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ABSTRACT 
 
This dissertation examined the carbon sequestration potential of a low C:N 

soil amendment and its incorporation into the soil over a rolling agricultural field. 
A segmented planar fit was developed to assess and correct the systematic 
errors the topography introduces on the carbon dioxide fluxes. The carbon 
dioxide fluxes were then be partitioned into gross primary productivity and soil 
respiration to understand the influence of the contrasting management practices, 
using flux variance partitioning. Concomitant with the partitioning, high resolution 
temporal and spatial scale remote sensing images were interpolated and 
standardized to conduct hypothesis testing for treatment effects. 
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INTRODUCTION 
Agricultural management practices are global sources for carbon dioxide 

emissions and nitrogen pollution. Carbon dioxide is a major global greenhouse 
gas and excess nitrogen fertilization significantly harms terrestrial and aquatic 
life. Quantifying carbon dioxide emissions for conventional agricultural practices 
is necessary to provide crop producers with recommended practices under a 
changing climate. While many farms exist on rolling (i.e., complex) landscapes, 
measuring field scale emissions on these regions are confounded by the 
topography. 

Monitoring the environmental impact of common agricultural practices is 
challenging. Many measurement protocols require large amounts of destructive 
sampling or costly monitoring methods that can potentially influence the soil 
environment (such as soil chambers). The eddy covariance method overcomes 
these limitations by providing a nondestructive, direct measure of field scale net 
carbon dioxide exchange. However certain assumptions, such as horizontal 
topography, must be satisfied for the measurements to be deemed reliable. The 
eddy covariance (EC) method must be improved to account for systematic errors 
arising from complex topography. 

The improved eddy covariance processing to account for nonuniform 
topography with a dynamic canopy can provide farmers and scientists reliable 
estimates on agricultural water use and carbon dioxide flux. This knowledge can 
then be used to support more sustainable agricultural management practices. 

Justification for this study 

We are living in the Anthropocene- a time period where nature is mostly 
under human influence. For example, by 2050 the global population will increase 
by 2.3 billion and global food demand is predicted to increase by 100%. Feeding 
the increased population will have to be met by land clearing and intensive use of 
croplands. About one-quarter of global greenhouse gas emissions result from 
land clearing, crop production and fertilization. The effect of fertilization further 
harms terrestrial and aquatic life. We must achieve greater yields while also 
having a lower environmental impact (Tilman et al., 2011). Increasing knowledge 
of how environmental variables and crop production practices affect yield is 
necessary to slow down our destructive logistics. 

Agriculture and land use changes have accelerated the alteration of soil 
forming processes around the globe (Lin, 2011). The acceleration further 
degrades the soil’s quality both as an economic and ecological service. Of major 
importance is soil organic matter (SOM). SOM greatly increases a soil’s intrinsic 
resilience and further prevents increased soil degradation and enhances 
chemical, biological, and physical soil properties (Swift, 2001). Since the 
agricultural and green revolution, there have been two major inputs into the 
terrestrial biogeochemical cycle: carbon dioxide and reactive nitrogen (Vitousek 
et al., 1997). Agricultural practice is fundamentally about manipulating these 
cycles. 
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Outside of human alteration, photosynthesis is the ultimate source of soil 
organic carbon (SOC), and microbial fixation of dinitrogen gas is the source of 
soil N; the soil environment reduces or oxidizes these inputs whether acting as a 
sink or a source. Other N sources include atmospheric deposition and fertilizer 
inputs (Johnson et al., 1995). Changes in SOM occur due to the imbalance 
between carbon inputs, dead plant material, and outputs, mainly caused by 
decomposition, leaching, and erosion. Thus, a recommended approach for 
decreasing agriculture’s impact on accelerating SOM decomposition is to reduce 
tillage. This disturbance reduction maintains the soil aggregate structure which 
protects SOM from microbial consumption (Johnson et al., 1995; Swift, 2001). 
Besides reduced tillage, there are other practices that could stabilize SOM. 
These methods directly control reactive nitrogen and carbon inputs. Such inputs 
include mineral fertilizers or organic soil amendments, and/or incorporation of 
crop residues. The effect of nutrient inputs and incorporation on the soil system 
will be the proposal’s key investigation. 

There is an intrinsic positive feedback process where assimilation of 
carbon dioxide occurs through photosynthesis and results in increases in soil 
carbon. For example, more soil carbon tends to increase carbon capture which 
then increases crop residue, and the process begins anew. Unfortunately, the 
feedback can also be negative because the loss of soil carbon not only emits 
carbon dioxide but increases the risk of less efficient crop growth (Lal, 2007). 
Enhanced SOC content promotes plant growth but paradoxically the crop yield is 
derived from the decay of SOC. A positive feedback of soil carbon on yield, 
therefore, may be most likely in previously C-depleted or degraded soils. Where 
incremental plant growth responses to soil carbon are greatest and benefits 
derive from mechanisms other than decay (Janzen, 2014). 

Overview of Study 

This study attempted to understand the impact of no-till and recently 
converted tillage systems and two different nitrogen inputs on a split plot maize 
field. Eddy Covariance will be used to monitor water vapor and carbon dioxide 
exchange for the different practices. Using micro-meteorological instrumentation, 
this research will measure water and carbon dioxide fluxes over an agricultural 
field with two different nutrient inputs and two different surface practices. The 
measured fluxes will then be partitioned into two sources: the soil and the crop 
system. Site heterogeneity and representatives of the measured fluxes were 
assessed with high resolution remote sensing. The study examined the effects 
on evaporation and transpiration. Specifically, the study examined how the 
treatments respond to stress (if it occurs), as well as crop productivity. 
The study used EC systems to measure net ecosystem exchange (NEE) and 
evapotranspiration (ET) and differences across treatments will be quantified. The 
NEE will be partitioned into gross primary productivity (GPP) and ecosystem 
respiration (𝑅𝑒) to give information on the carbon dioxide emissions from the soil 
and crop productivity. The partitioning procedure was accomplished with the 



3 
 

Scalon and Sahu (2008) partitioning method. Evaporation and transpiration were 
also quantified.  

Site Description 

The study area is located in Loudon County, TN. The approximately 20-
hectare farm lies towards the outlet of Sweetwater Creek watershed. The climate 
is humid subtropical, influenced predominately by the gulf coast. The average 
annual temperature is 14.9°C and the average annual precipitation is 1290 mm. 
Eighty percent of the watershed is dominated by the soil order ultisols, followed 
by inceptisols (eleven percent) and alfisols (five percent). The soil series that 
dominate the site are Decatur (Fine, kaolinitic, thermic Rhodic Paleudult) and 
Emory (Fine-silty, siliceous, active, thermic Fluventic Humic Dystrudepts). Both 
soils formed in old valley fill material and residuum weathered from limestone. 
The site’s mean elevation is 270 meters with a maximum elevation of 275 meters 
and a low of 262 meters. The average slope of the site is 3 ±3 % compared to 
the average slope of Sweetwater creek of 10 ±7 %. 

Site Manipulation 

This study investigated the effects of applying two soil amendments on an 
upland maize field analyzed with a split plot design. The first treatment will be 
typical (NPK) inorganic fertilizer. The second treatment will use the soil 
amendment TilthMax3G. This amendment is a biologically stable organic soil 
conditioner processed from organic fermentation inputs. The study also 
examined incorporating TilthMax3G with vertical tillage to 8 cm. 

WHY EDDY COVARIANCE? 
The eddy covariance (EC) method provides a nondestructive, direct 

measure of the flux density across an atmosphere-(agro)ecosystem interface. 
The fluxes measure the mass balance of vegetation and soil and how the 
ecosystem responds to environmental drivers and stresses. Information on trace 
gas fluxes is a variable quantification of ecosystem performance and health 
(Baldocchi, 2014). 

Most studies of terrestrial-atmospheric exchange in the agricultural and 
ecological literature have relied on chamber techniques. These methods are 
inherently limited since they alter the local environment and are logistically 
difficult. Furthermore, it is difficult to run chambers for long-term, continuous 
measurements. Deploying enough chamber replicates to obtain statistically 
reliable results compounds the problems. Some of the logistical and statistical 
problems are solved with the use of micrometeorological techniques (Baldocchi, 
2014; Baldocchi et al., 1988). Boundary layer turbulence transports the gases 
from the biosphere to the atmosphere. Micrometeorology provides alternatives to 
measure exchanges between the biosphere and the atmosphere. 
Micrometeorological techniques also have many advantages. First, they do not 
disturb the environment around the plant canopy. Second, these techniques 
allow continuous measurements. And third, time-averaged micrometeorological 
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measurements at a point provide an area-integrated, ensemble average of the 
exchange rates between the surface and the atmosphere. EC techniques are 
based on high-frequency measurements of three-dimensional wind speed, 
carbon dioxide and H2O. In short, the EC method is an accurate, direct and 
defensible approach to measure gas fluxes (Baldocchi et al., 1988) 
The EC system effectively measures net ecosystem exchange (NEE). NEE is a 
measure of net ecosystem production which quantifies the net accumulation of 
organic matter: 

𝑁𝐸𝐸 = 𝑅𝑒 + 𝐺𝑃𝑃 
Were 𝑅𝑒 (ecosystem respiration) is respiration from the heterotrophic and 
autotrophic sources and GPP is Gross primary productivity. While the NEE 
measures both plant and soil carbon dioxide exchange, inferring NEE as a direct 
measure of SOM decomposition is limited (Kuzyakov, 2006). While NEE yields a 
valuable measure of ecosystem carbon exchange, it does not describe the 
processes responsible for the flux. We can gain a greater (but not complete) 
understanding of different management practices’ effect if we know how soil 
respiration and GPP are impacted. Because only some of the carbon dioxide 
exuded from the soil is produced by the decomposition of soil organic matter, 
measuring and partitioning the NEE will not yield information on whether the soil 
is a net source or sink. 

Once the 𝑅𝑒 and GPP are partitioned from the NEE, site managers will 
only have a broad understanding of soil respiration. Plants are the most 
important autotrophs contributing to carbon dioxide efflux from soil by root 
respiration. Since plant C sources frequently amount to more than half of the total 
soil carbon dioxide flux (Hanson et al., 2000; Larionova et al., 2003 ), the flux of 
plant-derived carbon dioxide masks the contribution of SOM-derived carbon 
dioxide when measuring carbon dioxide fluxes from planted soils. 
Kuzyokov (2006) summarized five sources of respired Carbon Dioxide. The first 
source is basal respiration or microbial decomposition of SOM (distinct of plant 
remains) in root-free soil. Second, microbial decomposition of SOM in root 
affected or plant residue affected soil. Third, microbial decomposition of dead 
plant remains. Root exudates from living roots are also decomposed which 
contributes to the fourth source of Carbon Dioxide. The fifth source is autotrophic 
derived respiration or respiration from roots. 

Only the first source- microbial decomposition of SOM in the root-free soil- 
contributes to the carbon dioxide flux containing organic matter. Because of their 
fast turnover times, the four other carbon dioxide sources, microbial 
decomposition of plant residues and root exudates, and root respiration, have no 
significant effect on C sequestration in the short or long-term. And it is only the 
respired SOM that contributes to long-term losses of soil C assuming residue 
application is constant (Kuzyakov, 2006). One approach is to partition total 
respiration from soil into root-derived carbon dioxide and SOM- derived carbon 
dioxide is assuming linear relation between root biomass and root-derived 
Carbon Dioxide. This method was first developed by Kucera and Kirkham (1971). 
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With the partitioning method finished we can then estimate the remaining 
sources of carbon dioxide that we can attribute to SOM and vegetation induced 
respiration. If the crop productivity and root biomass is relatively constant 
between treatments, the difference between respiration for untreated and treated 
plots will reflect difference in turnover of the various organic pools. Only 
incubation and isotope labeling experiments will be able to parse out the sources 
of the respiration. To put this in perspective, adding highly labile C and N sources 
will increase the soil respiration but this can be attributed to higher turnover rates 
of the microbial biomass leaving us to guess how much of carbon was derived 
from the SOM or the TilthMax3GTM. 

Effect of C and N Input 

The priming effect was defined by Jenkinson (1966) as a positive or 
negative change in the decomposition rate of SOM caused by the addition of 
fresh organic matter (Jenkinson, 1966; Jenkinson et al., 1985). The priming effect 
can impact SOM decomposition rates from a 50 percent reduction to 380 percent 
increase. Priming effects at the global scale may control as much as 50 percent 
of the total carbon dioxide released from terrestrial ecosystems. Thus, the 
priming effect is emerging as a crucial mechanism in terrestrial ecosystems 
(Cheng et al., 2013). 

There are three effects which adding nitrogen will have on SOM: decrease 
SOM, increase SOM, or have no effect on SOM. There is certainly enough 
evidence to support each of these pathways. In forest environments there have 
been various, conflicting results including increases, decreases, or unchanged 
rates in carbon sequestration (Bowden et al., 2004; Mo et al., 2006; Vose et al., 
1995). There have been conflicting results in agricultural experiments as well. 
While long term studies involving organic and mineral fertilizers show a general 
increase in SOM, Kwon et al. (2017) found N additions increased the decay rate 
of SOM. Measuring short-term ecosystem responses to mineral and organic 
fertilizer will illuminate the coupling of C and N. This study will help to parse out 
the sensitivity of the priming effect to global environmental change particularly in 
anthropogenic N deposition. Overall, the priming effect emerges as a key 
mechanism in mobilizing and possibly stabilizing SOM, forming a key link 
between plant functions and soil functions in terrestrial ecosystems 
(Clemmensen et al., 2013; Jastrow et al., 2000). 

The nitrogen priming effect has two mechanisms where nitrogen fertilizer 
alters SOM: (1) Nitrogen fertilizer may augment SOM by promoting plant growth 
and increasing degradation of recalcitrant material or (2) Nitrogen fertilizer may 
lead to enhanced loss of SOM by accelerating oxidation rates of crop residue 
and SOM (Ladha et al., 2011). Alternatively, there could be no effect because 
these mechanisms are not mutually exclusive. For example, nitrogen input 
enhances plant dark respiration, stimulates root respiration, and increases root 
biomass (Burton et al., 2004; Liljeroth et al., 1994). The root biomass growth 
increases the possibility for a net accumulation of SOM because the die off of 
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fine roots within aggregates can be protected. D. W. Johnson and Curtis (2001), 
conducted a meta-analysis of 48 global experiments and concluded that N 
addition was the only forest management practice with a clear positive effect on 
the soil organic carbon pool. 

Decomposition of cellulose or other labile compounds in residue and SOM 
are stimulated by nitrogen addition. However more recalcitrant compounds of 
litter and SOM (such as lignin) are inhibited by nitrogen addition. Craine et al. 
(2007), argued N additions lower decomposition rates of residue. This follows 
from the “microbial nitrogen mining” hypothesis. Microbes use labile C to 
decompose recalcitrant organic matter to acquire N. Thus, ecosystem C storage 
would increase with greater N availability because mining of recalcitrant C for N 
is suppressed. This might explain observed declines in decomposition with N 
addition. Increasing N availability, whether through fertilization or residue N 
content will have no effect on the size of the labile C pool but would decrease the 
rate of decomposition of recalcitrant C (Craine et al., 2007). If there is higher 
nutrient resource availability, both plants and microbes will be less dependent on 
each other’s strategy, thus reducing priming intensity. This prediction is partially 
supported by the common decrease in soil respiration upon N fertilization in 
forests (Cheng et al., 2013). 

How does inorganic versus organic nutrient effect nutrient cycling? There 
have been many studies comparing the effect of organic versus inorganic N 
inputs. The organic inputs studied are typically cattle manure. Manures have a 
greater effect on increasing SOC and soil N and improving soil physical 
properties. While manured soils tend to have higher SOC contents, the mineral 
fertilizers do not lessen the SOC content (Meng et al., 2005). Monaco et al., 
(2008) found agricultural soil treated with different organic materials increased 
SOM and N-supplying capacity and potential soil respiration compared with 
inorganic or unfertilized soil. Diacono and Montemurro (2010) reviewed many 
long-term experiments. They found that long-lasting applications of organic 
amendments increased organic carbon up to 90 percent versus unfertilized soil 
and up to 100 percent versus chemical fertilizer treatments. Nardi et al., (2004) 
found forty years of manure fertilization improved the recalcitrant humus 
production. And, of course, the Rothamsted experiment is the longest running 
manure application study successfully showing the buildup of SOC (Jenkinson 
and Rayner, 1977). On the contrary, the absence of organic fertilizer inputs 
determined the opposite, producing more non-complex and lightweight humus. 
On shorter time scales Lazcano et al. (2012), found uncomposted manure (more 
labile C) increased microbial activity. Manure amended soils exhibited higher 
microbial activity than the inorganic fertilizer treatment. This higher activity 
maintains the supply-capacity for inorganic N and P compared to inorganic 
fertilizers. Ladha et al. (2011) found inorganic fertilizer significantly reduced the 
rate at which SOM is declining in agricultural soils. The authors did not support 
the conclusion that inorganic fertilizer caused the decrease in SOM. It appears 
organic fertilizer prolongs the supplying capacity of nutrients and on a longer time 
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scale increases SOM. There is further need to understand both responses to 
typical fertilizers and organic soil amendments. From the above we can 
hypothesize that application of TilthMax3G could mitigate SOM loss while 
potentially increasing it. Paradoxically higher emissions could be observed due to 
higher microbial turnover rates and plant production. 

SITE ACTIVITIES SUMMARY 
The site was first vertically tilled in June 2017 and again in the fall 

(November) see table. TilthMax3G was applied in the May 2016, June 2017 and 
December 2017. After a soil sampling a campaign, the fall of 2017, found water 
extracted pH than 1.5 pH units less than the conventional farmer practice. This is 
most likely due to the decomposition of the amino acids (see Fig. 1). While there 
were continuous flux measurements, two time lapse cameras were oriented to 
monitor crop and agro-ecosystem phonology [WCT-00122 TimelapseCam, 
Wingscapes Alabaster, AL]. Digital repeat photography has become a useful 
method for ecological and agricultural applications due to its low cost and 
maintenance and high-resolution data in red, green, and blue (RGB) channels. 
Digital cameras used for phenology observation have improved the detection of 
leaf phenology dynamics and crop emergence and vegetative stages through the 
analysis of RGB color changes over time. Digital repeat photography provides 
several clear advantages over human observations of phenology because of the 
ability to collect automatically repeated images at high temporal resolution (daily 
or hour scale) and wider spatial scales. From this Green Chromatic Coordinate 
(GCC) can be calculated: 

𝐺𝐶𝐶 =
 Green 𝐷𝑁

Red𝐷𝑁 +  Green 𝐷𝑁 +  Blue 𝐷𝑁
 

Where Red DN, Green DN, and Blue DN are the red, green, and blue color channels 
respectively. The trail camera represents the color as digital numbers (DN) 
stored in the high resolution (8 MGP) JPEG format. Figure 2 illustrates the 
behavior of GCC over the two years of measurement. GCC is the most reliable 
index to monster plant phenology from time lapse photography (Klosterman et 
al., 2014). The figure also illustrates the behavior significant events denoted in 
table 1. GCC has been shown to reduce noise to highlight the phenology signal 
(Burke and Rundquist, 2021). Vertical tillage was applied twice to the field in 
2017, except for a small strip running on both sides of the soil amendment 
treatments. The strip changed in size during both events by about 0.6 hectares 
See Fig. 3. The areas of SMB and FP remained the same during the experiment 
8.38 and 10.03 hectares. The no till strip was 1.87 and 2.51 hectares. 
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Figure 1. Interpolated site pH fall of 2017 after harvest. Note the low pH 
values towards the north where the TilthMax3G was applied. 
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Table 1. The table summarizes the events occurring on the site from 2017 
to 2018. 

