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Abstract 

With the concern of the global population to reach 9 billion by 2050, ensuring global food 

security is a prime challenge for the research community. One potential way to tackle this 

challenge is sustainable intensification; making plant phenotyping a high throughput may go a 

long way in this respect. Among several other plant phenotyping schemes, leaf-level plant 

phenotyping needs to be implemented on a large scale using existing technologies. 

Leaf-level chemical traits, especially macronutrients and water content are important 

indicators to determine crop’s health. Leaf nitrogen (N) level, is one of the critical macronutrients 

that carries a lot of worthwhile nutrient information for classifying the plant’s health. Hence, the 

non-invasive leaf’s N measurement is an innovative technique for monitoring the plant’s health. 

Several techniques have tried to establish a correlation between the leaf’s chlorophyll content and 

the N level. However, a recent study showed that the correlation between chlorophyll content and 

leaf’s N level is profoundly affected by environmental factors. Moreover, it is also mentioned that 

when the N fertilization is high, chlorophyll becomes saturated. As a result, determining the high 

levels of N in plants becomes difficult. Moreover, plants need an optimum level of phosphorus (P) 

for their healthy growth. However, the existing leaf-level P status monitoring methods are 

expensive, limiting their deployment for the farmers of low resourceful countries. 

The aim of this thesis is to develop a low-cost, portable, lightweight, multifunctional, and 

quick-read multispectral sensor system to sense N, P, and water in leaves non-invasively. The 

proposed system has been developed based on two reflectance-based multispectral sensors (visible 

and near-infrared (NIR)). In addition, the proposed device can capture the reflectance data at 12 

different wavelengths (six for each sensor). By deploying state of the art machine learning 

algorithms, the spectroscopic information is modeled and validated to predict that nutrient status.  

A total of five experiments were conducted including four on the greenhouse-controlled 

environment and one in the field. Within these five, three experiments were dedicated for N 

sensing, one for water estimation, and one for P status determination. In the first experiment, 

spectral data were collected from 87 leaves of canola plants, subjected to varying levels of N 

fertilization. The second experiment was performed on 1008 leaves from 42 canola cultivars, 

which were subjected to low and high N levels, used in the field experiment. The K-Nearest 

Neighbors (KNN) algorithm was employed to model the reflectance data. The trained model shows 



iv 

 

an average accuracy of 88.4% on the test set for the first experiment and 79.2% for the second 

experiment. In the third and fourth experiments, spectral data were collected from 121 leaves for 

N and 186 for water experiments respectively; and Rational Quadratic Gaussian Process 

Regression (GPR) algorithm is applied to correlate the reflectance data with actual N and water 

content. By performing 5-fold cross-validation, the N estimation shows a coefficient of 

determination (𝑅2) of 63.91% for canola, 80.05% for corn, 82.29% for soybean, and 63.21% for 

wheat. For water content estimation, canola shows an 𝑅2 of 18.02%, corn of 68.41%, soybean of 

46.38%, and wheat of 64.58%. Finally, the fifth experiment was conducted on 267 leaf samples 

subjected to four levels of P treatments, and KNN exhibits the best accuracy, on the test set, of 

about 71.2%, 73.5%, and 67.7% for corn, soybean, and wheat, respectively.  

Overall, the result concludes that the proposed cost-effective sensing system can be viable 

in determining leaf N and P status/content. However, further investigation is needed to improve 

the water estimation results using the proposed device. Moreover, the utility of the device to 

estimate other nutrients as well as other crops has great potential for future research. 
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Chapter 1: Introduction 

1.1. Global Food Security Bottleneck and High Throughput Plant Phenotyping 

The continuing global demand for food is on the rise, resulting from population increase. 

In the next few decades, approximately 2.3 billion person increase is expected to be seen in global 

perspective [1]. To meet the commensurate food demand, agricultural production needs to be 

enhanced by 1.5 times [2]. Existing solutions to feed these populations include either intensive use 

of the existing cropland or clearing the land. However, these current practices for agricultural land 

expansion may create a potential threat for the environment, as both land clearing and extensive 

use will result in increasing the global greenhouse gas (GHG) emissions. So, “sustainable 

intensification”, meaning “producing the same food from same area of land while reducing the 

environmental impacts” [2],  is a demand of the time.  

One potential way of sustainable intensification to solve the global food security bottleneck 

is high throughput plant phenotyping. Plant phenotyping refers to a “quantitative description of 

the plant’s anatomical, ontogenetical, physiological and biochemical properties” [3]. In other 

words, phenotype is the assembly of the characteristics possessed by a cell or organism resulting 

from the interaction of the environment and the genotype. A more recent definition of plant 

phenotyping would be the investigation of the plant traits like physiology, yield, growth, ecology, 

and other basic quantitative parameters [4]. In simple words, plant phenotyping can be referred to 

as the collection of the methods and techniques utilized to measure plant structure, chemical traits, 

and growth development. Plant phenotyping can be categorized into several kinds depending on 

the multiple organizational levels like canopy, whole plant, cellular level, leaf level, and root level. 

The efforts from several research domains have been incorporated into utilizing and 

optimizing the available technologies to address the need for plant phenotyping [5]. However, 

these technologies for the plant phenotyping are still under progress, and not fully explored, 

making it a gridlock for plant science research [5]. Several research organizations and institutes, 

such as Phenotyping and Imaging Research Center (P2IRC) [6],  International Plant Phenotyping 
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Network (IPPN) [7], and Australian Plant Phenomics Facility (APPF) [8], have been formed to 

address this global food security bottleneck in this respect. 

1.2. Leaf-level Plant Phenotyping 

Leaf level plant phenotyping for high throughput plant breeding has been in the key focus 

of the plant science researchers recently. Leaf level traits can be two kinds – morphological traits, 

and physiological traits. The examples of leaf-level morphological phenotypic traits are leaf 

number, leaf shape, leaf area index, leaf expansion rate, and leaf thickness; whereas physiological 

traits include quantifying chemical properties of plants [9]. These properties are water content, 

macronutrients: nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), sulfur (S), and 

magnesium (Mg); and micronutrients: sodium (Na), iron (Fe), boron (B), zinc (Zn), manganese 

(Mn), and copper (Cu) [10]. The ongoing technological advancement has facilitated several non-

invasive ways for quantifying leaf-level traits including imaging and non-imaging techniques. 

Several researchers have applied numerous imaging techniques: hyperspectral, multispectral, 2-

dimensional visible and near-infrared, thermal imaging, and 3-dimensional (3D) cameras in plant 

phenotyping research [11] such as estimating leaf N estimation [12], P content determination [13], 

K [13], micronutrients [10], water content [14], leaf segmentation and counting [15] and others. In 

addition to imaging methods, optical spectroscopy, especially in visible and NIR spectroscopy, is 

also extensively used to determine several physiological traits [16].  

Although these noninvasive technologies provide important information about plant traits, 

they need to be integrated into a larger context. Most of them are highly expensive and bulky that 

limits their application on a large scale. As a result, more robust, inexpensive and accessible 

technologies are needed to be explored to alleviate global food security bottleneck and make plant 

phenotyping a high throughput. 

1.3. Research Objectives 

The primary objective of this thesis is to develop a low-cost, portable, and light-weight system 

to monitor leaf-level physiological traits noninvasively. The following research objectives were 

set to meet the goal of developing an affordable system:   

• To design and develop a reflectance-based multispectral sensing system using low-cost 

light detectors. 
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• To develop a software program to operate the hardware components and data collection 

procedures using existing libraries. 

• To develop a machine learning pipeline including data cleaning, feature engineering, 

normalizing, optimizing, and modeling using state of the art algorithms. 

• To determine the N levels in leaves, and correlate with ground truth N content in multiple 

crops. 

• To compare the N estimation performance with commercially used SPAD meter. 

• To estimate water content in leaves by correlating with reflectance data. 

• To predict the P status of leaves.  

• To compare the feasibility of the proposed system in terms of accuracy and cost over the 

existing devices. 

1.4. Thesis Organization  

The chapters are organized as follows:  

Chapter 2 reviews the literature relating to existing technologies and recent advances in 

leaf-level plant phenotyping research. Moreover, different devices for sensing leaf N, P sensing, 

and water content are explained. 

Chapter 3 provides the details of the methodology and experimental setup. This chapter 

elaborately explains the design requirements, a hardware description of the proposed low-cost 

sensing system, utilized machine learning algorithms, feature engineering methods, validation 

technique, experimental setup, and data modeling of five different experiments.  

Chapter 4 describes the results of each experiment separately. Also, this chapter provides 

discussions regarding the results and comparisons with existing techniques.  

Finally, Chapter 5 concludes the findings of this research work and provides direction for 

further investigations and improvements to the designed system. 
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Chapter 2: Literature Review 

This chapter includes the literature review of the existing technologies for sensing leaf-

level physiological traits, specifically N, P, and water. Section 2.1 describes the current leaf N 

monitoring methods. Section 2.2 provides an overview of all available devices related to P 

monitoring in leaves, and finally, section 2.3 shows related kinds of literature for water content 

estimation. Moreover, the limitations of the current methodologies are included in each section. 

2.1. Technologies for Sensing Leaf-level N Content 

Researchers have been trying to discover several methods to monitor plants’ N status over 

time. The current techniques include destructive as well as nondestructive approaches. Invasive 

determinations basically are chemical methods [17] namely Kjeldahl-digestion and Dumas-

combustion. There exist two approaches to determine plant N noninvasively- light spectroscopy 

and hyperspectral imaging. The popularly used spectroscopic devices for sensing N are Soil Plant 

Analysis Development (SPAD) [18], FieldSpec [19], GreenSeeker [20],  imagery from QuickBird 

satellite [21]. Although these are widely used for N correlation, they have some limitations. For 

example, the basis of SPAD meter is determining chlorophyll and it saturates at high N fertilization 

[22].  According to Xiong et al. [22], the fraction of N assigned to chlorophyll is very small and 

most of them are allocated to photosynthetic proteins. A good correlation (𝑅2=.86) with N by using 

FieldSpect 3 spectrometer was shown by Wang et al. [19]. But this device is expensive and less 

flexible to operate in the field. In addition, GreenSeeker is also expensive equipment and the 

determination saturates with increasing biomass/leaf area [23]. Moreover, the use of satellite 

imagery has some drawbacks such as- satellite’s constant movement, cloudy weather, subscription 

cost, etc. Recently, hyperspectral imaging (HSI)  is being used in several plant phenotyping 

applications including N sensing [24]. It facilitates not only spectral information but also spatial 

information. Yu et al. (2014) in [12] showed how HSI can be used to investigate the mapping of 

N distribution in leaves. However, HSI is normally used in research purposes as it is very 

expensive. So, developing a low cost, quick read, portable, light weight device to determine leaf 
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N content is very challenging. Figure 2-1 summarizes the overall techniques related to N 

estimation in crops.  

