
Science of Computer Programming 185 (2020) 102338
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

On probabilistic term rewriting

Martin Avanzini a,∗, Ugo Dal Lago a,b,∗, Akihisa Yamada c,∗
a INRIA Sophia Antipolis, France
b University of Bologna, Italy
c National Institute of Informatics, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 November 2018
Received in revised form 8 October 2019
Accepted 13 October 2019
Available online 21 October 2019

Keywords:
Probabilistic abstract reduction systems
Probabilistic term rewriting
Almost sure termination
Interpretation method

We study the termination problem for probabilistic term rewrite systems. We prove
that the interpretation method is sound and complete for a strengthening of positive
almost sure termination, when abstract reduction systems and term rewrite systems
are considered. Two instances of the interpretation method—polynomial and matrix
interpretations—are analyzed and shown to capture interesting and nontrivial examples
when automated. We capture probabilistic computation in a novel way by means of
multidistribution reduction sequences, thus accounting for both the nondeterminism in
the choice of the redex and the probabilism intrinsic in firing each rule.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Interactions between computer science and probability theory are pervasive and extremely useful to the first discipline.
Probability theory indeed offers models that enable abstraction, but it also suggests a new model of computation, like in
randomized algorithmics [32] or cryptography [19]. All this has stimulated the study of probabilistic computational models
and programming languages: probabilistic variations on well-known models like automata [12,35], Turing machines [37,17],
and the λ-calculus [36,23] are known from the early days of theoretical computer science.

The simplest way probabilistic choice can be made available in programming languages consists in endowing the lan-
guage of programs with an operator modeling sampling from (one or many) distributions. Fair, binary, probabilistic choice is
for example perfectly sufficient to get universality if the underlying programming language is itself universal (e.g., see [11]).

Term rewriting [38] is a well-studied model of computation where no probabilistic behavior is involved. It provides a
faithful abstraction of pure functional programming which is, up to a certain extent, also adequate for modeling higher-
order parameter passing [27]. What is peculiar in term rewriting is that, in principle, rule selection turns reduction into a
potentially nondeterministic process. The following question is then a natural one: is there a way to generalize term rewrit-
ing to a fully-fledged probabilistic model of computation? Actually, not much is known about probabilistic term rewriting:
we are only aware of the definitions due to Agha et al. [1] and Bournez and Garnier [6]. We base our work on the latter,
where probabilistic rewriting is captured as a Markov decision process; rule selection remains nondeterministic, but each
rule can have one of many possible outcomes, each with its own probability. Rewriting thus becomes a process in which
both nondeterministic and probabilistic aspects are present and intermingled. When firing a rule, the reduction process
implicitly samples from a distribution, much in the same way as when performing binary probabilistic choice in one of the
models mentioned above.

* Corresponding authors.
E-mail addresses: martin.avanzini@inria.fr (M. Avanzini), ugo.dallago@unibo.it (U. Dal Lago), akihisayamada@nii.ac.jp (A. Yamada).
https://doi.org/10.1016/j.scico.2019.102338
0167-6423/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.scico.2019.102338
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:martin.avanzini@inria.fr
mailto:ugo.dallago@unibo.it
mailto:akihisayamada@nii.ac.jp
https://doi.org/10.1016/j.scico.2019.102338
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2019.102338&domain=pdf

2 M. Avanzini et al. / Science of Computer Programming 185 (2020) 102338
In this paper, we first define a new, simple framework for discrete probabilistic reduction systems, which properly gener-
alizes standard abstract reduction systems [38] (Section 3). In particular, what plays the role of a reduction sequence, usually
a (possibly infinite) sequence a1 → a2 → . . . of states, is a sequence μ1 →M μ2 →M . . . of (multi)distributions over the set
of states. A multidistribution is not merely a distribution, and this is crucial to appropriately account for both the proba-
bilistic behavior of each rule and the nondeterminism in rule selection. Such a correspondence does not exist in Bournez
and Garnier’s framework, as nondeterminism has to be resolved by a strategy, in order to define reduction sequences. Con-
sequently, our framework is not only conceptually simpler, it is closer to ordinary rewriting. Indeed, our reduction relation
is simply a reduction system over multidistributions, and can be studied without particular knowledge of probability theory.
Nevertheless, the two frameworks turn out to be equiexpressive (Section 3.4).

On top of this framework, we then introduce abstract embeddings and more concrete probabilistic ranking functions,
sound and complete methods for proving strong almost sure termination, a strengthening of positive almost sure termination [6].
We moreover show that ranking functions provide bounds on expected runtimes (Section 3.3).

This paper’s main contribution, then, is the definition of a simple framework for probabilistic term rewrite systems as an
example of this abstract framework (Section 4). Our main aim is studying whether any of the well-known techniques for
termination of term rewrite systems can be generalized to the probabilistic setting, and whether they can be automated.
We give positive answers to these two questions, by describing how polynomial and matrix interpretations can indeed be
turned into instances of probabilistic ranking functions, thus generalizing them to the more general context of probabilistic
term rewriting. We moreover implement these new techniques into the termination tool NaTT [39] (Section 5).

This paper is revised version of the conference paper [3]. Apart from giving all missing proofs and more detailed ex-
amples and explanations, we generalized the definition of probabilistic reduction systems so that reducts may be sampled
from infinite distributions. Another notable change lies in the reformulation of probabilistic ranking functions in terms of
embeddings, leading also to a more elegant formulation of barycentric algebras.

2. Related work

Termination is a crucial property of programs, and has been widely studied in term rewriting. Tools checking and cer-
tifying termination of term rewrite systems are nowadays capable of implementing tens of different techniques, and can
prove termination of a wide class of term rewrite systems, although the underlying verification problem is well known to
be undecidable [38].

Termination remains an interesting and desirable property in a probabilistic setting, e.g., in probabilistic program-
ming [20] where inference algorithms often rely on the underlying program to terminate. But what does termination mean
when systems become probabilistic? If one wants to stick to a qualitative definition, almost-sure termination is a well-known
answer: a probabilistic computation is said to almost surely terminate iff non-termination occurs with null probability. One
could even require positive almost-sure termination, which asks the expected time to termination to be finite. Recursion-
theoretically, checking (positive) almost-sure termination is harder than checking termination of non-probabilistic programs,
where termination is at least recursively enumerable, although undecidable: in a universal probabilistic imperative program-
ming language, the termination questions for almost-sure and positive almost-sure termination on a single input are already
�0

2 and �0
2 complete, respectively [24].

Many sound verification methodologies for probabilistic termination have recently been introduced (see, e.g., [6,7,18,
14,10]). In particular, the use of ranking martingales has turned out to be quite successful when the analyzed program is
imperative, and thus does not have an intricate recursive structure. When the latter holds, techniques akin to sized types
have been shown to be applicable [26]. More recently, Ngo et al. [33] implemented the ert-calculus of Kaminski et al. [25]
for reasoning about the expected runtime of imperative integer programs, showing promising results.1

Finally, as already mentioned, the current work can be seen as stemming from the work by Bournez et al. [8,6,7]. The
added value compared to their work are first of all the notion of multidistribution as a way to give an instantaneous descrip-
tion of the state of the underlying system which exhibits both nondeterministic and probabilistic features. Our completeness
result can be seen as a correction to their claim [6, Theorem 3], which was already refuted [14]. In fact, incompleteness
claims in [14] also contradict our result, but their counterexample is invalid as part of the reduction steps are not counted.2

Moreover, an interpretation method inspired by ranking functions is made more general here, this way accommodating not
only interpretations over the real numbers, but also interpretations over vectors, in the spirit of matrix interpretations. Fi-
nally, we provide an automation of polynomial and matrix interpretation inference, whereas nothing about implementation
was presented in Bournez and Garnier’s work.

Some of our results have been independently obtained by Fu and Chatterjee [15], most notably, Theorem 2. Their notion
of bounded termination is what we call strong almost-sure termination in this work. The main peculiarity of our work is that
we focus on probabilistic term rewriting, while their focus is on procedural programs with probabilistic sampling. Besides,
the authors also investigate lower bounds on expected runtimes and tail-probabilities, topics not covered in our work.

1 While it is possible to translate such programs into probabilistic term rewrite systems [4], our method will not capture typical termination arguments
on probabilistic integer programs, since properties of integers will be unavailable after the encoding.

2 We thank Luis María Ferrer Fioriti for this analysis.

M. Avanzini et al. / Science of Computer Programming 185 (2020) 102338 3
3. Probabilistic abstract reduction systems

An abstract reduction system (ARS) on a set A is a binary relation → ⊆ A × A. Having a → b means that a reduces to b in
one step, or b is a one-step reduct of a. Bournez and Garnier [6] extended the ARS formalism to probabilistic computations
by allowing reducts to be sampled from a (probability) distribution. Throughout the paper, we denote by R≥0 the set of
non-negative reals.

Definition 1 (Distribution). A distribution on a (countable) set A is a mapping d : A → R≥0 assigning to each a ∈ A a prob-
ability d(a), such that

∑
a∈A d(a) = 1. We write D(A) for the set of distributions over A. The support of a distribution d is

the set Supp(d) := {a ∈ A | d(a) > 0}. We may denote a distribution d by {d(a) : a | a ∈ Supp(d)}, or {d(a1) : a1, . . . ,d(an) : an}
when Supp(d) is the finite set {a1, . . . ,an}.