TIMESTAMP EVENTS 

4/19/2017 BUSH HOGGED 

5/30/2017 Roundup/atrazine herbicide 

6/12/2017 First application TilthMax3G 

6/13/2017 Second application TilthMax3G 

6/14/2017 THIRD application TilthMax3G 

6/15/2017 FOURTH Application TilthMax3G, TURBOTILLED, 100-
40-80 applied 

6/16/2017-
6/17/2017 

PLANTING 

6/21/2017 VE 

7/20/2017 top dressed 

8/12/2017 VT 

11/15/2017 Harvest 

12/4/2017 SMB applied 

12/13/2017 TILLED 

4/2/2018 2 tons lime applied 

4/30/2018 Roundup/atrazine herbicide 

5/10/2018 100-40-80 applied 

5/21/2018 Planting 

5/27/2018 VE 

7/12/2018 VT 

10/30/2018 South Field Harvested 

11/03/2018 North Field Harvested 
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Figure 2. GCC trends over time. The grayed areas correspond to the maize 
planting season. The green lines correspond to the application of 

TilthMax3g. The die off with the application of herbicide can be clearly 
seen.  
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Figure 3. Site Treatments for both tillage treatments. A tillage event 
occurred on 6/15/2017 and B occurred 12/13/2017 where the No-Till area 
increased by 0.6 Hectares. SMB is the location of TilthMax3G and FP in 

darker gray is farmer practice. 
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CHAPTER 1 
DEVELOPING A SEGMENTED PLANAR FIT FOR IMPROVED EDDY 

COVARIANCE COORDINATE ROTATION 
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Abstract 

This chapter illustrates the practicality in a model based recursive 
partitioning algorithm for finding optimal criteria to understand the strengths and 
weaknesses of coordinate rotation methods. The algorithm as helpful to create 
individual wind sectors and accounting for variables that may impact the fits. The 
MOB algorithm was crucial to find what variables have the largest effect on 
combining or switching different parametric models; the variables with the largest 
explanatory power are DOY, solar altitude and wind direction (for the planar fit). 
Furthermore, the double rotation has deleterious effects in stable conditions and 
assigns incorrect 𝐶𝑂2 fluxes. Thus, even in rolling landscapes, using the 
unrotated fluxes or more complicated rotation methods such as the planar fit is 
preferable to double rotation.  
 

Introduction 

The eddy covariance (EC) method provides a non–destructive, direct 
measure of the flux density across an atmosphere–ecosystem interface. 
Measurement of the fluxes enables the mass balance of quantities like 𝐶𝑂2 to be 
inferred, along with guidance regarding an ecosystem’s response to 
environmental drivers and stresses (Baldocchi, 2014). However, quantification of 
the fluxes involves consideration of measurement difficulties that are often not 
recognized or addressed. Although eddy covariance measurement can be taken 
as a precise evaluation of what a crop surface is experiencing, the method is 
fundamentally statistical and yields estimates of average fluxes. The statistical 
uncertainties involved are consequently readily estimated. It is rarely warranted 
that field studies support the expectation that any half–hour flux quantification 
possesses a standard error of less than 10% with (Hicks and Baldocchi, 2020). 
Moreover, there are fundamental questions that remain unanswered, such as 
how should eddy covariance instruments be erected regarding momentum and 
scalar flux variables and how should the sensor outputs be analyzed. 

In the context of such questions, water vapor is a problematic variable. As 
water vapor is buoyant, the average water vapor flux of interest is influenced by 
gravity. Interpretation of fast–response observations should therefore be such 
that measurement coordinates are adjusted so that the derived evaporative eddy 
flux is oriented with respect to the gravitational normal. On the other hand, the 
flux dominating meteorological thinking is usually that of momentum (the drag 
upon the surface imposed by the wind) and is therefore physically tangential to 
the surface (Lee et al., 2004). For the present, note that meteorologists tend to 
rotate their anemometer’s internal coordinate system so that the flux of 
momentum is (correctly) normal to the planar tangent to the local surface. In 
many applications, it is assumed (often without explanation) that the same 
reference plane applies for determination of the rate of evaporation from a crop. 
This paper will explore the uncertainties that arise by examining flexible 
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coordinate systems that can change as prevailing circumstances change, 
especially atmospheric stability and wind direction. 

This paper addresses the practicality of using coordinate rotation methods 
to analyze data obtained over a rapidly changing canopy, with varying height of 
eddy covariance measurement. Consideration is given to the potential need for 
separate tangent planes for differing atmospheric conditions. For example, during 
highly unstable conditions the daytime convective fluxes (of sensible heat and 
water vapor) are expected to be largely independent of the slope of the surface 
and the only correction needed to the reference frame could be due to slight 
inconsistencies of the anemometer relative to gravitational normal and to any 
obstruction caused by the instrumentation. 

To help answer these questions, many coordinate rotation models will be 
examined. In particular, a recursive model-based partitioning procedure (MOB) 
will be used to account for changes in instrument height, wind speed and 
atmospheric stability during the duration of the experiment (from January 2017 to 
January 2019) and to examine how different planar fits over subsets of the data 
offer opportunities to account for changes as the crop grew. The method of 
differently segmented planar fits with subsets that can vary in size over different 
environmental and/or experimental conditions will be denoted the recursively 
partitioned planar fit or RPF. 

The intent is to develop an optimal coordinate rotation system that 
changes through the year as the crop height changes. Using this system, the 
goal is then to derive improved estimates of the fluxes of water vapor and carbon 
dioxide, these being the quantities of main interest in the context of crop 
productivity. 

Coordinate Rotation 

The central requirement in eddy covariance measurement is that the 
average vertical velocity is zero. This can be accomplished by any of many 
methods, first among which was the original use of a “brute force” approach, 
requiring that covariances accumulated over a particular sampling period be 
corrected on the basis of average values derived simultaneously. (Here, the 
issues that arise when it is assumed that the required average is that of air rather 
than the velocity of it will be ignored. That is, the emphasis is on making 𝑤 = 0, 

not on making ρw = 0 where ρ is air density and w is the vertical wind velocity 
with the overbar denoting a time average; (q.v. Lee et al. (2004)). In later 
developments, the requirement that 𝑤 = 0 was met by the simple expedient of 
imposing a high-pass filter on the analog w signal. With the advent of digital 
computing, these simple approaches evolved into coordinate rotation methods 
using post-event analysis of recorded fast-response data streams. 

The most common coordinate rotation methodology now used considers 
observations obtained over a defined block of time (a “run” is typically fifteen to 
thirty minutes). A first rotation orients the x-axis along the direction of the mean 
wind. A second rotation ensures that the average vertical velocity is zero. This 
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method is often called the double rotation method (DR). The DR method is a 
simplification of the methodology developed by Wesely (1970) who was 
challenged by the requirement to extract robust eddy covariances from the 
outputs of pressure-sphere anemometers on a run-by-run basis. In the Wesely 

approach, a third rotation was invoked to drive the covariance 𝑢′𝑣′ (where 𝑢′ and 
𝑣′ are the longitudinal and lateral wind velocity deviations) to zero. 

An alternative approach examines, by linear regression, how ensembles 
of observations made over a longer period can be used to correct the wind 
statistics and to ensure that the vertical wind averages out to zero. A crucial 
difference between this planar fit (PF) methodology (q.v. Wilczak et al. (2001)) 
and the DR methodology discussed above is that the planar fit uses large 
amounts of data for the fit while the DR method considers the turbulence 
statistics within a single measurement period. By choosing a coordinate system 
averaged over a large length of time, the PF procedure avoids problems with 
large tilt angles in low wind speed conditions (Wilczak et al., 2001). Planar fit and 
its related methods are important to use in complex terrain, where the velocity 
normal to the tangential plane will not always align with gravity while the fluxes of 
buoyant properties must necessarily be influenced gravitationally. 

In nonideal terrain with a rapidly changing canopy, a single plane is not 
the best system to use. A sector planar fit method was introduced by 
(Mammarella et al., 2007), to account for variations in the coordinate plane as a 
function of wind direction. However, this method involves splitting the data into 
sectors and leads to discontinuities at the boundaries between planar sectors 
(Ross and Grant, 2015). An alternative method fits a bivariate regression on the 

three average velocities such that,  𝑊‾ = 𝑏0 + 𝑏1𝑈‾ + 𝑏2𝑉‾  (Wilczak et al., 2001) 
and applies this to correct all measurements of the vertical velocity. There are 
several variations on this method. All of these considerations affect the 
installation of instruments at any test area being considered. 

There is continuing debate about whether three-dimensional sonic 
anemometers should be installed with alignment to gravity or normal to the plane 
of local streamlines. As already mentioned, during unstable conditions, water 
vapor and carbon dioxide fluxes are primarily associated with the virtual heat flux 
which is aligned with gravity. In contrast, in stable conditions the gases will be 
transported by momentum exchange and a more appropriate “vertical” would be 
normal to the plane of the mean streamlines. In many field applications, 
consideration of coordinate rotation is complicated further when the height of the 
sensors is changed to maintain an appropriate distance above a rapidly growing 
crop. In the field experiment of interest here, the crop was maize. 

Whereas conventional multiple regression or regression tree analyses can 
be used to determine the appropriate zero plane and relevant coordinate rotation 
for many experimental situations, the changing of sensor height and the use of 
several sonic anemometer systems with different configurations and 
deployments impose the need to account for changes resulting from “categorical” 
modifications of the set of observations such as changes in the height of 



16 
 

measurement of covariances. The addition of such a categorical variable 
examined here complicates the use of such standard methodologies. The 
partitioning process utilized here (e.g., Hothorn et al. (2006)) permits an 
opportunity to extract statistically optimal representations of the data, even when 
such categorical changes are included. The process as utilized here permits 
extraction of a best-fitting statistical “model” describing observations including 
categorical data, in a way that includes considerations of parsimony. 

Data source 

The experimental situation of relevance here is complicated by the 
changes in sensor height required to maintain adequate separation from the 
growing crop and the use of different sonic anemometer systems with different 
configurations and deployments. Observations were made at an experimental 
field location in Loudon, Tennessee (-84.374°, 35.708°), carrying a crop of maize 
(zea Mays). Figs. 4a and 4b depict the local topography and variation in local 
slope, respectively. Site locations are shown in Fig. 5. The study started June 
2016 and concluded January 2019. Continuous eddy covariance measurements 
were made at three locations, at heights that were changed as the crop grew so 
as to maintain an average instrument height from the canopy — 1.5 to 2 m. The 
wind direction was unimodal; constrained by the ridge and valley orientation (see 
Fig.5). At two locations (stations 1 and 2), conventional Bowen ratio energy 
balance (BREB) measurements were made, supported by downward-looking 
infrared thermometers. Eddy flux towers were set up at three locations (stations 
3, 4 and 5, as indicated in Fig. 4). Station 3 was fitted with an open path H2O and 
CO2 measurement system [LI-COR 7500 Biosciences, Lincoln, NE], 
accompanied by an RM Young 8100 sonic anemometer [R. M. Young Company, 
Traverse City, MI]. The RM Young anemometer was oriented, so the supporting 
mast was to the Northwest, normal to the prevailing wind direction. Stations 4 
and 5 employed integrated open path gas analyzers and sonic anemometers 
[IRGASON Campbell Scientific, Inc., Logan, UT]. The IRGASONs were 
orientated into the dominant wind direction, from 225°.  

The dataset now considered extended without interruption for 19 months, 
encompassing two complete growing seasons of the maize crop. Weekly 
adjustment of the height of the BREB and covariance instrumentation ensured 
that measurements were made at the design levels above the canopy – at about 
0.5 m and 2 m in the case of the BREB instrumentation at sites 1 and 2 and 
about 1.5 m above the top of the canopy for the covariances at sites 3, 4 and 5. 
Figure 6 shows the changes in crop height through the two seasons now 
considered and the heights of operation of the covariance sensors yielding the 
observations used in the analysis to follow. 
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Figure 4. The range of elevations for the field and the percent slope. Note 
how the stations (as identified in red) are close to relatively steep areas. 
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Figure 5. Wind rose showing two years of wind speed and direction as 
reported by the three eddy covariance systems. 
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Figure 6. Instrument and Canopy heights. Canopy heights in the vicinity of 
the measurement locations were measured weekly. 
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Figure 7. Elevation profiles for each station (columns) for various bearings 
(rows). The vertical exaggeration is 5 to 1; positive distance corresponds to 
the labeled bearing. The station heights are to scale with the different line 

thickness indicating minimum. 
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Figures 7 and 4 shows that the local slopes were such that the influence of 
gravity flow (especially at night) could not be ignored. Inspection of Fig. 4a 
indicates that nocturnal drainage flows would be expected to be strongest for 
sites 4 and 5, from about 135 deg. for both locations. Station 3 would likely 
experience milder downslope flow, in this case from about 45 deg. To emphasize 
the importance of considering this feature in the context of the coordinate rotation 
to be discussed below, Fig. 7 presents examples of local slope along four 45 
deg. axes aligned according to the dominant wind direction. The slopes evident 
in the diagrams are exaggerated by a factor of five. 

The various site complexities provide an opportunity to test familiar and 
conventional coordinate rotation methods and to investigate a way to overcome 
introduced subjectivity by applying the model–based recursive partitioning (MOB) 
approach (Zeileis et al., 2008). In essence, the MOB procedure involves 
repeated examinations of how different combinations of influential variables can 
be combined statistically, to minimize the unexplained variance in the flux that is 
associated with the best “model” so prescribed. MOB provides an ordered way to 
conduct what is basically an extended multiple regression examination of a 
collection of data and then to identify the most appropriate result from the many 
models so derived. In particular, the MOB process uses an objective 
methodology to identify the optimum result from among the numerous models 
that are developed. (Here, italicized model is used to provide clear distinction of 
the present result of statistical regression from the numerical models that are 
otherwise familiar, the latter being numerical simulations bringing together 
understanding of the processes involved.) The resulting model has then been 
subjected to procedures designed to ensure that it is parsimonious, rigorous, 
reproducible and easily interpretable. 

Model–based Recursive Partitioning 

In the specific context of interest here, involving the optimization of 
coordinate rotation required to analyze data obtained in studies of a growing crop 
of maize, the more modern MOB procedure uses raw data to derive a description 
of streamlines that is then used to correct the coordinate system. Accounting for 
local slope of the terrain can be accomplished with several alternative 
refinements, such as consideration of differences according to wind direction, on 
the basis of which a planar fit results (Wilczak et al., 2001). Rapid crop growth 
and the use of different measurement systems introduce additional complexities. 
Model–based recursive partitioning, an extension of familiar classification and 
regression tree analyses (Zeileis et al., 2008), offers an opportunity to progress. 
The MOB procedure finds subsets of the data in which a parametric model is 
best fit. The subsets are defined by finding ranges or categories of explanatory 
variables here called partitioning variables for example, wind speed, wind 
direction, solar altitude, atmospheric stability, height of measurement and sensor 
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used. The last two of these quantities introduce the need to consider different 
kinds of data — continuous, ordinal and categorical. 

The MOB process is a synthesis of theory–based and data–driven (i.e., 
machine learning) approaches. The immediate benefit is that a theory–driven 
parametric description of the available observations model can be incorporated 
into a recursive partitioning algorithm based on multiple regression when 
categorical variables are included. The algorithm checks whether other 
interactions or variables that do not have strong contributions would alter the 
parameters or formulation of the final product. The analytical process is detailed 
by Kopf et al. (2013) and in the original paper by (Zeileis et al., 2008). 

To quickly illustrate the parametric model needed to be fitted to correct for 
a proper coordinate rotation system, an initial regression is of 𝑤‾  on 𝑢‾  and 𝑣‾. In 
other words, the initial parametric model needed to calculate the parameters for 
the planar fit rotation matrix is fitted to the entire range of observations. Residuals 
are calculated as 𝑤 – 𝑤̂ where 𝑤̂ is the predicted vertical velocity. The analysis 
considered at present is structured to minimize the sum of squares of these 
residuals: Σ(𝑤 – 𝑤̂)2; this sum is the present realization of the relevant “objective 
function” discussed in the foundational literature as identified above. A next step 
is to select which of the remaining contributing properties should now be 
considered. 

Thus, it is of interest to find out whether the parametric model parameters 
are stable with respect to each partitioning variable. This is determined by testing 
for structural stability by ordering the estimation function by the order of each of 
the partitioning variables using a structural SupLM test for continuous partitioning 
variables (q.v. Hansen and Seo (2002)). The estimating function that identifies 
this partitioning is the derivative of the objective function with respect to the 
parameter considered (see Zeileis (2006)). After ordering according to the 
partitioning variable the cumulative sum is taken of the estimation function. If 
there is no structural change in the resulting sequence of values, there will be no 
change points. The strength of the change points can be compared with other 
potential partitioning values and corresponding p-values can be computed 
(Zeileis and Hornik (2007)). The strongest change point found will then later be 
used to define a cut point within a variable. The decision whether the partitioning 
variable with the lowest p-value is selected for splitting the data. If the variable 
being considered is unordered and categorical, all combinations need to be 
tested against each other. 

The procedure is continued until no more statistically significant cut points 
can be determined, or until imposed constraints are attained (e.g., the number of 
data points remaining for statistical examination is too small or the number of 
nodes becomes excessive). There will be several terminal nodes, each 
corresponding to a path through the “tree” of nodes and branches. 
For every terminal node, there will be a parametric model corresponding to the 

imposed planar fit result: 𝑊‾ = 𝑏0 + 𝑏1𝑈‾ + 𝑏2𝑉‾ . To find the conditions for which a 
specific parametric model is applicable requires consideration of all of the nodes 
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leading to the terminal node in question. For example, given an arbitrary 30 
minutes to calculate a flux, partitioning variables are identified, and the relevant 
parametric model is chosen. 

In the present application, the originating data were averaged into thirty–
minute periods and detrended by running average. The fluxes were corrected 
using a spectral correction factor by comparing the measured cospectrum with 
an analytical cospectrum (Moncrieff et al. (1997)) and compensated for density 
fluctuations following Webb et al. (1980). The data were then quality controlled 
by following the statistical tests and screening of Vickers and Marht (1997). For 
the MOB fitting procedure, outliers were identified and excluded when the pitch 
angle (𝜙) angle departed by more than 10° from a 99-point running median after 
sorting by wind direction. Furthermore, extreme wind speeds of the lower and 
upper quantiles (2.5%, 97.5%) were removed as well as friction velocities less 
then 0.05  𝑚 𝑠−1. Unlike past examinations, the observations were not confined 
to neutral stability regimes. 