 

Figure 2-1: Methods used for estimating leaf N status. 

Majority of the plant’s uptake N in forms of nitrate although it depends on species. The 

chemical formation of N in plants is basically protein having peptide bonds (-CO-NH-)[25] and 

these are sensitive to visible and NIR regions. Blackmer et al. (1994) [26] investigated that the 

reflectance at 550 nm wavelength is effective for different N treatment separation. Many 

researchers recently have developed NIR spectroscopy based models to determine N in several 

plants including spring wheat [27], corn [28], winter oilseed rape [29]. In the article by Zhang et 

al. (2013)[13], authors published important wavelengths significant for detecting N by using HSI 

in oilseed rape leaves and showed 𝑅2 = 0.882. According to the authors, twelve optical bands 

around 440, 473, 513, 542, 659, 718, 744, 865, 928, 965, 986 and 1015 nm are effective for sensing 

N contents.  

2.2. Methods for Sensing P in Leaves 

Phosphorus (P) is a vital element of some important macromolecules namely nucleic acid, 

phospholipids and phosphates [30]. Besides, some organic P molecules take part in energy transfer 

reactions and in respiration [13]. Also, P plays a crucial part in harvesting energy from the sun to 

generate sugar molecules in plants [31]. However, ensuring optimal levels of P content in the plant 

is difficult, as insufficient or excessive use of P fertilizer affects the overall growth and 
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development of the plant’s health [32]. In addition, the cost of P fertilizer (phosphate) is getting 

increased, as a result, the optimal application of it has become an urgent need [33].  

There exist several techniques including destructive and non-destructive to sense leaf’s P 

levels. The traditional technique to measure P is laboratory-based stoichiometry. The common 

processes are P-vanadium-molybdenum and molybdenum-antimony anti-absorption spectrometry. 

Although the accuracy of this stoichiometry method is very high, they are invasive, complex, 

labor-intensive, time-consuming and expensive [34]. The development of machine learning 

algorithms has facilitated several non-destructive methods to model the plant’s nutrition 

characteristics, especially P, with spectral imaging and electrical signals [4][35][36]. The existing 

imaging methods are - monocular vision, multispectral, hyperspectral and fluorescence imaging. 

In the monocular vision method, the plant images are collected by an RGB camera, on the aerial 

or ground level, to sense plant nutrition. In a comparative study between ground vs. aerial RGB to 

assess the plant's nutrition profile under different P fertilization, Adrian et al. suggested that RGB 

indices can be correlated with leaf fits application in the field setting.  

Multispectral imaging is another imaging technique where several spectral bands, 

commonly in the visible and NIR range, are incorporated in the image to model plant nutrition 

[37]. Guoxiang et al. showed how multispectral 3D imaging techniques with appropriate modeling 

algorithms can be utilized for highly accurate determinations of p contents in tomato plants [34]. 

However, these cameras are expensive and show unstable performance in different light 

environments [34]. Finally, the utility of hyperspectral imaging is getting popular as it can provide 

both spatial and spectral information at the same time [38]. With that information, researchers have 

been able to find a correlation between these spectral pixel values and the plant’s chemical traits. 

For example, Piyush Pandey et al. have created a model to determine macronutrients and 

micronutrients in leaves using lab-based hyperspectral imaging [10]; Liu Yanli et al. predicted the 

P content in citrus leaves using hyperspectral camera [32]. Hyperspectral imaging can also be 

utilized for investigating characteristic wavelengths of nutrients [37][14]. Xiaolei et al. conducted 

an experiment on oilseed rape leaves using hyperspectral imaging and found out that the optimal 

wavelengths for sensing P content are 468, 522, 698, 721, 817,967, 979 and 1025 nm. However, 

hyperspectral cameras are very expensive, and analyzing their data is very complex because of 

high dimensionality [39]. In addition to those cameras, VIS-NIR-SWIR spectroscopy is another 
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method to sense P in leaves. Basically, plant’s P compounds (sugar-phosphate, phospholipids) are 

bonded by covalent bonding of carbon that absorbs VIS-NIR-SWIR light. That’s why light 

reflectance/absorbance in these spectra can be correlated to P contents. In a case study with a maize 

diversity panel, Yufeng et al. investigated that leaf chemical traits can be modeled by VIS-NIR-

SWIR spectroscopy [40]. In their experiments, they utilized FieldSpec 4 (Analytical Spectral 

Devices) spectroradiometer to correlate reflectance data to P content. Although these devices are 

portable and accurate, they are very expensive. Also, these instruments are bulky and less flexible 

for a quick read. 

2.3. Devices for Water Content Monitoring 

Leaf water content is another major factor for the overall health of the plants. One of the 

reasons is that water stress limits transpiration affecting crops’ photosynthesis mechanism [41]. In 

addition, at the growing stage, the fertilizer application and irrigation rely on leaf water content 

[42]. So, the determination of leaf water content is of great importance for monitoring the health 

status of the plants. One of the common methods of determining leaf water content is calculating 

the difference between fresh leaf weight and dried leaf weight. This method is destructive and 

time-consuming. However, the applications of remote sensing such as spectrometry, HSI have 

been seen in several studies featuring non-destructive approaches. The determination of leaf water 

content in Miscanthus by using VIS/NIR was investigated by [43]. In that article, least-square 

support machine regression was used to model leaf water content with reflectance spectra. It also 

identified 75 significant wavelengths between 450-2500 nm range showing 𝑅2 about 0.9899. R. 

Gente et al. utilized the terahertz time-domain spectroscopy technique that calculated the relative 

volumetric fraction of water present in the tissue that correlates very well with the direct 

determination of water content [44]. The recent development HSI has been proven to be very 

effective for in vivo analysis of plant chemical properties including water content [10]. In that 

study, Piyush Pandey et al. showed how HSI can be used to correlate hyperspectral images with 

leaf water content (𝑅2 = 0.93). In another study, where UV-VIS spectrometer (Evolution 300) 

was used, it was shown that 8 efficient wavelength intervals were effective for water content 

determination in leaves [45]. These are 553-556 nm, 689-720 nm, 755-842 nm, 950-970 nm, 1013-

1034 nm, and 1055-1075 nm. The common drawbacks of these previous techniques are their high 

cost. 
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On-going technological advancements in plant phenotyping research have brought about 

significant opportunities to improve current farming practice. However, the prime bottleneck is 

the implementation of these techniques on a large scale. The available technologies and platforms 

are still in the research phase and are not ready for commercial use, and those available 

commercially are highly expensive, inaccessible, and bulky. Hence, there is a need to develop cost-

effective solutions for this purpose. This thesis attempts to develop a low-cost solution for sensing 

leaf-level phenotyping like N, P, and water content. The proposed device/system will have the 

ability to utilize existing off the shelf sensors, hardware components, and algorithms. The primary 

target of the application is to make it a cost-effective, portable, and lightweight for monitoring 

nutrient status so that it can be implemented on large scale in the lab, greenhouse environment, 

and in the field. 
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Chapter 3: Methodology 

This chapter describes the design and development of the proposed device, and overall 

methodologies. Section 3.1 sets the design requirement of the low-cost sensing system, section 3.2 

describes the hardware components, the setup used to build the system, and a summary of the cost 

for individual parts of the system. Section 3.3 discusses the machine learning modeling algorithms 

used to create models. Section 3.4 overviews the feature engineering part and section 3.5 includes 

the validation techniques. Finally, section 3.6 separately describes the experimental setup and data 

modeling techniques of five conducted experiments. 

3.1. Design Requirements 

For developing a low-cost system for sensing leaf-level chemical traits of the plant, the 

following design requirements have been set:  

• The system should be low-cost. It is one of the prime goals of this thesis. 

• The developed system should have multifunctionality, that is, should be capable of 

estimating N, P, and water content at the same time. 

• The system should sense spectral information at multiple bands in the visible and 

NIR regions. 

• The system should be portable and capable of remote sensing operations wirelessly. 

• The device should be lightweight to be carried around the field. 

3.2. Hardware Design for the System 

Any low cost sensing device that can detect light reflectance in visible and NIR regions 

will be applicable. However, most of the available spectral sensors and imaging systems working 

in those regions are expensive. One potential way might be Raspberry Pi NOIR camera, which is 

cost-effective ($30-$40) and can capture images in those regions. However, this camera does not 

provide light excitation on-board, so separate arrangements are needed to illuminate samples. That 

is why, this device was not used in this thesis.  
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Considering the design requirements, the proposed system prototype is designed based on 

two optical sensors- Sensor1 and Sensor2. Sensor1 is a visible multispectral sensor (AS7262, 

AMS), and Sensor2 is a NIR multispectral sensor (AS7263, AMS). Also, a Qwiic mux breakout 

board (TCA9548A, SparkFun Electronics) as a multiplexer and a Raspberry Pi version 3 as control 

circuitry are used. In addition, a power bank (BWA18WI035C, Blackweb), and an OLED display 

(DS-OLED-MOD, Cytron Technologies) are utilized in this prototype system. The descriptions of 

these components are discussed in the following sections. 

3.2.1. Sensor1 

Sensor1 (Figure 3-1 a-d) is a 6-channel multispectral sensor in the visible range around 430 

nm to 670 nm with full-width half-max (FWHM) of 40 nm. In this study, the visible AS7262 

spectral breakout (SparkFun number SEN-14347) was used, where sensor1 is integrated. Here, it 

has built-in aperture controls of the light entering the process of the sensor array. Also, it has an 

I2C register set by which spectral data can be accessed. Here, the six visible channels are 450 nm 

(channel V), 500 nm (channel B), 550 nm (channel G), 570 nm (channel Y), 600 nm (channel O) 

and 650 nm (channel R). It has a 16-bit ADC (Analog to Digital Converter). Moreover, it’s 

operating voltage ranges from 2.7V to 3.6V with I2C interface. The package field of view of the 

sensor is ±20 degrees. Calibration and measurements are made using diffused light. Each channel 

is tested with GAIN = 16× at ambient temperature (25°C) under a 5700K white LED test condition 

with an irradiance of ~600 μW/𝑐𝑚2 (300-1000 nm). The measurement unit of the channel is 

μW/𝑐𝑚2 with an accuracy of 12%. The energy at each channel is calculated with a ±40 nm 

bandwidth around the center wavelengths. The built-in excitation light source is used in this study. 

It is a 5700K white LED (L130-5780HE1400001, Lumileds) having a Color Rendering Index 

(CRI) of 80. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3-1: Sensor1. (a) Optical sensor AS7262 [46]. (b) Normalized spectral responsivity versus 

wavelength of Sensor1 which detects at 6 visible channels ― 450 nm (channel V), 500 nm 

(channel B), 550 nm (channel G), 570 nm (channel Y), 600 nm (channel O) and 650 nm (channel 

R) each with 40 nm FWHM [47]. (c) front side and (d) backside of AS7262 spectral breakout 

(SparkFun number SEN-14347) [48]. Here, sensor1 is integrated on the board. 