A probabilistic ARS (PARS) in terms of Bournez and Garnier [6] is defined as a relation → ⊆ A ×D(A), and having a →d

means that d is the distribution of the one-step reducts of a, or a reduces to b with probability p = d(b), in notation
p : a →b. We extend this notation to sequences, also called runs below. For instance, if further q : b → c, we write p · q :
a →b → c. Notice that since → is a relation, the PARS may indeed specify more than one distribution of one-step reductions
for a ∈ A, i.e., a →d1 and a →d2 with d1 �= d2. The distribution of one-step reducts of a is nondeterministically chosen from
d1 and d2 in this case, and → is called nondeterministic.

Example 1 (Random walk). A random walk over N with bias probability p is modeled by the probabilistic ARS →
Wp

such that

n + 1 →
Wp

{p : n;1 − p : n + 2} for all n ∈N .

For a PARS →, we aim at defining a reduction relation D→, as an ARS on distributions. Taking Example 1, we would like
to have

{1 : 1} →
W 1

2

D { 1
2 : 0; 1

2 : 2
}
,

meaning that the distribution of the one-step reducts of 1, or more precisely the singleton distribution assigning probability
one to 1, is

{ 1
2 : 0; 1

2 : 2
}

. Continuing the reduction, what should the distribution of two-step reducts of 1 be? Actually, it
cannot be a distribution (on A): since 0 cannot be reduced, by probability 1

2 we have no two-step reduct of 1. Hence we
consider subdistributions, i.e., generalizations of distributions where probabilities may sum up to less than one, allowing

{1 : 1} →
W 1

2

D { 1
2 : 0; 1

2 : 2
} →
W 1

2

D { 1
4 : 1; 1

4 : 3
}
.

Further continuing the reduction, one would expect
{ 1

8 : 0; 1
4 : 2; 1

8 : 4
}

as the next step, but note that a half of the proba-
bility 1

4 of 2 is due to the run 1
8 : 1 → 2 → 1 → 2, and the other half is due to the run 1

8 : 1 → 2 → 3 → 2. It turns out that,
in the presence of nondeterminism, we should distinguish the two possibilities.

Example 2. Consider the PARS →
N

such that

a→
N

{ 1
2 : b1; 1

2 : b2
}

b1→
N

{1 : c} c→
N

{1 : d1}
b2→

N
{1 : c} c→

N
{1 : d2} .

Reducing a twice always yields c, so the two-step reduct of a seen as a distribution is {1 : c}. More precisely, there are
two runs from a to c, namely, 1

2 : a →b1→c and 1
2 : a →b2→c. Each of them can be nondeterministically continued

to d1 and d2 , so the distribution of three-step reducts of a is the nondeterministic choice among {1 : d1},
{ 1

2 : d1, 1
2 : d2

}
,

{1 : d2}. On the other hand, whereas it is obvious that {1 : c} should reduce to {1 : d1} or {1 : d2}, obtaining the third choice { 1
2 : d1, 1

2 : d2
}

would require the reduction relation →
N

D to be defined in a non-local manner.

To overcome this problem, we refine subdistributions to multidistributions, where a single element can be associated with
more than one probability. With respect to the nondeterministic PARS →

N
, this allows us to model that a reduces in two steps

to c on two distinct runs, each with probability 1
2 , and continuing this reduction may yield any of the above three-step

reducts.

4 M. Avanzini et al. / Science of Computer Programming 185 (2020) 102338
3.1. Probabilistic ARSs and multidistribution reductions

We model multidistribution by a special form of (possibly infinite) multisets.

Definition 2 (Multiset). A multiset over a set A is a mapping M : A → N . The union
⊎

i∈I Mi of countably many multisets
Mi is defined by(⊎

i∈I

Mi

)
(a) :=

∑
i∈I

Mi(a),

which forms a multiset if and only if
∑

i∈I Mi(a) is finite for every a ∈ A. The sum of a multiset M with respect to f : A →R
is defined by

∑
a∈M

f (a) :=
∑
a∈A

M(a) · f (a).

The submultiset relation is defined by M ⊆ N :⇐⇒ ∀a ∈ A. M(a) ≤ N(a).

We use set-like notations for multisets: ∅ denotes the empty multiset ∅(a) := 0, {{ai | i ∈ I}} is the multiset M with
M(a) = | {i ∈ I | ai = a} |, and {{a1, . . . ,an}} is its special case where I = {1, . . . ,n} is finite. The following lemma is an easy
consequence of the definition.

Lemma 1. For a family
({{ai, j | j ∈ J i}}

)
i∈I of multisets we have

⊎
i∈I

{{ai, j | j ∈ J i}} = {{ai, j | i ∈ I, j ∈ J i}}.

Definition 3 (Multidistributions). A (sub)multidistribution on a set A is a multiset μ of pairs of a ∈ A and 0 < p ≤ 1, written
p : a, satisfying

|μ| :=
∑

p:a∈μ

p ≤ 1.

We call μ a proper multidistribution if |μ| = 1. We denote the set of multidistributions on A by M≤1(A), and proper ones
by M(A).

By an abuse of notation, we identify a subdistribution {pi : ai | i ∈ I} with the multidistribution {{pi : ai | i ∈ I}}. We often
lift a function f : A → B to f :M≤1(A) →M≤1(B) as follows:

f
({{pi : ai | i ∈ I}}) := {{pi : f (ai) | i ∈ I}}.

Definition 4 (PARS). A probabilistic ARS (PARS) over a set A is a (typically infinite) set → ⊆ A × M(A). An object a ∈ A is
called terminal, or a normal form in →, if there is no μ with a → μ. With NF→ we denote the set of normal forms in →.

We remark that in contrast to [3,6], we allow proper multidistributions rather than distributions as right-hand sides, e.g.,
a → {{ 1

2 : a, 1
2 : a}} is permitted in our setting.

Now we lift a PARS → ⊆ A ×M(A) to the reduction relation M→ ⊆ M≤1(A) ×M≤1(A), an ARS over multidistributions.
To this end, we need some basic operations on multidistributions. The scalar multiplication of a multidistribution is defined
by

p · {{qi : ai | i ∈ I}} := {{p · qi : ai | i ∈ I}},
which is also a multidistribution if 0 < p ≤ 1. More generally, multidistributions are closed under subconvex combinations:

Lemma 2. For families (μi)i∈I of multidistributions and (pi)i∈I of positive real numbers,
⊎

i∈I pi · μi is also a multidistribution if ∑
i∈I pi ≤ 1. More precisely,

∣∣⊎
i∈I pi · μi

∣∣ = ∑
i∈I pi · |μi | ≤ 1.

M. Avanzini et al. / Science of Computer Programming 185 (2020) 102338 5
Proof. Let μi = {{qi, j : ai, j | j ∈ J i}} for each i ∈ I . Using Lemma 1 we have∣∣∣∣∣
⊎
i∈I

pi · μi

∣∣∣∣∣ = ∣∣{{pi · qi, j : ai, j | i ∈ I, j ∈ J i}}
∣∣

=
∑
i∈I

∑
j∈ J i

pi · qi, j

=
∑
i∈I

pi ·
∑
j∈ J i

qi, j =
∑
i∈I

pi · |μi | .

Since |μi | ≤ 1, the claim then follows from the assumption
∑

i∈I pi ≤ 1. �
Definition 5 (Probabilistic Reduction). Given a PARS → ⊆ A × M(A), we define the probabilistic reduction relation

M→ ⊆
M≤1(A) ×M≤1(A) as follows:

a ∈ NF→
{{1 : a}} M→∅

a → μ

{{1 : a}} M→ μ

∀i ∈ I. μi
M→ νi

⊎
i∈I pi · μi

M→ ⊎
i∈I pi · νi

In the last rule, I is an arbitrary (possibly empty) countable set, pi > 0 for every i ∈ I , and
∑

i∈I pi ≤ 1. We denote by

red→(μ) the set of all possible reduction sequences from μ, i.e., (μn)n∈N ∈ red→(μ) iff μ0 = μ and μn
M→μn+1 for any

n ∈N . We overload this notation for a ∈ A and denote by red→(a) the set of all possible reduction sequences from {{1 : a}}.

In essence, the reduction relation →M induced by a PARS → is given by a pointwise extension of → to multidistribu-
tions, removing normal forms along reductions. We abbreviate →M by → when it is clear from the context.

Let us illustrate the definition on the two examples from above.

Example 3 (Example 1, Revisited). The informal reduction of the PARS →
W 1

2

on distributions as outlined above is given by the

following reduction sequence on multidistributions:

{{1 : 1}} →
W 1

2

{{ 1
2 : 0; 1

2 : 2}} →
W 1

2

{{ 1
4 : 1; 1

4 : 3}}

→
W 1

2

{{ 1
8 : 0; 1

8 : 2; 1
8 : 2; 1

8 : 4}} →
W 1

2

. . .

Here, the first step follows from the second rule of Definition 5. The second is obtained by a combination of all three rules:

0 ∈ NF →
W 1

2

{{1 : 0}} →
W 1

2

∅

2 →
W 1

2

{{ 1
2 : 1; 1

2 : 3}}

{{1 : 2}} →
W 1

2

{{ 1
2 : 1; 1

2 : 3}}

{{ 1
2 : 0; 1

2 : 2}} →
W 1

2

{{ 1
4 : 1; 1

4 : 3}}

The third step is derived similarly.

In Example 3, the third reduct {{ 1
8 : 0; 1

8 : 2; 1
8 : 2; 1

8 : 4}} records that 2 derives from 1 via two distinct paths. In conse-
quence, this resolves the issues indicated in Example 2 when dealing with nondeterministic systems.