Nominations of partitioning variables 

 

The first partitioning variable is choice of five stability regimes that will act 

as a categorical variable. The stability parameter 
(𝑧−𝑑)

𝐿
 was aggregated into five 

classes following the categories found in Dupont and Patton (2012). The stability 
regimes were defined after inspection of momentum and heat covariance as 

functions of the stability parameter 
(𝑧−𝑑)

𝐿
. Where 𝑑 is the estimated displacement 

height and 𝑧 the height of the anemometer. L is calculated according to its 
definition: 

𝐿 = −
𝜌𝑐𝑝𝑇𝑝𝑢∗

3

κg𝐻𝑣
 

where 𝐻𝑣 in this context is the virtual heat flux, ≈ (H + LwE/14). 𝑇𝑝 is the potential 

temperature (K), 𝜅 = 0.41 is the von Kármán constant 𝑔 = 9.81 m s-2 is the 
acceleration due to gravity and cp is the specific heat of air at constant pressure. 
Strong convection (SC) is characterized by large heat flux with low momentum 
flux while stable conditions have constant but low negative heat covariance 

(𝑤′𝑇′) and near-zero momentum covariance (𝑤′𝑢′). The boundaries for these 

conditions were determined subjectively by inspecting aggregated graphs of 𝑤′𝑇′ 

and 𝑤′𝑢′ as shown in Fig. 8. The boundaries for strong convection were defined 

as: −100 <
(𝑧−𝑑)

𝐿
≤ −0.45, moderate convection (MC) −0.45 <

(𝑧−𝑑)

𝐿
≤ −0.03, 

near neutral (NN) −0.03 <
(𝑧−𝑑)

𝐿
≤ 0.007, transition to stable (TS) 0.007 <

(𝑧−𝑑)

𝐿
≤

0.56 and stable (S) 0.56 <
(𝑧−𝑑)

𝐿
≤ 100. 

There are many issues arising in the quantification of stability, mainly 
since its quantification is affected by the imposed coordinate rotation.  
  



24 
 

 

Figure 8. Five proposed stability regimes. The triangles indicate w'T' (K m 
s-1) while the circles indicate w'u' (m2 s-2). As these values are calculated 
from the initial DR one can see offset of w' u' as it does not approach zero. 

MC-Moderate Convection 
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To help understand the physical behaviors involved, an alternative to the 
stability categories described above has been tested, based on solar altitude and 
therefore independent of sonic anemometer orientation. Thus, solar altitude is 
the second partitioning variable. The data indicate that this can capture the 
diurnal stability extremes provided use is made of wind speed as a 
complimentary partitioning variable. It is possible that the recursive procedure 
could identify different direction segmentations independently of the coordinate 
reference frame. 

In the discussion to follow, results from using these two stability 
classifications will be compared. Also examined will be the consequences of 
changes in the heights of the sonic anemometers. The assumption that different 
planar fit models are needed whenever the sonic anemometers are raised or 
lowered will be investigated to see if the fit is improved or if models can be 
aggregated across different height regimes. Using height regimes further 
simplifies and speeds up the recursive analysis procedure. This speed up 
happens because the height regimes are also categorical data. 

Another important partitioning variable is wind direction. In isolation of 
other partitioning variables finding separate planar fits for various segments of 
the wind will be identical to the sector-wise planar fit procedure. Except as 
opposed to finding separate wind sectors educated guesses, the MOB can find 
separate wind sectors statistically and allow them to vary in size over time. Which 
leads to the final partitioning variable considered here is time — simply taking the 
day of year aggregated into six-hour periods. 

Sorting of pitch angles (𝜙) 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠: 𝜙 = atan (
𝑤

𝑢
)  according to these 

stability regimes revealed a similar pattern, except for stable conditions and free 
convection. These two mechanically different regimes are similar in that they 
have the lowest wind speeds. The effect of buoyancy during unstable regimes on 
the ϕ angle is expected to be relatively independent of the surrounding 
topography but close inspection of the measurements indicates otherwise. (In 
comparison, studies of surface energy budgets in mountainous terrain have 
shown that differential solar heating associated with changes in local slope is an 
issue.) The aggregated pitch angles have different dependences on stability, 
wind speed and wind direction, perhaps partially due to differences in 
construction of the sonic anemometers and/or differences in their deployment. 
Regardless of this uncertainty, the role of stability must be included as a potential 
causative factor in the MOB procedure. 

Measured pitch angles are illustrated in Fig. 9. A striking feature of Fig. 9 
is that the results derived from the sonic anemometer used at site 3 differ from 
those from sites 4 and 5 (see above for the models). It is unknown whether the 
differences evident in Fig.9 relate to this difference on construction and exposure 
or to some other cause specific to the manufacturer. The data now obtained 
emphasize the need for careful assessment of anemometer performance, taking 
the results of detailed examinations (such as by Kochendorfer, (2012)) into 
account. It must be noted, however, that the anemometers deployed at sites 4 
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and 5 were erected on cross arms pointing into the predominate wind direction 
and that their bulk would have caused an updraft to be detected regardless of the 
wind direction (due to the imposed streamline deformation). The finding of about 
-10 degrees pitch for these two systems (Figs. 9) is compatible with this 
deformation expectation but appears more than would be expected. The current 
dataset is not adequate to test this further. Certainly, the anemometer at site 3 
was not so affected. 

Below 1 m 𝑠−1 wind speed the pitch angles derived from raw data exceed 
five degrees, but all anemometer deployments indicate that this angle decreases 
towards zero as the wind speed increases. Results from stations 4 and 5 differ 
markedly from the results from station 3, in line with expectations based on the 
topography illustrated in Fig. 4 but also possibly a result of the different 
anemometer constructions and deployments, as mentioned above and as 
explored by Kochendorfer et al. (2012). Consequences of the influence of gravity 
on buoyancy are evident in Fig. 9B, where it is seen that the pitch angles derived 
for stations 4 and 5 for highly unstable conditions are consistently less than those 
detected in other stratification regimes, with the surprising irregularity of the 
strongly stable results. The station 3 results indicate little stability variation of 
pitch with wind direction — this station was located in a less complicated 
surroundings. 

Partitioning Variable Selection 

Given the many possible partitioning variables, the task then becomes 
choosing the best method to select the simplest but best performing combination 
of them. The task of variable selection cannot be performed by the MOB 
procedure. The solution was to perform cross-validation over different 
combinations of the partitioning variables. The process includes a series of 
“cross-validations” in which unexplained variances are computed at the end of 
each model improvement before the model in question is augmented by adding 
into consideration the most contributing of the remaining variables. Cross 
validation is a statistical method aid in comparing and selecting models (see 
Hastie et al. (2009)). Cross validation quantifies how well a model with a 
combination of parameters corresponds to “unseen” observations. The intent is 
to determine the best performing model (defined by a low RMSE.) with the lowest 
number of terminal nodes. In our case, the available observations were randomly 
split into five subsets of equal size. The model derived at a specific node where a 
further step is warranted was fitted to a dataset made up of four of the five 
equally sized sub-sets of data and the results tested using the fifth sub-set. The 
procedure was repeated for each of the five sub-sets, yielding five quantifications 
of the unexplained variance. The partitioning variable combination with the 
lowest, significant RMSE is then optimal. 

In the present application, the mutually exclusive partitioning variables 
were stability class, solar altitude, height of measurement, day of year 
(henceforth DOY) and wind direction   
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Figure 9. The shapes of the pitch angle as functions of wind speed, stability 
regimes and wind direction. The width of the shapes corresponds to one 

standard error from the mean. 
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Wind direction was added to permit examination of an RPF. The mutually 
exclusive partitioning variables were consequently never simultaneously 
partitioned. The comparison is not one to one as the stability and height regimes 
are categorical as defined here while altitude, DOY and wind direction are 
continuous. For each of the three eddy covariance measurement locations, five–
fold cross–validation tests were conducted for each combination of variables 
indicated by the MOB process as each node was encountered. While the 
combination significance varied across stations, the overall trend remained the 
same. The lowest significant RMSE occurred when all four variables were 
included and the worst performing variable combination was the stability class as 
the sole main effect. 

Choosing the most parsimonious model presents additional difficulties. 
The RMSE varies inversely with the number of terminal nodes as the number of 
contributing variables increases and sample sizes are reduced. This is neither 
profound nor surprising. Figure 10 presents a summary of the intermediate and 
final results obtained through the process of decision-tree development now 
considered. Inspection of Fig. 10 reveals that including the change of heights of 
the instrument causes a systematic improvement of the model. Except for station 
3, the models including change of heights provided no significant improvements 
in the overall model fit. The terminal nodes number in range from five to 206. 
However, while the model complexity does not decrease, the number of 
decisions can be reduced whenever the wind direction (denoted as WindSector) 
is included. This reduction is possible because the RPF can be interpreted as the 
SPF. 

The best improvement occurs when all variables are included but the 
number of terminal nodes is then large — in the range 185 to 203. Note the only 
categorical variables are height regime and stability. This explains why the five 
stability classes by themselves can resolve into a model with five terminal nodes. 
The continuous partitioning variables can have a large range of terminal nodes, 
depending where the splits occurred. Adding DOY yields the greatest 
improvement — to be seen in a comparison of results comparing DOY to height 
regime. However, there is a large sacrifice for parsimony as the number of 
terminal nodes increases, by up to ten–fold. In comparing partitioning variable 
combinations with a total of two combinations, DOY and wind direction have the 
greatest improvement and even a slight reduction in the number of terminal 
nodes. The improvement is greatest for station 3 and insignificantly improved in 
station 4 and station 5 to the other two– partitioning variable models. DOY and 
solar altitude have more of an advantage for station 4 and 5 at the cost of 
increased terminal nodes. In comparing three–variable partitioning to four–
partitioning variable there is no improvement and no single performing 
partitioning scheme. DOY and wind direction appear to be the most consistent 
partitioning variables while solar altitude and wind speed are more inconsistent. 
Including a WindSector variable is convincing because it does increase the 
number of rules, but it does not increase the overall error. Furthermore, this 
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choice can take advantage of the MOB algorithm and one does not have to worry 
about sparse data due to short height regimes durations and predominate wind 
directions. This is a convincing proof of concept if a researcher wants to keep the 
coordinate rotation within the planar fit framing. 

Results of the Recursively Partitioned Planar Fit Analysis 

Figure 11 illustrates the partitioning involved during the growing season of 
2018. In the upper diagram, the colored line segments correspond to different 
terminal models as appropriate for the different prevailing circumstances. It can 
be seen that wind sector depiction changes as the season progresses, with 
sector dimensions changing from the spring (before crop emergence) until the 
crop was mature. Some sectors were characterized by longer temporal stability 
that was evident as the crop grew (and as the length of sectors increased). In the 
lower diagram, crop height is plotted in green, anemometer height (for station 4) 
in black. It can be seen that wind sector depiction changes as the season 
progresses, with sector dimensions changing from the spring (before crop 
emergence) until the crop was mature. 

Figure 12 shows the partitioning by solar altitude (the angle of the direct 
solar beam from the horizontal). The patterns, between stations had less 
consensus and thus the causative/physical under consideration are obfuscated. 
Segmentation derived using the Station 3 data appears the most consistent. 
From April to June there was no contribution of solar altitude to the 
segmentation, it should be noted that for Stations 4 and 5 there were some wind 
sectors that were not sensitive to solar altitude. Station 4 had a 30-degree 
demarcation from February to June 2018. Station 5 was less sensitive to solar 
altitude having only four splits and (marking where there are statistically 
significant variations in the way solar altitude contributes to the model) the 
statistics indicate starting in May 2018. The May to mid-June split over 10 
degrees and from mid-June to August there was a split around -10 degrees. 
September and October had two splits: 0 degrees and 40 degrees. It is tempting 
to relate these estimates to the penetration of the slanting solar beam into the 
crop canopy, varying as the crop grows. Further study and additional data would 
be required to explore this further. 
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Figure 10. The average root mean square for the five–fold cross–validation 
for the RPF procedure. The width the error bars correspond to the 95% 
confidence interval. The values in square brackets correspond to the 

maximum number of terminal nodes.  
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Figure 11. Segmenting results for station 4 observations of 2018. The 
colors in the upper diagram correspond to different segments as identified 

by the MOB procedure used here. In the lower diagram, the height of the 
growing crop is shown in green. 
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Figure 12. Illustrating the segmentation results derived using the 2018 set 
of observations. The y axis is the solar altitude.  

  



33 
 

Micrometeorological Inferences 

Having derived optimal sensor orientation adjustments using the decision 
tree methodology now described, it remains to examine the consequences. To 
this end, consider comparisons of the results obtained using three alternative 
procedures — 1. No rotation (i.e., accept raw observations derived with 
anemometry oriented according to gravity), 2. After a double-rotation correction 
as is common in the micrometeorological literature and 3. Following application 
of the present MOB analysis. These alternatives are identified as NR, DR and 
RPF, respectively. Table 1 summarizes results derived using the entire dataset. 
Four sets of observations are represented by the results listed in Table 1: the 
fluxes (or covariances) corresponding to momentum, heat, water vapor and 𝐶𝑂2 
exchange. 

Examination of the results of Table 2 reveals that Site 3 provides the most 

consistent results. For the determination of 𝑤′𝑢′, the NR alternative is certainly 

unacceptable. For 𝑤′𝑇′ the results suggest that the no rotation alternative is as 
good as either of the alternatives. This could be interpreted as support for the 
expectation that gravity is the controlling factor in orientation of the vertical when 

𝑤′𝑇′ is computed. In the case of the water vapour flux, it appears that the NR 
case is once again acceptable. Gravity is also then a controlling factor and 
evaporation goes along with sensible heat exchange. The situation for 𝐶𝑂2 is 
more complex, since the direction of the flux changes with time of day, from 
negative in the daytime when 𝐶𝑂2 is being taken up by the foliage to positive at 
night when 𝐶𝑂2 emission from the soil is a controlling factor. The present 
tabulations do not permit an easy conclusion to be drawn. It is clear, however, 
that the different sensor systems now used yield different results. To 
demonstrate this, Fig. 13 shows average diurnal cycles of 𝐶𝑂2 covariances as 
derived for the three separate sensing systems and for analyses assuming the 
different coordinate rotation methods already mentioned. 

The average diurnal cycles of fluxes (as shown in Fig. 13) indicate strong 
agreements across all coordinate rotation methods for water vapor (also see 
Table 1). This agreement is as expected, because the exchange of water vapor 
is buoyancy dominated and therefore aligns with gravity, like for the sensible heat 
flux. At night, the departure of the DR results for CO2 exchange from the others 
(clearly evident in Fig. 13) is presently interpreted as evidence of local gravity 
flows responding to the terrain and entrapment in them of CO2 emanating from 
the soil. The water vapor flux results do not show this nighttime departure. 
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Table 2. Results of regressions for the coordinate rotation methods.  

 
  

  Water Vapor Flux (mmol m-2 s-1) 

 Station 3 Station 4 Station 5 

 R Slope R Slope R Slope 

DR::PF 0.998 1.023±0 0.995 0.936±0.001 0.99 0.927±0.001 

DR:NR 0.997 0.996±0.001 0.995 0.941±0.001 0.989 0.915±0.001 

PF::NR 0.998 0.973±0 0.999 1.004±0 0.998 0.986±0.001 

           

 Carbon Dioxide Flux (μmol m-2 s-1) 

  Station 3 Station 4 Station 5 

 R Slope R Slope R Slope 

DR::PF 0.946 1±0.002 0.741 0.864±0.003 0.633 0.818±0.003 

DR:NR 0.955 0.986±0.002 0.739 0.86±0.003 0.622 0.798±0.003 

PF::NR 0.981 0.985±0.001 0.988 0.991±0.001 0.982 0.976±0.001 

                    

 
 𝑤’𝑇’̅̅ ̅̅ ̅̅   (K m s-1) 

 Station 3 Station 4 Station 5 

  R Slope R Slope R Slope 

DR::PF 0.999 1.024±0 0.995 0.949±0.001 0.997 0.948±0 

DR:NR 0.999 1.017±0 0.995 0.951±0.001 0.996 0.943±0 

PF::NR 0.999 0.993±0 0.999 1.001±0 0.999 0.994±0 

 

 

𝑤’𝑢’̅̅ ̅̅ ̅  (m2 s-2) 

  Station 3 Station 4 Station 5 

  R Slope R Slope R Slope 

DR::PF 0.987 1.024±0.001 0.843 1.056±0.004 0.835 1.075±0.004 

DR:NR 0.285 0.321±0.006 0.428 0.38±0.005 0.504 0.416±0.004 

PF::NR 0.287 0.311±0.006 0.468 0.332±0.004 0.427 0.274±0.003 
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Figure 13. Diurnal trends of carbon dioxide fluxes (µmol m-2 s-1). The green 
curves relate to no coordinate adjustment (NR), yellow to the RPF 

described above and mauve to the familiar DR approach. 
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Figure 14. Frequency distributions of the momentum flux ¯(u^' w^' ) for 
different coordinate rotations. 
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Figure 15. Frequency distributions of half-hourly w for different coordinate 
rotations. The DR depiction corresponds to the inherent constraint that w = 

0 for all time intervals. 
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A simpler method to assess the effectiveness of the coordinate rotations is 

to examine the number of times 𝑢′𝑤′ appears to exceed zero. While positive 
values can arise if the flow is not steady, the values most likely appear if the 
coordinate system is not aligned appropriately. A positive value implies that 
momentum is being produced rather than consumed at the surface which is 
clearly inaccurate. Figure 14 shows that the frequency of detection of positive 
values is reduced by the RPF method now exercised, for all three installations. 
The DR method appears to work well for the Station 3 dataset, more so than for 
the other two sites. Station 4 and 5 share a similar behavior — they shared the 
same sonic anemometer design. Results were obtained from a fourth rotation 
scheme using constant planar fit (CPF) are included in the deliberations to follow. 
If the formalisms derived from segmented planar analysis, described above, do 
not differ significantly from the CPF the benefits do not warrant the additional 
complexity of the RPF. 

The distributions of vertical velocities illustrated in Fig. 15 are especially 
revealing. The no-rotation datasets reveal that the anemometer at station 3 
experienced a small positive bias, as must be expected from the deployment 
configuration. The R.M. Young instrument was on top of a vertical pole, such that 
the obstruction to streamlines presented by its presence would result in a local 
updraft regardless of wind direction or any other consideration. The Station 4 and 
5 sensors were mounted at the end of horizontal arms directed into the dominant 
wind direction. These yielded vertical velocity determinations that appear 
anomalous — with consistent downdrafts. It cannot be determined whether these 
resulted from sensor configuration (Kochendorfer, 2012) or from the surrounding 
slope, but in either case the RPF methodology appears to provide a satisfying 
response with a distribution like a normal about zero. Using a simplified planar fit 
routine, CPF, centers the distribution but the spread increases. The CPF 
represents the mean streamlines over a rapidly changing environment and 
change in the height of measurement. Clearly the CPF is too simple, this is by 
design so it can function as a null model. The RPF easily accounted for this 
instrumental bias. Note that in Fig. 15 the distribution for Station 4 is bimodal. 
Detection of this caused the instrument to be recalibrated. However, the best 
overall performance appears to have been using the Station 3 data after applying 
the sector planar methodology as described here. 

