N 
samples applied to In2 that are predicted to have the same class 
as the testing sample are considered to decide about the label 
of the testing input. Suppose that Ns training samples out of the 
N samples are predicted to have the same class as the testing 
input. The Ns training samples may belong to different classes 
because of the prediction error. The testing input is assigned to 
a class according to the maximum voting over the label of the 
Ns training samples.

Results

The experimental results are presented in this section. First, 
the datasets, which are used in the experiments, are introduced. 
Then, the proposed method is compared with the base method, 
as shown in Fig. 2. In the subsection, the effect of the inter-
mediate targets is investigated. In the third part of this sec-
tion, the proposed method is compared to other state-of-the-art 
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methods. Finally, the effect of the number of training samples 
is investigated.

Dataset

The experiments in this section are run on TS datasets obtained 
from the UCR Time series Classification Archive [14]. The 
characteristics of the datasets, which are used in the following 
experiments, are provided in Table 1. The first column of the 
table shows the type of TS. The name of each dataset is shown 
in the second column. Each dataset has a training set and a 
testing set, and the number of training and testing samples is 
shown in columns four and five, respectively. The number of 
classes in each dataset is shown in the fifth column. The length 
of TS in each dataset is shown in the last column of Table 1.

Comparison of CNN‑TS with the Base Deep Neural 
Network

Table 2 compares the accuracy of the final proposed method 
(Fig. 4) with the base network that does not have the interme-
diate output (Fig. 2). Note that the base method is essentially 
the standard approach, which is trained by a large set of training 
instances generated by the proposed approach, i.e., both methods 
are trained with the same number of training instances. In the fol-
lowing experiments, down-sampling is used to select 2 samples, 
i.e., M = 2 , from each class of a training dataset to construct new 
instances for the proposed network. For instance, Table 1 shows 

that the ‘InsectWingbeatSound’ [14] dataset contains 220 train-
ing samples. 2202 = 48, 400 different pairs of samples can be 
selected from the training dataset to be applied to the two inputs 
of the proposed network. However, if the number of instances 
for the second input is restricted to 22, the number of samples 
in the new dataset (composed of two inputs) is 220 × 22 = 4840 
which is 10 times smaller than the previous situation—hence, 
training can be performed by 10 times less computation cost. In 
this section, the effect of the intermediate targets is investigated 
on different TS datasets, and the results are shown in Table 2. 
The results show that in most datasets (17 out of 20), the pro-
posed method with intermediate targets has higher accuracy 
compared to when the intermediate targets are removed from 
the proposed structure. The proposed CNN-TS method achieved 
an average accuracy of 80.6%, outperforming the base method 
which achieved an average accuracy of 77.1%. The bold numbers 
in Table 2 show the largest values of Accuracy (A), precision 
(P), and recall (R) in each row. As shown in Table 2, intermedi-
ate targets have increased the classification accuracy by 22.40% 
on the ‘InlineSkate’ dataset, and from 91.67 to 97.37% on the 
‘ToeSegmentation1’ dataset.

The learning parameters of the hidden layers in Block 1 are 
affected by the O1 and Om during training. The error generated 
in O1 is backpropagated to Block 1 through Block 5. The inter-
mediate output O1 controls the output of Block1 (based on the 
labels provided for O1 ), and therefore, the intermediate output 
O1 keeps the features in Block 1 that contain information about 
the label of In1 . Similarly, the output O2 controls the features 

Table 1   Characteristic of Time 
series Datasets, i.e., the number 
of samples in the training and 
test data, the number of classes, 
and the length of time series in 
each dataset

a http://​www.​times​eries​class​ifica​tion.​com/​descr​iption.​php?​Datas​et=​Arrow​Head

