389 research outputs found

    On Interpreting Eddy Covariance In Small Area Agricultural Situations With Contrasting Site Management.

    Get PDF
    This dissertation examined the carbon sequestration potential of a low C:N soil amendment and its incorporation into the soil over a rolling agricultural field. A segmented planar fit was developed to assess and correct the systematic errors the topography introduces on the carbon dioxide fluxes. The carbon dioxide fluxes were then be partitioned into gross primary productivity and soil respiration to understand the influence of the contrasting management practices, using flux variance partitioning. Concomitant with the partitioning, high resolution temporal and spatial scale remote sensing images were interpolated and standardized to conduct hypothesis testing for treatment effects

    WiFi Sensing at the Edge Towards Scalable On-Device Wireless Sensing Systems

    Get PDF
    WiFi sensing offers a powerful method for tracking physical activities using the radio-frequency signals already found throughout our homes and offices. This novel sensing modality offers continuous and non-intrusive activity tracking since sensing can be performed (i) without requiring wearable sensors, (ii) outside the line-of-sight, and even (iii) through the wall. Furthermore, WiFi has become a ubiquitous technology in our computers, our smartphones, and even in low-cost Internet of Things devices. In this work, we consider how the ubiquity of these low-cost WiFi devices offer an unparalleled opportunity for improving the scalability of wireless sensing systems. Thus far, WiFi sensing research assumes costly offline computing resources and hardware for training machine learning models and for performing model inference. To improve the scalability of WiFi sensing systems, this dissertation introduces techniques for improving machine learning at the edge by thoroughly surveying and evaluating signal preprocessing and edge machine learning techniques. Additionally, we introduce the use of federated learning for collaboratively training machine learning models with WiFi data only available on edge devices. We then consider privacy and security concerns of WiFi sensing by demonstrating possible adversarial surveillance attacks. To combat these attacks, we propose a method for leveraging spatially distributed antennas to prevent eavesdroppers from performing adversarial surveillance while still enabling and even improving the sensing capabilities of allowed WiFi sensing devices within our environments. The overall goal throughout this work is to demonstrate that WiFi sensing can become a ubiquitous and secure sensing option through the use of on-device computation on low-cost edge devices

    Design of textile antennas and flexible WBAN sensor systems for body-worn localization using impulse radio ultra-wideband

    Get PDF

    Ensuring the resilience of wireless sensor networks to malicious data injections through measurements inspection

    Get PDF
    Malicious data injections pose a severe threat to the systems based on \emph{Wireless Sensor Networks} (WSNs) since they give the attacker control over the measurements, and on the system's status and response in turn. Malicious measurements are particularly threatening when used to spoof or mask events of interest, thus eliciting or preventing desirable responses. Spoofing and masking attacks are particularly difficult to detect since they depict plausible behaviours, especially if multiple sensors have been compromised and \emph{collude} to inject a coherent set of malicious measurements. Previous work has tackled the problem through \emph{measurements inspection}, which analyses the inter-measurements correlations induced by the physical phenomena. However, these techniques consider simplistic attacks and are not robust to collusion. Moreover, they assume highly predictable patterns in the measurements distribution, which are invalidated by the unpredictability of events. We design a set of techniques that effectively \emph{detect} malicious data injections in the presence of sophisticated collusion strategies, when one or more events manifest. Moreover, we build a methodology to \emph{characterise} the likely compromised sensors. We also design \emph{diagnosis} criteria that allow us to distinguish anomalies arising from malicious interference and faults. In contrast with previous work, we test the robustness of our methodology with automated and sophisticated attacks, where the attacker aims to evade detection. We conclude that our approach outperforms state-of-the-art approaches. Moreover, we estimate quantitatively the WSN degree of resilience and provide a methodology to give a WSN owner an assured degree of resilience by automatically designing the WSN deployment. To deal also with the extreme scenario where the attacker has compromised most of the WSN, we propose a combination with \emph{software attestation techniques}, which are more reliable when malicious data is originated by a compromised software, but also more expensive, and achieve an excellent trade-off between cost and resilience.Open Acces

    UAVs for the Environmental Sciences

    Get PDF
    This book gives an overview of the usage of UAVs in environmental sciences covering technical basics, data acquisition with different sensors, data processing schemes and illustrating various examples of application