Example 4 (Example 2, Revisited). Consider again the nondeterministic PARS →
N

. Besides the two reductions yielding d1 and

d2 outlined above, we have the reduction

{{1 : a}}→
N

{{ 1
2 : b1, 1

2 : b2}}→
N

{{ 1
2 : c, 1

2 : c}}→
N

{{ 1
2 : d1, 1

2 : d2}}.

The final step is possible because {{ 1 : c, 1 : c}} is not collapsed to {{1 : c}}.
2 2

6 M. Avanzini et al. / Science of Computer Programming 185 (2020) 102338
The definition of the reduction relation M→ has several consequences. First, any multidistribution μ is “reducible” in M→,
even if μ consists only of terminal objects. Second, if μ is the subconvex combination of multidistributions νi (i ∈ I), then
any reduct of μ is given by the subconvex combination of some reducts of νi . Further, this observation carries over to
reduction sequences. Let us extend subconvex combination pointwise to sequences of multidistributions, i.e., �μ = ⊎

i∈I pi ·(�νi
)

i∈I if μn = ⊎
i∈I pi · (νi,n

)
i∈I for all n ∈N , where �μ = (μn)n∈N and �νi = (

νi,n
)

n∈N for all i ∈ I .

Lemma 3. �μ ∈ red→
(⊎

i∈I pi · νi
)

if and only if there exists �ρi ∈ red→ (νi) for each i ∈ I such that �μ = ⊎
i∈I pi · �ρi .

Proof. The “if” direction is obvious. For the “only if” direction, consider an arbitrary �μ ∈ red→
(⊎

i∈I pi · νi
)
. We inductively

construct ρi,n so that
(
ρi,n

)
n∈N ∈ red→(νi). For the base case we define ρi,0 = νi . For the inductive case, assume by in-

duction hypothesis that μn = ⊎
i∈I pi · ρi,n → μn+1. An induction on the derivation of this step yields ρi,n+1 such that

ρi,n → ρi,n+1 for every i ∈ I . This concludes the proof. �
Finally, we remark that PARSs constitute a generalization of ARSs: an ARS can be seen as a PARS whose right-hand

sides are singleton distributions, i.e., {{1 : b}} for some b, and the non-probabilistic reduction is simulated via the relation
{{1 : ·}} → {{1 : ·}}. Only a little care is needed as {{1 : a}} reduces to ∅ when a is terminal.

Proposition 1. Let → be an ARS and define ↪→ as the smallest PARS such that a ↪→ {{1 : b}} if a → b. Then {{1 : a}} ↪→ μ iff either
a → b and μ = {{1 : b}} for some b, or a is a normal form in → and μ =∅.

Proof. For {{1 : a}} ↪→ μ only the first two rules of Definition 5 are effective. Then the claim directly follows. �
3.2. Notions of probabilistic termination

An ARS → is called terminating if it does not give rise to an infinite sequence a1 → a2 → In a probabilistic setting,
our interest is whether infinite sequences occur with non-zero probability or not. This notion is defined using our notation
as follows.

Definition 6 (Almost Sure Termination; AST). A PARS → is said to be almost surely terminating (AST) if for any reduction
sequence it holds that limn→∞ |μn| = 0.

Intuitively, |μn| is the probability of having a reduct in the nth step, so its tendency towards zero indicates that infinite
runs occur with zero probability.

Example 5 (Example 1, Revisited). The PARS →
Wp

is AST for p ≥ 1
2 , whereas it is not for p < 1

2 (cf. [31]). Note that although

→
W 1

2

is AST, the expected number of steps needed to reach a terminal is infinite.

As motivated by Bournez and Garnier [6], it is also interesting and important to further ensure that the expected length of
runs is finite. We define the notion by means of the following concise definitions. In Section 3.4 we show that our definition
is equivalent to the corresponding notion defined via stochastic processes.

Definition 7 (Expected Derivation Length). Let → be a PARS and �μ = (μn)n∈N ∈ red→(μ). We define the expected derivation
length edl(�μ) ∈R≥0 ∪ {∞} in this multidistribution reduction sequence �μ by

edl(�μ) :=
∑
n≥1

|μn| .

Bournez and Garnier [6] introduced the notion of positive almost sure termination (PAST), which can be formulated as
follows.

Definition 8 (Positive AST; PAST). A PARS → is said to be positively almost surely terminating (PAST) iff for any reduction
�μ ∈ red→(a) starting from any a ∈ A, edl(�μ) is finite.

One should be careful to notice that the above definition does not ensure a bound on the expected length of all runs
starting from a given a ∈ A. This phenomenon is already visible in the non-probabilistic setting.

M. Avanzini et al. / Science of Computer Programming 185 (2020) 102338 7
Example 6. Consider the ARS →
ω

over N ∪ {a} given by

a →
ω

n n + 1→
ω

n

for all n ∈ N . Every reduction in →
ω

is finite, thus →
ω

seen as a PARS is PAST. However, there is no upper bound on the

length of reductions starting from a.

In this example, although →
ω

is terminating, it is not finitely branching: a admits infinitely many one-step reducts. In the

non-probabilistic setting, a finitely branching terminating ARS admits a bound on the length of derivation for each starting
element. In the probabilistic setting, however, PAST does not ensure such bounds even if the system is finitely branching3:

Example 7. Consider the PARS →∞ over N ∪ {
an | n ∈N

}
defined by

an →∞ {{ 1
2 : an+1; 1

2 : 0}} an →∞ {{1 : 2n · n}} n + 1→∞ {{1 : n}}
for all n ∈ N . Obviously →∞ is finitely branching. We show that →∞ is PAST as follows. Observe that every sequence �μ ∈
red→∞(an) has one of the following two forms:

1. The first rule is fired infinitely often:

�μ = {{1 : an}}→∞ {{ 1
2 : an+1; 1

2 : 0}}→∞ {{ 1
4 : an+2; 1

4 : 0}}→∞ · · ·

In this case, edl(�μ) = 1 + 1
2 + 1

4 + · · · = ∑
n∈N 1

2n = 2.
2. The second rule is fired after m applications of the first:

�μ = {{1 : an}} m→∞ {{ 1
2m : an+m; 1

2m : 0}}→∞ {{ 1
2m : k}} k→∞ {{ 1

2m : 0}},

where k = 2n+m · (n + m). In this case, edl(�μ) = 1 + 1
2 + · · · + 1

2m + 1
2m · k ≥ m.

The second class of derivations witnesses that, given an , there is no bound bn < ∞ such that edl(�μ) ≤ bn for any �μ ∈
red→ (an).

Therefore we introduce a stronger notion, which ensures a bound on the expected derivation length for each starting
element. The definition is based on a natural extension of derivation height [22] from complexity analysis of term rewriting.

Definition 9 (Strong AST; SAST). For a PARS → ⊆ A × M(A), the expected derivation height edh→(μ) ∈ R≥0 ∪ {∞} of μ ∈
M≤1(A) is defined by

edh→(μ) := sup
{
edl(�ν) | �ν ∈ red→(μ)

}
.

For a ∈ A, we write edh→(a) for edh→({1 : a}). We say → is strongly almost surely terminating (SAST) iff edh→(a) of every
a ∈ A is finite.

Notice that on the class of deterministic PARSs, i.e., when a → μ1 and a → μ2 implies μ1 = μ2, SAST coincides with
PAST. In the nondeterministic case, on the other hand, the notions of PAST and SAST do not coincide. SAST guarantees that
the expected length of reductions is bounded, taking a demonic view on nondeterminism. As highlighted in Example 7
such a bound does not necessarily exist for systems that are PAST. This holds even for non-probabilistic ARSs, as Example 6
demonstrates.

Proposition 2. For every PARS →, the following implications hold:

→ is SAST =⇒ → is PAST =⇒ → is AST

We conclude the section with the following natural property of expected derivation height. For a (multi)distribution
μ over real numbers, the expected value of μ is defined by E(μ) := ∑

p:a∈μ p · a. As a function f : A → R is naturally
generalized to f :M≤1(A) →M≤1(R), for μ ∈M≤1(A) we have E(f (μ)) = ∑

p:a∈μ p · f (a).

3 We are grateful to the anonymous reviewer of an earlier version of this work [3] who pointed us to this example.

8 M. Avanzini et al. / Science of Computer Programming 185 (2020) 102338
Lemma 4. For every PARS →, edh→ (μ) =E (edh→ (μ)).

Proof. More generally, we have

edh→

(⊎
i∈I

pi · μi

)
= sup

{∑
n∈N

|νn|
∣∣∣ (νn)n∈N ∈ red→

(⊎
i∈I

pi · μi

)}

(Lemma 3)

= sup

{∑
n∈N

∣∣⊎
i∈I pi · νn,i

∣∣ ∣∣∣ ∀i ∈ I. (νn,i)n∈N ∈ red→ (μi)

}

(Lemma 2)

= sup

{∑
i∈I

pi ·
∑
n∈N

∣∣νn,i
∣∣ ∣∣∣ ∀i ∈ I. (νn,i)n∈N ∈ red→ (μi)

}

=
∑
i∈I

pi · sup

{∑
n∈N

|νn|
∣∣∣ (νn)n∈N ∈ red→ (μi)

}

=
∑
i∈I

pi · edh→(μi).

The main claim then follows, since

μ =
⊎

p:a∈μ

p · {{1 : a}} and
∑

p:a∈μ

p · edh→({{1 : a}}) = E (edh→ (μ)) . �

3.3. Proving probabilistic termination

A popular way of proving termination of non-probabilistic systems is via embedding reductions into a well-founded set
(B, >) [29]. The latter can be seen also as a terminating ARS, giving rise to the following general statement.