Type Dataset # Train # Test # Class Length

TS Imagesa ArrowHead 36 175 3 251
Food spectrographs Beef 30 30 5 470
Sensor Car 60 60 4 577
ECG ECG200 100 100 2 96
Food spectrographs Ham 109 105 2 431
TS Images Herring 64 64 2 512
Sensor ItalyPowerDemand 67 1029 2 24
Sensor Lightning2 60 61 2 637
Sensor Lightning7 70 73 7 319
Sensor MoteStrain 20 1252 2 84
Motion ToeSegmentation1 40 228 2 277
Sensor Earthquakes 139 322 2 512
Motion Haptics 155 308 5 1092
Motion InlineSkate 100 550 7 1882
Sensor InsectWingbeatSound 220 1980 11 256
Simulated Mallat 55 2345 8 1024
Sensor CinC_ECG_torso 40 1380 4 1639
TS Images SwedishLeaf 500 625 15 128
TS Images FaceAll 560 1690 14 131
Sensor ChlorineConcentration 467 3840 3 166

http://www.timeseriesclassification.com/description.php?Dataset=ArrowHead
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generated by ‘Block 2’ to generate features that have informa-
tion about the label of the second input. This strategy helps the 
network make more accurate decisions on whether two inputs 
belong to the same class.

Comparison of CNN‑TS with Other Methods

In this section, the proposed method, CNN-TS, is compared 
with different methods. First, three classical machine-learning 
methods are trained on different time series data sets. The three 
methods are a linear Support Vector Machine (SVM) with a 
linear kernel, SVM with the Radial Basis Function (RBF) ker-
nel, and a Random Forest (RF) with 50 estimators. Raw time 
series data have high dimensionality and cannot be directly fit-
ted using classical machine-learning methods. Time-domain, 
frequency-domain, and time–frequency-domain features which 
are employed in [83] are extracted from each time series, and 
the three classical machine-learning methods are trained by the 
extracted features. Root mean square (RMS), Variance, the Maxi-
mum value, Skewness, Kurtosis, and Peak-to-Peak difference are 

six features in time domain that are utilized. Spectral Skewness, 
Kurtosis and power, which are calculated using the Fast Fourier 
transform (FFT), are the three frequency-domain features that 
are used in this research. Wavelet Energy is also used to extract a 
time–frequency-domain feature. The accuracies of these methods 
relative to the proposed method, when applied to various data-
sets obtained from the USR database, are shown in Table 3. The 
last row, i.e., ‘Wins’ row, in Table 3 shows the number of times 
each method reached the highest accuracy among the other meth-
ods. The proposed method has achieved the highest accuracy on 
18 datasets, followed by the SVM with linear Kernel method, 
which reached the highest accuracy on 2 datasets. The ‘Aver-
age’ row in Table 3 shows the mean value of accuracy achieved 
by each method across all datasets. The results show that, on 
average, the proposed CNN-TS achieved the highest accuracy, 
i.e., 80.6%, followed by the RF method which achieved an aver-
age accuracy of 59.5%, i.e., on average, the proposed CNN-TS 
approach achieves 21.1% higher accuracy compared the best 
results achieved among the three methods. Note that the proposed 
method was directly applied to raw time series data with a high 

Table 2   The effect of the 
intermediate targets on the 
proposed method

Accuracy (A), precision (P), and recall (R) for the proposed CNN-TS, and the Base DNN were reported
a With intermediate targets
b Without intermediate targets

Dataset Proposed CNN-TSa Base DNNb CNN-TS vs. 
Base DNN dif-
ference

A P R A P R dA

ArrowHead 79.4 0.827 0.827 76.0 0.820 0.810 3.4
Beef 90.0 0.920 0.920 87.0 0.910 0.900 3
Car 88.3 0.930 0.930 90.0 0.960 0.857 − 1.7
ECG200 90.0 0.880 0.880 85.0 0.890 0.870 5
Ham 77.1 0.793 0.793 73.3 0.760 0.760 3.8
Herring 53.1 0.452 0.452 46.9 0.470 0.470 6.2
ItalyPowerDemand 96.4 0.967 0.967 96.0 0.960 0.960 0.4
Lightning2 77.1 0.802 0.805 75.4 0.733 0.751 1.7
Lightning7 82.2 0.872 0.858 76.7 0.870 0.780 5.5
MoteStrain 89.4 0.924 0.916 83.4 0.903 0.897 6
ToeSegmentation1 97.4 0.957 0.955 91.7 0.800 0.770 5.7
Earthquakes 82.0 0.564 0.525 81.7 0.910 0.510 0.3
Haptics 47.7 0.428 0.397 45.8 0.470 0.460 1.9
InlineSkate 53.1 0.216 0.223 30.7 0.330 0.320 22.4
InsectWingbeatSound 62.5 0.641 0.641 60.7 0.640 0.640 1.8
Mallat 97.3 0.968 0.968 96.9 0.960 0.960 0.4
CinC_ECG_torso 93.3 0.940 0.933 95.4 0.960 0.960 − 2.1
SwedishLeaf 95.5 0.968 0.968 94.4 0.950 0.950 1.1
FaceAll 82.1 0.963 0.957 79.9 0.930 0.930 2.2
ChlorineConcentration 78.4 0.395 0.541 74.2 0.850 0.770 4.2
Average 80.6 0.770 0.773 77.1 0.804 0.767 3.4
Std. 15.3 0.234 0.227 18.3 0.187 0.191 3
Win 17 12 15 3 8 5
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dimension; however, the classical machine-learning methods 
used the features extracted from the specified feature extraction 
methods (because the dimension of the raw time series data is 
high, such approaches cannot directly be applied to the raw data).

