1,109 research outputs found

    The Parametric Ordinal-Recursive Complexity of Post Embedding Problems

    Full text link
    Post Embedding Problems are a family of decision problems based on the interaction of a rational relation with the subword embedding ordering, and are used in the literature to prove non multiply-recursive complexity lower bounds. We refine the construction of Chambart and Schnoebelen (LICS 2008) and prove parametric lower bounds depending on the size of the alphabet.Comment: 16 + vii page

    Encoding TLA+ set theory into many-sorted first-order logic

    Get PDF
    We present an encoding of Zermelo-Fraenkel set theory into many-sorted first-order logic, the input language of state-of-the-art SMT solvers. This translation is the main component of a back-end prover based on SMT solvers in the TLA+ Proof System

    On probabilistic term rewriting

    Get PDF
    open3siThis work is partially supported by the ANR projects 14CE250005 ELICA and 16CE250011 REPAS, the FWF project Y757, the JSPS-INRIA bilateral joint research project “CRECOGI”, the ERC Consolidator Grant DLV-818616 DIAPASoN, and JST ERATO HASUO Metamathematics for Systems Design Project (No. JPMJER1603).We study the termination problem for probabilistic term rewrite systems. We prove that the interpretation method is sound and complete for a strengthening of positive almost sure termination, when abstract reduction systems and term rewrite systems are considered. Two instances of the interpretation method—polynomial and matrix interpretations—are analyzed and shown to capture interesting and nontrivial examples when automated. We capture probabilistic computation in a novel way by means of multidistribution reduction sequences, thus accounting for both the nondeterminism in the choice of the redex and the probabilism intrinsic in firing each rule.openAvanzini M.; Dal Lago U.; Yamada A.Avanzini M.; Dal Lago U.; Yamada A

    A Symbolic Transformation Language and its Application to a Multiscale Method

    Get PDF
    The context of this work is the design of a software, called MEMSALab, dedicated to the automatic derivation of multiscale models of arrays of micro- and nanosystems. In this domain a model is a partial differential equation. Multiscale methods approximate it by another partial differential equation which can be numerically simulated in a reasonable time. The challenge consists in taking into account a wide range of geometries combining thin and periodic structures with the possibility of multiple nested scales. In this paper we present a transformation language that will make the development of MEMSALab more feasible. It is proposed as a Maple package for rule-based programming, rewriting strategies and their combination with standard Maple code. We illustrate the practical interest of this language by using it to encode two examples of multiscale derivations, namely the two-scale limit of the derivative operator and the two-scale model of the stationary heat equation.Comment: 36 page

    Hybrid process algebra

    Get PDF
    IV+276hlm.;24c

    Proof Theory at Work: Complexity Analysis of Term Rewrite Systems

    Full text link
    This thesis is concerned with investigations into the "complexity of term rewriting systems". Moreover the majority of the presented work deals with the "automation" of such a complexity analysis. The aim of this introduction is to present the main ideas in an easily accessible fashion to make the result presented accessible to the general public. Necessarily some technical points are stated in an over-simplified way.Comment: Cumulative Habilitation Thesis, submitted to the University of Innsbruc

    Automated Deduction – CADE 28

    Get PDF
    This open access book constitutes the proceeding of the 28th International Conference on Automated Deduction, CADE 28, held virtually in July 2021. The 29 full papers and 7 system descriptions presented together with 2 invited papers were carefully reviewed and selected from 76 submissions. CADE is the major forum for the presentation of research in all aspects of automated deduction, including foundations, applications, implementations, and practical experience. The papers are organized in the following topics: Logical foundations; theory and principles; implementation and application; ATP and AI; and system descriptions

    On the formalization of termination techniques based on multiset orderings

    Get PDF
    Multiset orderings are a key ingredient in certain termination techniques like the recursive path ordering and a variant of size-change termination. In order to integrate these techniques in a certifier for termination proofs, we have added them to the Isabelle Formalization of Rewriting. To this end, it was required to extend the existing formalization on multiset orderings towards a generalized multiset ordering. Afterwards, the soundness proofs of both techniques have been established, although only after fixing some definitions. Concerning efficiency, it is known that the search for suitable parameters for both techniques is NP-hard. We show that checking the correct application of the techniques-where all parameters are provided-is also NP-hard, since the problem of deciding the generalized multiset ordering is NP-hard. © René Thiemann, Guillaume Allais, and JulianNagele
    • …
    corecore