3.2.2. Sensor2 

Sensor 2 (Figure 3-2 a-d) is a digital six-channel spectrometer in the NIR light region. The 

NIR AS7262 spectral breakout (SparkFun number SEN-14351) was used, where sensor2 is 

integrated. It has six independent optical filters whose spectral response is defined in the NIR 

wavelengths from approximately 600nm to 870 nm with full-width half-max (FWHM) of 20 nm. 

The channels are 610 nm (channel R), 680 nm (channel S), 730 nm (channel T), 760 nm (channel 

U), 810 nm (channel V) and 860 nm (channel W). The light source used in the test condition is an 

incandescent light with an irradiance of ~1500 μW/𝑐𝑚2 (300-1000 nm). Also, the energy at each 

channel is calculated with a ±33 nm  bandwidth around the center wavelengths. As a NIR source 
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light, the onboard 2700K warm LED (L130-2790001400001) is utilized having a CRI of 90. The 

other configurations that are like Sensor1 are not mentioned. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3-2: Sensor2. (a) Optical sensor AS7263 [49]. (b) Normalized spectral responsivity versus 

wavelength of Sensor2 which detects at 6  channels ― 610 nm (channel R), 680 nm (channel S), 

730 nm (channel T), 760 nm (channel U), 810 nm (channel V) and 860 nm (channel W) each 

with 20 nm FWHM [47]. (c) front side and (d) backside of AS7263 spectral breakout (SparkFun 

number SEN-14351) [50]. Here, sensor2 is integrated on the board. 

3.2.3. Control circuitry 

Raspberry Pi 3 Model B (RP3) was used for controlling the sensors (Figure 3-3). The RP3 

has a quad-core processor having 1.2 GHz and 1 GB LPDDR2 RAM. Also, it has BCM43438 

wireless LAN and Bluetooth low energy on board. It has 40 pins extended GPIO pins and 4 USB 

ports. It also provides full-size HDMI and micro SD port for loading your operating system and 

storing data. It can be powered through Micro USB power source up to 2.5 A. This widely popular 

board is used in several applications such as image processing [51], IoT systems [52], etc.  



13 

 

 

Figure 3-3: Raspberry Pi [53] 

3.2.4. Multiplexer 

Sensor1 and Sensor2 have the same I2C address. So, a multiplexer (Figure 3-4) was used 

that has eight configurable addresses of its own providing 8 I2C buses (TCA9548A, SparkFun 

Electronics). The operating voltage of the component is 1.65V - 5.5V and the operating voltage is 

-40°C to 85°C.  

 

 

Figure 3-4: Multiplexer having 8 configurable pins [54]. 

3.2.5. Power Module 

As a portable power supply for the device, a 5V/2A rated power bank (Figure 3-5) was 

used to power up the control circuit (BWA18WI035C, Blackweb). It has a built-in 5000 mAh high 

capacity rechargeable Li-polymer battery. This has overcharging/discharge, short circuit, and 
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current protection. Moreover, it provides dual USB output, where a Micro USB charge cable can 

be connected. 

 

Figure 3-5: Power Module. A 5V/2A rated power bank was used to power up the control 

circuit having 5200 mAh battery [55]. 

3.2.6. Display 

The prototype also includes a 1.3-inch I2C OLED display ((DS-OLED-MOD, Cytron 

Technologies) for visualization. The module (Figure 3-6) has a resolution of 128×64 resolution 

working without backlight. It shows the text color in white and operating input voltage is 3.3V/5V. 

Moreover, it has four pins: VCC (power), GND (ground), SDA (data cable), and SCL (clock). This 

display is controlled by RP3 for displaying. 

 

Figure 3-6: 1.3-inch I2C OLED display ((DS-OLED-MOD, Cytron Technologies) [56]. 

Figure 3-7 a-d shows the graphical setup of the prototype, whereas Figure 3-7 e-f shows the sample 

of the prototype. The leaf is placed as shown in Figure; both the sensors get in contact with the 

leaf while scanning.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 3-7: Graphical setup of the device from (a) front side, (b) back side, (c) bottom, and (d) 

right side. Sample of the device showing (e) MUX and display, and (f) control circuit, power 

module, sensor1, and sensor2. Here, sensor1 and sensor2 are connected to the multiplexer, and 

the multiplexer is connected to the control circuit. The whole is getting powered from power 

supply, and display is connected to the control circuit. The leaf is placed accordingly and sensor1 

and sensor2 scan the leaf surface by contacting. 
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3.2.7. Full Design of the System 

Figure 3-8 shows the connection diagram of the prototype. Here, the Qwiic ports of sensor1 

and sensor2 are connected to the port1 and port2 of the mux through Qwiic connectors. From the 

main port of the mux, four wires namely: SDA, SCL, VCC, and GND are connected to pin numbers 

3, 5, 1, and 9 of the control circuit respectively. Moreover, the power bank is connected to the 

micro-USB port of the control circuit; and the OLED display to the SDA, and SCL. Data collected 

from the sample leaves are modeled and processed using MATLAB 2018b.  

 

Figure 3-8: Connection overview of the proposed device. Sensor1 and sensor2 are connected 

to the port1 and port2 of the mux through Qwiic connectors. The four lines from the main port 

of the mux are connected to the SDA, SCL, VCC, and GND of the control circuit. The power 

bank is connected to the micro-USB port of the control circuit; and the OLED display to the 

SDA, and SCL. 

3.2.8. Cost of the Parts of the Proposed Sensor  

The total cost of the device is $200, as of 10 February 11, 2020. The cost breakdown of the 

components of the system is shown in Table 3-1. 
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Table 3-1: Cost of the components 

Device components Approximate cost (USD) 

Sensor1 $25 

Sensor1 $25 

Multiplexer $20 

Raspberry Pi 3 $50 

Power bank $10 

Display $5 

Manufacturing $50 

Others $15 

Total $200 

3.3. State-of-the-art Algorithms 

In this work, several machine learning techniques are utilized for data modeling purposes. 

These are K-means clustering, KNN, SVM, Decision Tree, Ensemble, and GPR. They are 

discussed below. 

3.3.1. K-means Clustering 

K-means clustering is an unsupervised data analysis method that is commonly used to 

segment data set in groups. It is an iterative algorithm which attempts to partition the dataset 

into K-pre-defined different non-overlapping clusters where each data point falls into only one 

group. Also, the inter-cluster data points are maintained as similar as possible while also keeping 

the clusters as distinct as possible. In this method, data sub-groups (clusters) can be identified 

based on the similarity of the data points. Here, similarity can be measured based on Euclidean 

distance between the data points. This technique is widely used for plant phenotyping [57], pattern 

recognition, segmentation of medical image [58]. In the cluster, the center of the cluster is called 

centroid which is nothing but the mean of the data points belonging to each cluster. In this research, 
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K-means clustering is used in the preprocessing stage using the value of K as three to cluster three 

different observations. 

3.3.2. KNN 

The K-Nearest Neighbor (KNN) is an instance-based supervised classification method that 

works based on the closest training examples in feature space [59]. It is the simplest technique 

when there is no prior knowledge about the distribution of the dataset. Moreover, when the number 

of samples is larger than the number of features, KNN works better than classifiers that have a 

learning step. KNN has been applied in many fields; such as plant phenotyping [60], plant disease 

classification [61], and detection of N status on plants [62]. In this thesis, the value of K is chosen 

based on trial and error method. Different values of K are implemented, and the value one shows 

minimum error. 

3.3.3. SVM 

Support Vector Machine (SVM) is a supervised learning algorithm applicable to both 

classification and regression problems, but mostly classification. It has been widely used in several 

research domains like plant disease detection [63], blood glucose classification [64], and speech 

emotion recognition [65]. SVM relies on a set of hyperplanes in a high dimensional space that 

separates the features according to the number of class labels. For separation of the data by the 

hyperplanes, data points are mapped from input space to high dimensional feature space, where 

data are sparse and more separable. Radial basis function (RBF) is commonly used as its kernel, 

which simplifies the computation of the inner product value of the transformed data in the feature 

space. The performance of the classifier depends highly on choosing the parameters of the kernel. 

The soft-margin and RBF kernel parameters are optimized using the Wang [66] method. In this 

method, inter-cluster distance is calculated in the feature space to determine parameters. The 

distance index with the kernel parameter combination that leads to best separation index are 

calculated iteratively and thus optimized. 

3.3.4. Decision Tree 

Decision Tree (DT) divides the dataset to small subsets and forms a tree structure; thus 

develop a decision tree with decision and leaf nodes [67]. Here, each brunch represents a decision, 
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each node represents a feature, and each leaf represents an outcome. There are several DT 

algorithms in which ID3 (Iterative Dichotomiser 3) is mostly used. This algorithm uses entropy 

function and information gain as metrics. The entropy of features is used to determine the 

homogeneity of samples to construct the tree. It is essential that the nodes are aligned as such that 

the entropy decreases with splitting downwards. In this research, A C4.5 decision tree is used [68]. 

Data at every node of the tree is sorted by C4.5 for the best separation attributes. Also, it inherently 

employs single pass pruning process to mitigate overfitting. DT has been used previously in 

various applications such as theft detection in smart grid [69], crop disease detection [70], and N 

content estimation [71].   

3.3.5. Ensemble 

Ensemble Bagged Decision Tree is a bag of the decision trees that uses ensemble technique 

for aggregating results [72]. This bagging method was introduced by Breimann [73]. The details 

of bagging can be found in [74]. In this method, the training dataset is divided into several bags, 

and a decision tree model is built for each bag. Bagging is used when our goal is to reduce the 

variance of a decision tree. The aggregation of these models together forms the final classifier. The 

main principle behind the ensemble model is that a group of weak learners come together to form 

a strong learner. This is a popular method applied in several fields like cancer detection [75], plant 

segmentation [76], and leaf N estimation [77].  In this thesis, the ensemble bagged decision tree is 

applied in classification tasks. 

3.3.6. GPR 

For, correlating the spectral data with the actual N content, Gaussian Process for 

Regression (GPR)  was found to be the most effective [78]. This technique has been used for 

classification [79] and regression [80] in different domains. This method achieves a significant 

interest in statistical modeling for its good performance in prediction [81]. Gaussian process 

regression is a nonparametric, probabilistic, Bayesian approach based on kernels. GPR explains 

the response by introducing latent variable from gaussian process, and the covariance of the latent 

function is calculated by joint distribution of those latent variables. The latent variables are 

introduced for each of the observations which make GPR non-parametric. The covariance of the 
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variable is defined using different kernel functions. In this study,  ‘Rational Quadratic’ as kernel 

is used as it shows best result. Also, constant basis functions were specified in the GPR method 

3.4. Feature Engineering 

Normalization changes the underlying probability distribution of features. For this study, a 

modified standard score (z-score) is used for normalization [82]. Moreover, the median was also 

applied to make the normalization robust against outliers [83]. Then, the feature selection is 

performed. Feature selection approaches can be categorized into three categories including 

wrapper, filter, and embedded methods [84]. The filter methods work unaided from the classifier. 