The different coordinate rotation methods yield covariance quantifications 
that differ in detail but do not necessarily influence the average situations that are 
likely to be of relevance in studies of crops. This is illustrated in Figs. 16 through 
19, where results obtained over a two-week period have been combined into 
average time trends, for daytime and nighttime situations. Central daytime and 
nighttime periods are considered, defined as 1000 to 1600 LT and 2200 to 0400 
LT respectively (local time = UTC – 4 h). Measurements made at Station 3 are 
used. The intent is to show differences that would arise if instrumentation was 
erected according to gravity. 
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Figure 16. Daily averages of vertical velocity partitioned into day (1000 to 
1600 LT) and night 2200 to 0400 LT for 1-14 of August 2017. Error bars 

correspond to one standard error departures from the mean. 
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Figure 17. Daily averages of Carbon dioxide fluxes partitioned into day 
(1000 to 1600 LT) and night 2200 to 0400 LT for 1-14 of August 2017. Error 

bars correspond to one standard error departures from the mean. 
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Figure 18. Daily averages of water vapor fluxes partitioned into day (1000 to 
1600 LT) and night 2200 to 0400 LT for 1-14 of August 2017. Error bars 

correspond to one standard error departures from the mean. 
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Figure 19. Daily averages of sensible heat fluxes partitioned into day (1000 
to 1600 LT) and night 2200 to 0400 LT for 1-14 of August 2017. Error bars 

correspond to one standard error departures from the mean. 
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Figure 19 shows the uncorrected data reveal a highly variable downdraft 
in daytime and a more consistent updraft (1 to 2 cm s-1) at night. The standard 
error bars indicate that the average recalculated vertical velocity estimates are 
well determined, with the familiar double-rotation method yielding zero values at 
all times (as required). It is not clear as to how much of the nighttime updraft can 
be attributed to sensor-induced streamline departure or to local topography, but 
regardless of this uncertainty the RPF as discussed here appears to correct for 
almost all of the 𝑤 departure accounting well for changes in the slope with wind 
direction. In comparison, the CPF appears deficient. While this interpretation 
appears to conform to expectations, it remains to be seen if the differences affect 
eddy covariance determinations. 

The alignment of convective exchange with gravity leads to the 
expectation that the alternative coordinate adjustment systems now considered 
should agree well, among themselves, for the case of sensible heat exchange. 
Each method is then adjusting towards an alignment that will differ slightly from 
actual vertical, with the error margin amounting to little more than the sine of the 
angle of tilt adjustment. In the momentum covariance case, the optimal alignment 
differs. The sensible heat case is shown in Fig19.  

The sensible heat flux results indicate that during the night, there is good 
agreement among all rotation methods, while during the day DR appears to 
overestimate the covariance and the no-rotation method yields results 
consistently slightly above those from the other choices. While most of the 
overestimation is not significant this is an interesting trend and should be noted 
with caution. During night, the differences between DR and RPF are significant. 
Because the flux of water vapor also aligns with gravity but is less well 
determined (sensing of humidity with rapid response remains a challenge, 
relative to the measurement of temperature), it is anticipated that the agreement 
among the rotation options will be much as is seen in Fig. 19 for the daytime 
case. At night, the situation is complicated by the continuing but slow release of 
water vapor from the soil as well as by non-stomatal water vapor loss from the 
plants. 

The standard error bars in Fig. 19 are substantially greater than those of 
Fig. 16 and differences among the rotation alternatives are such that simple 
methods could be adequate. However, the constant planar option appears an 
outlier. During the day there are no significant differences, while at night the CPF 
often departs from the alternatives. 

The case of CO2 (see Fig. 17) exchange follows in this sequence. The DR 
method appears to overestimate carbon dioxide fluxes in comparison to the RPF. 
The CPF and the DR methods yield the largest scatter and the largest standard 
errors. The nighttime situation is complicated, as expected because of the 
contribution of gravity flows at the surface and the pooling within them of CO2 
emitted from the soil. The DR method appears to overestimate the amount of 
carbon dioxide fluxes in comparison to the RPF method. The constant planar and 
DR methods result in the largest scatter and the largest standard errors. 
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Considering all of the covariance cases now examined, it seems that 
during the CPF disagrees the most. The 1st order coordinate rotation or no 
rotation appears to underestimate the fluxes for a majority of the time, however 
the underestimation is rarely significant. The RPF closely follows the DR. During 
night, the story differs, the differences between DR and RPF are significant. The 
DR appears to overestimate the amount of carbon dioxide fluxes in comparison 
to the RPF. The constant planar and the 1st order rotation have the largest 
scatter and the largest standard errors. There is more agreement with all rotation 
methods when looking at the water vapor fluxes see 18. During the day there are 
no significant differences, while at night the CPF estimates depart most from the 
others. 

DISCUSSION 
The discussion so far has focused on one of the three sets of data 

collected, from Station 3 such that the differences that occur when a different 
sensor system is employed and to demonstrate the time-of-day limitations of 
assuming gravitational control of scalar fluxes, Fig. 14 shows results from 
Stations 3 and 4, for sensible heat exchange (a) and for CO2 fluxes (b). Results 
plotted are correlation coefficients derived by regressing DR results against no 
rotation and segmented planar rotation against the same no rotation data, as well 
as the CPF acting as a null model. It is seen that neither of the rotated coordinate 
results yields differences greatly different from the un-rotated for daytime 
(actually for the period of unstable stratification), but that strong differences arise 
for nighttime (stable) conditions. Bearing in mind that the CO2 fluxes at night are 
influenced by gravitational flows and the build-up of CO2 in them from respiration 
processes. 

For example, in highly unstable portions of the day when the streamlines 
become more independent of topography, there are high correlations to the 
rotated fluxes. This can be seen with Fig. 20 where the highest correlations occur 
in unstable hours 0900 to 1800 LT (local time = UTC – 4 h). Regardless of the 
coordinate system, lower correlations with unrotated fluxes occur outside of the 
unstable times of day. This is not necessarily an indictment of the coordinate 
system because the unrotated system would also become more invalid as stable 
stratification was approached. However, it appears that the DR for the IRGASON 
actively contaminates the fluxes. Fig. 20 also shows how the heat flux is 
contaminated by the DR method. However, the correlation between the two 
planar fit heat flux results and the unrotated heat fluxes are almost invariant with 
time of day and are consequently less sensitive to the choice of coordinate 
rotation. Care must be taken outside of unstable conditions especially for carbon 
dioxide fluxes (e.g., in consideration of flux partitioning), however during the 
unstable conditions the choice of a coordinate system, even in complex   
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Figure 20. Correlation of coordinate rotated temperature flux and carbon 
dioxide flux to unrotated temperature flux by time-of-day LT (LT=UTC - 4 h). 
The width of the lines corresponds to ± one standard error departures from 

the mean. 
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topography, is less an issue. The CPF that was purposefully oversimplified to 
consider the long-term streamlines forced by the topography and represented by 
a single plane, has a systematically lower correlation. The reason for this is that 
DR and the RPF can account for unstable conditions dominated by buoyancy 
and so behave much more similarly during this time. 

In simple concept, an optimal coordinate system should allow for vertical 
exchange dominating convection and streamline-normal mixing driving the 
momentum flux. In this context, heurism would suggest that the no-rotation 
option would be preferred for the sensible heat flux, provided streamline 
deformation by the sensor itself requires attention. In this case, use of any other 
coordinate system would impose a reduction in the covariance then measured. 
However, water vapor is less buoyant that heated air and therefore there must be 
a need to inject an element of evaporative mixing that recognizes transfer by the 
mechanical (moment-driven) turbulence. Hence, using a vertically oriented 
system would yield a slight underestimate of the water vapor exchange, but 
probably by an amount too small to identify with statistical confidence. Finally in 
the train of heurism, CO2 is not buoyant and so the departure from gravity 
orientation of coordinates must then be greater than for the water vapor case. 

Conclusions 

The MOB segmental partitioning described here is a useful and objective 
method to identify different direction-dependent regimes for coordinate rotation; it 
identifies different wind sectors for planar fits by introducing a capability to 
integrate categorical considerations into an objective analysis of observational 
results. The application of the new methodology to a long-term continuous record 
of covariance data collected at a research site in Tennessee has revealed 
several issues that are of importance in the interpretation of field data as are 
used in micrometeorological studies but also as might be used by the agricultural 
community. 

In particular, the analyses show that in quantifying scalar fluxes during the 
day, especially of sensible heat flux, evapotranspiration and carbon dioxide 
exchange, there is little need for coordinate rotation and less reason to choose 
an optimum coordinate rotation method. Alignment according to gravity is 
adequate. This is as expected, assuming that the controlling cause of the flux-
carrying turbulence is buoyancy and hence that the sensible heat exchange is 
the dominant consideration. The expected alignment of the daytime fluxes with 
the gravitational vertical is supported and hence unrotated scalar covariances 
appear adequate. 

The exchange of momentum is different. The RPF method then identifies 
a need for a different rotation — gravity is no longer a controlling influence and 
the influence of surface slope and differences in it are central. At night, or in 
stable or near-stable stratification the use of a gravity alignment is likely to result 
in incorrect momentum fluxes. The measurement of scalar fluxes in these 
circumstances requires adoption of a coordinate rotation methodology like (or the 
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same as) that which is best for the momentum case. In concept, the transfer of 
scalar quantities in these circumstances is by the same turbulence that transfers 
momentum, without a strong contribution of buoyancy (excepting its minor 
mediating influence on vertical motions). 

Differences among the results from alternative coordinate rotation systems 
maximize for the case of momentum exchange, especially in stable conditions, 
but any of them would be preferable to assuming vertical exchange according to 
gravity. The data also show that the construction and deployment of 
anemometers could be an issue; the different systems deployed at Stations 3 
and 4 of the present experiment provide different results when the DR technique 
is considered. This could be a consequence of the topographic surroundings of 
the two locations, but it is also noted that the DR method yields adjusted 
covariances that differ substantially from the present segmented planar 
approach. The data considered here indicate that the DR of the IRGASON wind 
velocity actively contaminates the flux determinations. Fig. 20 shows how the 
heat flux evaluation is also contaminated by the DR method. 

This study illustrated the practicality of the MOB algorithm for finding 
optimal criteria to understand the strengths and weaknesses of coordinate 
rotation methods. The MOB algorithm is helpful for creating individual wind 
sectors and accounting for variables that may impact the fits. The method 
allowed a determination of which variables have the greatest influence on 
combining or switching different parametric models; the variables with the largest 
explanatory power are DOY, solar altitude and wind direction. 

Thus, for the measurement of scalar fluxes and even in complex 
landscapes, using the unrotated fluxes or more complicated rotation methods 
such as the planar fit would probably is preferable to DR. This finding is not 
universal as the most likely explanation for the poor performance of the DR 
methodology in the present study is the configuration of the sensors rather than 
other environmental factors. However, the finding is relevant to the interpretation 
of research results, further highlighting the need for more research comparing 
coordinate rotation methods. 
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CHAPTER 2  
FLUX IMPUTATION AND PARTITIONING 
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Abstract 

The flux variance approach to partitioning eddy covariance fluxes was 
successfully implemented. A deep neural network was able to quantify the 
aleatoric uncertainty of the fluxes. For the two maize growing seasons, the no-till 
strip sequestered the most carbon dioxide at -2.58 (-3.23, -1.9) [2017] and -6.54 
(-7.65, -5.45) [2018] daily grams of carbon compared to the farmer practice of -
0.36 (-1.11, 0.43) [2017] and -2.66 (-3.91, -1.34) [2018] for the farmer practice 
and 2.31 (1.54, 3.1) [2017] and -2.93 (-4.07, -1.79) [2018] daily grams of carbon 
per square meter for the SMB application. This is due by lower Re values which is 
supported by the partitioning results. The above ground for 2018 was analyzed 
using an anova and tukey honest significance test to find no significant difference 
of the biomass.  

Introduction 

 
The EC system effectively measures net ecosystem exchange (NEE). NEE is a 
measure of net ecosystem production which quantifies the net accumulation of 
organic matter. 

𝑁𝐸𝐸 = 𝑅𝑒 + 𝐺𝑃𝑃 
While NEE yields a valuable measure of ecosystem carbon exchange, it does not 
describe the processes responsible for the flux. Inferring two dependent variables 
ecosystem respiration (𝑅𝑒) and gross primary production (GPP) is a challenge 
because there is not a unique solution. 𝑅𝑒 is the carbon dioxide emitted from the 
respiring compartments of the ecosystem (this includes litter, soil and autotrophic 
and heterotrophic respiration). GPP is the carbon dioxide flux originating from 
primary production, i.e, photosynthetic assimilation. It is not possible to identify 
one superior method given flux observations and an unknown “true” flux. 
Nevertheless, choosing an appropriate method given the constraints and larger 
goals of the experiment will be preferred. What follows will be a brief explanation 
of some of the popular methods used to partition NEE. 

Overview of Partitioning Methods 

To better understand and model the agro-ecosystem, the sources of the 
measured fluxes need to be partitioned. The water vapor fluxes are partitioned 
into evaporation and transpiration while carbon dioxide is partitioned into 
photosynthesis and ecosystem respiration. Nighttime and daytime models are 
often used to accomplish this partitioning procedure (Reichstein et al., 2005a). 
The nighttime data-based methods must be applied after the EC data have been 
appropriately filtered. The relationship with respiration and temperature functions 
as the simplest model. GPP is assumed to be zero during nighttime periods 
implying the measured NEE is composed entirely of 𝑅𝑒. A model is then fit and 
extrapolated to daytime periods. Air temperature is typically used instead of soil 
temperature due most likely to the larger percentage of soil respiration occurring 
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near the surface and soil temperature is often measured at a level too deep for 
optimal correlation with 𝑅𝑒 (Reichstein et al., 2005a). 

Method 1 nighttime data-based methods 

A very common approach to model Re is the 𝑄10 equation where temperature is 
the dominant driver: 

𝑅𝑒 = 𝑅10𝑄10

𝜃−10
10  

𝑅10 is the ecosystem base respiration at 10° C and Q10 is the temperature 
sensitivity parameter. Reichstein et al. (2005) modeled Re using Arrhenius 
kinetics: 

𝑅e = 𝑅10exp [𝐸0 (
1

283.15 − 𝜃0
−

1

𝜃 − 𝜃ref 

)] 

Where 𝐸0 is an activation energy parameter fitted to the data, and the 𝜃0 was set 
to 227.13 K (Reichstein et al., 2005). 
Ecosystem respiration responds to more than just temperature alone. Water and 
nutrient levels are required for biological functioning. However, nutrient levels 
vary over longer timescales and thus are not typically represented as a separate 
variable. 

Method 2 Daytime Partitioning 

Daytime based partitioning generally uses higher quality data (because the EC 
assumptions are most often satisfied). Nighttime radiation suppresses turbulence 
and thus impedes mass transfer between surface and atmosphere as 
approximated by a vertical turbulent flux across a plane. Daytime flux partitioning 
parameters account for the effect of vapor pressure deficit on NEE, radiation on 
GPP, and effects of temperature on 𝑅𝑒. NEE is modeled using the rectangular 
hyperbolic light response curve: 

𝑁𝐸𝐸 =
𝛼𝛽𝑅𝑔

𝛼𝑅𝑔 + 𝛽
+ 𝑅𝑒 

where 𝛼 is the canopy light utilization efficiency and represents the initial slope of 

the light-response curve, 𝛽 is the maximum carbon dioxide uptake rate of the 
canopy at light saturation, 𝑅𝑔 is the global radiation. 𝑅𝑒 is calculated using the 

nighttime-based approach. The terms can be accounted for using regression 
analysis. Lasslop, (2010) further modified 𝛽 to better reflect vapor pressure 
deficient limitations of GPP. 

Method 3 Flux Variance Similarity Partitioning 

High-frequency flux data (5-10 Hz) contain more information about the sources of 
carbon dioxide than is often acknowledged. Scanlon and Sahu, (2008) proposed 
a method to estimate assimilation, respiration, evaporation, and transpiration 
using this high frequency data. They provided an analytical expression based on 
the leaf-level water-use efficiency for a given crop to partition both carbon and 
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water vapor fluxes (Palatella et al., 2014). Seasonal patterns of the partitioned 
flux estimates closely followed canopy development in an agricultural ecosystem. 
The reasoning behind the method is as follows: 1. According to the Monin-
Obukhov similarity theory, scalar time series measured at the same position 
should exhibit perfect correlation; 2. There exists a spatial separation between 
the stomatally regulated sources/sinks and non-stomatal sources/sinks; 3. This 
separation results in different transport mechanisms from the canopy to the 
atmospheric surface layer. 

𝑤′𝑐′ = 𝑤′𝑐𝑝
′ + 𝑤′𝑐𝑟

′

𝑤′𝑞′ = 𝑤′𝑞𝑡
′ + 𝑤′𝑞𝑒

′
 

Ideally, when only transpiration and photosynthesis occur, the correlation 
coefficient 𝜌 between water vapor concentration (𝑞𝑡

′) and carbon dioxide 

concentration (𝑐𝑝
′ ) should be perfectly negatively correlated. This negative sign 

results because photosynthesis consumes carbon dioxide while the plant leaves 
act as sources of water vapor. (4) Direct evaporation and respiration degrade the 
correlation on the q-c time series. (5) Thus, the degradation magnitude depends 
upon the relative strength of the individual flux components as well as the degree 
of the correlation among these components. 𝜌𝑞𝑡,𝑐𝑝

 may indicate how much 

transpiration and direct evaporation (𝑞𝑒
′ ) contribute to the total water vapor flux 

and how much photosynthesis and respiration (𝑐𝑟) contribute to the total carbon 
dioxide flux. This method is useful because the only inputs needed are high-
frequency time series for vertical wind speed, q, and c and the knowledge of how 
water use efficiency varies as a function of vapor pressure deficit for the 
vegetation (Scanlon and Sahu, 2008). The stomatal exchange is controlled by 
the canopy-level water use efficiency (W). W relates the fluctuations in 𝑐𝑝

′  and 𝑞𝑡
′ 

via 𝑐𝑝
′ = 𝑊𝑞𝑡

′. This flux-variance similarity (FVS) partitioning method has few 

inputs needed to partition the fluxes. The only estimated variable is the canopy-
level water use efficiency. The other variables are carbon dioxide flux, water 
vapor flux as well the correlation coefficient between the concentrations of water 
and carbon dioxide. 