Proposition 3. An ARS → ⊆ A × A is terminating if and only if there exists a mapping f : A → B and a terminating ARS � ⊆ B × B
such that a → b implies f (a) � f (b).

The function f is often called a ranking function, typically B is N , and � is the standard order on N . Notice that the
“only if” direction is trivial by taking the identity as f and → as �. We give an analog of Proposition 3 for probabilistic
systems.

Definition 10 (Embedding). Let → ⊆ A ×M(A) and � ⊆ B ×M(B) be two PARSs. We say that a mapping f : A → B is an
embedding of → into �, if a → μ implies f (a) � f (μ).

With Theorem 1 we will show that such embeddings give a sound and complete method for proving SAST. The proof of
this theorem is based on the following simulation result.

Lemma 5. Let f : A → B be an embedding of a PARS → into a PARS �. If μ → ν then f (μ) � f (ν) � ξ for some multidistribution ξ .

Proof. We proceed by induction on the derivation of μ → ν .

• If μ = {{1 : a}} → ∅ = ν with a ∈ NF→ , then the claim is satisfied by any ξ with f (μ) � ξ . Note that by the definition
of →M , such a ξ always exists.

• If μ = {{1 : a}} → ν with a → ν , then the assumption gives f (a) � f (ν) and thus f (μ) = {{1 : f (a)}} � f (ν).
• Finally, if μ = ⊎

i∈I pi · μi → ⊎
i∈I pi · νi = ν with μi → νi , then the claim is an easy consequence of the induction

hypothesis. �
Lemma 6. Let f : A → B be an embedding of a PARS → into a PARS �. For every reduction sequence (μn)n∈N ∈N ∈ red→(μ) there
exists a reduction sequence (νn)n∈N ∈ red�(f (μ)) such that f (μn) ⊆ νn for all n ∈N . In particular, edl((μn)n∈N) ≤ edl((νn)n∈N).

M. Avanzini et al. / Science of Computer Programming 185 (2020) 102338 9
Proof. Given (μn)n∈N ∈ red→(μ), we inductively construct the desired ν0, ν1, ν2, . . . as follows. We set ν0 = f (μ0). Sup-
pose f (μn) ⊆ νn , and thus νn = f (μn) � ξ for some multidistribution ξ . Lemma 5 yields f (μn) � f (μn+1) � ρ for some ρ .
Take an arbitrary ξ ′ with ξ � ξ ′ and define νn+1 = f (μn+1) � ρ � ξ ′ . We have

νn = f (μn) � ξ � f (μn+1) � ρ � ξ ′ = νn+1

as desired. From this, edl((μn)n∈N) ≤ edl((νn)n∈N) follows as we have |μn| ≤ |νn| for every n ∈N . �
Theorem 1. A PARS → ⊆ A ×M(A) is SAST if and only if there exists an embedding f : A → B into a PARS � ⊆ B ×M(B) which is
SAST. Moreover, in this case edh→(a) ≤ edh�(f (a)) for any a ∈ A.

Proof. The “only if” direction is trivial by taking → as � and the identity as f . Concerning the “if” direction, suppose that
f is an embedding of → into � and � is SAST. Consider an arbitrary a ∈ A. By Lemma 6, for every �μ ∈ red→(a) there is a
“longer” reduction �ν ∈ red�(f (a)) in the sense edl(�μ) ≤ edl(�ν). Consequently,

edh→(a) = sup{edl(�μ) | �μ ∈ red→(a)}
≤ sup{edl(�ν) | �ν ∈ red�(f (a))}
= edh�(f (a)) < ∞. �

Probabilistic ranking functions [6] or ranking supermartingales [9,14] are instances of Theorem 1. To demonstrate this, we
introduce the following PARS over R≥0, which is canonically SAST.

Definition 11 (Probabilistic Ranking Function). Let ε > 0. We define the ARS [≥ ε +] ⊆R≥0 ×R≥0 by

a [≥ ε +] b :⇐⇒ a ≥ ε + b,

and the PARS [≥ ε +E] ⊆R≥0 ×M(R≥0) by

a [≥ ε +E] μ :⇐⇒ a ≥ ε +E(μ).

We call an embedding f : A →R≥0 of a PARS → ⊆ A ×M(A) into [≥ ε +E] a probabilistic ranking function for →.

Intuitively, a mapping f is a probabilistic ranking function for → if the value of f decreases by ε in expectation when-
ever there is a reduction in →. Lemma 9 will confirm that [≥ ε +E] is SAST, and hence, probabilistic ranking functions are
sound for proving SAST, by Theorem 1. Moreover, we will also see that they are complete. Towards the soundness result,
we analyze reductions of [≥ ε +E], in particular, how they evolve in expectation. We start with the analysis of a single
reduction.

Lemma 7. If μ [≥ ε +E]M ν , then E(μ) ≥ ε · |ν| +E(ν).

Proof. We prove the claim by induction on the derivation of μ [≥ ε +E]M ν .

• Suppose μ = {{1 : a}} and a ∈ NF[≥ε+E] , that is, a < ε . Then ν = ∅ and E(μ) ≥ 0 = ε · |ν|+E(ν) since E(∅) = |∅| = 0.
• Suppose μ = {{1 : a}} and a [≥ ε +E] ν , that is, a ≥ ε +E(ν). As |ν| = 1 we have E(μ) = a ≥ ε · |ν| +E(ν).
• Suppose μ = ⊎

i∈I pi ·μi , ν = ⊎
i∈I pi ·νi , and μi [≥ ε +E]M νi for every i ∈ I . The induction hypothesis gives E(μi) ≥

ε · |νi | +E(νi). Thus,

E(μ) =
∑
i∈I

pi ·E(μi) ≥
∑
i∈I

pi · (ε · |νi| +E(νi)) = ε ·
∑
i∈I

pi · |νi | +
∑
i∈I

pi ·E(νi) = ε · |ν| +E(ν). �

Lemma 8. For every �μ = (μn)n∈N ∈ red[≥ε+E](μ0), E(μ0) ≥ ε · edl(�μ).

Proof. We first show E(μm) ≥ ε · ∑n
i=m+1 |μi | for every n ≥ m, by induction on n − m. The base case is trivial, so let us

consider the inductive step. By Lemma 7 and the induction hypothesis we get

E(μm) ≥ ε · |μm+1| +E(μm+1)

≥ ε · |μm+1| + ε ·
n∑

i=m+2

|μi| = ε ·
n∑

i=m+1

|μi | .

10 M. Avanzini et al. / Science of Computer Programming 185 (2020) 102338
By fixing m = 0, we conclude that the sequence
(
ε · ∑n

i=1 |μi |
)

n≥1 is bounded by E(μ0), and so is its limit ε · ∑i≥1 |μi | =
ε · edl(�μ). �
Lemma 9. If ε > 0 then edh[≥ε+E](a) ≤ a

ε for every a ∈R≥0 , and thus the PARS [≥ ε +E] is SAST.

Proof. By Lemma 8, we have edl(�μ) ≤ E({1:a})
ε = a

ε for every �μ ∈ red[≥ε+E](a). Hence, edh[≥ε+E](a) ≤ a
ε , concluding that

[≥ ε +E] is SAST. �
Theorem 2. A PARS → is SAST if and only if there is a probabilistic ranking function f for →, i.e., f embeds → into [≥ ε +E] for
some ε > 0. Moreover, in this case edh→(a) ≤ f (a)

ε for any a ∈ A.

Proof. The “if” direction follows from Theorem 1 and Lemma 9. Concerning the “only if” direction, suppose that → is SAST.
Thus, we have edh→ : A →R≥0. Consider a → μ. Then we have |μ| = 1 and

edh→(a) = sup
{
edl(�μ) | �μ ∈ red→(a)

}
≥ sup

{|μ| + edl(�μ) | �μ ∈ red→(μ)
}

= |μ| + sup
{
edl(�μ) | �μ ∈ red→(μ)

}
= |μ| + edh→(μ) (Lemma 4)

= |μ| +E(edh→(μ)),

concluding edh→(a) [≥ 1 +E] edh→(μ). Thus edh→ is an embedding of → into [≥ 1 +E], i.e., a ranking function. �
3.4. Relation to formulation by Bournez and Garnier

The dynamics of probabilistic systems are commonly defined as stochastic processes, so that the nth random variable
represents the nth reduct. Bournez and Garnier [6] follow this approach. In this section, we establish a precise correspon-
dence between their formulation and ours. In particular, we show that the corresponding notions of AST and PAST coincide.

We assume familiarity with stochastic processes, see e.g. [34]. We briefly fix central notions and notations. A measurable
space is a tuple (�, �) consisting of a set � and a sigma-algebra � on it, i.e., � is a collection of subsets of � that contains
the empty set and is closed under complement and countable unions. A probability space is a triple (�, �, P) with (�, �) a
measurable space and P : � → R≥0 a countable additive function such that P (�) = 1. Given A, B ∈ � with P (B) > 0, the
conditional probability P (A|B) is defined as P (A ∩ B)/P (B). The law of total probability states that P (A) = ∑

i P (A ∩ Bi)

for any A ∈ � and finite or countable partition (Bi)i∈N ∈ � of �.
A random variable X over a countable set A in a probability space (�, �, P) is a measurable function X : � → A, that

is, X−1(a) := {ω | X(ω) = a} ∈ � for all a ∈ A. We follow the usual conventions concerning random variables, in particular,
with P (X = a) we denote the probability P (X−1(a)). The probability distribution of X is the probability distribution over A
that assigns to every a ∈ A the probability P (X = a). The expected value of a random variable X over N ∪ {∞} is defined by
E(X) := ∑

n∈N∪{∞}P (X = n) · n, where 0 · ∞ = 0 and p · ∞ = ∞ for p > 0.