On the other hand, the wrapper feature selection methods formulate an objective function and 

search all the problem space with the combination of features for the best selection. An 

independent-sample t-test, which is a filter method, is used to identify statistically discriminative 

normally distributed features [85]. 

Finally, the embedded method evaluates the performance of the classifier for predicting the 

best feature set with searching that is conducted by a learning classification process. We use the 

embedded method, in which features are weighted based on the Particle Swarm Optimization 

(PSO) algorithm during learning. PSO is an evolutionary computational method inspired by 

flocking birds [86], applied in many different areas, including manufacturing [87], plant 

phenotyping [88], optimum design [89], etc.. In this research, the swarm size of the PSO is set to 

200, and the maximum number of iterations is 500. Also, the range of the weights of the features 

is -5 to 5, and the tolerance limit is set to 10−12. Moreover, the Matthews Correlation Coefficient 

(MCC) is used as a cost function to optimize the feature weights [82]. The parameters of PSO are 

chosen based on Mohebian et el. [84]. The overview feature engineering using PSO is shown in 

Figure 3-9.  
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Figure 3-9: Overview feature engineering using PSO that optimizes the 

weights of the features in every cycle. 

3.5. Model Validation 

Validation technique is used to assess how a model behaves on new data. There are several 

ways to perform validation; in which cross-validation is the most popular one. It is basically used 

in predictive analytics, and determining how accurately a predictive model will behave in practice. 

First, a model is usually trained on one portion of the dataset (training data), later the model is 

tested on the remaining dataset (test set). Cross-validation tackles problems 

like overfitting or bias and helps model generalize. The effectiveness of a model can be evaluated 

by using several evaluation metrics. 

3.5.1. Hold-out Method 

Hold-out method is a validation technique where data is divided into a train and test sets. 

After training the system, the trained model is applied to the test set. In this thesis, hold out is used 

in which the train-test ratio was 75%-25%.  

https://en.wikipedia.org/wiki/Accuracy
https://en.wikipedia.org/wiki/Predictive_modelling
https://en.wikipedia.org/wiki/Overfitting
https://en.wikipedia.org/wiki/Selection_bias
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3.5.2. K-fold Cross-Validation 

For validating the model on new data, k-fold cross-validation (CV) [90] was also 

performed in this work using the value of k as five that divides the dataset into five subsets. Each 

model was trained on 4 subsets and tested on the remaining set, and this was run five times to 

compute the average performance. So, every data point gets the chance to be tested once and 

trained 4 times.  

3.5.3. Validation Metrics 

Validation metrics are used to effectively measure the performance of a model. These 

metrics are selected based on the problem- classification or regression. 

3.5.3.1. Classification Metrics 

The final task of the modeling process is classification, specifically multiclass 

classification. In a systematic analysis regarding classification [91],  researchers have defined 

several validation metrics. The validation metrics used in our study are accuracy, sensitivity/recall, 

specificity, precision, and F1-score. The classification performance measures used in our study are 

listed below in Table 3-2: 

3.5.3.2. Regression Metrics 

The performance of the cross-validation model was evaluated in terms of primary metrics 

stated in [92]. They are the root mean square error (RMSE), mean squared error (MSE), mean 

absolute error (MAE), and coefficient of determination (𝑅2). The definition of the metrics is given 

in Table 3-3. 
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Table 3-2: Classification metrics 

Parameter Evaluation focus Definition 

Accuracyi Effectiveness of a classifier for i-th class TPi + TNi

TPi + TNi + FNi + FPi
 

Sensitivityi

/Recalli 

Effectiveness of a classifier to identify 

positive labels for i-th class 

TPi

TPi + FNi
 

Specificityi Effectiveness of a classifier to identify 

negative labels for i-th class 

TNi

TNi + FPi
 

Precisioni Class agreement of the data labels with 

the positive labels for i-th class 

TPi

TPi + FPi
 

F1 − Scorei Relations between positive labels and 

those given by a classifier for i-th class 

2 × Precisioni × Sensitivityi

Precisioni + Sensitivityi
 

Accuracym The average per-class effectiveness of a 

classifier 

∑ (
TPi + TNi

TPi + FNi + FPi
)   l

i=1

l
 

Sensitivitym

/Recallm 

 

Effectiveness of a classifier to identify 

class labels if calculated from sums of 

per-category decisions 

∑ TPi
l
i=1

∑ (TPi + FNi)
l
i=1

 

Specificitym The average per class effectiveness of a 

classifier to identify negative labels 

∑ TNi
l
i=1

∑ (TNi + FPi)
l
i=1

 

Precisionm Agreement of the data class labels with 

those of a classifiers if calculated from 

sums of per-category decisions 

∑ TPi
l
i=1

∑ (TPi + FPi)
l
i=1

 

F1 − Scorem Relations between data’s positive labels 

and those given by a classifier based on a 

per-class average 

2 × Precisionm × Sensitivitym

Precisionm + Sensitivitym
 

l is the number of categories. True positive (TPi):  Spectral data belong to the i-th category which 

is correctly identified; false positive (FPi): Spectral data which do not belong to the i-th category, 
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incorrectly identified; true negative (TNi): Spectral data which do not belong to the i-th category, 

correctly identified; false negative (FNi): Spectral data belong to the i-th category, incorrectly 

identified. 

Table 3-3: Regression Metrics 

Validation parameter Definition 

Root mean square error (RMSE) 

√
∑ (𝑦𝑖̂ − 𝑦𝑖)2𝑁

𝑖=1

𝑁
 

Mean squared error (MSE) ∑ (𝑦𝑖̂ − 𝑦𝑖)2𝑁
𝑖=1

𝑁
 

Mean absolute error (MAE) ∑ |(𝑦𝑖̂ − 𝑦𝑖)|𝑁
𝑖=1

𝑁
 

Co-efficient of determination (𝑅2) 
1 −

∑ (𝑦𝑖̂ − 𝑦𝑖)2𝑁
𝑖=1

∑ (𝑦 − 𝑦𝑖)2𝑁
𝑖=1

 

𝑦𝑖 stands for actual content (N/water), 𝑦𝑖̂ for predicted content (N/water) and 𝑁 for the number 

of test data points in each fold. 

3.6. Experimental Setup and Data Modeling 

In this thesis, a total of five experiments were performed including four on the greenhouse-

controlled environment and one in the field. Within this five, three experiments were for N sensing, 

one for water estimation, and one for P status determination. The experimental setup and data 

modeling techniques in each experiment are discussed in the following sections. 

3.6.1. Experiment 1: N Level Classification in Canola 

Canola seeds were sowed on the 2nd November of 2018 in a controlled greenhouse 

environment situated in Agriculture and Agri-Food Canada (AAFC), Saskatoon. During the first 

3 weeks, all 24 pots were fertilized with slow-release 15-30-15 (15% N, 30% P, and 15% K) 

fertilizer at a rate of 4 g/L to ensure uniform establishment. At the end of 3 weeks, the plant-pots 

were brought to an indoor room and organized on a shelf as Figure 3-11. Later, the twenty-four 

pots were divided into four N concentrations each containing six replicate plants (4 N levels × 6  
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Figure 3-10: One random canola plant from each of the four-N fertilization. The photograph 

was taken during week seven. 

pots = 24 plants, Figure 3-10). Henceforward, only N fertilizer 30-0-0 (30% N, 0% P, and 0% K) 

was applied three times a week at four concentration levels: 0 g/L, 6 g/L, 12 g/L, and 20 g/L. 

(a) (b) 

Figure 3-11: (a) Canola plants at AAFC (Agriculture and Agri-Food Canada) control 

environment on the last day of the 3rd week, (b) Indoor plants under LED lights. 
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Two panels of 45 W LED grow light is used which has 117pcs of red LEDs (630 nm) and 

52 pcs of blue LEDs (470 nm) in a ratio of 9:4, which illuminated 16 hours a day. The day 

temperature was kept at 25˚C and night at 20˚C with a relative humidity of ~45%. 

The proposed prototype measures the reflectance at different wavelengths. At each time of 

collecting data, the device is calibrated by taking reflectance data from a white surface. It is worth 

to mention that a regular white mirror paper is used as a reference for calibration. The reflectance 

data at 12 different wavelengths (450 nm, 500 nm, 550 nm, 570 nm, 600 nm, and 650 nm, 610 nm, 

680 nm, 730 nm, 760 nm, 810 nm, and 860 nm) are collected for each of the leaves. reflectance 

data collection started at week seven after the sowing. Here, 87 fresh leaves are selected from 24 

plants. All the data is collected from three different positions around the midrib of a leaf by 

scanning 15 times. K-means clustering is performed on the 15 scans by using the value of K as 3. 

From the 3 most different clusters, 3 centroids are selected corresponding to the reflectance from 

the three different positions. The reflectance data collected at 12 wavelengths from the leaves are 

used as features to classify N levels. The purpose of the classification is to investigate if a model 

can be built using the reflectance by the sensor to determine the four categories of responses from 

four N treatments. Next, the data set is randomly shuffled and normalized using z-score. After that 

embedded feature selection with particle swamp optimization is applied. Finally, the KNN 

classifier is utilized to train a model on 75% of the data and tested on 25%. The process flow 

diagram is shown in Figure 3-12. 

3.6.2. Experiment 2: High-low N Identification in the Field  

This experiment was conducted at Lewellyn Farm, Saskatoon, Saskatchewan, Canada 

during the summer of 2019 (Figure 3-13 a). In this experiment, a total of 42 canola cultivars were 

subjected to low-N and high-N levels. Here, a total of 336 plots (42 cultivars × 4 replicates per N 

levels) were subjected to two levels of N treatments. From each plot, three leaves (one from each 

plant) from three central and south-facing plants, were used in this work. So, the total number of 

leaf samples was 1008 (3 × 336). Reflectance data are collected from these 1008 leaves and 

preprocessed similarly as shown in Figure 3-12. Here, the reflectance data collected at 12 

wavelengths from the leaves are used as features to classify N levels. The purpose of the 

classification is to investigate if a model can be built using the reflectance by the sensor to 

determine two categories in the field experiment. 
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Figure 3-12: Process flow diagram of the methodology starting from calibrating the data with 

respect to the white surface to hold out testing. 

3.6.3. Experiment 3: Actual N Content Determination in Multiple Crops  

This N experiment was conducted on a total of 64 plants consisting of canola, corn, 

soybean, wheat each having 16 pots. All the seeds were sowed on the 2nd of February, 2019 in a 

controlled greenhouse environment (Figure 3-14 a-b) situated in the Agriculture and Agri-Food 

Canada (AAFC), Saskatoon. During the first 3 weeks, the plants were fertilized with slow-release 

15-30-15 (15% N, 30% P, 15% K) fertilizer at a rate of 4 g/L to ensure uniform establishment. 