Method 4 conditionally sampled eddy covariance 

The fourth partitioning method briefly explained is the use of conditional daytime 
sampling, following Thomas et al., (2008). The developed model uses several 
techniques and theories to identify respiration events and to quantify the 
respiration flux. The model employed a combination of conditional sampling 
methods, quadrant analysis and relaxed eddy accumulation with hyperbolic dead 
bands to identify respiration events. This method would provide additional 
constraints on daytime 𝑅𝑒 estimates using high frequency data. Air from a sub-
canopy source is hypothesized to contain above average amounts of carbon 
dioxide and water vapor and can be identified by w’ >0, c’>0 and q’>0, 
(detrended vertical velocity, carbon dioxide density, and water vapor density 
respectively). To help limit false classification of values with the normalized c’ 
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and q’ space an additional hyperbolic function 𝑐’𝑞’(𝜎𝑐, 𝜎𝑞) > H (the sigmas denote 

standard deviation). H was determined to be ¼. The hyperbolic exclusion 
determines that sampled data significantly deviate from the negative correlation 
between daytime c and q. If this method is deemed acceptable, it can be used as 
another independent measure of daytime respiration (Thomas et al., 2008; 
Zeeman et al., 2009). 

Choice of Partitioning method 

In the field experiment now considered, three separate sets of data were 
obtained from three independent instruments. Data obtained during the growing 
years of 2017 and 2018 provided key insights into the reasoning behind the 
choice of partitioning methods. During the maize growth. However, during the off 
season, this could not be satisfactorily satisfied. The reasoning behind this is that 
the three stations would often over-sample each other due to the predominate 
wind direction and deconvoluting which flux came from which treatment became 
the driving focus. Instead of limiting the sampled flux from the treatment area, 
integrating multiple stations over the area of interest became a source of strength 
rather than a limitation. 
Clearly a functional or deterministic partitioning methods has its advantages but 
when applied to an area with site limitations. As it will smooth out the meaningful 
variability that could easily originate from different treatment effects. Furthermore, 
these mechanistic methods may not capture inhibition of leaf respiration due to 
high light exposure nor do the mechanistic method adequately capture the effect 
of soil moisture upon the canopy (Keenan et al., 2019; Xu et al., 2004). Thus, the 
flux variance approach or the conditionally sampled eddy covariance approach 
could complement this requirement. The conditional daytime sampling benefits 
from a larger interspace canopy structure (such as forests). This leaves the final 
partitioning method, the flux variance approach. 

The Limitations of the Flux Variance Similarity Approach 

The crucial weakness of the FVS method is the estimation of the leaf level 
water use efficiency. As it is the only extraneous variable (not directly related to 
the EC measurements), there are assumptions such as canopy structure and 
plant metabolic pathways (C3 vs C4 plants) that may not be satisfied. During the 
off season the canopy was dominated by C3 plants. Determining the appropriate 
method to estimate W remains the choice of the analyst. The major unknown 
with the largest uncertainty is estimating the intracellular concentration 𝑐𝑖 of 

carbon dioxide in the canopy. W is defined as 𝑊 = 0.7
𝑐‾s−𝑐‾𝑖

𝑞‾s−𝑞‾𝑖
. The 0.7 results from 

the differences in diffusion and convection between water vapor and carbon 
dioxide through stomates. The q and c are water vapor and carbon dioxide 
concentrations respectively and the i subscript corresponds to the intercellular 
location and s the surface location (Campbell and Norman, 2000; Scanlon and 
Sahu, 2008). 
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C4 plants (maize, sorghum) have a higher photosynthesis efficiency than 
C3 plants. C3 photosynthesis relies solely on the Calvin cycle for fixing carbon 
dioxide catalyzed by ribulose-1,5-bisphosphate carboxylase (Rubisco). The 
location of this fixation takes place in the chloroplast of the mesophyll. Rubisco 
competes with oxygen and carbon dioxide in the chloroplast and can undergo 
wasteful oxygenation rather than carboxylation. This process is called 
photorespiration. The C4 plants can overcome this limitation by physically 
separating the Calvin cycle from the meshophyll. In C4 plants the Calvin cycle 
occurs in the bundle-sheath cells. The concentration of carbon dioxide in the 
mesophyll can thus be greater than for C3 plants (Wang et al., 2012). 
There are many empirical and analytical models to estimate W (see for 
example,Medlyn et al. (2011); Katul et al. (2009); Cowan et al. (1977); and 
Farquhar et al. (2001)). However without measurements of stomatal conductance 
and 𝐶𝑖, the robust models are moot. Furthermore, there will be spatial 
disconnects between the measured variables needed to estimate W and what 
the EC stations measure. Prioritizing more parsimonious models has its 
advantages. Scanlon et al., (2019), proposed a simplified approach to estimate 
W without the need to estimate 𝐶𝑖 using optimal stomatal theory (Cowan et al., 
1977; Katul et al., 2009). Cowan and Farquhar (1977), demonstrated that plants 
adjust their stomatal aperture to maximize carbon fixation while simultaneously 

minimizing water loss 𝜆 =
𝜕𝑤′𝑐𝑝

′

𝜕𝑤′𝑞𝑡
′
. Katul et al. (2009), showed that 𝜆 can be related 

to the EC flux-based water use efficiency, W, using water vapor deficit (𝐷‾ ≈ 𝑞‾s −
𝑞‾𝑖) and ambient concentration of carbon dioxide: 

𝜆 =
𝑊2𝑎𝐷‾

𝑐𝑠
 

The step then is to maximize the objection function 𝑀𝑜𝑏𝑗 = −𝑤′𝑐𝑝
′ − 𝜆𝑤′𝑞𝑡

′. While 

an elegant solution, the ratio of intercellular carbon dioxide to ambient carbon 

dioxide 𝐶𝑖/𝐶𝑠 ≥ 0.5 because C4 plants can have much higher intercellular 
concentrations than the ambient air thus this optimization approach cannot in 
good faith be applied to C4 vegetation (Scanlon et al., 2019). Fortunately, at the 
site now considered the maize growing season is short and most of the off-
season growth is C3 vegetation. Thus for the remaining analysis the optimization 
procedure was used to estimate W and a simple empirical model to estimate C4 
W was used. To deal with senescencent maize and small maize leaf area index 
the choice to switch from one C3 to C4 W was chosen to be when the maize 
plant achieved V3 stage GCC > 0.45. W was then switched back to C3 when the 
GCC was below 0.45 (see Fig. 2). 

For the C4 estimate of 𝐶𝑖 and 𝑊 a simple formulation assuming the ratio 

of 𝐶𝑖/𝐶𝑠 decreases linearly as a function of vapor pressure deficit (𝐷‾ ). The choice 
for this was to maintain the error propagation relatively the same as in the C3 
case by using the same input variables: ambient carbon dioxide measurements 

and 𝐷‾ . The function is 𝐶𝑖
‾ = 𝐶𝑠

‾ ⋅ (1 − 2.710−4 ⋅ 𝐷‾ ) (Morison and Gifford, 1983). 



54 
 

Finally 𝑄𝑖
‾  is calculated using downward looking infrared to estimate temperature 

of the leaf to estimate saturated vapor pressure. 𝑄𝑖
‾  assumes that there is 100% 

relative humidity in the intercellular spaces. 

Analysis of Partitioned Fluxes 

Introduction 

As this partitioning process uses high frequency data, when the 
dataloggers were not recording to external cards or the stations were not 
operating, no partitioning could result. A summary of the data loss for 30-minute 
fluxes is seen below. The stomatal fluxes were set to zero when the incoming 
shortwave radiation (Rg) was less than 10 W/m^2. All fluxes at night were 
measured by the EC system can be safely assumed to be non-stomatal fluxes. 

Friction Velocity filtering 

It is well noted that during stable conditions eddy covariance 
underestimates carbon dioxide fluxes (see for example: Goulden et al. (1996) 
and Finnigan (2008); as well as Loescher et al. (2006); Zhang et al. (2006) and 
Jarvis et al. (1997)). From a biological perspective there should be no sensitivity 
to respiration to friction velocity (𝑢∗) (Goulden et al., 1996). With this behavior the 
night flux error acts as a selective systematic error because it affects more night 
nonstomatal flux measurements than when the ecosystem sequesters the carbon 
during the day. Thus, for any long term measurements including this systematic 
error will lead to an overestimation of carbon sequestration. 

Goulden et al., (1996) offered a simple criterion to discard data below a 
critical 𝑢∗ threshold where NEE and 𝑢∗ are dependent on each other. The data 
was first sorted into stomatal and non-stomotal fluxes using an Rg threshold of 
10 w/m^2 to indicated nocturnal conditions. To determine 𝑢∗ thresholds over a 
changing ecosystem, where changes in canopy structure can alter the relation of 
𝑢∗ to NEE, individual scenarios for different seasons were estimated following the 
procedure of Papale et al. (2006). Briefly the method estimates the 𝑢∗ threshold 

in each season and temperature subclass by binning the records to similar 𝑢∗ 
and computing the mean NEE and mean 𝑢∗ for each class. Then a change point 
method is applied to each bin to determine the threshold. The threshold is then 
found if a binned NEE is less than 0.95 times the mean of the proceeding 10 
binned NEE values (Papale et al., 2006; Wutzler et al., 2018). 
While the threshold values did vary throughout the season and by EC station, it 
averaged around 0.09 m s-1. The higher threshold for station 3 is most simply 
attributed to the different anemometer and/or mast configuration. Upon 
determining this specific systematic error, a gap filling method remains the next 
step to estimate yearly and seasonal sums of the partitioned fluxes. 
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Gap Filling and Uncertainty Estimation 

For this analysis, a gap filling method was needed that predicted the appropriate 
fluxes based on continuously measured drivers and while also conserving the  
noise occurring from random errors. Some such methods ranged from using 
Kalman filtering (Gove and Hollinger, 2006) or a multiple imputation (Hui et al., 
2004) can conserve the random noise. However, for this analysis a deep learning 
approach to quantify the uncertainty based on valid fluxes is proposed. Deep 
learning has been used to gap fill eddy covariance datasets while conserving the 
noise in the measurements is a great improvement. Conserving the noise is 
crucial because it accounts for the random noise from the sensors and the 
environmental response. 

One high performing and common technique to gap-fill EC flux 
observations is Marginal Distribution Sampling (MDS) first proposed by 
Reichstein et al. (2005b). MDS considers the flux covariation with meteorological 
variable as well as considering the autocorrelation of the fluxes. Thus similar 
meteorological conditions are sampled close to the gap of the measurements. 
The shorter a valid window, containing complete datasets, the more variables are 
considered such as incoming shortwave radiation, air temperature and vapor 
pressure deficit. The longer the gap the fewer variables considered and if the gap 
is large enough only the incoming shortwave radiation is considered. This 
method will be considered as a comparison to the proposed imputation model. 
Total number of missing half hour values after u* filtering. 

Variable selection 

Because the simultaneous estimation of NEE, ET, 𝐹𝑐𝑝 (GPP), 𝐹𝑐𝑟 (Re), 𝐹𝑞𝑡, 

and 𝐹𝑞𝑒, determining continuous variables to drive the fluxes can be separated 

into several categories. First two analytical variables drove the distinction 
between night and day. This was potential radiation where the values vary during 
the day but are variable during the year at night, the values were constant at 
zero. To incorporate changing values at night solar altitude was also included. 
The benefit of these values is they are analytical and not sensitive to power loss 
or other sensor malfunctions. Second and arguably more biologically important, 
shortwave radiation and net radiation were included. The short-wave radiation 
better captures the variability in the response of the plants to diffuse or direct 
sunlight. The net radiation better captures the evapotranspiration forcing. Finally, 
in a more biological sense, three temperature variables were measured. The 
variables were soil temperature at a depth of 3 cm, downward looking infrared to 
monitor canopy temperature and air temperature. Alongside temperature 
measurements, vapor pressure deficit and volumetric soil moisture were included 
to better capture plant available water. 
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u 

Table 3. u* thresholds (m s-1) thresholds by season. 

Season Start Station 3 Station 4 Station 5 
1/1/2017 0.11 0.07 0.07 
6/15/2017 0.11 0.09 0.08 
11/14/2017 0.12 0.08 0.09 
5/22/2018 0.12 0.08 0.09 
10/31/2018 0.12 0.09 0.07 
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Table 4. Total number of missing half hour values after u* filtering. 

Year Station 𝐹𝑞𝑒 𝐹𝑐𝑟 𝐹𝑞𝑡 𝐹𝑐𝑝 NEE 𝐹𝑞 

2017 3 12826 
(73%) 

9531 
(54%) 

9267 
(53%) 

9267 
(53%) 

8389 
(48%) 

2826 
(16%) 

2017 4 9364 
(53%) 

4354 
(25%) 

4738 
(27%) 

4738 
(27%) 

7186 
(41%) 

391 
(2%) 

2017 5 9574 
(55%) 

4672 
(27%) 

5373 
(31%) 

5373 
(31%) 

7273 
(42%) 

493 
(3%) 

2018 3 12056 
(69%) 

8382 
(48%) 

8069 
(46%) 

8069 
(46%) 

8657 
(49%) 

4139 
(24%) 

2018 4 11072 
(63%) 

7401 
(42%) 

7955 
(45%) 

7955 
(45%) 

8949 
(51%) 

4250 
(24%) 

2018 5 10609 
(61%) 

6365 
(36%) 

6754 
(39%) 

6754 
(39%) 

8519 
(49%) 

3002 
(17%) 
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Probabilistic Deep Learning Model Design and Training 

The Probabilistic Neural Networks (PNN) directly models probability distributions 
to estimate data’s uncertainties and to infer predictive probability distributions 
with its output. While there are plenty of different types of uncertainty 
quantifications with PNNs (see Abdar et al., 2021), the scope of the PNNs will not 
be discussed. For this study a Gaussian mixture model was fit to each flux. While 
the fluxes certainly are not Gaussian, the Gaussian mixture model creates a non-
Gaussian distribution composed out of the many different normal distributions. A 
Gaussian mixture model is a mixture of many different Gaussian distributions 
weighted by mixing coefficients to, scaled by variance and centered by mean. To 
estimate the parameters for the output, a loss function is defined to minimize the 
negative log-likelihood of the linearly combined Gaussians. From this means and 
uncertainties can be estimated to yield a value with the aleatoric uncertainty. 
Aleatoric uncertainty, as opposed to epistemic uncertainty, represents the known 
unknowns or the data’s intrinsic randomness. Epistemic uncertainty refers to 
some form of lack of knowledge within the domain of study. 

While this study did not attempt to estimate epistemic uncertainty, to better 
calibrate the PNN, all three stations were first trained together. Training all 
datasets together exposed the PNN to the widest range of environmental 
conditions in the hopes the generalization ability will be higher when. The input 
variables were normalized to fit within the range of 0-1 to prevent variables with 
higher magnitude values to dominate the variables with smaller magnitude 
values. The independent variables estimated did not have any normalization, 
although overt outliers were removed. 

The neural network implemented was relatively simple with only three 
hidden layers. However, the first hidden layer had 2048 neurons, the second 
1024 and the third 512 neurons (see Fig. 21 All the shared layers had a batch 
normalization layer followed by a leaky rectified linear unit and a dropout layer 
(Srivastava et al., 2014). To prevent overfitting, three drop out layers with a 
dropout rate of 55 percent was set for the shared layers. There were six outputs 
corresponding to the six fluxes. Each output had two more hidden layers with 256 
neurons and a Relu activation (Glorot et al., 2011), followed by a dropout layer of 
35 percent, the second layer had no activation and was responsible for 
estimating the mixture coefficients, the mean and the variance, because there 
were 7 components for the Gaussian mixture model, this layer had 21 neurons. 
Finally, each six output layers estimated a mixture distribution, with independent 
normal components. The depth and number of neurons within each layer was 
found via cross validation. 
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Figure 21 . This figure illustrates the PNN model, the blue is the densely-
connected NN layer with the number of neurons specified, the orange 
corresponds to the batch normalization layer the green to leaky Relu 

activation, finally the red is the dropout layer. 
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The PNN was trained for 1500 epochs with a batch size of 64. The first training 
process took 52 minutes using an NVIDIA GeForce GTX 1080. While this first 
process will train the network on a wider range of variables and environmental 
conditions, it will also combine the random noise of all three stations. Thus, using 
the process of transfer learning, the individual stations were trained on the same 
network with only the first layer frozen. The remaining layers were allowed to 
train and achieved much higher accuracy than if the functional model was only 
exposed to one station’s variables at a time. The programs used to train this gap 
filling model was Tensorflow (Abadi et al., 2015). Adam optimization with a 
learning rate of 5 ⋅ 10-4 was used for both ensemble training and transfer learning 
(Kingma and Ba, 2014). Finally, the loss function used to train the different 
mixture of Gaussian distributions was the negative log likelihood. 

In order to transfer what was learned from the PNN model and fine tune 
theme to each individual station/treatment the first layer was frozen. Freezing a 
layer simply means the weights are not affected by the backpropagation. The 
goal fine tune or calibrate the model to reliably preserve the random uncertainty 
for each separate station. Each new model was then trained for 200 epochs with 
a batch size of sixty-four. From this data for missing time can be using the 
estimated probability distribution for specific environmental drivers. Besides only 
exposing the network to 80% of the data, ten randomly separated weeks of data 
were withheld entirely. This was to act as an evaluation to ensure the models can 
generalize well and to perform statistical comparisons between gap-filled and 
original values. 

Results of Probabilistic imputation 

To evaluate the method both the Mean Absolute Error (MAE) and bias on 
all six fluxes were estimated. MDS was used as benchmark only to evaluate the 
NEE imputation and was implemented using an R package REddyProc 1.3.1 
(Wutzler et al., 2018). Assessments of gap length and performance was not 
evaluated but was kept constant at one-week intervals; additionally, the number 
of missing values was not a factor in artificially introducing gaps. Bias was 

calculated by:  bias =
∑ −𝑀𝑒𝑎𝑠. ∑𝐼𝑚𝑝.

𝑛
 where Meas. stands for measured values, and 

Imp. stands for imputed values. Thus, when the bias is negative it means the 
imputation overestimates the values. 

For all fluxes the MAE values ranged from 0.02 to 0.17 𝑔𝐶𝑑−1 and from 

0.05 to 1.8 𝐾𝑔𝐻2𝑂𝑚−2𝑑−1 with water vapor fluxes (see Fig. 22). The bias 
involved similar trends with the imputation method overestimating all carbon-
based fluxes except for 𝐹𝑐𝑟 or Re and underestimating 𝐹𝑞 in comparison to 𝐹𝑞𝑒 and 

𝐹𝑞𝑡 see Fig. 23. The deep learning approach was competitive with MDS on both 

the bias and MAE metrics see Figs. 22 and 23. While there was higher bias of 
the NEE(PNN) to the NEE(MDS), the accuracy of the NEE(PNN) was better. 
There was worse performance of the partitioned fluxes most likely due to 
underestimation (see Fig. 24).  

file:///D:/scripting/flux_part_imputation/dissirt.docx%23impuco2
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Figure 22. Mean Absolute Errors (MAE). NEE: Net Ecosystem Exchange. 
NEE(MDS) NEE imputed from marginal distribution sampling. 
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Figure 23. Bias comparing artificial gaps to imputed values. 
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Figure 24. This figure illustrates the imputed values for carbon dioxide 
fluxes. The shaded area is 2 standard deviations away from the predicted 

mean from the DNN. Note how well the NEE is predicted but the partitioned 
variables seem to be underestimated.  
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Uncertainty and flux aggregation 

To aggregate all six fluxes to daily intervals, the PNN imputed values filled 
any area the missing values occupied. Uncertainty was propagated by taking the 
standard deviation of each day. When gap lengths were less than a day (n < 48), 
the uncertainty accommodating the imputed values were propagated by inverse 
variance weighting. However, if the gaps were greater then one day, the 
uncertainty was taken into account. 