A stochastic process on A is an infinite sequence �X = (Xn)n∈N of random variables over A all defined on some probability
space (�, �, P). A stopping time with respect to �X is a random variable S , taking values in N ∪ {∞}, with the property that
for each n ∈N ∪ {∞}, the occurrence or non-occurrence of the event S = n depends only on the values of X0, . . . , Xn . Every
stopping time S satisfies

E(S) :=
∞∑

n=1

n · P (S = n) =
∞∑

n=1

P (S ≥ n). (1)

An instance of a stopping time is the first hitting time with respect to a set H ⊆ A, which is defined as τH (ω) := min{n |
Xn(ω) ∈ H} for all ω ∈ �, where min∅ = ∞.

For the remaining of the section, we fix a PARS → on A such that all right-hand sides in → are distributions. In order to
define reduction sequences of → as stochastic processes, first, all nondeterministic choices are resolved by fixing a strategy,
also called policy.

Definition 12 ([6]). An n-step history is a nonempty finite sequence a0..n = (a0, . . . ,an) ∈ A+ . We say a0..n is (non)terminal
iff an is. A strategy is a mapping φ : A+ → D(A) that satisfies an → φ(a0..n) whenever an is nonterminal. We say a0..n is
realizable under φ iff φ(a0..i)(ai+1) > 0 for every 0 ≤ i < n.

M. Avanzini et al. / Science of Computer Programming 185 (2020) 102338 11
Given an initial element or distribution, a strategy completely defines a stochastic process that corresponds to a particular
reduction in the PARS. As [6] does not allow subdistributions, in the following we fix a special symbol ⊥ /∈ A to denote
termination.

Definition 13 (Stochastic Reduction, [6]). A stochastic reduction under a strategy φ is a sequence �X = (Xn)n∈N of random
variables over A � {⊥} such that

P (Xn+1 = ⊥ | Xn = ⊥) = 1;
P (Xn+1 = ⊥ | Xn = a) = 1 if a ∈ NF→;

P (Xn+1 = ⊥ | Xn = a) = 0 if a /∈ NF→;

P (Xn+1 = a | Xn = an, . . . , X0 = a0) = φ(a0..n)(a),

whenever a0..n is a nonterminal realizable history under φ. The initial distribution of �X is given by the probability distribution
of X0.

As an immediate consequence of the law of total probability, by Definition 13 any stochastic reduction �X = (Xn)n∈N
satisfies

P (Xn = an) = ∑
a0..n∈An+1 P (X0 = a0, . . . , Xn = an). (2)

Notice that ai ranges over A in this equality, i.e., ai �= ⊥. As ⊥ signals termination, the derivation length of a stochastic
reduction is given by the first hitting time to ⊥.

Definition 14 (AST and PAST of [6]). For �X = (Xn)n∈N define the random variable T := min{n ∈N | Xn = ⊥} where min∅ = ∞
by convention. The random variable T is called the stopping time of �X . A PARS → is stochastically AST if for every stochastic
reduction �X in →, P (T = ∞) = 0. We say → is stochastically PAST if for every stochastic reduction �X in → starting from
a ∈ A, E(T) < ∞.

We will now see that stochastic (P)AST coincides with (P)AST. To this end, we first clarify the correspondence of stochas-
tic reductions and multidistribution reduction sequences. Given a stochastic reduction �X = (Xn)n∈N , for each n ∈ N we
define the random variable X0..n ranging over (A ∪ {⊥})n+1 by

P (X0..n = a0..n) = P (X0 = a0, . . . , Xn = an),

where a0, . . . , an range over A ∪ {⊥}. Now consider projecting to the last element in X0..n . We define the following multi-
distribution over A:

XM
n := {{p : an | p = P (X0..n = a0..n) > 0}}.

The following two lemmas state the one-to-one correspondence between multidistribution reduction sequences and stochas-
tic reductions in each direction.

Lemma 10 (Stochastic Reductions to Reductions). Let �X = (Xn)n∈N be the stochastic reduction in → under strategy φ . Then XM
n

M→
XM

n+1 for every n ∈N , i.e.,
(

XM
n

)
n∈N ∈ red→(X0).

Proof.

XM
n = {{p : an | p = P (X0..n = a0..n) > 0}}

→M ⊎
{p · φ(a0..n) | p = P (X0..n = a0..n) > 0, an /∈ NF→}

= {{q : an+1 | q = P (X0..n = a0..n) · φ(a0..n)(an+1) > 0, an /∈ NF→}}
= {{q : an+1 | q = P (X0..n = a0..n, Xn+1 = an+1) > 0}}
= {{q : an+1 | q = P (X0..n+1 = a0..n+1) > 0}}
= XM

n+1. �
Lemma 11 (Reduction to Stochastic Reductions). Let �μ = (μn)n∈N ∈ red→(d) for some distribution d. There exists a strategy φ which
induces a stochastic reduction (Xn)n∈N such that μn = XM

n for all n ∈N .

12 M. Avanzini et al. / Science of Computer Programming 185 (2020) 102338
Proof. First, we inductively define φn : An → A →R≥0 such that

μn = {{φn(a0..n−1)(an) : an | φn(a0..n−1)(an) > 0}}. (3)

Then by defining φ(a0..n) = φn+1(a0..n) we obtain the desired strategy. Since d = μ0 is a distribution, we define φ0()(a) :=
d(a). To obtain φn+1 from φn , suppose by induction hypothesis that (3) holds. Let

I := {a0..n | φn(a0..n−1)(an) > 0,an /∈ NF→} .

As μn
M→ μn+1, for each a0..n ∈ I there is an → da0..n such that

μn+1 =
⊎

a0..n∈I

φn(a0..n−1)(an) · da0..n

= {{φn(a0..n−1)(an) · da0..n (a) : a | φn+1(a0..n)(a) > 0}}.
Hence, defining

φn+1(a0..n) :=
{

φn(a0..n−1)(an) · da0..n if (a0..n) ∈ I,

0 otherwise,

yields the desired φn+1. �
Now we relate the expected derivation length of multidistribution reduction sequences and the expected stopping time of

stochastic reductions. For a multidistribution μ ∈ M≤1(A), we define the distribution μ ∈ D(A ∪ {⊥}) by μ(a) := ∑
p:a∈μ p

for a ∈ A and μ(⊥) := 1 − |μ|. We have the following natural correspondence between XM
n and Xn .

Lemma 12. XM
n (a) =P (Xn = a).

Proof. The lemma follows from the definition of (·) and Equation (2). �
Lemma 13. Let �X = (Xn)n∈N be the stochastic derivation in → under strategy φ from the initial distribution d and let T denote its
stopping time. The following two properties hold:

1. P (T ≥ n) = ∣∣XM
n

∣∣ for every n ∈N .

2. P (T = ∞) = limn→∞
∣∣XM

n

∣∣.
Proof. Concerning the first property, we have

P (T ≥ n) = P (Xn ∈ A) =
∑
a∈A

P (Xn = a) =
∑
a∈A

XM
n (a) =

∣∣∣XM
n

∣∣∣ ,
for all n ∈ N , where the penultimate equation follows from Lemma 12. As we have

P (T = ∞) = lim
n→∞P (T ≥ n),

the second property follows from the first. �
Now we arrive at the main theorem of this section.

Theorem 3. A PARS → is (P)AST if and only if it is stochastically (P)AST.

Proof. We consider the “if” direction first. Suppose → is AST. Lemma 10 translates an arbitrary stochastic derivation �X =
(Xn)n∈N in → to a reduction

(
XM

n

)
n∈N ∈ red→(a), for which we have P (T = ∞) = limn→∞ |μn| = 0 by Lemma 13(2).

Hence, → is stochastically AST. If → is moreover PAST, using Lemma 13(1) and (1) we get

∞ > edl
((

XM
n

)
n∈N

)
=

∑
n≥1

∣∣∣XM
n

∣∣∣ =
∑
n≥1

P (T ≥ n) = E(T),

where we tacitly employ P (T = ∞) = 0. The “only if” direction is proven dually, using Lemma 11. �
Finally, we relate our probabilistic ranking functions (Theorem 2) to the following formulation by Bournez and Gar-

nier [6].

M. Avanzini et al. / Science of Computer Programming 185 (2020) 102338 13
Proposition 4 ([6]). A PARS → over A is PAST if there exists a function V : A →R, with infa∈A V (a) > −∞, and ε > 0 such that for
all a ∈ A, for all μ with a → μ, the drift in a according to μ defined by

�μV (a) :=
∑

p:b∈μ

p · V (b) − V (a),

satisfies

�μV (a) ≤ −ε. (4)

Formulated differently, condition (4) states that V (a) ≥ ε +E(V (μ)) holds whenever a → μ. Further, infa∈A V (a) > −∞
means that f (a) := V (a) − infa∈A V (a) gives a mapping f : A → R≥0. Hence, f is a probabilistic ranking function in the
sense of Theorem 2.

Proposition 5. Let → be a PARS. There exists V : A →R satisfying Proposition 4 if and only if there is a probabilistic ranking function
for →.

As a consequence, Proposition 4 can be strengthened from PAST to SAST. Moreover, the method is not only sound but
also complete for SAST. Bournez and Garnier claimed with [6, Theorem 3] that Proposition 4 is complete for proving finitely
branching PARSs to be PAST. Example 7 is a counterexample to this claim, depicting a finitely branching system that is PAST
but not SAST.