Later, for the N experiment, the 64 pots were divided into four concentration levels ensuring equal 

distribution of plants from each species (Figure 3-14 c-f). Henceforward, only N fertilizer (30-0-

0) was applied three times in a week at four concentrations 0 g/L, 6 g/L, 12 g/L, and 20 g/L. 

Data were collected each day starting from March 19 to March 26, 2019. Here, the leaves 

from 20 g/L fertilizer were not used in the experiment as they were intoxicated due to 

overfertilization. Also, 12 g/L samples of corn and soybean were not used for the same reason. So, 
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(a) 

(b) (c) 

Figure 3-13: Field view of different canola plots (a). The proposed sensor (b), is used for taking 

measurements in the fields (c). 

the number of leaf samples used for this experiment was 121 including 28 corn, 21 soybean, 36 

wheat, and 36 canola leaves. For measuring the actual N content, the leaves were cut and then 

placed in the oven-dried at 50ºC for 72 to 96 hours to make them completely dried. The LECO 

TruMac N analyzer was used as shown in Figure 3-15 a-c. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 3-14: (a) and (b) Two different views of the greenhouse-controlled environment. Sample 

pots of (c) canola, (d) corn, (e) soybean and (f) wheat pots subjected to 4 levels of N fertilization. 

applications. 

The analyzer is a macro combustion N degerminator that utilizes a pure oxygen 

environment in a ceramic boat for the macro sample combustion process. The box plots of N 

contents are shown in Figure 3-16, and Figure 3-17. The range of the N content for 3 levels of 
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fertilizer application (0, 6, 12 g/L) for wheat, canola and 2 levels of fertilizer application (0, 6 g/L) 

for corn and soybean can be observed in Figure 3-16 a-d for 4 types of plants. The variations of 

wheat 36 wheat samples are very significant followed by canola. The variations combining all the 

N samples were shown in Figure 3-17. The lowest, mean, and highest N contents were found to 

be 2.8%, 6.8%, and 11.3%. 

 

(a) 

 

(b) 

 

(c) 

Figure 3-15: Actual N content measurement using a LECO TruMac N analyzer system. Samples 

placed in the (a) stacked tray, are collected automatically by a (b) combustion zone. (c) shows 

the overall setup. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3-16: Boxplot of leaf N content of (a) canola, (b) corn, (c) soybean, and (d) wheat. Here, 

the horizontal axis represents the rate of N fertilization in g/L, and the vertical axis represents the 

N content. 

The collected reflectance data are shuffled and normalized. Then t-test is applied. After 

that, GPR is deployed using 5-fold cross-validation. The overall methodology is shown in as a 

process flow diagram in Figure 3-18. 
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Figure 3-17: Boxplot of leaf N content of combined samples of four species 

 

 

Figure 3-18: Process flow of the methodology. 

3.6.4. Experiment 4: Water Content Estimation 

Water experiment was conducted on 64 plants including canola, corn, soybean, and wheat 

each having 16 pots overall. All the seeds were sowed on the 2nd of  February, 2019 in a controlled 

greenhouse environment situated in the Agriculture and Agri-Food Canada (AAFC), Saskatoon. 

During the first 3 weeks, the plants were fertilized with slow-release 15-30-15 (15% N, 30% P, 

15% K) fertilizer at a rate of 4 g/L to ensure uniform establishment. In the case of water 

experiment, 64 pots were divided into 4 sections making the same number of plants for each 

species for each section. After that, water was varied by applying it daily at a rate of 50 ml, 100 

ml, 150 ml, and 200 ml respectively in these four sections. Figure 3-19 a-d shows 4 different 

species of plants. 

Data were collected each day starting from March 19 to March 26, 2019. After calibration, 

reflectance data are collected from the leaf surface. In the water experiment, one plant from corn 

and one plant from soybean were not used as they were dry at the time of data collection. So, a 

total of 186 leaves including 45 corn, 45 soybeans, 48 wheat, and 48 canola leaves were used in 

the water experiment. For determining the actual water contents of the samples, the leaves were  
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(a) (b) 

(c) (d) 

Figure 3-19: Sample pots of (a) canola, (b) corn, (c) soybean and (d) wheat pots subjected to 4 

levels water application. 

cut and then the fresh weighs were measured (𝑊𝑓𝑟𝑒𝑠ℎ). All the samples were then placed in the 

oven-dried at 50º C for 72 to 96 hours to make them completely dry. The dry weight of the samples 

was then obtained (𝑊𝑑𝑟𝑦). Leaf water content was calculated WC = (𝑊𝑓𝑟𝑒𝑠ℎ − 𝑊𝑑𝑟𝑦) 𝑊𝑓𝑟𝑒𝑠ℎ⁄  ×

100 %. The water content variations of four species as a result of the different application rates 

were depicted in Figure 3-20 a-d. Also, Figure 3-21 shows the boxplots of the combined water 

contents. In these cases, the lowest, mean and highest water contents are 71.04%, 83.16%, and 

89.6%. After getting the ground truth data, the reflectance data are modeled using GPR as shown 

in Figure 3-18. 

3.6.5. Experiment 5: Leaf P Level Classification in Crops 

The experiment was performed on 96 plants consisting of corn, soybean, and wheat each 

having 32 pots. All the seeds were sowed in the first week of February 2019. The plants were 

grown in a controlled greenhouse environment in the Agriculture and Agri-Food Canada (AAFC), 
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Saskatoon, Canada. During the first three weeks, the plants were fertilized with slow-release 15-

30-15 (15% N, 30% P, 15% K) fertilizer at a rate of 4 g/L to make sure uniform growth. Later, the 

(a) (b) (c) (d) 

Figure 3-20: Boxplot of the leaf water content of (a) canola, (b) corn, (c) soybean, and (d) wheat. 

Here, the horizontal axis represents the rate of water application in mL, and the vertical axis 

represents the water content. 

 

Figure 3-21: Boxplot of leaf water content of combined samples of four species 

96 pots were separated into four different sections making an equal number of plants from each 

species. After that, high P fertilizer (15-30-15) was applied three times in a week at four 

concentrations 0 g/L, 6 g/L, 12 g/L, and 20 g/L for four separated sections. Figure 3-22 a-d shows 

the greenhouse setup and three different species of plants. Data collection started on the 19th of 

March, 2019 and continued till the 26th of March, 2019. Data were collected one leaf at a time, and 

it took 5 seconds to collect one measurement. Both sensor1 and sensor2 are calibrated each day by 

capturing the reflectance from a white reflector. In this experiment, a white mirror paper was used 

as the white surface. Henceforward, reflectance at 12 wavelengths (450 nm, 500 nm, 550 nm, 570 

nm, 600 nm, and 650 nm, 610 nm, 680 nm, 730 nm, 760 nm, 810 nm, and 860 nm) was collected 

from the sample leaf surfaces. During data collection, six plants of soybean and one plant of wheat 

from 20 g/L fertilizer were not used because they were intoxicated for over-fertilization. So, 
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finally, a total of 267 leaf samples including 96 leaves of corn, 78 leaves of soybean and 93 leaves 

of wheat were used for data modeling. 

(a) 

(c) 

(d) 

(b) 

Figure 3-22: (a) Greenhouse-controlled environment. Sample pots of (b) soybean, (c) corn and 

(d) wheat, subjected to four levels of P fertilization. 

During capturing reflectance, the device was scanned at three different positions around 

the midrib of a leaf by scanning 15 times. Later, the K-means clustering method is used to cluster 

the data. From the three clusters, three centroids selected representing the reflectance of the three 

positions. Then these centroid reflectance data captured at 12 wavelengths are considered as 

features for classifying the P levels. Here, the intention of doing classification is to build a model 

by statistically processing the data from the sensor to predict the four categories of responses from 
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four P treatments (0, 6, 12 and 20 g/L). Next, the data set is randomly shuffled and normalized 

using z-score [82]. Finally, the KNN classifier is utilized to train a model on 75% of the data and 

tested on 25%. The process flow diagram is the same as Experiments 1 and 2, shown in Figure 

3-12. 

In all the five experiments discussed above, the same device, and the same data collection 

procedure is used. Data modeling pipeline including preprocessing and modeling vary a little bit 

depending on the purpose. In each case, the procedures that exhibit the best performance are 

reported. 
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Chapter 4: Results and Discussion 

This chapter describes the results and discussion separately for each experiment using the 

proposed device and algorithms mentioned in the methodology. Section 4.1-4.5 shows the results 

of experiments from 1-5, respectively. Also, each section discusses the comparative analysis of 

the existing methods with the proposed methods. 

4.1. Experiment 1 

At first, we investigate the reflectance characteristics of the different intensity levels of N 

fertilized leaf in the greenhouse experiment. To serve the purpose, the average reflectance from 

each of the four N treatments at 12 wavelengths are plotted in Figure 4-1 and Figure 4-2. Figure 

4-1 shows the average reflectance versus wavelength drawn from Sensor1 having six wavelengths 

in the visible range, while Figure 4-2 illustrates the data value of Sensor2 at the NIR range.  

 

Figure 4-1: Average reflectance versus wavelength (Sensor1) of leaves subjected to four N 

fertilization regimes under visible range. The Red line indicates the reflectance from 0 g/L 

plant, the black line represents 6 g/L, blue represents 12 g/L and the green represents 20 g/L N 

rates. All the reflectance is scaled to the 20g/L reflectance at 550 nm. 
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The figures show that the average reflectance values of 20 g/L treatments are greater than 

other treatments. Also, the reflectance curves are distinctive in respect of N treatments, which 

suggest that the four N levels can be classified. 

 

Figure 4-2: Average reflectance versus wavelength (Sensor2) of canola leaves subjected to 

four N fertilization regimes under the NIR range. The Red line indicates the reflectance from 0 

g/L plant, the black line represents 6 g/L, blue represents 12 g/L and the green represents 20 

g/L N rates. All the reflectance is scaled to the 20g/L reflectance at 610 nm. 

For classifying the captured data, the data set is divided into two parts: training set (75%) 

and testing set (25%), and the model is trained and tested five times with shuffling data. Finally, 

the average with standard deviation is reported in Table 4-1. It represents the class-wise (for each 

category) and overall results on the test set for the greenhouse growing canola plants. 

From the classification results shown in Table 4-1, it can be found that Category4 has the 

best accuracy and Category2 has the least compared to others. One of the reasons might be the fact 

that there should some samples from Category2 whose reflectance properties are nearly the same 

as Category1. Later, a binary classification (two-class classification) is performed where 

Category1 and Category2 are combined, at the same time Category3 and Category4 are combined. 