In the next experiments, the proposed method is com-
pared with other methods that can directly be applied to raw 
data. Table 4 presents the results when applying the pro-
posed method and other methods to TS benchmark datasets. 
In Table 4, ‘MLP’ stands for Multi-Layer Perceptron (MLP) 
which is a traditional form of DNN. The MLP for TSC pro-
posed by Wang et al. [74] is used in the comparison. The MLP 
has 4 fully connected layers and a Softmax layer as the output 
layer of the network. ‘FCN’ stands for Fully Convolutional 
Neural Network (FCN) [50], and it is extended by Wang et al. 
[74] for TSC. FCNs do not have any pooling layers and contain 
5 layers. ‘ResNet’ is a deep Residual Network (ResNet) for 
TSC proposed in [74]. The ResNet has 11 layers and it is the 
deepest architecture used in this paper. The original ResNet 
[27] has achieved state-of-the-art results in image processing, 
and it is a well-known method.

‘Encoder’ is the Encoder network [67] with 5 layers include 
3 convolutional layers. Encoder is similar to FCNs [50]; how-
ever, it uses Parametric Rectified Linear Unit (PReLU) activa-
tion function where an additional parameter is added to enable 
learning of the slop of each function. Additionally, the Encoder 

network uses dropout regularization and max-pooling opera-
tion. MCNN is the Multi-scale Convolutional Neural Network 
(MCNN) [13] which comprises 4 layers. t-LeNet is the Time 
Le-Net [26] which has 4 layers. MCDCNN is a Multi-Channel 
Deep Convolutional Neural Network [84]. Time-CNN [17] 
has 3 layers, uses the mean-squared error loss function with a 
Fully Convolutional layer with sigmoid activation function in 
its final layer. Finally, ‘TWIESN’ is a Time Warping Invariant 
Echo State Network [71] with 3 layers.

Table 4 shows that the proposed method has reached the 
highest accuracy on 8 datasets, followed by the ResNet [74] 
which has reached the highest accuracy on 7 datasets. The 
results in Table 4 show that, on average, the proposed method 
has achieved the highest accuracy, i.e., 80.6%, followed by 
the ResNet method which achieved an average accuracy of 
79.0%. Table 4 also compares the Precision, and Recall of the 
proposed method and ResNet.

The critical difference diagram (CDD) used in [17] was imple-
mented to statistically compare all the classifiers over all the data 
sets. The code in https://​github.​com/​hfawaz/​cd-​diagr​am was used 
to do the statistic test. First, Friedman test was performed to reject 
a null hypothesis, i.e., there are no differences between the accura-
cies to depict the CDD. After the rejection of the null hypothesis, 
Wilcoxon–Holm method was used to perfume a post hoc analy-
sis. The result is reported in Fig. 5. The thick horizontal lines in 

Table 3   Comparison of the 
proposed CNN-TS method with 
three classical machine-learning 
methods