4. Probabilistic term rewriting

We now formulate probabilistic term rewriting, and then lift the interpretation method for term rewriting to the proba-
bilistic case.

We briefly recap notions from term rewriting; see [5] for more details. A signature F is a set of function symbols, each
associated with a natural number called arity. The set T (F , V) of terms over a signature F and a set V of variables (disjoint
with F) is the least set such that x ∈ T (F , V) if x ∈ V and f(t1, . . . , tn) ∈ T (F , V) whenever f ∈ F is of arity n and t1, . . . , tn ∈
T (F , V). A substitution is a mapping σ : V → T (F , V), which is extended homomorphically to terms. We write tσ instead of
σ(t). A context is a term C ∈ T (F , V ∪ {�}) containing exactly one occurrence of a special variable �. With C[t] we denote
the term obtained by replacing � in C with t .

We extend substitutions and contexts to multidistributions over terms as follows: μσ := {{pi : tiσ | i ∈ I}} and C[μ] :=
{{pi : C[ti] | i ∈ I}} for μ = {{pi : ti | i ∈ I}}.

Definition 15 (Probabilistic Term Rewriting). A probabilistic rewrite rule is a pair of l ∈ T (F , V) and μ ∈ M(T (F , V)), written
l → μ. A probabilistic term rewrite system (PTRS) R is a (typically finite) set of probabilistic rewrite rules. We write →

R
for the

least PARS such that C[lσ] →
R

C[μσ] for every probabilistic rewrite rule l → μ ∈R, context C , and substitution σ . We say a

PTRS R is AST/PAST/SAST if →
R

is.

Note here that we deviate from [6]: there →
R

is defined by C[lσ] →
R

C[μσ] for each l → μ ∈ R in our notation, where

μσ is the distribution corresponding to the multidistribution μσ . Notice that even if μ is a distribution over terms, μσ
is in general a (proper) multidistribution; e.g., consider

{ 1
2 : x; 1

2 : y
}
σ with xσ = yσ . On the other hand, Bournez and

Garnier [6] demand that right-hand sides of PARSs to be distributions. Consequently, the extra operation · is necessary, in
order for →

R
to be a PARS of their definition. One consequence of this difference is that we allow strategies to know which

rule was applied even if the resulting term was identical, while in the setting of Bournez and Garnier [6] strategies can be
defined only in terms of the resulting term.

Example 8. The random walk of Example 1 can be modeled by a PTRS consisting of a single rule s(x) → {{p : x; 1 −
p : s(s(x))}}.

To rewrite a term, there are typically multiple choices of a subterm to reduce (i.e., redexes). For instance, s(f(s(0))) has
two redexes in the above PTRS, and consequently two possible reducts:

{{p : f(s(0));1 − p : s(s(f(s(0))))}} and {{p : s(f(0));1 − p : s(f(s(s(0))))}}.

14 M. Avanzini et al. / Science of Computer Programming 185 (2020) 102338
4.1. Interpretation methods for proving SAST

We now generalize the interpretation method for term rewrite systems to the probabilistic setting. The following notion
is standard.

Definition 16 (F -Algebra, cf. [38]). An F -algebra X on a non-empty carrier set X specifies the interpretation fX : Xn → X
of each function symbol f ∈ F of arity n. We say X is monotone with respect to a binary relation (an ARS) � ⊆ X × X if
x � y implies fX (. . . , x, . . .) � fX (. . . , y, . . .) for every f ∈ F . Given an assignment α : V → X , the interpretation of a term
is defined as follows:

�t �α
X :=

{
α(t) if t ∈ V ,

fX (�t1 �α
X , . . . , �tn �α

X) if t = f(t1, . . . , tn).

We write s �X t iff �s�α
X � �t �α

X for every assignment α.

Proposition 6 (cf. [38]). A TRS R is terminating if and only if there exists an F -algebra X which is monotone with respect to a
terminating relation � and satisfies R ⊆ �X .

In essence, this proposition is a consequence of Proposition 3: the imposed conditions witness that the interpretation
embeds the ARS →

R
underlying R into the well-founded order �. Conversely, completeness can be proven by taking →

R
as

the well-founded order and for X the term algebra T , an F -algebra on terms such that fT (t1, . . . , tn) := f(t1, . . . , tn). Note
that in the term algebra, assignments are substitutions, and �t �σ

T = tσ .
We now generalize Proposition 6 for probabilistic TRSs via Theorem 1. For an F -algebra X , we lift the interpretation of

terms to multidistributions as follows:

�{{pi : ti | i ∈ I}}�α
X := {{pi : �ti �α

X | i ∈ I}}.

Definition 17 (Probabilistic Monotone F -Algebra). A probabilistic monotone F -algebra (X ,�) is an F -algebra X equipped with
a relation � ⊆ X ×M(X), such that x � μ implies fX (. . . , x, . . .) � fX (. . . , μ, . . .) for every f ∈ F , where

fX (. . . ,μ, . . .) := {{p : fX (. . . , t, . . .) | p : t ∈ μ}}.
We write t �X μ iff �t �α

X � �μ�α
X for every assignment α : V → X .

Notice that � is a PARS over X . As in the non-probabilistic case, it is closed under substitutions and contexts:

Lemma 14. Let (X , �) be a probabilistic monotone F -algebra. If s �X μ then �sσ �α
X � �μσ �α

X and �C[s]�α
X � �C[μ]�α

X for
arbitrary α, σ , and C.

Proof. Let μ = {{pi : ti | i ∈ I}}. Concerning the first property, define the assignment β by β(x) = �xσ �α
X for every x ∈ V . By

structural induction on t , one can verify �t �
β

X = �tσ �α
X for any term t . Thus, from the assumption we get

�sσ �α
X = �s�

β
X � �μ�

β
X = {{pi : �ti �

β
X | i ∈ I}}

= {{pi : �tiσ �α
X | i ∈ I}} = �μσ �α

X .

The second property is proven by induction on C , where the base case follows directly from the assumption, and the
inductive step from monotonicity. �
Theorem 4. A PTRS R is SAST if and only if there exists a probabilistic monotone F -algebra (X , �) such that � is SAST and R ⊆ �X .

Proof. For the “if” direction, let α : V → X be an arbitrary assignment, which exists as X is non-empty. We show that �·�α
X

is an embedding of →
R

into �, so that the claim follows from Theorem 1. Consider s →
R

μ. Then we have s = C[lσ] and

μ = C[νσ] for some σ , C , and l → ν ∈R. By assumption we have l �X ν , and thus �s�α
X � �μ�α

X by Lemma 14.
For the “only if” direction, it suffices to show that (T , →

R
) forms a probabilistic monotone F -algebra, which easily follows

from Lemma 14. �

M. Avanzini et al. / Science of Computer Programming 185 (2020) 102338 15
4.2. Barycentric algebras

As probabilistic F -algebras are defined so generally, it is not yet clear how to search for ones for proving that a
given PARS is SAST. Now we make one step towards finding probabilistic algebras, by imposing some conditions on (non-
probabilistic) F -algebras, so that the relation � can be defined from orderings which we are more familiar with. The
following generalizes the PARS [≥ ε +E] from Definition 11.

Definition 18 (Barycentric Domain). A barycentric domain is a set X where the barycentric operation E :M(X) → X is defined.
From a binary relation � on X we define the PARS [�E] ⊆ X ×M(X) by

x [� E] μ :⇐⇒ x �E(μ).

Of particular interest in this work will be the barycentric domains R≥0 and Rm≥0 with barycentric operations
E({{pi : ai | i ∈ I}}) = ∑

i∈I pi · ai . We may write EX when we would like to clarify the domain X . The following gener-
alizes standard notions from mathematics.

Definition 19 (Concavity, Affinity). Let f : X → Y be a function from and to barycentric domains. We say f is concave with
respect to an order � on Y if f (EX (μ)) �EY (f (μ)) where � is the reflexive closure of �. We say f is affine if it satisfies
f (EX (μ)) =EY (f (μ)).

Clearly, every affine function is concave.

Definition 20 (Barycentric F -Algebra). A barycentric F -algebra is a pair (X , �) of an F -algebra X on a barycentric domain X
and an order � on X , such that for every f ∈ F , fX is monotone and concave with respect to � in every argument.

Note that the following theorem claims soundness but not completeness, in contrast to Theorem 4.

Theorem 5. A PTRS R is SAST if there exists a barycentric F -algebra (X , �) such that R ⊆ [�E]X and [�E] is SAST.

Proof. Due to Theorem 4, it suffices to show that (X , [�E]) is a probabilistic monotone F -algebra. To this end, suppose
that x �EX (μ), and let f ∈ F . Since fX is monotone and concave with respect to �, we have

fX (. . . , x, . . .) � fX (. . . ,EX (μ), . . .)�EX (fX (. . . ,μ, . . .)). �
Extending a notion from Hirokawa and Moser [21], we say a relation � ⊆ X × X on a barycentric domain is collapsible if

there is a concave function f : X →R≥0 that embeds � into [≥ ε +].

Lemma 15. If � ⊆ X × X is collapsible then [�E] is SAST.

Proof. Suppose x [�E] μ, i.e., x �EX (μ). This implies

f (x) ≥ ε + f (EX (μ)) ≥ ε +E(f (μ)),

for some f : X → R≥0. Thus f (x) [≥ ε +E] f (μ), i.e., f is a probabilistic ranking function, and hence the lemma follows
from Theorem 2. �

The following is thus an immediate consequence of Theorem 1.