It means the classification is performed only in two classes. The results of the binary classification 

combining Category1 and Category2, and Category3 and Category4, are shown in Table 4-2.  
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Table 4-1: Category wise/class wise results on the test set for the greenhouse experiment five 

times running. The average ± standard deviation is reported. 

 Accuracy (%) Precision (%) Recall (%) Specificity 

(%) 

F1-Score (%) 

Category1 92.8 ± 1.5 81.2 ± 2.1 92.8 ± 1.2 92.1 ± 1.1 86.6 ± 2.2  

Category2 71.4 ± 1.1 99.9 ± 0.2 71.4 ± 2.0 100 ± 0.0 83.3 ± 2.5 

Category3 90.9 ± 3.1 99.9 ± 0.1 90.9 ± 1.6 100 ± 0.0 95.2 ± 1.6 

Category4 99.9 ± 0.1 81.2 ± 1.5 99.9 ± 0.3 92.3 ± 1.3 89.6 ± 1.8 

Total 88.4 ± 3.0 90.6 ± 2.3 88.8 ± 2.9 96.1 ± 2.0 88.7 ± 2.6 

Category 1, Category 2, Category 3, and Category 4 represent four N treatments (0, 6, 12, and 20 g/L) in the 

greenhouse experiment. 

Table 4-2: Results on the test set for the greenhouse experiment for Binary classification 

(Category1+Category2) and (Category3+Category4) for five times running. The average ± 

standard deviation is reported. 

Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-Score (%) 

94.2 ± 1.8 90.9 ± 2.1 100.0 ± 0.0 90.9 ± 1.9  95.2 ± 1.8 

The results reveal that the accuracy, precision, recall, specificity, and F1-score have 

improved compared to distinct classes classification. Moreover, the standard deviation is decreased 

which means more consistent result has been acquired. In this section, some other states of art 

machine learning algorithms such as Decision Tree, Support Vector Machine (SVM), Ensemble 

Bagged Tree are compared with the results obtained from the KNN algorithm. For this comparison, 

the same procedure is applied, and the testing accuracy is shown in Table 4-3. Among them, KNN 

showed the best accuracy (underlined). The next best result is shown by the Ensemble Bagged 

Tree followed by SVM and Decision Tree. So, using the KNN algorithm for creating a model for 

this type of data is the best choice.  

The comparison results shown in Table 4-3 reveals that KNN performs better than SVM, 

Decision Tree, and Ensemble Bagged Tree. To the best of our knowledge, the performance of a 

classifier over others depends on the data on which the model is built. However, in some cases, 



39 

 

KNN shows better performance, when features of the dataset are much less than training samples 

[93]. Previously, in some articles, researchers showed similar comparative findings like ours. In a 

study of classifying acoustic signal, the comparison of SVM and KNN algorithm reports better 

performance than SVM [94]. Moreover, SVM is outperformed by KNN in weather classification 

data [93]. In addition, with comparison to Decision Tree for classifying  Irish national forest 

inventory data, KNN achieves better accuracy [95]. 

Table 4-3: Comparison of the test results of different machine learning algorithms. 

Training Algorithms Testing Accuracy (%)  

Decision Tree 65.1 ± 2.7 

Support Vector Machine (SVM) 65.0 ± 2.0  

Ensemble Bagged Tree 73.3 ± 2.2 

K-Nearest Neighbor (KNN) 88.4 ± 3.0 

In this research, the reflectance at 12 different wavelengths has been used as features to 

train the proposed method. From the feature weight optimization analysis, as described in the 

methodology, the features are ranked based on the weights gained from PSO. The whole process 

is run five times. Using the weights in five runs, box plots are plotted in Figure 4-3. From the 

figure, the importance of features can be ranked based on the median value of the weights after 

multiple runs. The most important feature is found to be 450 nm followed by 500, 860, 680, 570, 

650, 600, 550, 760, 810, 730, and 610 nm in descending order. 

The proposed multi-spectral sensors, along with the suitable machine learning algorithm, 

have been shown to be very cost-effective for determining leaf N status. This is the first approach 

to design a low-cost system for measuring the leaf N level using the reflectance at 12 wavelengths. 

The proposed method is verified by the control environment. One of the limitations of this 

experiment is that the actual contents of N are not measured by the correlation, which will be the 

next phase of the project. Applying the technique to other crop species at various growth stages 

has great potential for future research. 

In this research, a low-cost and portable multi-spectral sensing system is proposed, which 

can capture the reflectance at 12 wavelengths ranging from 450nm to 860 nm. The KNN algorithm 
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has been employed to model the collected data set. By applying different algorithms, the best 

testing accuracy of 88.4% was found for the greenhouse. The testing results also reveal that the 

proposed low-cost multispectral sensor array can measure the leaf’s N level with decent accuracy. 

 

Figure 4-3: Box plots of the weights achieved by the features in 5 runs. Here, the 12 features are 

450 nm, 500 nm, 550 nm, 570 nm, 600 nm, and 650 nm, 610 nm, 680 nm, 730 nm, 760 nm, 810 

nm, and 860 nm. 

4.2. Experiment 2 

The field experiment results are summarized in Table 4-4. It shows the 25% test set results 

of two categories (low N and high N).  The average accuracy of the test set is 79.2%, which is as 

less compared to the test results achieved in the greenhouse experiment. Although the field 

experiment is all about classifying two categories of N, the combined dataset has high variance as 

it consists of 42 canola cultivars. In some cases, the model might get confused identifying each 

category for similar responses from a different category. As a result, the model gets disorderly, in 

some cases, to differentiate two N levels. 

Table 4-4: Category wise results on the test set for the field experiment five times running. The 

average ± standard deviation is reported. 

Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-Score (%) 

79.2 ± 2.5 80.1 ± 2.7 79.6 ± 2.1 80.2 ± 2.3 79.3 ± 2.4 
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In this section, some other states of art machine learning algorithms such as Decision Tree, 

Support Vector Machine (SVM), Ensemble Bagged Tree are compared with the results obtained 

from the KNN algorithm. For this comparison, the same procedure is applied, and the testing 

accuracy is showed in Table 4-5. Among them, KNN showed the best accuracy (underlined). The 

next best result is shown by the Ensemble Bagged Tree followed by SVM and Decision Tree.  

Table 4-5: Comparison of the test results of different machine learning algorithms. 

Training Algorithms Testing Accuracy (%)  

Decision Tree 73.6 ± 2.6 

Support Vector Machine (SVM) 70.1 ± 2.1 

Ensemble Bagged Tree 75.0 ± 2.3 

K-Nearest Neighbor (KNN) 79.2 ± 2.5 

The proposed method is verified in the field plants with an accuracy of 79.2%. One of the 

limitations of this work is that the actual contents of N are not measured by the correlation, which 

will be the next phase of our project. 

4.3. Experiment 3 

In this experiment, first, a t-test was performed before regression modeling. With a 5% p-

value, the t-test selected all the 12 variables as important features. After normalizing, as discussed 

in the methodology section, GPR is used for correlating the reflectance data with crop 

measurements. In this section, the average results of 5-fold cross-validation are reported. The 

regression is performed on individual species wise (Figure 4-4 a-d) as well as a combination of 

them (Figure 4-5). In the N experiment, the best correlation was found in soybean (𝑅2 =82.29%) 

followed by corn (𝑅2 =80.05%). Wheat showed the least correlation among all having an 𝑅2 of 

63.21%. The coefficient of determination shown by canola was 63.91%. Another regression 

analysis was performed combining all the samples of four species. The combined model showed 

an overall 𝑅2 of 73.96% with RMSE of 1.13. Figure 4-5 shows the correlation plot, and the 

summary of the results is shown in Table 4-6. 
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Table 4-6: 5-fold cross-validation results of the N experiment. Here, the average of the metrics, 

mentioned in Table 3-2, from the five folds are reported. 

Plant species 𝑹𝟐 (%) RMSE MAE 

Canola 63.91 1.28 0.87 

Corn 80.05 0.50 0.31 

Soybean 82.29 0.21 0.12 

Wheat 63.21 0.57 0.37 

All crops combined 73.96 1.13 0.72 

 

 

 

(a) 
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(b) 

 

 

(c) 
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(d) 

Figure 4-4: N estimation in (a) canola, (b) corn, (c) soybean, and (d) wheat. These figures show 

the correlation between the predicted N content and actual N content. Here, soybean shows the 

best correlation of 82.3%, whereas wheat shows the least (63.21%). 

 

 

Figure 4-5: N content estimation combining canola, corn, soybean, and wheat. Here, all the 

samples from these four species were combined during performing correlation. 

In this part, the importance of the features (wavelengths) is determined by calculating the 

increase of MSE of 5-fold cross-validation after each featured being removed. For example, in the 

case of N determination, when the feature of 810 nm is removed and the whole regression analysis 
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is performed with 11 other features, the average mean square error of 10 runs is 1.7311. On the 

other hand, for the 600 nm wavelength feature, the MSE is 1.54, which is much less than 810 nm. 

That means, the decrease of the correlation performance by removing the 810 nm wavelength as 

the feature is much more significant than 600 nm. So, reflectance at 810 nm wavelength is more 

important than 600 nm in respect of determining N. After performing the same technique on 12 

wavelengths individually, the importance of wavelengths is ranked and shown in Figure 4-6. It is 

found that the most three significant wavelengths, in this analysis, are found to be 810 nm, 650 

nm, and 610 nm.  

 

Figure 4-6: Important wavelengths for N are shown, based on the increase of MSE after the 

wavelength being removed. The most three significant wavelengths, in this analysis, are found 

to be 810 nm, 650 nm, and 610 nm. 