Dataset Proposed method SVM (linear) SVM (RBF) RF

A P R A P R A P R A P R

ArrowHead 79.4 0.827 0.827 53.1 54.9 51.9 54.3 58.0 52.9 64.0 65.3 63.9
Beef 90.0 0.920 0.920 40.0 44.8 40.0 36.7 34.3 36.7 30.0 9.3 0.0
Car 88.3 0.930 0.930 50.0 54.9 49.2 21.7 5.4 5.0 68.3 71.6 8.7
ECG200 90.0 0.880 0.880 76.0 75.7 70.3 70.0 67.7 63.2 80.0 80.3 75.3
Ham 77.1 0.793 0.793 61.0 63.7 60.2 54.3 54.9 53.5 58.1 58.1 57.9
Herring 53.1 0.452 0.452 59.4 29.7 50.0 59.4 29.7 50.0 64.1 62.7 59.4
ItalyPowerDemand 96.4 0.967 0.967 91.3 91.5 91.3 49.9 24.9 50.0 90.4 90.5 90.4
Lightning2 77.1 0.802 0.805 78.7 79.5 77.9 57.4 59.6 54.4 75.4 77.8 74.0
Lightning7 82.2 0.872 0.858 56.2 59.4 55.9 38.4 38.9 32.4 54.8 51.4 51.3
MoteStrain 89.4 0.924 0.916 81.0 81.4 80.4 74.8 75.6 73.8 78.0 77.9 77.8
ToeSegmentation1 97.4 0.957 0.955 72.4 73.2 71.8 54.0 53.7 53.7 64.5 64.5 64.5
Earthquakes 82.0 0.564 0.525 82.0 41.0 50.0 82.0 41.0 50.0 78.3 57.4 54.5
Haptics 47.7 0.428 0.397 41.2 43.8 41.2 29.9 24.1 28.8 37.0 37.9 36.6
InlineSkate 53.1 0.216 0.223 22.6 35.6 21.1 18.2 8.8 16.3 29.5 28.5 28.8
InsectWingbeatSound 62.5 0.641 0.641 17.2 18.4 17.2 13.7 7.4 13.7 13.9 3.8 3.9
Mallat 97.3 0.968 0.968 68.2 69.0 68.3 12.3 1.5 12.5 74.8 76.5 74.9
CinC_ECG_torso 93.3 0.940 0.933 52.4 55.3 52.4 42.8 32.0 42.9 55.9 60.5 55.9
SwedishLeaf 95.5 0.968 0.968 67.5 67.1 67.1 22.6 13.8 24.0 72.2 71.7 72.2
FaceAll 82.1 0.963 0.957 45.8 45.7 52.1 25.9 32.5 30.3 46.9 47.5 52.7
ChlorineConcentration 78.4 0.395 0.541 54.5 51.3 35.2 54.9 51.4 35.7 53.3 45.7 42.4
Average 80.6 0.770 0.773 58.5 56.8 55.2 43.6 35.8 40.0 59.5 58.4 57.2
Std. 15.33 0.234 0.227 18.95 18.2 18.5 20.1 21.3 16.6 19.3 19.4 18.8
Wins 18 15 16 2 2 1 1 1 0 1 2 3

https://github.com/hfawaz/cd-diagram
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Fig. 5 show different groups of classifiers whose accuracies are 
not significantly different.

The t-SNE visualization implemented in [11] is used to 
intuitively evaluate the effectiveness of the proposed method. 
The t-SNE visualization is applied to the O1 and Om output of 
the proposed method to find the separability of the method. 
Additionally, t_SNE visualization is applied to the output of 
the ResNet. The t-SNE visualizations for different data sets are 
reported in Figs. 6, 7, and Appendix 1.

Next, the computation time of the proposed method is com-
pared to ResNet, and the results are shown in Table 5. The 
number of training epochs and the required time duration for 
training both methods are shown in Table 5. The ‘Improvement’ 
column in Table 5 shows the difference between the time dura-
tion of ResNet and the proposed method, i.e., the time duration 
of ResNet is subtracted from the time duration of the proposed 
method. The last column ‘Times of Improvement’ in Table 5 
shows how many times the time duration of ResNet is higher than 
the time duration of the proposed method. ‘Times of Improve-
ment’ is obtained by dividing the time duration of ResNet by the 
time duration of the proposed method.