Corollary 1. A PTRS R is SAST if there exists a barycentric F -algebra (X , �) such that R ⊆ [�E]X for a collapsible order �.

In the rest of this section we recast two popular interpretation methods, polynomial and matrix interpretations (over the
reals), as barycentric F -algebras.

4.3. Polynomial interpretations

Polynomial interpretations were introduced (on natural numbers [28] and real numbers [30]) for the termination analysis
of non-probabilistic rewrite systems. Various techniques for synthesizing polynomial interpretations (e.g., [16]) exist, and
these techniques are easily applicable in our setting.

16 M. Avanzini et al. / Science of Computer Programming 185 (2020) 102338
Definition 21 (Polynomial Interpretation). A polynomial interpretation is an F -algebra X on R≥0 such that fX is a polynomial
for every f ∈ F . We say X is multilinear if every fX is of the following form with cV ∈R≥0:

fX (x1, . . . , xn) =
∑

V ⊆{x1,...,xn}
cV ·

∏
xi∈V

xi .

In order to use polynomial interpretations for probabilistic termination, multilinearity is necessary for satisfying the
concavity condition.

Proposition 7. A PTRS R is SAST if there exist ε > 0 and a monotone multilinear polynomial interpretation X such that R ⊆
[≥ ε +E]X .

Proof. We show that (X , [≥ ε +]) forms a collapsible barycentric F -algebra, and thus Theorem 5 shows that R is SAST.
Collapsibility is trivial with G(x) = x and monotonicity is by assumption. Further, every multilinear polynomial is affine and
thus concave in all variables. �

An observation by Lucas [30] also holds in probabilistic case: To prove a finite PTRS R SAST with polynomial in-
terpretations, we do not have to find ε , but it is sufficient to check l [>E]X μ for all rules l → μ ∈ R. Define
εl→μ := �l�α

X − E(�μ�α
X) for such α that α(x) = 0. Then for any other α, we can show �l�α

X − E(�μ�α
X) ≥ εl→μ > 0.

As R is finite, we take ε := min{εl→μ | l → μ ∈R} > 0.

Corollary 2. A finite PTRS R is SAST if there exists a monotone multilinear polynomial interpretation X such that R ⊆ [>E]X .

Example 9 (Example 8 Revisited). Consider again the PTRS consisting of the single rule s(x) → {p : x;1 − p : s(s(x))}. Define
the polynomial interpretation X by 0X := 0 and sX (x) := x + 1. Then whenever p > 1

2 we have

�s(x)�α
X = x + 1 > p · x + (1 − p) · (x + 2) = E(�{p : x;1 − p : s(s(x))}�α

X).

Thus, when p > 1
2 the PTRS is SAST by Corollary 2.

Corollary 2 constitutes a generalization of [6, Theorem 5]. The latter does not cover linear interpretations, since con-
text decrease [6, Definition 8] demands e.g. �f(t)�α

X − �f(t′)�α
X ≤ �t �α

X − �t′�α
X and thus excludes interpretations such as

fX (x) = 2x.

4.4. Matrix interpretations

Matrix interpretations are introduced for the termination analysis of term rewriting [13]. Now we extend them for
probabilistic term rewriting.

Definition 22 (Matrix Interpretation). A (real) matrix interpretation is an F -algebra X on Rm≥0 such that for every f ∈ F , fX
is of the form

fX (�x1, . . . , �xn) =
n∑

i=1

Ci · �xi + �c, (5)

where �c ∈Rm≥0, and Ci ∈Rm×m
≥0 . The order �ε ⊆Rm≥0 ×Rm≥0 is defined by⎡

⎢⎣
x1
...

xm

⎤
⎥⎦ �ε

⎡
⎢⎣

y1
...

ym

⎤
⎥⎦ :⇐⇒ x1 ≥ ε + y1 and xi ≥ yi for all i = 2, . . . ,m.

Monotonicity of matrix interpretations can be ensured by requiring (5) to satisfy (Ci)1,1 ≥ 1 for all i, cf. [13]. It is easy
to derive the following from Theorem 5:

Proposition 8. A PTRS R is SAST if there exist ε > 0 and a monotone matrix interpretation X such that R ⊆ [�ε E]X .

Proof. The order �ε is collapsible with f ((x1, . . . , xm)T) = x1. It is well known that (5) is affine and thus concave. �
As for polynomial interpretations, for finite systems we do not have to find ε . Below � is defined in the same manner

as �ε but replacing “≥ ε +” by >.

M. Avanzini et al. / Science of Computer Programming 185 (2020) 102338 17
Corollary 3. A finite PTRS R is SAST if there exists a monotone matrix interpretation X such that R ⊆ [�E]X .

Example 10. Consider the PTRS consisting of the single probabilistic rule

a(a(x)) → {p : a(a(a(x)));1 − p : a(b(a(x)))} .

Consider the two-dimensional matrix interpretation

aX (�x) =
[

1 1
0 0

]
· �x +

[
0
1

]
, bX (�x) =

[
1 0
0 0

]
· �x.

Then we have

�a(a(x))�α
X =

[
x1 + x2 + 1

1

]
�1−2p

[
x1 + x2 + 2p

1

]
= p · �a(a(a(x)))�α

X + (1 − p) · �a(b(a(x)))�α
X

where α(x) =
[

x1
x2

]
. Hence this PARS is SAST if p < 1

2 , by Corollary 3.

Note that the above example cannot be handled with polynomial interpretations, intuitively because monotonicity en-
forces the interpretation of the probable reducts a(a(a(x))) and a(b(a(x))) to be greater than that of the left-hand side
a(a(x)). Generally, polynomial and matrix interpretations are incomparable in strength, since multilinear polynomials are
not expressible in the form of (5), although linear ones are.

5. Implementation

We extended the termination prover NaTT [39] with a syntax for probabilistic rules, and implemented the probabilistic
versions of polynomial and matrix interpretations as NaTT version 1.9.

The input format extends the WST format.4 A probabilistic rewrite rule is specified by

l -> w1:r1 || . . . || wn:rn

indicating the probabilistic rewrite rule

l → {{ w1
w : r1, . . . ,

wn
w : rn}} with w =

∑n

j=1
w j . (6)

The problem of finding interpretations is encoded as a satisfiability modulo theory (SMT) problem and solved by an SMT
solver. We already have an implementation to encode that �l�α

X > �r�α
X holds for arbitrary α, so we only need a little

extension to encode

w · �l�α
X > w1 · �r1 �α

X + · · · + wn · �rn �α
X

which expresses the desired orientation condition of a probabilistic rule (6).

Example 11. The bound depicted in Example 10 is found by our implementation in NaTT.

The following example deserves some attention.

Example 12. Consider the following encoding of [14, Fig. 1]:

?(x) → {{ 1
2 : ?(s(x)); 1

2 : $(g(x))}} $(0) → {{1 : 0}}
?(x) → {{1 : $(f(x))}} $(s(x)) → {{1 : $(x)}}

describing a game where the player (strategy) can choose either to quit the game and ensure prize $(f(x)), or to try a
coin-toss which on success increments the score and on failure ends the game with consolation prize $(g(x)).

When f and g can be bounded by linear polynomials, it is possible to automatically prove that the system is SAST.
For instance, with rules for f(x) = 2x and g(x) = � x

2 �, NaTT (combined with the SMT solver z3 version 4.4.1) found the
following polynomial interpretation proving SAST:

4 https://www.lri .fr /~marche /tpdb /format .html, accessed November 14, 2017.

https://www.lri.fr/~marche/tpdb/format.html

18 M. Avanzini et al. / Science of Computer Programming 185 (2020) 102338
?X (x) = 7x + 11 sX (x) = x + 1 0X = 1

fX (x) = 3x + 1 gX (x) = 2x + 1 $X (x) = 2x + 1.

While the above example is merely an encoding of a procedural probabilistic program, PTRSs are well-suited to model
probabilistic functional programs featuring datatypes such as list, trees, etc.

Example 13. The following PTRS encodes a probabilistic function rlist that samples a list over naturals, where elements
and the length of the list follow a geometric distribution.

rlist(xs) → {{ 1
2 : xs, 1

2 : cons(rnat(0), rlist(xs))}}
rnat(x) → {{ 1

2 : x, 1
2 : rnat(s(x))}}

The system is SAST, as NaTT finds the following polynomial interpretation:

0X () = 1 sX (x) = x consX (x, xs) = x + xs

rnatX (x) = x + 1 rlistX (xs) = x + 3.

Finally, we also remark that our methods cannot handle the case where the expected derivation length is not bounded
by multilinear polynomials.

Example 14. Consider Example 12 with rules f(x) → mul(x, x) and other rules that demand mul(x, x) to take
reduction length x2. For any (multi)linear polynomial fX , it is impossible to have fX (x) > x2. Hence we cannot prove the
PTRS to be SAST by the multilinear polynomial interpretation method. The same holds for the matrix interpretation.

6. Conclusion

This is a study on how much of the classic interpretation-based techniques well known in term rewriting can be extended
to probabilistic term rewriting, and to what extent they remain automatable. The obtained results are quite encouraging,
although finding ways to combine techniques is crucial if one wants to capture a reasonably large class of systems, similarly
to what happens in ordinary term rewriting [2]. Another future work includes clarifying the place of SAST in the arithmetical
hierarchy, and extending our result for proving AST, not only SAST.