In this section, the features of other devices, used in previous works related to N content 

estimation in leaves, are compared with the proposed multispectral sensor (Table 4-7). In several 

previous publications [10][12][96] that utilized hyperspectral camera, found good correlation 

around 86%-92% between images and leaf N content. The other popular devices are Field Spec 3 

with 𝑅2 77-86% [19], imagery from Quick Bird with 𝑅2 79-83% [21], Green Seeker with 𝑅2 of 

57-74% [20], Multiplex with 𝑅2of 73%-86% [97], and SPAD with 𝑅2 of 60.21%. All the above-

mentioned device accuracies are from in-field experiments, whereas the proposed sensor is tested 

on the greenhouse control environment. However, most of the devices except hyperspectral 

camera, and Field Spec 3, are based on either chlorophyll (SPAD, Multiplex, atLEAF) or relative 

greenness (Green Seeker, Quick Bird imagery) instead of N. Moreover, the proposed sensor is 
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useful in estimating N as, it operates on more features (12 wavelengths) than SPAD (two 

wavelengths), atLEAF (two wavelength), Green Seeker (two wavelengths), and Multiplex (four 

wavelengths). Although, hyperspectral camera, and Field Specs are the most accurate in N 

determination, these devices are very expensive: hyper spectral camera ~$15,000-$50,000, Field 

Spec series around ~$10,000-$20000, Green Seeker ~$700, atLEAF ~$250, and SPAD ~$1,500-

$2,500; whereas the total estimated cost of the proposed prototype,  including all the components 

is $150. By incorporating the manufacturing labor cost and overhead cost, the approximate 

estimation of the device might be $200. The complete breakdown of the cost is shown in Table 

3-1. However, this is the first version of the prototype, which can be further modified to reduce 

the cost. For example, without using the raspberry pi (control circuit) development board, the 

control circuit can be implemented in a custom-made Printed Circuit Board (PCB), according to 

the design requirements. Moreover, the cost of the device will be significantly reduced if it is mass 

manufactured. On a different note, the proposed sensor is comparatively light weight (350 g) than 

other devices (Hyperspectral camera: 1.3 kg - 4.5 kg, FieldSpec Series: 5.4 kg). Furthermore, the 

technologies like hyperspectral camera, and satellite imagery are normally used in the developed 

countries; and for the farmers from low resource countries, these expensive devices are out of 

question. On top of that, as the device is cheap, and portable; it can be manufactured in large 

quantity and deployed in sensor arrays more flexibly that are unfeasible for expensive, and 

heavyweight devices. It can also be mounted to custom IoT (Internet of Things) platforms for 

wireless monitoring of the N level. So, the proposed sensor is very effective as a low-cost, portable, 

quick, and light-weight device for monitoring N content. 

SPAD (Soil Plant Analysis Development) is a commercially used meter for indirect 

measurement of N. In this work, we also took measurements using SPAD. The intent of performing 

this analysis is to see how profoundly SPAD readings correlate with N compared to the proposed 

sensor. For this analysis, the same methodology including preprocessing, modeling, 5-fold cross-

validation was applied for both. It is to be noted that the dataset used for the comparison is the one 

that has the combination of all four types of plants (121 leaves). It was observed that SPAD 

predicted the N contents with a 𝑅2of 60.21%, whereas the proposed sensor showed 73.96% (Figure 

4-7 a-b). It is to be noted that the atLeaf chlorophyll meter is another cheap alternative version of 

SPAD. The technical difference between those is, SPAD uses two wavelengths 650 nm and 940 

nm, whereas atLEAF works at 660 nm and 940 nm [98]. These wavelengths (650 nm or 660 nm) 
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are basically sensitive to chlorophyll. In contrast, the proposed sensor works on 11 more 

wavelengths (450 nm, 500 nm, 550 nm, 570 nm, 600 nm, 610 nm, 680 nm, 730 nm, 760 nm, 810 

nm, and 860 nm) in addition to 650 nm. As it is adding more features to the statistical learning 

process, the proposed sensor performs better than SPAD in determining N content in leaves.  

 

(a) 

 

(b) 

Figure 4-7: Comparison between (a) proposed sensor, and (b) SPAD. The proposed sensor shows 

a better correlation (73.96%) with N than SPAD (60.21%). 

Cost-effective and non-destructive estimation of these contents is challenging. Most of the 

noninvasive approaches include expensive equipment. In this research, a low cost, portable optical 

sensor is proposed that can be effectively modeled with an appropriate regression algorithm to 
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determine leaf N. Using the multispectral sensor, we have correlated leaf reflectance at 12 

wavelengths with crop measurements. The 5-fold cross-validation results of the GPR model reveal 

that the best correlation of N is found in soybean (𝑅2 of 82.29%). After comparing the N estimation 

result with a commercially used device, SPAD; we have found that the proposed multispectral 

sensor shows a better correlation with N than SPAD (𝑅2 of 60.21%). It is worthwhile to mention 

that the overall cost of our proposed sensor is $200, which is very cheap compared to other 

technologies. Also, the accuracy of the device can be further improved by experimenting on more 

samples and making a robust model for N estimation. Besides, there are a lot of future scopes to 

use this device to correlate other nutrients such as P and K. In addition, it will be interesting to see 

the correlation performance of the device in other crop species which have great potential for future 

work. 
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Table 4-7: Comparison of the existing techniques for N sensing 

Features SPAD Multiplex FieldSpec 

Series 

Green 

Seeker 

QuickBird 

Satellite 

Imagery 

Hyper 

Spectral 

Camera 

Our Proposed 

System 

Basis Chlorophyll Chlorophyll and 

polyphenol 

Nitrogen Greenness Greenness Nitrogen Nitrogen 

Technique Transmittance Fluorescence Reflectance Reflectance Reflectance Hyper 

Spectral 

Image 

Reflectance 

No of 

Wavelength 

Two (640 nm, 

940 nm) 

Four at excitation 

(375 nm, 450 nm, 

530 nm, 630 nm) 

Four at Detection 

(447 nm, 590 nm, 

665 nm, 735 nm) 

200-500 Two (660 

nm, 970 nm) 

Four bands 

450-900 nm, 450-

520 nm, 520-600 

nm, 630-690 nm, 

760-900 nm 

400-500 12 (450 nm, 500 nm, 

550 nm, 570 nm, 600 

nm, and 650 nm, 610 

nm, 680 nm, 730 nm, 

760 nm, 810 nm, and 

860 nm) 

Cost (USD)  $1,500 -$2,500  $1,500-$2,500 ~$10,000-

$60,000 

$700 --- $25,000-

$10,0000 

$200 
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4.4. Experiment 4 

The 5-fold cross-validation results of water content estimation are shown in Table 4-8. 

Observing the results, it is found that, the reflectance from canola does not correlate well with the 

leaf water content having an 𝑅2 of 18.02%. In the case of wheat, there were some outliers, which 

were outside the range of two standard deviations from the median. Those outliers have been 

removed and correlated, showing a correlation of 64.58%.  

Table 4-8: 5-fold cross-validation results of water. Here, the average of the metrics from the five 

folds is reported. 

Plant species 𝑹𝟐 (%) RMSE MAE 

Canola 18.02 1.06 0.76 

Corn 68.41 1.17 0.75 

Soybean 46.38 3.50 2.11 

Wheat 64.58 1.16 0.85 

All crops combined 46.08 3.97 2.75 

The best correlation is observed in corn leaves (68.41%). Although, individual 𝑅2 of canola 

and soybean is less, a combination of canola and soybean shows a better estimation of 61.08%. 

The regression analysis combining corn, wheat, canola, and soybean shows an overall co-efficient 

of determination of 46.08%. So, unlike N correlation, the combined result in water estimation is 

not found to be satisfactory. Species wise actual vs predicted water content plots are shown in 

Figure 4-8 a-d.  
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 4-8: Water content estimation in (a) canola, (b) corn, (c) soybean, and (d) wheat. These 

figures show the correlation between the predicted water content and actual water content. Here, 

corn shows the best correlation of 68.41%, wheat shows 64.58%; whereas canola and soybean do 

not correlate well. 
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Analysis for determining wavelength importance is performed for water contents 

estimation in leaves. It was found that when the 760 nm wavelength is omitted and the Gaussian 

process regression algorithm is applied with 11 other features, the average (after 10 runs) MSE of 

5-fold cross-validation is calculated to be 22.9037. Similarly, the MSE of the other features is 

measured and shown in Figure 4-9. The most significant wavelength for water content 

determination is found to be 760 nm followed by 730 nm and 860 nm in descending order. The 

significance of the other wavelengths is observed to be nearly similar. 

 

Figure 4-9: Important wavelengths for water are shown, based on the increase of MSE after 

the wavelength being removed. The most significant wavelength for water content 

determination is found to be 760 nm followed by 730 nm and 860 nm in descending order. The 

significance of the other wavelengths is observed to be nearly similar. 

In this study, N estimation results are better than water estimation in terms of correlation. 

One of the main reasons is that plant water content is mainly sensitive to thermal or short-wave 

infrared regions, but the proposed sensor operates in the visible, and NIR regions. So, more spectral 

bands in the short-wave infrared regions are perhaps necessary to improve the water correlation 

results. Moreover, the values of the water content in the samples are in a small range from 60% - 

90%, for which the model is not robust enough to exhibit good correlation. So, the utility of the 

proposed device in water content estimation needs further consideration. 

4.5. Experiment 5 

First, the reflectance characteristics of the different intensity levels of P are investigated 

for corn, soybean, and wheat. So, the average reflectance from each of the four P treatments at 12 
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wavelengths are plotted in Figure 4-10. In this case, the four types of responses resulting from four 

P treatments (0, 6, 12 and 20 g/L) are shown for sensor1 (left) and sensor2 (right). The figure 

reveals that the average reflectance increases with corresponding P treatments at almost every 

wavelength. From 450 nm to 650 nm, the average reflectance for 20 g/L treatment is highest, while 

0 g/L exhibits the lowest. However, different reflectance profile is found between 680 nm to 860 

nm for different crop species. For example, highest reflectance is observed for 6 g/L treatment in 

Corn, lowest is seen for the same treatment in Soybean. However, these four reflectance categories  

representing four levels of P responses distinguishable at most of the wavelengths, especially 450 

nm, 500 nm, 730 nm, and 810 nm. 

 

Figure 4-10: Average reflectance versus wavelength (sensor1 in left and sensor2 in right) of 

leaves subjected to different levels of P fertilization. The blue line indicates the reflectance 

from 0 g/L plant, the red line represents 6 g/L, yellow represents 12 g/L and the violet 

represents 20 g/L P rates. For sensor1 (left) all the reflectance values are scaled to the 20 g/L 

reflectance at 450 nm, and to 730 nm for sensor2. For corn in sensor2, all are scaled to 6 g/L at 

730 nm. 

In this section, the results of classifications are reported. The data set is divided into two 

parts: the training set (75%) and testing set (25%). This train-test split is performed five times 

randomly, and each time a model is built by the KNN algorithm, using the training set. After that, 

the trained models are tested on the corresponding test sets. Finally, the averages and the standard 

deviations of the validation metrics for five test sets are reported in Table 4-9 to Table 4-12. Here, 

Table 4-9, Table 4-10, and  



55 

 

 

 

 

 

Table 4-11 represent the four-class classification results of corn, soybean, and wheat 

respectively. Also, Table 4-12 shows the results of a combined three species. Both class-wise (for 

each category) and overall (average of each class results) results are reported in each table. In the 

following tables from Table 4-9 to Table 4-12, Category 1, Category 2, Category 3, and Category 

4 represent four P treatments (0, 6, 12, and 20 g/L) in the greenhouse experiment. 