The results in Table 5 show that for 18 out of 20 datasets, the 
proposed method performs its learning in shorter time durations 
than ResNet. ResNet can be trained in a shorter time than the 
proposed method only for two datasets, i.e., ‘SwedishLeaf’ and 
‘FaceAll’ datasets. Note that these two datasets, ‘SwedishLeaf’ 
and ‘FaceAll’, have 15 and 14 classes, respectively, and thus con-
tain a relatively high number of classes compared to the other 
datasets (see Table 1). Therefore, there are 15 × 2 = 30 selec-
tions for the second input for ‘SwedishLeaf’ dataset. Note that 
two samples are selected from each class using the mentioned 
down-sampling described in “Time Series Classification”.A to 
represent the class. As the ‘SwedishLeaf’ dataset contains 500 
training samples, the new training dataset for the two inputs of 
the proposed network has 500 × 30 = 15,000 instances, which is 
a high number compared to the original training dataset that con-
tains 500 samples. The high number of available selections for the 
second input (which occurs due to the high number of classes in 
the dataset) increases the number of new training instances, and it 
consequently increases the training computation time. Therefore, 
the proposed method has a high training duration for datasets with 
a high number of classes.

Using the mentioned down-sampling can reduce the num-
ber of training samples and consequently reduce the training 

time. However, when the number of classes is increased, the 
reduction in the number of training samples is limited; because 
an appropriate number of training samples from each class is 
required. The high number of classes prevents a reduction in 
the number of generated training instances.

One method to further reduce the computation time for the 
proposed method is to reduce the number of selections for the 
second input from 30 to 15. To reach this aim, and thus to reduce 
the number of selections for the second input, instead of selecting 
two samples from each class, a single training sample will be 
selected from each class—this consequently reduces the number 
of instances from 1500 to 500 × 15 = 7500 which is the half of 
the previous one. Therefore, the computation time can also be 
reduced up to half. However, reducing the number of training 
samples might impact the model’s accuracy (see the “Investiga-
tion of the Effect of the Number of Input Samples”).

For 18 out of 20 datasets in Table 5, the proposed method 
performed the learning task in a shorter duration compared 
to ResNet. For instance, the proposed method has a reduc-
tion of 24,425.7 s and 23,112.9 s in learning time duration 
for ‘Mallat’ and ‘CinC_ECG_torso’ datasets, respectively, 
while the proposed method can reach a higher accuracy than 
ResNet on the datasets. In the last columns of Table 5, the 
results show that the proposed method can reach up to 46.9 
times faster processing time than ResNet. For instance, the 
training time duration of ResNet for ‘ItalyPowerDemand’ 
dataset is 2673.7 s which is 15.3 times higher than of the 
time duration required by the proposed method. The pro-
posed method only requires 175.0 s to reach an accuracy 
higher than the ResNet accuracy.

Investigation of the Effect of the Number of Input 
Samples

Deep CNNs usually have a high number of layers of neurons, and 
consequently, they have a high number of training parameters. 
The high number of training parameters needs a high number 
of training samples to train the neural network. The proposed 
method combines different training samples and generates a 
new training set with a high number of training samples, and 
it increases the ability of the proposed method to learn with a 
comparably low number of original training samples. In this sec-
tion, the ability of the proposed method is investigated when the 
number of training samples is reduced. In this simulation, the 

Fig. 5   CDD for comparing 
the accuracy of the proposed 
method with other learning 
methods on different datasets. 
Each thick line shows a group 
of methods that do not have 
significant differences in their 
accuracies
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number of training samples in the ‘CinC_ECG_torso’ dataset 
from the UCR data archive is reduced gradually, and then, the 
accuracy of the proposed method is obtained for different reduced 
numbers of training samples, i.e., the network is trained by the 
remainder of the training set. The number of training samples is 
reduced by 2, 4, 6, and 8. The first class in the ‘CinC_ECG_torso’ 
dataset has a small number of training samples (5 training sam-
ples), so it is kept unchanged and the training samples from the 
second class which has a higher number of training samples are 

reduced. The accuracy of the proposed method on the reduced 
number of training samples is then compared to the base method. 
Figure 8a shows that the accuracy of the base method is reduced 
when the number of removed training samples is increased, i.e., 
the number of remaining training samples is reduced. However, 
in comparison, the proposed method is relatively stable in accu-
racy values related to the reduced numbers of training samples 
when it is compared to the base method. The proposed method 
has 12.68% higher accuracy compared to the base method for 