Yearly and seasonal aggregates were also calculated with the 
uncertainties derived from the bootstrap resampling procedure (O’Dell et al., 
2018; Tibshirani and Efron, 1993). The daily trends for all variables can be 
visualized in Figs 25 and 26. The daily trends clearly show growing events as 
well as herbicide application. For example, the height stress during the growing 
season of 2017 is clearly seen with a flatten of the 𝐹𝑐𝑝 and 𝐹𝑐𝑟.  

The trends by season indicate some interesting behaviors. The SMB and 
FP surfaces has significantly higher transpiration in comparison to the NT 
treatment during the second maize growing seasons. While the NT had higher 
evaporation losses during the second fallow period (see Fig. 27D). This indicates 
a worse water use efficiency as the GPP or 𝐹𝑐𝑝 is the same for the growing 

season (see Figs. 28D and 27D).  

Above Ground Biomass and Yield 

 Over the two maize growing seasons yield was estimated for each 
treatment effect. During 2017, the maize was planted towards the end of June, 
almost two months later than is typically planted in Tennessee. This adversely 
effected the yield; the overall mean was low at 52 dry bushels per acre (3263 kg 
per hectare). Furthermore, after planting there was only 6 mm of rain over an 18-
day period. Using a type II ANOVA with a Bonferroni post-hoc method, found that 
there is a significant difference between both tillage and fertility factors and the 
FP Till treatment has significantly lower yields than all the other treatments (see 
table 6). Of note the SMB fertility effect was significantly greater than the FP. In 
2018, the average yield for the entire site was 102 dry bushel per acre (6450 kg 
per hectare). The ANOVA and Bonferroni post-hoc method found no significance 
for tillage effects but the interaction effect with soil amendment and fertilizer/soil 
amendment was significant. In this case the only significant difference between 
treatments was that the no till strip on the farmer practice side had higher yields 
than any other treatment (see table 7). The harvesting of the maize was 
complicated due to higher weed competition, which could have affected the 
harvest with the combine. There was much more weed competition on the tilled 
SMB side.  
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Figure 25. Daily averages for 2017 (A) and 2018 (B). The width of the lines 
indicates the standard error of the daily mean. 
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Figure 26. Daily averages for 2017 (A) and 2018 (B). The width of the lines 
indicates the standard error of the daily mean. 
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Figure 27. Cumulative sums with 95 % confidence intervals for all five 
seasons. A winter-spring fallow 2017, B maize growing season to harvest 
2017, C Autumn to spring fallow, D 2018 maize growing season to harvest, 

E Autumn to Winter Fallow. 
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Figure 28. Cumulative sums with 95 % confidence intervals for all five 
seasons. A winter-spring fallow 2017, B maize growing season to harvest 
2017, C Autumn to spring fallow, D 2018 maize growing season to harvest, 

E Autumn to Winter Fallow. 
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Table 5. Summary of the accumulated sums with 95 percent confidence 
intervals for all treatments and seasons. 

  NT  FP  SMB 

Season End 
Date 

Fcp (g m-2 
d^-1) 

NEE (g 
m-2 d^-
1) 

Re (g m-

2 d^-1) 
 GPP (g 

m-2 d^-
1) 

NEE (g 
m-2 d^-
1) 

Re (g m-

2 d^-1) 
 GPP (g 

m-2 d^-
1) 

NEE (g 
m-2 d^-
1) 

Re (g m-

2 d^-1) 

Fallow 1 6/14/2
017 

-19.82 (-
20.38, -
19.28) 

2.32 
(2.09, 
2.56) 

20.28 
(19.97, 
20.57) 

 -20.41 
(-20.95, 
-19.84) 

3.39 
(3.1, 
3.66) 

21.93 
(21.6, 
22.23) 

 -20.04 
(-20.63, 
-19.47) 

3.97 
(3.65, 
4.28) 

22.61 
(22.27, 
22.92) 

Fallow 2 5/26/2
018 

-17.46 (-
17.92, -17) 

4.57 
(4.33, 
4.81) 

20.98 
(20.68, 
21.28) 

 -22.76 
(-23.39, 
-22.15) 

3.77 
(3.55, 
4) 

25.79 
(25.33, 
26.25) 

 -22.99 
(-23.65, 
-22.35) 

11.17 
(10.88, 
11.46) 

32.16 
(31.68, 
32.64) 

Fallow 3 1/1/20
19 

-4.08 (-4.28, 
-3.89) 

1.28 
(1.22, 
1.34) 

4.5 
(4.37, 
4.63) 

 -5.89 (-
6.18, -
5.6) 

1.15 
(1.08, 
1.23) 

5.42 
(5.25, 
5.59) 

 -4.86 (-
5.1, -
4.62) 

1.4 
(1.3, 
1.5) 

5.39 
(5.24, 
5.53) 

Maize 1 11/14/
2017 

-22.44 (-
23.16, -
21.81) 

-2.58 (-
3.23, -
1.9) 

20.56 
(20.29, 
20.84) 

 -24.26 
(-25.02, 
-23.52) 

-0.36 (-
1.11, 
0.43) 

26.92 
(26.53, 
27.3) 

 -24.43 
(-25.19, 
-23.66) 

2.31 
(1.54, 
3.1) 

27.66 
(27.31, 
28.02) 

Maize 2 10/29/
2018 

-33.19 (-
34.27, -
32.09) 

-6.54 (-
7.65, -
5.45) 

29.68 
(29.31, 
30.07) 

 -32.99 
(-34.05, 
-31.88) 

-2.66 (-
3.91, -
1.34) 

33.28 
(32.85, 
33.69) 

 -32.84 
(-33.93, 
-31.79) 

-2.93 (-
4.07, -
1.79) 

31.01 
(30.62, 
31.4) 

             

Season End 
Date 

Fq (kg m-2 
d^-1) 

Fqt (kg 
m-2 d^-
1) 

Fqe (kg 
m-2 d^-
1) 

 Fq (kg 
m-2 d^-
1) 

Fqt (kg 
m-2 d^-
1) 

Fqe (kg 
m-2 d^-
1) 

 Fq (kg 
m-2 d^-
1) 

Fqt (kg 
m-2 d^-
1) 

Fqe (kg 
m-2 d^-
1) 

Fallow 1 6/14/2
017 

330.47 
(323.2, 
337.52) 

112.42 
(108.55
, 
116.24) 

150.69 
(148.34
, 
152.92) 

 292.43 
(284.94
, 299.9) 

158.24 
(153.17
, 163.2) 

137.98 
(134.63
, 
141.25) 

 302.87 
(295.88
, 
310.37) 

161.17 
(156.12
, 
166.25) 

132.1 
(129.3, 
134.91) 

Fallow 2 5/26/2
018 

251.53 
(247.24, 
256.17) 

72.78 
(70.28, 
75.28) 

135.4 
(133.53
, 
137.29) 

 254.7 
(248.77
, 
260.48) 

130.7 
(126.25
, 
135.13) 

132.19 
(129.99
, 
134.52) 

 283.99 
(277.58
, 
290.55) 

143.49 
(138.72
, 
148.18) 

133.16 
(130.98
, 
135.34) 

Fallow 3 1/1/20
19 

73.38 
(71.74, 
74.98) 

12.66 
(11.95, 
13.38) 

45.65 
(44.86, 
46.46) 

 63.36 
(61.63, 
65.1) 

21.96 
(20.84, 
23.08) 

42.08 
(41.4, 
42.77) 

 58.5 
(56.82, 
60.22) 

23.01 
(21.81, 
24.14) 

35.65 
(34.92, 
36.37) 

Maize 1 11/14/
2017 

356.7 
(347.91, 
365.67) 

201.13 
(193.96
, 208.4) 

114.24 
(110.87
, 
117.46) 

 363.61 
(353.32 
373.94) 

244.34 
(236.2, 
252.18) 

111.19 
(108.04 
114.37) 

 373.29 
(362.37
, 
383.98) 

245.46 
(237.59
, 
253.28) 

110.26 
(107.1, 
113.6) 

Maize 2 10/29/
2018 

551.27 
(536.66, 
566.68) 

320.06 
(308.7, 
331.38) 

158 
(155.39
, 
160.61) 

 534.53 
(518.65
, 549.8) 

360.69 
(348.4, 
373.02) 

139.99 
(135.29 
144.4) 

 517.92 
(502.4, 
532.77) 

358.3 
(346.7, 
370.84) 

136.12 
(131.9, 
140.19) 
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Once the maize crop achieved V6 vegetation stage in 2018, above ground 
biomass was obtained weekly until R4. For each treatment, four samples were 
randomly obtained from the treatment zones. The samples were then dried in an 
oven for up to ten days or when the weight stabilized at a temperature of 55 
degrees C. When the maize stopped growing around VT and entered the 
reproductive stage an ANOVA and post-hoc test was conducted to determine 
whether there was a treatment effect of either tillage or soil amendment. 
There are some interesting trends to examine. At the halting of the sampling 
methods at the R4 stage, the tilled treatments appeared to have lost the most 
weight, while the no-tilled treatments appeared to continue gaining mass. 
Whether the above ground biomass was significant or not, this analysis did not 
account for below ground biomass nor did it measure the concentration of the 
carbon within the plant. Nevertheless, when paired with the partitioned fluxes, 
some more information on the heterotrophic soil respiration can be gleaned. The 
above ground biomass is an underestimation of the net ecosystem productivity 
(NEP). NEP is defined as 𝑁𝐸𝑃 = 𝐺𝑃𝑃 − 𝑅𝑎 where 𝑅𝑎 is the autotrophic 
respiration. Thus, using the estimated GPP for the maize growing season and 
the underestimated NEP the minimum 𝑅𝑎 can be estimated. Furthermore, once 
the 𝑅𝑎 is calculated and compared to the cumulated 𝑅𝑒 the upper bounds of the 
heterotrophic respiration can be estimated. This gives significant interpretive 
power to the behavior of the decomposition of soil organic matter. 

As the ANOVA and post-hoc test did not find any significant difference at 
the VT stage, it can be concluded on the NEP interpretation that there are no 
significant differences between treatment effects. However, the aggregated 
fluxes do show significant differences as the tilled SMB has higher GPP values 
than the other two stations. Because there were no significant differences in 
above ground biomass between treatments, the non-linear Weibull model for 
growth curve data was fit to the biomass. To determine the NEP of the plants the 
amount of carbon in the plant was assumed to be 42 percent (Ma et al., 2018). 
The population of the field was measured at 24,800 ± 1970 plants per acre which 
yields an average 6.1 plants per square meter. From the continuous model the 
differences of each site GPP was calculated to estimate Ra. Heterotrophic 
respiration was then estimated: 𝑅ℎ = 𝑅𝑒 − 𝑅𝑎. While the actual values cannot be 
trusted, the trends should conservatively reflect conditions in the soil. The 
heterotrophic respiration was lowest for the no-till strip (10.04 ±0.78 daily grams 
of carbon) and lower for the SMB practice (9.98 ±0.78 daily grams of carbon per 
square meter) the FP treatment had the highest cumulative emission of 10.91 
±0.78 daily grams of carbon. The autotrophic respiration had the inverse pattern. 
SMB emitted 5.55 ±0.55 daily grams of carbon. The crop on the FP treatment 
emitted the highest 5.58 ±0.55 daily grams of carbon while the no till emitted the 
lowest at 5.01 ±0.55 daily grams of carbon. 
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Table 6. Summary and significance testing for 2017 yield. 

Fert 
Tilla
ge 

Mean 
(kg/ha) 

Standard 
Error of 

Mean Letter Group 

Fp NT 3833.6
8 

84.0377 A 

Fp T 2112.0
5 

72.7788 B 

SM
B 

NT 3645.7
8 

84.0377 A 

SM
B 

T 3779.8
9 

72.7788 A 
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Table 7. Summary and significance testing for 2018 yield. 

Fertilizer 
Till
age 

Mean 
(kg/ha) 

Standard 
Error  

Letter 
Group 

Fp NT 7237.50 136.3907 B 

Fp T 6543.75 347.9687 A 

SMB NT 5763.50 198.5466 A 

SMB T 6257.50 269.2931 A 
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Table 8. Analysis of Variance Table above ground biomass. 

  Df Sum Sq Mean Sq F value  Pr(>F) 
tillage 1 0.1838 0.1838 7.813e-05  0.9931 

fertilizer 1 4223 4223 1.795  0.2033 
tillage:fertilizer 1 21.52 21.52 0.009146  0.9253 

Residuals 13 30587 2353 -  - 
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Figure 29. This figure illustrates the trend and variability of all sampled and 
oven dry above ground biomass for the year of 2018. NT=No Till, T= Tilled, 

FP= Farmer Practice, and SMB Spent Microbial Biomass. 
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Figure 30. The fitted biomass of the canopy in terms of grams of carbon per 
meter squared (A) with the cumulative GPP values for each treatment. (B) 

Autotrophic respiration and (C) Heterotrophic respiration. Note the slightly 
higher values of heterotrophic respiration. 
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Conclusion and Discussion 

The FVS approach to partitioning eddy covariance fluxes was successfully 
implemented. Using a deep neural network to impute missing values for the 
fluxes was also designed. The PNN was able to quantify the aleatoric uncertainty 
of the fluxes. The fluxes were aggregated and found that the SMB treatment had 
significantly higher NEE values than the other two treatment for the entire 2017-
2018 study period. Over two years the SMB practice, emitted more 15.92 (14.46, 
17.35) daily grams of carbon per square meter more than the inorganic fertilizer 
5.29 (3.75, 6.78) daily grams of carbon per square meter. Over the two years the 
no-till strip sequestered the most NEE -0.94 (-2.32, 0.44). Over the two years the 
SMB emitted more 𝑅𝑒  118.83 (118, 119.7) than either the no- till 96 (95.34, 
96.64) or the FP 113.33 (112.49, 114.17). On a GPP level the FP slightly had 
lower values than the SMB -105.17 (-106.65, -103.63) vs -106.3 (-107.93, -
104.74) daily grams of carbon per square meter for the FP and the SMB 
respectively. The no-till had the highest GPP value at -96.99 (-98.43, -95.58). 
The no-till was the only treatment to net sequester because it gained as much 
carbon as it emitted. The SMB had 12 percent more 𝑅𝑒 for every GPP gained for 
the no till strip while the FP was half that rate. Even though the no-till had less 
productive GPP, its yield was not affected. Promisingly, the no-till strip’s yield 
was either competitive (2017) with the other treatments or it outperformed the 
treatments (2018).  

On a more granular seasonal scale, for the two maize growing seasons, 
the no-till strip sequestered the most carbon dioxide at -2.58 (-3.23, -1.9) [2017] 
and -6.54 (-7.65, -5.45) [2018] daily grams of carbon per meter squared 
compared to the farmer practice of -0.36 (-1.11, 0.43) [2017] and -2.66 (-3.91, -
1.34) [2018] for the farmer practice and 2.31 (1.54, 3.1) [2017] and -2.93 (-4.07, -
1.79) [2018] daily grams of carbon per square meter for the SMB application. 
This is due by lower 𝑅𝑒 values which is supported by the partitioning results. The 

lower 𝑅𝑒 values are most likely due to a lower oxgen environment and a slower 
mediation of nutrients via surface dominated decomposition. While this stands in 
agreement to conventional literature surrounding no-till agriculture, the no-till strip 
had higher evaporation losses during the second maize season. However, for the 
rest of the seasons the tilled sites routinely had higher evaporation losses. Based 
on the above ground biomass sampling the farmer practice had higher 
heterotrophic respiration, thus because there was no additional input of carbon 
as in the SMB application, the FP generated the most loss of carbon dioxide via 
heterotrophic respiration- at least until the maize reached R4. Furthermore, the 
farmer practice had higher loss of water during the fallow seasons than the no till 
and tilled SMB (Fig. 28). The maize above ground biomass for 2018 was 
analyzed using an Anova and Tukey honest significance test to find that there 
were no significant differences between treatments. The cross contamination of 
the fluxes due to footprint overlap will need to be addressed. 
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CHAPTER 3  

GEOSTATISTICAL INTERPOLATION OF HIGH-RESOLUTION 
REMOTE SENSING IMAGERY AND FLUX UPSCALING 
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Abstract 

Vegetation indices were estimated from a CubeSat constellations over the 
treatment area.  The imputation was necessary to create daily continuous time 
series of the vegetation index. The imputation process used spatial random 
forests (RFsp) to impute values for missing days for high-resolution imagery. 
Finally, the seasonal temporal and spatial trends were examined to determine if 
there was any significant differences. The hypothesis testing was conducted by 
PARTS (Partitioned Autoregressive Time Series) and found only one fallow 
season to have significant differences. This method of using RFsp is a promising 
and infinitely flexible model to fuse remote sensing products and create high 
spatial and temporal resolution images. 
 

Introduction 

The specific objective for this chapter is to produce sub-weekly high-
resolution vegetation indices for further analysis to integrate them with the eddy 
covariance variables. While unmanned aerial vehicle imagery (UAV) would be 
the preferred way to derive these indices, due to research constraints the 
imagery used had to originate from orbital sensors. 

This process of interpolating remote sensing imagery lies within the fields 
of image fusion and geostatistical statistics. An overview of these methods will be 
presented below. Followed by the justification for the choice of the statistical 
approach. Finally, the chapter will conclude with the results of the chosen method 
and spatio-temporal hypothesis tests for various treatment effects. Combining 
information from multiple remote sensing products is a challenging but fruitful 
endeavor. 

Background 

In the past, image fusion techniques have been used to generate high 
temporal and spatial resolution images for time series analysis. Th approach is 
dedicated to enhancing spatial resolution and to combining multimodal input 
images (e.g., pansharpening or intensity-hue-saturation (IHS) transform (Tu et 
al., 2001). Recently, the focus of these methods has changed to fusing fine 
spatial resolution images with high temporal frequency images. The following will 
review some past and future data fusion methods with a special focus on spatio-
temporal interpolations. 

Image fusion can be executed at various levels of data abstraction. Data 
fusion can be calculated at the pixel level, and the feature level (such as land 
cover classification). These methods use spatial information from the fine spatial 
resolution images and temporal information from coarse resolution satellite 
images to generate high spatial-temporal images. Spatio-temporal image fusion 
methods need some preprocessing to generate high spatiotemporal images: both 
coarse and fine-resolution radiance must be atmospherically corrected; the 
images must be co-registered; the images have to be geometrically corrected 
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and finally one of the existing spatiotemporal fusion methods is applied to 
generate images which are at an increased spatial and temporal resolution 
(Schmitt and Zhu, 2016). There are many types of categories and methods for 
spatiotemporal image fusion: reconstruction-based, unmixing, and learning-
based. This paper will only discuss the reconstruction-based method. 