Acknowledgements

This work is partially supported by the ANR projects 14CE250005 ELICA and 16CE250011 REPAS, the FWF project Y757,
the JSPS-INRIA bilateral joint research project “CRECOGI”, the ERC Consolidator Grant DLV-818616 DIAPASoN, and JST ERATO
HASUO Metamathematics for Systems Design Project (No. JPMJER1603).

References

[1] G. Agha, J. Meseguer, K. Sen, PMaude: Rewrite-based specification language for probabilistic object systems, Electron. Notes Theor. Comput. Sci. 153 (2)
(2006) 213–239.

[2] M. Avanzini, Verifying Polytime Computability Automatically, PhD Thesis, University of Innsbruck, 2013.
[3] M. Avanzini, U. Dal Lago, A. Yamada, On probabilistic term rewriting, in: Proc. of 14th FLOPS, in: LNCS, vol. 10818, Springer, 2018, pp. 132–148.
[4] M. Avanzini, M. Schaper, G. Moser, Modular runtime complexity analysis of probabilistic while programs, in: Proc. of 10th DICE and 6th FOPARA, 2019.
[5] F. Baader, T. Nipkow, Term Rewriting and All That, Cambridge University Press, 1998.
[6] O. Bournez, F. Garnier, Proving positive almost-sure termination, in: Proc. of 16th RTA, in: LNCS, vol. 3467, Springer, 2005, pp. 323–337.
[7] O. Bournez, F. Garnier, Proving positive almost sure termination under strategies, in: Proc. of 17th RTA, in: LNCS, vol. 4098, Springer, 2006, pp. 357–371.
[8] O. Bournez, C. Kirchner, Probabilistic rewrite strategies: applications to ELAN, in: Proc. of 13th RTA, 2002, pp. 252–266.
[9] A. Chakarov, S. Sankaranarayanan, Probabilistic program analysis with martingales, in: Proc. of 25th CAV, in: LNCS, vol. 8044, Springer, 2013,

pp. 511–526.
[10] K. Chatterjee, H. Fu, A.K. Goharshady, Termination analysis of probabilistic programs through positivstellensatz’s, in: Proc. of 28th CAV, in: LNCS,

vol. 9779, Springer, 2016, pp. 3–22.
[11] U. Dal Lago, M. Zorzi, Probabilistic operational semantics for the lambda calculus, RAIRO Theor. Inform. Appl. 46 (3) (2012) 413–450.
[12] K. De Leeuw, E.F. Moore, C.E. Shannon, N. Shapiro, Computability by probabilistic machines, Autom. Stud. 34 (1956) 183–198.
[13] J. Endrullis, J. Waldmann, H. Zantema, Matrix interpretations for proving termination of term rewriting, J. Autom. Reason. 40 (3) (2008) 195–220.
[14] L.M. Ferrer Fioriti, H. Hermanns, Probabilistic termination: soundness, completeness, and compositionality, in: Proc. of 42nd POPL, ACM, 2015,

pp. 489–501.
[15] H. Fu, K. Chatterjee, Termination of nondeterministic probabilistic programs, in: VMCAI, in: LNCS, vol. 11388, Springer, 2019, pp. 468–490.
[16] C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, H. Zankl, SAT solving for termination analysis with polynomial interpretations, in:

Proc. of 10th SAT, in: LNCS, vol. 4501, Springer, 2007, pp. 340–354.
[17] J. Gill, Computational complexity of probabilistic Turing machines, SIAM J. Comput. 6 (4) (1977) 675–695.
[18] I. Gnaedig, Induction for positive almost sure termination, in: PPDP 2007, ACM, 2007, pp. 167–178.

http://refhub.elsevier.com/S0167-6423(19)30133-9/bib414D533036s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib414D533036s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib4176616E7A696E693A446973733A3133s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib41444C593A464C4F50533A3138s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib41534D3A444943453A3139s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib424E3A31393938s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib42473A5254413A3035s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib42473A5254413A3036s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib426F75726E657A4B697263686E6572s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib43533A4341563A3133s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib43533A4341563A3133s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib4346473A4341563A3136s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib4346473A4341563A3136s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib64616C6C61676F7A6F727A6932303132s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib646531393536636F6D7075746162696C697479s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib45575A3A4A41523A3038s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib46483A504F504C3A3135s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib46483A504F504C3A3135s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib46433A564D4341493A3139s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib46474D53545A3A5341543A3037s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib46474D53545A3A5341543A3037s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib67696C6C3737s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib476E61656469673037s1

M. Avanzini et al. / Science of Computer Programming 185 (2020) 102338 19
[19] S. Goldwasser, S. Micali, Probabilistic encryption, J. Comput. Syst. Sci. 28 (2) (1984) 270–299.
[20] N.D. Goodman, V.K. Mansinghka, D.M. Roy, K. Bonawitz, J.B. Tenenbaum, Church: a language for generative models, in: Proc. of 24th UAI, AUAI Press,

2008, pp. 220–229.
[21] N. Hirokawa, G. Moser, Automated complexity analysis based on context-sensitive rewriting, in: RTA-TLCA 2014, in: LNCS, vol. 8560, 2014, pp. 257–271.
[22] D. Hofbauer, C. Lautemann, Termination proofs and the length of derivations, in: Proc. of 3rd RTA, in: LNCS, vol. 355, Springer, 1989, pp. 167–177.
[23] C. Jones, G.D. Plotkin, A probabilistic powerdomain of evaluations, in: Proc. of 4th LICS, 1989, pp. 186–195.
[24] B.L. Kaminski, J.-P. Katoen, On the hardness of almost-sure termination, in: MFCS 2015, Part I, in: LNCS, vol. 9234, Springer, 2015, pp. 307–318.
[25] B.L. Kaminski, J.-P. Katoen, C. Matheja, F. Olmedo, Weakest precondition reasoning for expected runtimes of randomized algorithms, J. ACM 65 (5)

(2018) 30.
[26] U. Dal Lago, C. Grellois, Probabilistic termination by monadic affine sized typing, in: Proc. of 26th ESOP, 2017, pp. 393–419.
[27] U. Dal Lago, S. Martini, On constructor rewrite systems and the lambda calculus, Log. Methods Comput. Sci. 8 (3) (2012).
[28] D. Lankford, Canonical Algebraic Simplification in Computational Logic, Technical Report ATP-25, University of Texas, 1975.
[29] D.S. Lankford, On Proving Term Rewriting Systems are Noetherian, Technical Report MTP-3, Louisiana Technical University, 1979.
[30] S. Lucas, Polynomials over the reals in proofs of termination: from theory to practice, Inform. Theor. Appl. 39 (3) (2005) 547–586.
[31] A. McIver, C. Morgan, B.L. Kaminski, J.-P. Katoen, A new proof rule for almost-sure termination, J. Proc. ACM Program. Lang. 2 (POPL) (2018) 33.
[32] R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge University Press, 1995.
[33] N.C. Ngo, Q. Carbonneaux, J. Hoffmann, Bounded expectations: resource analysis for probabilistic programs, in: Proc. of 39th PLDI, 2018, pp. 496–512.
[34] M.L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1st edition, John Wiley & Sons, Inc., New York, NY, USA, 1994.
[35] M.O. Rabin, Probabilistic automata, Inf. Control 6 (3) (1963) 230–245.
[36] N. Saheb-Djahromi, Probabilistic LCF, in: MFCS, in: LNCS, vol. 64, Springer, 1978, pp. 442–451.
[37] E.S. Santos, Probabilistic Turing machines and computability, Proc. Am. Math. Soc. 22 (3) (1969) 704–710.
[38] Terese, Term Rewriting Systems, Cambridge Tracts in Theoretical Computer Science., vol. 55, Cambridge University Press, 2003.
[39] A. Yamada, K. Kusakari, T. Sakabe, Nagoya termination tool, in: RTA-TLCA 2014, in: LNCS, vol. 8560, 2014, pp. 466–475.

http://refhub.elsevier.com/S0167-6423(19)30133-9/bib476F6C647761737365724D6963616C69s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib676D72627432303038s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib676D72627432303038s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib484D3A5254413A3134s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib484C3A5254413A3839s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib4A6F6E6573506C6F746B696Es1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib4B616D696E736B694B61746F656Es1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib4B4B4D4F3A41434D3A3138s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib4B4B4D4F3A41434D3A3138s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib44616C4C61676F4772656C6C6F6973s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib44616C4C61676F4D617274696E69s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib4C616E6B666F72643A3735s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib4C616E6B666F72643A3739s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib4C756361733A4954413A3035s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib44424C503A6A6F75726E616C732F7061636D706C2F4D63497665724D4B4B3138s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib4D6F7477616E69526167686176616Es1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib4E676F43303138s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib50757465726D616E3A3934s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib526162696E3633s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib5361686562446A6168726F6D69s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib53616E746F733639s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib546572657365s1
http://refhub.elsevier.com/S0167-6423(19)30133-9/bib4E615454s1

	On probabilistic term rewriting
	1 Introduction
	2 Related work
	3 Probabilistic abstract reduction systems
	3.1 Probabilistic ARSs and multidistribution reductions
	3.2 Notions of probabilistic termination
	3.3 Proving probabilistic termination
	3.4 Relation to formulation by Bournez and Garnier

	4 Probabilistic term rewriting
	4.1 Interpretation methods for proving SAST
	4.2 Barycentric algebras
	4.3 Polynomial interpretations
	4.4 Matrix interpretations

	5 Implementation
	6 Conclusion
	Acknowledgements
	References