Fig. 6   The t-SNE projection of a the raw data, b O
m

 output of the proposed method, c O1 output of the proposed method, and d the output of 
ResNet for ‘Beef’ data set
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the original dataset (‘# Reduced Samples = 0’) which contains all 
the training samples. The improvement of the proposed method 
is increased compared to the base method when the number of 
training samples is reduced. For instance, when the number of 
training samples is reduced from 40 to 32, the testing accuracy 
of the proposed method is 20.29% higher than the base method. 
The testing set in ‘CinC_ECG_torso’ contains 1380 samples. 

The proposed method can recognize 280 more testing instances 
correctly than the base method. The effect of the number of train-
ing samples is tested on other datasets and the results are shown 
in Fig. 8.

Fig. 7   The t-SNE projection of a the raw data, b O
m

 output of the proposed method, c O1 output of the proposed method, and d the output of 
ResNet for ‘Car’ data set
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Discussion and Conclusion

In this paper, a method (described in the section “A Method for 
Synthetically Increasing the Number of Training Samples”) is 
used to synthetically transform an initially labeled training dataset 
to improve the training process for time series classification. In 
particular, the method selects pairs of raw TS from the original 
training dataset. The higher number of available selections of two 
TS helps to increase the number of training instances. Therefore, 
the method increases the number of training instances by the 
power of two of the number of initial training samples. A deep 
CNN is a data-hungry method and it needs a high number of 
labeled training samples, and the proposed method makes more 
training data available for CNNs.

Then, a new CNN, called CNN-TS, is proposed to work with 
the increased number of training data. CNN-TS compares the 
two TS in each pair and predicts whether the two TS are from 
the same class. Moreover, the proposed CNN-TS benefits from 
intermediate targets which are set based on the new learning 
task. Two intermediate targets are set corresponding to the two 
TS which are applied as inputs of the proposed method. The 
intermediate targets supervise the intermediate features which 
are extracted from each input to increase the overall classifica-
tion accuracy of the proposed method. The intermediate targets 
use the label of their corresponding input to train the network.

The proposed method can be considered as a deep distance-
based TSC. In a classical distance-based TSC, a classification 
is performed based on the distance between a test sample and 
training samples. The main element in a classical distance-
based TSC is its distance measurement method. Measuring the 
distance between two TS is not a straight-forward task, because 
the method should be invariant against translation in the TS 
or it should be insensitive to the speed of performing similar 
tasks. In the classical method usually, the distance between 
two samples is calculated, and then, an analysis is performed 
on the measured distances to decide in which class a sample 
belongs. However, the proposed method, CNN-TS, automati-
cally evaluates the distance between two TS and performs the 
distance measurement and classification jointly in a network 
to increases its accuracy and to improve CNN’s abilities. In 
fact, the intermediate targets in the proposed method control the 
features extracted in the intermediate layers to reflect informa-
tion related to the labels of the applied inputs as the labels are 
available to the intermediate targets during training. Then, in 
the next layer, the intermediate features are subtracted to gen-
erate features that reflect the distance between the two inputs. 
In the following layers, the distance-related features are used 
to decide whether the two inputs are from the same class. The 
proposed method adjusts the learning parameters to learn the 
distance and classification in a CNN for TSC.