Reconstruction-based method 

Reconstruction-based spatiotemporal methods are also called filter-based 
methods or weighted-function-based and essentially generate synthetic spectral 
reflectance using the weighted sum of the neighboring pixels of the input image 
source (Schmitt and Zhu, 2016). A popular method is the Spatial and Temporal 
Adaptive Reflectance Fusion Model (STARFM) which is a reconstruction-based 
method (Gao et al., 2015). 

STARFM predicts a fine-resolution image of the target date using a 
weighted neighborhood voting process. This method is effective, useful, and 
popular however there are some limitations. This method relies on the availability 
of cloud-free Landsat and MODIS images on concurrent dates. This method 
generates synthetic medium resolution images (30 m resolution) daily. The 
quality of the fused time series is dependent on the number of concurrent cloud-
free course and medium resolution images. STARFM involves four main steps. 
First, coarse resolution images are co-registered and resampled to the resolution 
of the high spatial resolution images. Second, a moving window identifies 
spectrally similar pixels in the fine resolution images. Third, a weight is assigned 
to the homogeneous pixels based on the three criteria; the spectral difference 
between the surface reflectance of the images pair; the temporal differences in 
the dates of the images; finally, the Euclidean distance between the neighboring 
and the pixel of interest are calculated and used as dependent variables (Gao et 
al., 2015). 

Because the quality of the fused time series is dependent on the number 
of concurrent cloud-free course and medium resolution images. This is very 
impractical and complicated. A promising method that functions as a gap-filling 
and image fusion model is Satellite dAta IntegRation (STAIR) (Luo et al., 2018). 
STAIR can ingest a time series that consists of an arbitrary number of Landsat 
and MODIS image pairs. It then systematically integrates the available 
information from the time series for missing-pixel imputation, and automatically 
determines the weight that each pair should contribute to the data fusion for a 
target date. By integrating the data in the time series, effectively their method can 
fuse a fine-resolution image without any unfilled pixels. This method is very 
promising, and it was effectively used with Landsat 7 with the infamous scan-line 
failure (Luo et al., 2018). 

Spatio-Temporal Interpolation 

STARFM has increasing difficulty in creating synthetic images when 
missing values (cloud cover) are present. Much like the STAIR procedure, there 
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have been plenty of procedures to gap-fill missing values in remote sensing 
imagery. The spatio-temporal interpolations do not have to be distinct from image 
fusion approaches they are rather complementary. For example, creating 
interpolated datasets can use a single platform sensor or a diverse set. 
Regardless, the procedures can exploit the temporal, spatial or spatio-temporal 
dependence structure latent in the data. 

The contrasting methods of Consistent Adjustment of the Climatology to 
Actual Observations (CACAO) and Harmonic Analysis of Time-Series (Roerink et 
al., 2000; Verger et al., 2013) are united under the framework on only using the 
temporal information between images. CACAO was proposed as a noise 
reduction and a gap filler in time series by fitting the seasonal climatological 
patterns to the actual observations. The method looks at seasonal patterns of 
individual pixels and derives phenological models which is then used to fill gaps 
and smooth the time series. CACAO has two parameters (shift and scale) for 
each season which can be adjusted to quantify shifts in the timing of seasonal 
phenology and inter-annual variations in magnitudes. The method was originally 
tested on the Advanced Very High-Resolution Radiometer (AVHRR) with 
competitive results to widely used methods implemented in the TIMESAT toolbox 
(Jönsson and Eklundh, 2004). HANTS was developed to deal with time series of 
irregularly spaced observations and to identify and remove cloud contaminated 
observations and to create cloud-free images during arbitrary moments in time. 
HANST uses a fast Fourier transform (FFT) to identify the most significant 
frequencies in individual pixels. A curve-fitting procedure fits the phase and 
amplitude to the frequencies which then can be used to interpolate the pixel. 
HANTS was also tested on the AVHRR datasets (Roerink et al., 2000). 
The above methods work well, especially for course resolution datasets. 
However, better interpolation using statistical methods such as co-kriging can 
use the information for neighboring pixels to improve predictions of missing 
values (Rossi et al., 1994; Zhu et al., 2015). Kriging can use incomplete and 
noisy data to obtaining optimal prediction and uncertainty estimates. 
Unfortunately, there are high computational costs, and it is impractical to 
implement for large data-sets (Zhu et al., 2015). 

Combining both temporal and spatial interpolation approaches appear to 
be the most defensible approach since it takes into effect both the spatial and 
temporal correlation of the pixel values. A flexible and robust method used a 
hybrid Generalized Additive Model (GAM)-statistical space-time model which 
including the fitting of a temporal trend and a spatial component to account for 
local details supported by information in covariates (Poggio et al., 2012). Another 
approach used a window regression demonstrating superior performances to 
common phenotypical interpolation techniques such as mean value iteration and 
Savitzky-Golay techniques. The spatial window is represented by eight pixels 
neighboring the pixel under evaluation, and the temporal window selects a set of 
dates close to the date of interest. In short, the window regression, can estimate 
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the value of the pixel, based on regression analysis selected by a spatial-
temporal window (Oliveira et al., 2014). 

A third example for using spatio-temporal interpolation chooses spatio-
temporal subsets around missing values, estimates empirical quantiles 
characterizing the missing values and predicts missing values through quantile 
regression (Gerber et al., 2018). This method overcomes some shortcomings of 
the above models. Some of the issues are that when there are large gaps of 
missing values (such as whole days); others such as co-kriging are difficult to 
scale to size and are computational and memory intensive. This improved 
method is available as an open-source package gapfill and is extremely efficient 
and parallelizable. The gapfill method was able to predict all missing, values in 
data sets with large proportions of missing values (up to 50%). Second, the 
predicted values reconstruct the spatial and temporal patterns of NDVI data sets 
with close to no loss of details (Gerber et al., 2018). The gapfill method will be 
one of the interpolation methods pursued for the remainder of this paper. There 
are a couple of limitations to this approach, first, the method assumes the data 
are regularly spaced through time and it requires some known values on the data 
with up to 50% missing values. These values will have to originate from a 
different platform. 

Finally, a more flexible but more computationally complex method will be 
assessed. One such technique uses a Random Forest to generate spatial and 
spatiotemporal predictions competitive to traditional geostatistical techniques. 
This technique (RFsp) is useful and flexible as it can direct use non-spatial 
covariates, and it can handle irregularly spaced datasets in time as well as 
missing values within individual images. Furthermore, it makes direct use of 
geographical locations to fit the models (Hengl et al., 2018). RFsp uses buffer 
distances from observation points as covariates and so consequently 
incorporates geographical proximity effects into the prediction process. Hengl et 
al’s. paper demonstrated RFsp obtains competitive and accurate predictions as 
most geostatistical kriging techniques. Furthermore, because RFsp uses random 
forests it is non-parametric and thus does not need to meet the same statistical 
assumptions needed in kriging (Hengl et al., 2018). Unfortunately, it is very 
inefficient for large datasets but clever ways to circumvent these limitations will 
be addressed. 

Methodology 

Data Sets and Preprocessing 

The specific objective for this research is to have sub-weekly high-
resolution vegetation indices for further analysis to integrate them with the eddy 
covariance variables. The high-resolution remote sensing images were obtained 
from Planet Labs (PlanetScope; Planet Labs, Inc., San Francisco, USA). The 
planet-scope images were orthorectified and atmospherically corrected using the 
6s algorithm (Vermote et al., 1997). All images were co-registered to a 1 m NAIP 
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image from 2016. Further covariates to interpolate the high-resolution data will be 
green index time-lapse photography and photothermal time and metadata from 
the CubSat acquisition timing. Partial cloud contamination was manually masked 
and the remaining pixels were kept.  

Data summary 

In total, 193 images were used. Images were masked depending on the 
cloud cover. Solar altitude varied by from 23 to 69 degrees with median values of 
47.4. View angles varied from 0 degrees (nadir) to 5 degrees with a median 
value of 0.7 degrees. There were approximately five days where multiple images 
were taken. For a graphical summary see Fig. 31.  

Model fitting and interpolation 

While other remote sensing products such as the 250m MOD09GQ NDVI 
(Vermote and Wolfe, 2015) could be used as a covariate during the time of 
analysis, there was too much cloud cover to impute the contaminated data. 
There could be other areas and seasonal trends that could make this technique 
practical. To make the RFsp approach practical, the space-time cube was 
divided into 190 overlapping circles with radii of 11 meters. The buffer distance 
acts as a covariate to capture the spatial autocorrelation of the NDVI values. 
Each circular window was individually modeled and the prediction for specific 
dates was constructed see Fig. 37. The outputs were mosaiced and values were 
averaged together using inverse variance weighting. 

The Green Chromatic Coordinate (GCC) is a proportional measure of the 
relative brightness of the green channel. It is calculated: 

𝐺𝐶𝐶 =
 Green 𝐷𝑁

Red𝐷𝑁 +  Green 𝐷𝑁 +  Blue 𝐷𝑁
 

Where Red DN, Green DN, and Blue DN are the red, green, and blue color channels 
respectively. The trail camera represents the color as digital numbers (DN) 
stored in the high resolution (8 MGP) JPEG format. Figure 2Error! Reference 
source not found. illustrates the behavior of 𝐺𝐶𝐶 over the two years of 
measurement (Burke and Rundquist, 2021). 

Photothermal time is the product of growing degree days and day length 
(see Masle et al., 1989). Photothermal (KP) time is defined as: 

𝐾𝑃 = ∑ 𝑙𝑖

𝑛

𝑖=1

((𝑇𝑎𝑖)) 

Where i is the day, Ta is the average daily air temperature and l is the light period 
as a proportion of a day. Other variables were solar altitude and solar azimuth at 
which time the image was taken the satellites angle as well to the image plane. 
Finally, various terrain indices were included see Fig. 32. The hope with these 
variables is to standardize the predicted image to remove the confounding effects 
that could add to the noise of the NDVI. In effect, the hope was to correct for any 
Bi-directional Reflectance (BRDF) effects (see for example, Roy et al. (2016)).  

gccsitetopo
gccsitetopo
gccsitetopo
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Figure 31. Graphical summary of CubeSat acquisitions (vertical lines). The 
GCC values are plotted in light gray for reference. A. is for 2018 and B 2017.  
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The variables chosen were elevation, slope, aspect, eastness, northness, 
 topographical position index (TPI) and curvature. Aspect is defined as the 
compass direction or azimuth that a terrain surface faces. Curvature here 
estimated uses McNab’s (1993) surface curvature index. The TPI measures the 
difference between elevation at a central point and the average elevation around 
it within a specified radius. When the TPI is positive the point is located higher 
than its average surroundings (Reu et al. (2013)). Because most surface 
reflection is not isotropic but rather the reflectance depends on direction of solar 
incident radiation and the direction at which the satellite viewed it. This can 
explain why two images taken on the same day but at different times and at 
different view angles the reflectance product will have different values. Using the 
terrain indices and the position of the sun and angle of the satellite, the hope was 
for the RFsp model to explain the induced variability. When predicting the 
images, the solar altitude was fixed to solar noon and the satellite view angle to 
be perfectly nadir. 

Results of the Geospatial Random Forest 

The hyperparameters such as circle radii, number random forest trees, minimal 
node size, and maximal tree depth were tuned via cross validation and with 
respect to computational ease. The average overall out of bag prediction error 
was 0.0017 mean square error or a root mean square (RMSE) of 0.04. The 
coefficient of determination ranged from 0.72 to 0.9 with a mean of 0.8. 
Once the models had been fit the individual locations were predicted across time 
and then the 190 individual predictions were mosaiced into a final map. The 
outputs were mosaiced together using inverse variance weighting produced by 
the prediction uncertainties. The goal of this section was not to perfectly predict 
the images but to standardize to nadir view ‘acquired’ at solar noon images the 
actual predicted values were not needed to compare with the actual measured 
observations. 

Spatio Temporal Statistical Inference of the Interpolated images 

The procedure from, Ives et. al, (2021) will be used to assess if there were 
any treatment effects (the boundaries can be seen in Fig. 3).  The procedure, 
PARTS (Partitioned Autoregressive Time Series), will be briefly explained. A 
common approach when studying patterns in space and time is to perform pixel 
scale analysis. However, with respect to Tobler’s first law of geography, trends 
found in neighboring pixels should not necessarily be treated independently. The 
problem then becomes what distance are pixels independent. 
PARTS separately analyzes the time series for each pixel to calculate parameter 
estimates that quantify the trends in time, then regression is used to analyze the 
spatial distribution of the parameter estimates. The regression on the temporal 
parameters is performed using generalized least squares (GLS) (Dielman, 1986; 
Ives and Zhu, 2006). First, to account for temporal 
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Figure 32. Visualization of additional topographical variables in the spatial 
random forest model. TPI: topographic position index. Elevation in meters 
(a.s.l), slope, aspect, eastness, and northness are in radians. TPI unitless 

and curvature unitless. 
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autocorrelation pixel-level time series were fit using a linear model with 
first-order Gaussian auto-regressive process errors. The coefficients of this 
model are then used as the values to be estimated. Next in the process the 
correlations between the residuals of the time-series model are used to estimate 
the spatial autocorrelation structure of the estimates. Using the spatial 
autocorrelation structure, a spatial GLS regression is performed against the 
temporal parameters. Hypothesis tests are conducted depending on the 
variables included the GLS regression. For more details, please refer to (Ives et 
al., 2021). 

PARTS Results and Discussion 

Four seasons were analyzed. The first season where the field remained 
under a no-tillage practice was from January 2017 to application of herbicide 
(5/30/2017). A subsample of estimates can be seen in Figs. 33 to 35. The 
second started after the crop emerged (2017/06/21) and ended when the crop 
pollen dropped (2017/08/12). The third season started in January of 2018 and 
ended prior to herbicide application. Finally, the fourth season (5/27/2018 - 
7/12/2018) the second maize crop was analyzed until pollen shed and found no 
significant differences through time and between treatment effects (see Table 9 
and 12). For season 1, the first fallow, both estimates for soil amendment vs 
conventional fertilizer were significantly different from zero using the test t-tests 
around the estimated (Table 10). However, the F-Test (Table 9) found no 
significant differences between treatments. While the farmer practice (FP) has a 
slightly higher trend than the SMB application but, according to the F-test, the 
treatments do not differ among each other. Examining Fig. 33, there are certainly 
difference in variability during the first season. For example, the eastern facing 
slope toward the southwest had higher NDVI values, as well as at the boundary 
of the SMB application. Regardless the variability between groups must have 
been lower then within the treatment groups. During the first maize growth, (Fig. 
34) there was no differences (Table 9 and 11). This is rewarding as the adding 
fertilizer and amendments enough nutrient supply to sufficiently satisfy the 
nutrient demands of the crop. Applying fertilizer and the TilthMax3G were thus 
able to supply nutrients to the crop at competitive rates as the tilled surfaces. 
This results also agrees with the partitioning analysis. As the no till treatments 
had a slightly less cumulative sum, than the other treatments, the overlap of the 
confidence intervals was at its greatest. The third season (Fig. 35) possessed the 
only significant difference between treatments (Table 9 and 12). The differences 
are clearly visible in Fig 35. First the no-till is visible up until April 2018, with 
higher NDVI values, however no significance was found within the no-till 
treatment rather or the interaction effect, however differences within SMB and FP 
were deemed significant. The SMB was much greener, with a patchy surface in 
contrast to the FP treatment. This response is supported by the partitioning 
results, where the GPP (see Fig 27c) was higher for the second fallow season.   
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Figure 33. Samples from the predicted NDVI for the first season (Fallow) 
(1/1/2017-5/30/2017).  
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Figure 34. Samples from the predicted NDVI for the second season (Maize) 
(6/21/2017-8/12/2017). 
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Figure 35. Samples from the predicted NDVI for the third season (Fallow) 
(1/1/2018-4/27/2018). 
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Figure 36. Samples from the predicted NDVI for the fourth season or 
second season of Maize (5/27/2018-7/12/2018). 
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Figure 37. The 190 segments used to individual train multiple RFsp models. 
The radii of the circles are approximately 11 meters. 
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Table 9. F values to test significance. Only season 3 (the second fallow) 
demonstrated differences within groups. 

 Df Sum Sq Mean Sq F value Pr(>F) 
Season 1 1 0.39 8.18 10-5 2.11 0.1464 
Season 2 3 4.054 8.6 10-4 2.83 0.03681 
Season 3 3 0.3425 7.242 10-5 2.93 0.0323 
Season 4 3 1.039 2.2 10-4 2.282 0.07707 
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Table 10. T test for coefficients for Season 1. Both estimates are 
significantly different from zero meaning that there are significant temporal 
trends. The farmer practice (FP) has a slightly higher trend than the SMB 
application but according to the F-test table 

Treatment Estimate t value Pr(>t) 
FP 0.01607 2.111 0.0348 
SMB 0.01584 2.082 0.03739 
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Table 11. T test for season 2 where there was the first crop of maize. There 
coefficients were not significantly different from zero. 

Treatment Estimate t value Pr(>t) 
FP -0.0112381 -0.3928 0.69451 
SMB -0.0105490 -0.3687 0.71237 
NT -0.0001013 -0.4281 0.66863 
SMB*NT -0.0005575 -1.6752 0.09395 
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Table 12. T test for coefficients for Season 3 when there was a second of 
Fallow growth. Only the FP and SMB are significant. And according to the F 
Test they are statistically different from each other. 

Treatment Estimate t value Pr(>t) 
FP 0.02092 3.4748 0.0005159 
SMB 0.02109 3.5036 0.0004633 
NT -1.422 10-4 -0.7284 0.4663899 
SMB*NT -3.734 10-4 -1.3963 0.1626754 
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Table 13. T test for coefficients for Season 4 when there was a second of 
Maize growth. There is no trend in time and none of the treatments are 
significantly different. 

Treatment Estimate t value Pr(>t) 
FP -5.988 10-3 -0.4789 0.6320 
SMB -5.411 10-3 -0.4328 0.6652 
NT -2.526 10-4 -1.0291 0.3035 
SMB*NT -9.564 10-5 -0.2844 0.7761 
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Finally, for the second maize season (see Fig. 34) there were no statistical 
differences between treatments. Again, supporting the results from the above 
ground biomass and the overlapping confidence intervals for GPP, Re and NEE 
in Fig. 27D around beginning of July 2018. 