Table 4-9: Classifying P responses for Corn 

 Accuracy  Precision Recall  Specificity  F1-Score  

Category1  62.9±8.1 59.3±15.4 62.9±8.1 86.7±7.4 59.3±4 

Category2 74.7±4.3 71.3±12.5 74.7±4.3 88.8±4.9 72.7±6.5 

Category3 63.7±3.8 74.5±8.8 63.7±3.8 92.1±2.7 68.4±4.4 

Category4 69.7±4.6 70.6±14.1 69.7±4.6 90.2±5.6 69.4±6.9 

Overall 67.7±5.2 68.9±12.7 67.7±5.2 89.4±5.1 67.4±5.4 

Table 4-10: Classifying P responses for Soybean 

 Accuracy  Precision Recall  Specificity  F1-Score  

Category1  84.6±9.2 86.7±12.6 84.6±9.2 92.9±6.8 84.7±4.1 

Category2 71.7±9.5 78.3±11.1 71.7±9.5 90.8±2.5 74.5±8.5 

Category3 86.3±9.6 68.3±17.4 86.3±9.6 85.3±9.1 74.6±8.6 

Category4 51.3±9.6 89.3±15.4 51.3±9.6 99.3±1.1 63.7±4.3 

Overall 73.5±9.5 80.7±14.1 73.5±9.5 92.1±4.9 74.4±6.4 
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Table 4-11: Classifying P responses for Wheat 

 Accuracy  Precision Recall  Specificity  F1-Score  

Category1  83.7± 9.1 71.1±17.5 83.7±10.7 88.3±7.4 75.3±10.1 

Category2 65.1±3.3 66.1±4.1 65.0±7.8 87.5±2.8 65.5±3.1 

Category3 73.7±13.0 78.2±14.6 73.7±14.7 92.3±6.5 74.6±9.7 

Category4 62.5±23.2 70.1±21.3 62.5±28.1 92.7±6.2 61.5±12.1 

Overall 71.2±12.1 71.4±14.4 71.2±15.9 90.2±5.7 69.2±8.7 

Table 4-12: Classifying P responses for all the three species combined 

 Accuracy  Precision Recall  Specificity  F1-Score  

Category1  68.2±3.9 61.6±5.1 68.2±3.9 84.7±2.5 64.5±1.9 

Category2 68.1±5.9 63.3±4.8 68.1±5.9 85.9±2.6 65.5±4.1 

Category3 66.9±6.3 70.4±5.1 66.9±6.3 89.3±3.2 68.6±5.0 

Category4 58.1±10.2 69.1±8.3 58.1±10.2 93.7±1.3 62.6±7.1 

Overall 65.3±6.6 66.1±5.8 65.3±6.6 88.4±2.4 65.3±4.6 

Now, the results by using KNN algorithms are compared with other states of art machine 

learning algorithms- Decision Tree, Support Vector Machine (SVM), and Ensemble Bagged. It is 

to be noted that the exact same procedure is implemented for fairness of the comparisons. The 

results are compared based on the average accuracy and standard deviation; reported in  

Table 4-13. The comparison reveals that KNN showed the best accuracy among all of them. 

This justifies the use of KNN for classifying P levels.  
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Among the all reported result from Table 4-9 to Table 4-12, the best results are found in 

soybean (73.5%), followed by wheat (71.2%), and corn (67.7%). However, the results of the 

combined species model in Table 4-12 show the lowest (65.3%) among all. Here, the combined 

dataset has high variance as it consists of three different types of plants. In some cases, the model 

might get confused determining each category for similar responses from a different category. So, 

the model gets disorderly sometimes to differentiate categories. Also, it is found that the results of 

different categories vary with plant species. Therefore, species wise models should be used.  

Table 4-13: Accuracy comparisons with other algorithms 

 Ensemble 

Bagged  

SVM  Decision Tree KNN 

Corn 53.9±4.4 53.1±9.2 44.7±6 67.7±5.2 

Soybean 67.2±6.9 62.1±4.4 62.6±13.7 73.5±9.5 

Wheat  66.4±5.1 65.2±5.2 52.8±4.5 71.2±12.1 

All species 

combined 

53.9±2.3 42.7±2.2 43.7±2.5 65.3±6.6 

Now, the importance of the wavelengths to predict P status is investigated. Based on the 

optimized feature weights from PSO, as described in the methodology, the importance of the 

wavelength can be ranked based on the weights. After running the process five times, the box plots 

of the feature weights are shown in Figure 4-11. Here, only the weights of the model based on the 

combined dataset (Table 4-12) are analyzed. According to the median values of the weights from 

five runs, the most important wavelength is found to be 610 nm followed by 730, 570, 860, 500, 

450, 760, 810, 650, 680, 600 and 550 nm. 

In this section, the comparisons between the proposed system with other existing 

noninvasive methods related to P measurements are discussed based on cost and weight. 

Hyperspectral devices and FieldSpec series operate on more optical bands (Hyperspectral 400-

500, FieldSpec 200-500) than the proposed device (12 bands). So, in any setting, their 

measurement accuracy will be higher. However, in terms of cost, these devices are very expensive 

(hyperspectral camera ~$25,000-$50,000, Field Spec series around ~$10,000-$60000) compared 
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to our proposed device, which is very cheap approximately $200. In addition, the proposed sensor 

is also very useful, as it is comparatively light-weight (350 g) than the hyperspectral camera (1.3 

kg – 4.5 kg) and FieldSpec series (5.4 kg). Moreover, as the proposed device is cheap and portable, 

it can be implemented on a large scale for P monitoring, which is impractical for expensive and 

bulky devices.  

 

Figure 4-11: Box plots of the weights achieved by the features in 5 runs. Here, the 12 features 

are 450 nm, 500 nm, 550 nm, 570 nm, 600 nm, and 650 nm, 610 nm, 680 nm, 730 nm, 760 

nm, 810 nm, and 860 nm. 

In this work, we propose a low-cost multi-spectral sensing device, which can determine the 

P status in leaves. The sensor module detects reflectance at 12 wavelengths from 450nm to 860 

nm, and predicts the P level, using the KNN algorithm. To investigate the performance of the 

proposed method, we performed an experiment on corn, soybean, and wheat in a greenhouse-

controlled environment, and found an average accuracy of 71.2%, 73.5%, and 67.7% for corn, 

soybean, and wheat respectively. Moreover, the model built on the combined dataset shows 65.3% 

accuracy. So, the species-wise model is suggested. In addition, it is worth to refer that the cost of 

the proposed device is $200, which is very cheap compared to existing methods. 

The multispectral system we propose in this work has been demonstrated as a very effective 

device to determine leaf P status in terms of cost, weight, and portability. However, the device has 

not been correlated with actual ground truth P content, and the performance of this sensing system 

has not tested in the field. These two limitations will be the next phase project. Moreover, only 
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four levels of P have been classified in this experiment. Applying the technique to other crop 

species at different growth stages will need more investigation in future research. 

Overall, investigating the performance of the proposed device in all the five experiments, 

it can be said that the proposed techniques are an effective option for monitoring N and P in plant 

leaves with decent accuracies. Although the existing costly techniques like hyperspectral imaging 

might show better estimation is this regard, the proposed cost-effective technique also shows 

decent results. It is basically a cost feature tradeoff. 
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Chapter 5: Conclusion and Recommendations for the Future Work 

5.1. Conclusion 

The ever-growing population calls for improvement of the current food production 

techniques to resolve the global food security bottleneck. To tackle this hindrance, effective 

implementation of the fast-paced technologies is needed for high throughput plant phenotyping. 

However, the available methods are expensive, bulky, and sometimes inaccessible that demand 

significant improvements.  

In this thesis, a low-cost multi-spectral sensing system is proposed, which can sense leaf-

level nutrients, specifically N and P by capturing the reflectance at 12 wavelengths ranging from 

450nm to 860 nm. The major two parts of the system are - a visible sensor that can capture the 

reflectance at six wavelengths from 450 - 650 nm and the other six wavelengths are covered by a 

NIR sensor range of 610 - 860 nm. The features of the proposed sensor are summarized below: 

• Multifunctional (N and P sensing) 

• Overall cost of the device is $200 

• Portable to be carried around the field 

• Lightweight (350 g) 

• Multispectral sensing (12 optical bands centered at 450 nm, 500 nm, 550 nm, 

570 nm, 600 nm, and 650 nm, 610 nm, 680 nm, 730 nm, 760 nm, 810 nm, and 

860 nm in VIS/NIR regions) 

To examine the performance of the proposed device, five experiments were conducted. 

Data collected from leaf samples are modeled through a machine learning pipeline. The overall 

results of each experiment are summarized below: 

• Classifying four N levels in leaves with an average accuracy of 88.4% on the 

test set (Experiment 1). 
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• Classifying high N and low N in leaves with an average accuracy of 79.2% in 

the field (Experiment 2). 

• In experiment 3, the results reveal that the best correlation of N is found in 

soybean (𝑅2 of 82.29%) followed by corn (80.05%), canola (63.91%), and 

wheat (63.21%). After comparing the N estimation result with a commercially 

used device, SPAD; it was found that the proposed multispectral sensor shows 

a better correlation with N (73.96%) than SPAD (𝑅2 of 60.21%).  

• For estimating leaf water content, corn shows the best correlation of 68.41%, 

followed by wheat of 64.58%, soybean of 46.38%, and canola shows 18.02% 

(Experiment 4).  

• Finally, in the fifth experiment of classifying four P responses, an average 

accuracy of about 71.2%, 73.5%, and 67.7% for corn, soybean, and wheat 

respectively was observed.  

Overall, the result concludes that the proposed system can estimate N and P with decent 

accuracy which is comparable to existing devices. But less correlation is observed in water 

estimation. So, the utility of the proposed device in water content estimation needs further 

consideration. Moreover, the device has not been correlated with actual ground truth P content. In 

addition, most of the experiments were conducted on the green-house controlled environment 

rather in the actual field setting. Furthermore, in this thesis, only four different species of plants: 

canola, corn, soybean, and wheat, are used as test plants. It was beyond the scope of this thesis to 

investigate how the results vary on other species of plants. 

5.2. Recommendations for the Future Work 

Although the proposed system has many benefits, there are considerable scopes and 

opportunities to explore new possibilities and improve the system. Some of the recommendations 

for future works are: 

• The proposed device is composed of six-channel visible and six-channel NIR 

detectors. So, more channels can be incorporated into this device for 

performance improvement. In this respect, 18-channel sensor AS7265 (AMS) 

[99] can be considered. 
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• Water experiments can be explored more considerably. A more robust model 

might be built by creating a large variety of water content in leaf samples. 

• The proposed system can be further explored to estimate actual P content by 

correlating the spectral information with chemically measured P. 

• The accuracy of the device can be further improved by experimenting on more 

samples and making a robust model for N estimation.  

• A similar technique can be applied to other crop species. 

• The performance variations because of different field parameters like wind, 

dust, shadow, and different growth stage of plants can be explored. 

• Besides, the future scope includes using this device to correlate with other 

nutrients, such as P and K.  

The exploration of the above-mentioned future scopes may create new opportunities for 

determining leaf-level chemical traits and making plant phenotyping a high throughput.  
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