Table 5   Comparison of computation time, i.e., duration

Dataset Proposed method ResNet Improvement (sec.) Times of 
improvement

# Epochs Duration (sec.) # Epochs Duration (Sec.)

ArrowHead 294 298.5 1492 1375.9 1077.4 4.6
Beef 277 304.1 1442 795.5 491.4 2.6
Car 298 709.6 1442 1005.5 295.9 1.4
ECG200 291 185.4 1398 729.4 544.0 3.9
Ham 184 380.9 1405 1231.9 851.0 3.2
Herring 298 310.3 1323 1037.1 726.8 3.3
ItalyPowerDemand 231 175.0 1487 2673.7 2498.7 15.3
Lighting2 243 325.1 1405 1739.4 1414.4 5.4
Lighting7 226 536.4 1433 1297.5 761.0 2.4
MoteStrain 286 166.5 1442 7814.5 7648.0 46.9
ToeSegmentation1 280 262.4 1429 1832.0 1569.6 7.0
Earthquakes 178 498.3 1159 3245.0 2746.6 6.5
Haptics 299 2457.3 1329 5530.3 3073.0 2.3
InlineSkate 299 3729.1 1358 11,050.0 7320.9 3.0
InsectWingbeatSound 296 2100.7 1498 7113.3 5012.6 3.4
Mallat 293 1305.9 1490 25,731.6 24,425.7 19.7
CinC_ECG_torso 296 829.5 1439 23,942.4 23,112.9 28.9
SwedishLeaf 287 3893.3 1440 2693.1 − 1200.2 1.2
FaceAll 263 4165.2 1487 3975.3 − 189.8 0.7
ChlorineConcentration 293 905.5 1451 6409.7 5504.1 1.0
Average 270.6 1177.0 1417.5 5561.2 4384.2 8.43
Std. 37.15 1305.8 77.2 6991.9 6880.0 11.20
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Siamese neural networks have the ability to evaluate 
similarity between inputs [24]. A Siamese neural network 
learns to determine the probability of its applied pair of 
inputs belonging to the same class or different classes. The 
Siamese neural network proposed in [24] does not take into 
account the imbalance property which is generated as the 
result of selecting pairs of inputs from different classes. The 
severity of the imbalance will be increased when the number 
of classes is increased [see (9) and (10)]. Additionally, the 
method proposed in [24] does not use the extra knowledge 
that exists in the labels of each input in an applied pair of 
inputs to the network. However, the proposed method in this 
paper deals with the imbalance in the generated data using 
(7). Moreover, the proposed method in this paper has used 
the labels of inputs in each pair as intermediate targets to 
train hidden layers.

The proposed CNN-TS method is evaluated on different data-
sets obtained from the UCR time series classification archive. 
First, CNN-TS is compared to a base method, which is a similar 

CNN to the proposed method but without the intermediate tar-
gets. Experimental results show improvement in the accuracy 
of the proposed method compared to the base method on 17 out 
of 20 datasets. Additionally, the proposed method is compared 
with three classical machine-learning methods namely linear 
SVM, RBF SVM, and RF. The results show that, on average, 
the proposed method achieved 21.1% higher accuracy than that 
achieved by the other methods. The proposed method is also 
compared to other state-of-the-art methods, and the experiment 
results show that it has achieved higher accuracies on various 
different datasets compared to the best results achieved by the 
other methods. Moreover, CNN-TS achieved higher accuracies 
with a shorter training time duration, which is on average 8.43 
times shorter than the time duration required for the method 
with the best accuracy among the other state-of-the-art methods, 
i.e., ResNet.

Although the classical distance-based methods are known 
to perform well in the traditional TSC, they have not been con-
sidered thoroughly in the literature of CNN methods for TSC 

Fig. 8   Comparison of the accuracy of the proposed method and the 
base method on a CinC_ECG_torso, b earthquakes, c car, and d Ham 
data sets when the number of training samples is reduced. Note that 

when ‘# Reduced Samples = 0’, there is no reduction in the number of 
training samples, and thus, all the original training samples are used
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to date. Investigating the different aspects of distance-based 
TSC and reflecting them in CNN can be a new direction for 
future research. Experimental results have shown that interme-
diate targets can improve the performance of a CNN, because 
intermediate targets supervise the generation of features in the 
intermediate layers instead of allowing the features to gen-
erate without control. Thus, finding appropriate targets for 

intermediate layers in different applications of CNN can be 
another direction for future research.

Appendix 1: The t‑SNE Projection 
on ‘ArrowHead’, ‘ECG200’, and ‘Ham’ Datasets

See Figs. 9, 10 and 11.

Fig. 9   The t-SNE projection of a the raw data, b O
m
 output of the proposed method, c O1 output of the proposed method, and d the output of 

ResNet for ‘ArrowHead’ data set
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Fig. 10   The t-SNE projection of a the raw data, b O
m

 output of the proposed method, c O1 output of the proposed method, and d the output of 
ResNet for ‘ECG200’ data set
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