Conclusion 

Using spatial random forests to impute values for missing days for high-
resolution imagery is promising. This study could be improved by assessing and 
potentially correcting where systematic biases occur. This method of using RFsp 
is a promising and infinitely flexible model to fuse remote sensing products and 
create high spatial and temporal resolution images. The RFsp model was able to 
empirically account for BRDF effects. The predicted images then can be used in 
many other models. Furthermore, the predicted farm was used with spatio-
temporal hypothesis tests. Using PARTS hypothesis testing effectively found only 
one season where the NDVI values differ through time and treatment. As noted 
in the Introduction, this difference can be more of a function of the lower pH 
values and its imposition on vegetation structure. 
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CONCLUSION 
 

The first chapter on developing a segmented planar fit found that variables 
such as day of the year and wind direction indicated greater explanatory power 
for some coordinate systems while other variables such as stability and wind 
speed had inconsistent impacts on coordinate system sheds light on the effects 
of these systems. Most importantly it found that even in complex landscapes, 
using simple unrotated fluxes or the segmented planar fit is preferable to double 
rotation.  

Once the proper coordinate system was found, the fluxes were then 
partitioned using the flux variance similarity approach. To find continuous sums, 
a probabilistic deep neural network was developed and successfully trained to 
impute missing values for the fluxes. Over the two years, the no-till was the only 
treatment to net sequester because it gained as much carbon as it lost. The SMB 
had 12 percent more 𝑅𝑒 for every GPP gained for the no till strip while the FP 
was half that rate. Because the SMB emitted the most carbon over the two years, 
we do see the paradoxical effect that application of TilthMax3G increases 
emissions due to higher microbial turnover rates and plant production.  

For the two maize growing seasons, the no-till strip sequestered the most 
carbon at -2.58 (-3.23, -1.9) [2017] and -6.54 (-7.65, -5.45) [2018] daily grams of 
carbon compared to the farmer practice of -0.36 (-1.11, 0.43) [2017] and -2.66 (-
3.91, -1.34) [2018] for the farmer practice and 2.31 (1.54, 3.1) [2017] and -2.93 (-
4.07, -1.79) [2018] daily grams of carbon per square meter for the SMB 
application. According to the FVS results this is due by lower 𝑅𝑒 values. The 
lower 𝑅𝑒 values are most likely due to a lower oxygen environment and a slower 
mediation of nutrients via surface dominated decomposition. While this stands in 
agreement to conventional literature surrounding no-till agriculture, the no-till strip 
oddly had higher evaporation losses during the second maize season. However, 
for the rest of the seasons the tilled sites routinely had higher evaporation losses. 
Based on the above ground biomass sampling the farmer practice had higher 
heterotrophic respiration, thus because there was no additional input of carbon 
as in the SMB application, the FP generated the most loss of carbon dioxide via 
heterotrophic respiration at least until the maize reached R4. Furthermore, the 
farmer practice had higher loss of water during the fallow seasons than the no till 
and tilled SMB. The cross contamination of the fluxes due to footprint overlap will 
need to be addressed. 

Vegetation indices was estimated from a CubeSat constellation over the 
treatment area. The imputation process used spatial random forests to impute 
values for missing days for high-resolution imagery is promising. Using PARTS 
(Partitioned Autoregressive Time Series) to determine any treatment effects, 
found only the 2018 spring fallow season had significantly different NDVI values 
between the SMB and FP. The SMB was much greener (higher NDVI values), 
with a patchier surface in contrast to the FP treatment. This response is 
supported by the partitioning results, where the GPP (see Fig 27c) was higher for 
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the second fallow season. The simplest explanation is caused by the lower soil 
pH values on the SMB treatment encouraging a different vegetation community. 

The remaining research topics within this small area agricultural situations 
with contrasting site management, is to integrate the, high resolution NDVI and 
partitioned fluxes to upscale the fluxes to daily field scale fluxes. This research 
will address the cross contamination of the fluxes due to footprint overlap. The 
personal research of the author found that given an analytical footprint dispersion 
model and the NDVI, a conditional variational autoencoder can successfully infer 
the source flux area.  PARTS can be used to conduct further hypothesis tests to 
see if the different treatment effects can be detected than the results found here. 

This dissertation provides novel application of remote sensing, 
probabilistic deep learning imputation, flux partitioning and proper coordinate 
rotation of wind velocities to support that no-till systems with added soil 
amendments are the best ways to preserve soil organic matter on a two-year 
basis.  The study also highlights possible sources of errors and deficiencies 
when using eddy covariance to monitor sequestration of carbon dioxide over 
agricultural fields.  
  



100 
 

 
REFERENCES 

 
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, 

G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, 
A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., 
Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., 
Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., 
Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., 
Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: Large-
scale machine learning on heterogeneous systems. 

Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, 
M., Fieguth, P., Cao, X., Khosravi, A., Acharya, U.R., Makarenkov, V., 
Nahavandi, S., 2021. A review of uncertainty quantification in deep 
learning: Techniques, applications and challenges. Information Fusion 76, 
243–297. https://doi.org/10.1016/j.inffus.2021.05.008 

Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, 
M., Fieguth, P., Cao, X., Khosravi, A., Acharya, U.R., Makarenkov, V., 
Nahavandi, S., 2021. A review of uncertainty quantification in deep 
learning: Techniques, applications and challenges. Information Fusion 76, 
243–297. https://doi.org/10.1016/j.inffus.2021.05.008 

Baldocchi, D., 2014. Measuring fluxes of trace gases and energy between 
ecosystems and the atmosphere - the state and future of the eddy 
covariance method. Global Change Biology 20, 3600–3609. 
https://doi.org/10.1111/gcb.12649 

Baldocchi, D., 2014. Measuring fluxes of trace gases and energy between 
ecosystems and the atmosphere - the state and future of the eddy 
covariance method. Global Change Biology 20, 3600–3609. 
https://doi.org/10.1111/gcb.12649 

Baldocchi, D.D., Hincks, B.B., Meyers, T.P., 1988. Measuring biosphere-
atmosphere exchanges of biologically related gases with 
micrometeorological methods. Ecology 69, 1331–1340. 
https://doi.org/10.2307/1941631 

Bowden, R.D., Davidson, E., Savage, K., Arabia, C., Steudler, P., 2004. Chronic 
nitrogen additions reduce total soil respiration and microbial respiration in 
temperate forest soils at the harvard forest. Forest Ecology and 
Management 196, 43–56. https://doi.org/10.1016/j.foreco.2004.03.011 

Burke, M.W.V., Rundquist, B.C., 2021. Scaling phenocam GCC, NDVI, and EVI2 
with harmonized landsat-sentinel using gaussian processes. Agricultural 
and Forest Meteorology 300, 108316. 
https://doi.org/10.1016/j.agrformet.2020.108316 

Burton, A.J., Pregitzer, K.S., Crawford, J.N., Zogg, G.P., Zak, D.R., 2004. 
Simulated chronic NO3 deposition reduces soil respiration in northern 

https://doi.org/10.1016/j.inffus.2021.05.008
https://doi.org/10.1016/j.inffus.2021.05.008
https://doi.org/10.1111/gcb.12649
https://doi.org/10.1111/gcb.12649
https://doi.org/10.2307/1941631
https://doi.org/10.1016/j.foreco.2004.03.011
https://doi.org/10.1016/j.agrformet.2020.108316


101 
 

hardwood forests. Global Change Biology 10, 1080–1091. 
https://doi.org/10.1111/j.1365-2486.2004.00737.x 

Campbell, G.S., Norman, J.M., 2000. An introduction to environmental 
biophysics. Springer Science & Business Media. 

Cheng, K., Ogle, S.M., Parton, W.J., Pan, G., 2013. Simulating greenhouse gas 
mitigation potentials for chinese croplands using the DAYCENT 
ecosystem model. Global Change Biology 20, 948–962. 
https://doi.org/10.1111/gcb.12368 

Clemmensen, K.E., Bahr, A., Ovaskainen, O., Dahlberg, A., Ekblad, A., 
Wallander, H., Stenlid, J., Finlay, R.D., Wardle, D.A., Lindahl, B.D., 2013. 
Roots and associated fungi drive long-term carbon sequestration in boreal 
forest. Science 339, 1615–1618. https://doi.org/10.1126/science.1231923 

Cowan, I.R., IR, C., GD, F., 1977. Stomatal function in relation to leaf metabolism 
and environment. 

Craine, J.M., Morrow, C., Fierer, N., 2007. MICROBIAL NITROGEN LIMITATION 
INCREASES DECOMPOSITION. Ecology 88, 2105–2113. 
https://doi.org/10.1890/06-1847.1 

Diacono, M., Montemurro, F., 2010. Long-term effects of organic amendments on 
soil fertility. A review. Agronomy for Sustainable Development 30, 401–
422. https://doi.org/10.1051/agro/2009040 

Dielman, T.E., 1986. Elsevier. 
Dupont, S., Patton, E.G., 2012. Influence of stability and seasonal canopy 

changes on micrometeorology within and above an orchard canopy: The 
CHATS experiment 157, 11–29. 
https://doi.org/10.1016/j.agrformet.2012.01.011 

Farquhar, G.D., Von Caemmerer, S., Berry, J.A., 2001. Models of 
photosynthesis. Plant physiology 125, 42–45. 

Finnigan, J., 2008. An introduction to flux measurements in difficult conditions. 
Ecological Applications 18, 1340–1350. 

Gao, F., Hilker, T., Zhu, X., Anderson, M., Masek, J., Wang, P., Yang, Y., 2015. 
Fusing landsat and MODIS data for vegetation monitoring. IEEE 
Geoscience and Remote Sensing Magazine 3, 47–60. 
https://doi.org/10.1109/mgrs.2015.2434351 

Gerber, F., Jong, R. de, Schaepman, M.E., Schaepman-Strub, G., Furrer, R., 
2018. Predicting missing values in spatio-temporal remote sensing data. 
IEEE Transactions on Geoscience and Remote Sensing 56, 2841–2853. 
https://doi.org/10.1109/tgrs.2017.2785240 

Glorot, X., Bordes, A., Bengio, Y., 2011. Deep sparse rectifier neural networks, 
in: Gordon, G., Dunson, D., Dudík, M. (Eds.), Proceedings of the 
Fourteenth International Conference on Artificial Intelligence and 
Statistics, Proceedings of Machine Learning Research. PMLR, Fort 
Lauderdale, FL, USA, pp. 315–323. 

Goulden, M.L., Munger, J.W., Fan, S.-M., Daube, B.C., Wofsy, S.C., 1996. 
Measurements of carbon sequestration by long-term eddy covariance: 

https://doi.org/10.1111/j.1365-2486.2004.00737.x
https://doi.org/10.1111/gcb.12368
https://doi.org/10.1126/science.1231923
https://doi.org/10.1890/06-1847.1
https://doi.org/10.1051/agro/2009040
https://doi.org/10.1016/j.agrformet.2012.01.011
https://doi.org/10.1109/mgrs.2015.2434351
https://doi.org/10.1109/tgrs.2017.2785240


102 
 

Methods and a critical evaluation of accuracy. Global change biology 2, 
169–182. 

Gove, J.H., Hollinger, D.Y., 2006. Application of a dual unscented kalman filter 
for simultaneous state and parameter estimation in problems of surface-
atmosphere exchange. Journal of Geophysical Research 111. 
https://doi.org/10.1029/2005jd006021 

Hansen, B.E., Seo, B., 2002. Testing for two-regime threshold cointegration in 
vector error-correction models. Journal of econometrics 110, 293–318. 

Hanson, P., Edwards, N., Garten, C.T., Andrews, J., 2000. Separating root and 
soil microbial contributions to soil respiration: A review of methods and 
observations. Biogeochemistry 48, 115–146. 

Hastie, T., Tibshirani, R., Friedman, J.H., Friedman, J.H., 2009. The elements of 
statistical learning: Data mining, inference, and prediction. Springer. 

Hengl, T., Nussbaum, M., Wright, M.N., Heuvelink, G.B.M., Gräler, B., 2018. 
Random forest as a generic framework for predictive modeling of spatial 
and spatio-temporal variables. PeerJ 6, e5518. 
https://doi.org/10.7717/peerj.5518 

Hicks, B.B., Baldocchi, D.D., 2020. Measurement of fluxes over land: 
Capabilities, origins, and remaining challenges 177, 365–394. 
https://doi.org/10.1007/s10546-020-00531-y 

Hothorn, T., Hornik, K., Zeileis, A., 2006. Unbiased recursive partitioning: A 
conditional inference framework. Journal of Computational and Graphical 
statistics 15, 651–674. 

Hui, D., Wan, S., Su, B., Katul, G., Monson, R., Luo, Y., 2004. Gap-filling missing 
data in eddy covariance measurements using multiple imputation (MI) for 
annual estimations. Agricultural and Forest Meteorology 121, 93–111. 

Ives, A.R., Zhu, J., 2006. Statistics for correlated data: Phylogenies, space, and 
time. Ecological applications 16, 20–32. 

Ives, A.R., Zhu, L., Wang, F., Zhu, J., Morrow, C.J., Radeloff, V.C., 2021. 
Statistical inference for trends in spatiotemporal data. Remote Sensing of 
Environment 266, 112678. https://doi.org/10.1016/j.rse.2021.112678 

Janzen, H.H., 2014. Beyond carbon sequestration: Soil as conduit of solar 
energy. European Journal of Soil Science 66, 19–32. 
https://doi.org/10.1111/ejss.12194 

Jarvis, P., Massheder, J., Hale, S., Moncrieff, J., Rayment, M., Scott, S., 1997. 
Seasonal variation of carbon dioxide, water vapor, and energy exchanges 
of a boreal black spruce forest. Journal of Geophysical Research: 
Atmospheres 102, 28953–28966. 

Jastrow, J.D., Miller, R.M., Owensby, C.E., 2000. Plant and Soil 224, 85–97. 
https://doi.org/10.1023/a:1004771805022 

Jenkinson, D., 1966. The priming action. The Use of Isotopes in Soil Organic 
Matter Studies. 

https://doi.org/10.1029/2005jd006021
https://doi.org/10.7717/peerj.5518
https://doi.org/10.1007/s10546-020-00531-y
https://doi.org/10.1016/j.rse.2021.112678
https://doi.org/10.1111/ejss.12194
https://doi.org/10.1023/a:1004771805022


103 
 

Jenkinson, D.S., Fox, R.H., Rayner, J.H., 1985. Interactions between fertilizer 
nitrogen and soil nitrogen-the so-called ’priming’ effect. Journal of Soil 
Science 36, 425–444. https://doi.org/10.1111/j.1365-2389.1985.tb00348.x 

Jenkinson, D.S., Fox, R.H., Rayner, J.H., 1985. Interactions between fertilizer 
nitrogen and soil nitrogen-the so-called ’priming’ effect. Journal of Soil 
Science 36, 425–444. https://doi.org/10.1111/j.1365-2389.1985.tb00348.x 

Jenkinson, D.S., Rayner, J.H., 1977. The turnover of soil organic matter in some 
of the rothamsted classical experiments. Soil Science 123, 298–305. 
https://doi.org/10.1097/00010694-197705000-00005 

Johnson, D.W., Curtis, P.S., 2001. Effects of forest management on soil c and n 
storage: Meta analysis. Forest Ecology and Management 140, 227–238. 
https://doi.org/10.1016/s0378-1127(00)00282-6 

Johnson, M.G., Levine, E.R., Kern, J.S., 1995. Soil organic matter: Distribution, 
genesis, and management to reduce greenhouse gas emissions. Water, 
Air, &amp$\mathsemicolon$ Soil Pollution 82, 593–615. 
https://doi.org/10.1007/bf00479414 

Jönsson, P., Eklundh, L., 2004. TIMESATa program for analyzing time-series of 
satellite sensor data. Computers &amp$\mathsemicolon$ Geosciences 
30, 833–845. https://doi.org/10.1016/j.cageo.2004.05.006 

Katul, G.G., PALMROTH, S., OREN, R., 2009. Leaf stomatal responses to 
vapour pressure deficit under current and CO<sub>2</sub>-enriched 
atmosphere explained by the economics of gas exchange. Plant, Cell 
&amp$\mathsemicolon$ Environment 32, 968–979. 
https://doi.org/10.1111/j.1365-3040.2009.01977.x 

Keenan, T.F., Migliavacca, M., Papale, D., Baldocchi, D., Reichstein, M., Torn, 
M., Wutzler, T., 2019. Widespread inhibition of daytime ecosystem 
respiration. Nature Ecology &amp$\mathsemicolon$ Evolution 3, 407–
415. https://doi.org/10.1038/s41559-019-0809-2 

Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv 
preprint arXiv:1412.6980. 

Klosterman, S.T., Hufkens, K., Gray, J.M., Melaas, E., Sonnentag, O., Lavine, I., 
Mitchell, L., Norman, R., Friedl, M.A., Richardson, A.D., 2014. Evaluating 
remote sensing of deciduous forest phenology at multiple spatial scales 
using PhenoCam imagery. Biogeosciences 11, 4305–4320. 
https://doi.org/10.5194/bg-11-4305-2014 

Kopf, J., Augustin, T., Strobl, C., 2013. The potential of model-based recursive 
partitioning in the social sciences: Revisiting ockham’s razor, in: 
Contemporary Issues in Exploratory Data Mining in the Behavioral 
Sciences. Routledge, pp. 97–117. 

Kucera, C., Kirkham, D.R., 1971. Soil respiration studies in tallgrass prairie in 
missouri. Ecology 52, 912–915. 

Kuzyakov, Y., 2006. Sources of CO2 efflux from soil and review of partitioning 
methods. Soil Biology and Biochemistry 38, 425–448. 
https://doi.org/10.1016/j.soilbio.2005.08.020 

https://doi.org/10.1111/j.1365-2389.1985.tb00348.x
https://doi.org/10.1111/j.1365-2389.1985.tb00348.x
https://doi.org/10.1097/00010694-197705000-00005
https://doi.org/10.1016/s0378-1127(00)00282-6
https://doi.org/10.1007/bf00479414
https://doi.org/10.1016/j.cageo.2004.05.006
https://doi.org/10.1111/j.1365-3040.2009.01977.x
https://doi.org/10.1038/s41559-019-0809-2
https://doi.org/10.5194/bg-11-4305-2014
https://doi.org/10.1016/j.soilbio.2005.08.020


104 
 

Kwon, H., Ugarte, C.M., Ogle, S.M., Williams, S.A., Wander, M.M., 2017. Use of 
inverse modeling to evaluate CENTURY-predictions for soil carbon 
sequestration in US rain-fed corn production systems. PLOS ONE 12, 
e0172861. https://doi.org/10.1371/journal.pone.0172861 

Ladha, J.K., Reddy, C.K., Padre, A.T., Kessel, C. van, 2011. Role of nitrogen 
fertilization in sustaining organic matter in cultivated soils. Journal of 
Environmental Quality 40, 1756–1766. 
https://doi.org/10.2134/jeq2011.0064 

Lal, R., 2007. World soils and global issues. Soil and Tillage Research 97, 1–4. 
https://doi.org/10.1016/j.still.2007.04.002 

Larionova, A., Yevdokimov, I., Kurganova, I., Sapronov, D., Kuznetsova, L., 
Lopes de Gerenju, V., 2003. Root respiration and its contribution to the 
CO2 emission from soil. Eurasian soil science 36, 173–184. 

Lazcano, C., Gómez-Brandón, M., Revilla, P., Domıńguez, J., 2012. Short-term 
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