    On a wildlife tracking and telemetry system : a wireless network approach

    Get PDF
    Includes abstract.Includes bibliographical references (p. 239-261).Motivated by the diversity of animals, a hybrid wildlife tracking system, EcoLocate, is proposed, with lightweight VHF-like tags and high performance GPS enabled tags, bound by a common wireless network design. Tags transfer information amongst one another in a multi-hop store-and-forward fashion, and can also monitor the presence of one another, enabling social behaviour studies to be conducted. Information can be gathered from any sensor variable of interest (such as temperature, water level, activity and so on) and forwarded through the network, thus leading to more effective game reserve monitoring. Six classes of tracking tags are presented, varying in weight and functionality, but derived from a common set of code, which facilitates modular tag design and deployment. The link between the tags means that tags can dynamically choose their class based on their remaining energy, prolonging lifetime in the network at the cost of a reduction in function. Lightweight, low functionality tags (that can be placed on small animals) use the capabilities of heavier, high functionality devices (placed on larger animals) to transfer their information. EcoLocate is a modular approach to animal tracking and sensing and it is shown how the same common technology can be used for diverse studies, from simple VHF-like activity research to full social and behavioural research using wireless networks to relay data to the end user. The network is not restricted to only tracking animals – environmental variables, people and vehicles can all be monitored, allowing for rich wildlife tracking studies

    A Cost-effective Multispectral Sensor System for Leaf-Level Physiological Traits

    Get PDF
    With the concern of the global population to reach 9 billion by 2050, ensuring global food security is a prime challenge for the research community. One potential way to tackle this challenge is sustainable intensification; making plant phenotyping a high throughput may go a long way in this respect. Among several other plant phenotyping schemes, leaf-level plant phenotyping needs to be implemented on a large scale using existing technologies. Leaf-level chemical traits, especially macronutrients and water content are important indicators to determine crop’s health. Leaf nitrogen (N) level, is one of the critical macronutrients that carries a lot of worthwhile nutrient information for classifying the plant’s health. Hence, the non-invasive leaf’s N measurement is an innovative technique for monitoring the plant’s health. Several techniques have tried to establish a correlation between the leaf’s chlorophyll content and the N level. However, a recent study showed that the correlation between chlorophyll content and leaf’s N level is profoundly affected by environmental factors. Moreover, it is also mentioned that when the N fertilization is high, chlorophyll becomes saturated. As a result, determining the high levels of N in plants becomes difficult. Moreover, plants need an optimum level of phosphorus (P) for their healthy growth. However, the existing leaf-level P status monitoring methods are expensive, limiting their deployment for the farmers of low resourceful countries. The aim of this thesis is to develop a low-cost, portable, lightweight, multifunctional, and quick-read multispectral sensor system to sense N, P, and water in leaves non-invasively. The proposed system has been developed based on two reflectance-based multispectral sensors (visible and near-infrared (NIR)). In addition, the proposed device can capture the reflectance data at 12 different wavelengths (six for each sensor). By deploying state of the art machine learning algorithms, the spectroscopic information is modeled and validated to predict that nutrient status. A total of five experiments were conducted including four on the greenhouse-controlled environment and one in the field. Within these five, three experiments were dedicated for N sensing, one for water estimation, and one for P status determination. In the first experiment, spectral data were collected from 87 leaves of canola plants, subjected to varying levels of N fertilization. The second experiment was performed on 1008 leaves from 42 canola cultivars, which were subjected to low and high N levels, used in the field experiment. The K-Nearest Neighbors (KNN) algorithm was employed to model the reflectance data. The trained model shows an average accuracy of 88.4% on the test set for the first experiment and 79.2% for the second experiment. In the third and fourth experiments, spectral data were collected from 121 leaves for N and 186 for water experiments respectively; and Rational Quadratic Gaussian Process Regression (GPR) algorithm is applied to correlate the reflectance data with actual N and water content. By performing 5-fold cross-validation, the N estimation shows a coefficient of determination (R^2) of 63.91% for canola, 80.05% for corn, 82.29% for soybean, and 63.21% for wheat. For water content estimation, canola shows an R^2 of 18.02%, corn of 68.41%, soybean of 46.38%, and wheat of 64.58%. Finally, the fifth experiment was conducted on 267 leaf samples subjected to four levels of P treatments, and KNN exhibits the best accuracy, on the test set, of about 71.2%, 73.5%, and 67.7% for corn, soybean, and wheat, respectively. Overall, the result concludes that the proposed cost-effective sensing system can be viable in determining leaf N and P status/content. However, further investigation is needed to improve the water estimation results using the proposed device. Moreover, the utility of the device to estimate other nutrients as well as other crops has great potential for future research

    Groundwater Contamination and Remediation

    Get PDF
    This Special Issue of Water brings together 10 studies on groundwater contamination and remediation. Common themes include practical techniques for plume identification and delineation, the central role of subsurface processes, the pervasiveness of non-Fickian transport, and the importance of bacterial communities in the broader context of biogeochemistry

    CIRA annual report 2007-2008

    Get PDF
    • …
    corecore