153 research outputs found

    Deep Learning for Image Analysis in Satellite and Traffic Applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Remote Sensing Image Scene Classification: Benchmark and State of the Art

    Full text link
    Remote sensing image scene classification plays an important role in a wide range of applications and hence has been receiving remarkable attention. During the past years, significant efforts have been made to develop various datasets or present a variety of approaches for scene classification from remote sensing images. However, a systematic review of the literature concerning datasets and methods for scene classification is still lacking. In addition, almost all existing datasets have a number of limitations, including the small scale of scene classes and the image numbers, the lack of image variations and diversity, and the saturation of accuracy. These limitations severely limit the development of new approaches especially deep learning-based methods. This paper first provides a comprehensive review of the recent progress. Then, we propose a large-scale dataset, termed "NWPU-RESISC45", which is a publicly available benchmark for REmote Sensing Image Scene Classification (RESISC), created by Northwestern Polytechnical University (NWPU). This dataset contains 31,500 images, covering 45 scene classes with 700 images in each class. The proposed NWPU-RESISC45 (i) is large-scale on the scene classes and the total image number, (ii) holds big variations in translation, spatial resolution, viewpoint, object pose, illumination, background, and occlusion, and (iii) has high within-class diversity and between-class similarity. The creation of this dataset will enable the community to develop and evaluate various data-driven algorithms. Finally, several representative methods are evaluated using the proposed dataset and the results are reported as a useful baseline for future research.Comment: This manuscript is the accepted version for Proceedings of the IEE

    Building Extraction from Very High Resolution Aerial Imagery Using Joint Attention Deep Neural Network

    Get PDF
    Automated methods to extract buildings from very high resolution (VHR) remote sensing data have many applications in a wide range of fields. Many convolutional neural network (CNN) based methods have been proposed and have achieved significant advances in the building extraction task. In order to refine predictions, a lot of recent approaches fuse features from earlier layers of CNNs to introduce abundant spatial information, which is known as skip connection. However, this strategy of reusing earlier features directly without processing could reduce the performance of the network. To address this problem, we propose a novel fully convolutional network (FCN) that adopts attention based re-weighting to extract buildings from aerial imagery. Specifically, we consider the semantic gap between features from different stages and leverage the attention mechanism to bridge the gap prior to the fusion of features. The inferred attention weights along spatial and channel-wise dimensions make the low level feature maps adaptive to high level feature maps in a target-oriented manner. Experimental results on three publicly available aerial imagery datasets show that the proposed model (RFA-UNet) achieves comparable and improved performance compared to other state-of-the-art models for building extraction

    A review of technical factors to consider when designing neural networks for semantic segmentation of Earth Observation imagery

    Full text link
    Semantic segmentation (classification) of Earth Observation imagery is a crucial task in remote sensing. This paper presents a comprehensive review of technical factors to consider when designing neural networks for this purpose. The review focuses on Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs), and transformer models, discussing prominent design patterns for these ANN families and their implications for semantic segmentation. Common pre-processing techniques for ensuring optimal data preparation are also covered. These include methods for image normalization and chipping, as well as strategies for addressing data imbalance in training samples, and techniques for overcoming limited data, including augmentation techniques, transfer learning, and domain adaptation. By encompassing both the technical aspects of neural network design and the data-related considerations, this review provides researchers and practitioners with a comprehensive and up-to-date understanding of the factors involved in designing effective neural networks for semantic segmentation of Earth Observation imagery.Comment: 145 pages with 32 figure

    Self-supervised Learning in Remote Sensing: A Review

    Get PDF
    In deep learning research, self-supervised learning (SSL) has received great attention triggering interest within both the computer vision and remote sensing communities. While there has been a big success in computer vision, most of the potential of SSL in the domain of earth observation remains locked. In this paper, we provide an introduction to, and a review of the concepts and latest developments in SSL for computer vision in the context of remote sensing. Further, we provide a preliminary benchmark of modern SSL algorithms on popular remote sensing datasets, verifying the potential of SSL in remote sensing and providing an extended study on data augmentations. Finally, we identify a list of promising directions of future research in SSL for earth observation (SSL4EO) to pave the way for fruitful interaction of both domains.Comment: Accepted by IEEE Geoscience and Remote Sensing Magazine. 32 pages, 22 content page

    Robust and Accurate Camera Localisation at a Large Scale

    Get PDF
    The task of camera-based localization aims to quickly and precisely pinpoint at which location (and viewing direction) the image was taken, against a pre-stored large-scale map of the environment. This technique can be used in many 3D computer vision applications, e.g., AR/VR and autonomous driving. Mapping the world is the first step to enable camera-based localization since a pre-stored map serves as a reference for a query image/sequence. In this thesis, we exploit three readily available sources: (i) satellite images; (ii) ground-view images; (iii) 3D points cloud. Based on the above three sources, we propose solutions to localize a query camera both effectively and efficiently, i.e., accurately localizing a query camera under a variety of lighting and viewing conditions within a small amount of time. The main contributions are summarized as follows. In chapter 3, we separately present a minimal 4-point and 2-point solver to estimate a relative and absolute camera pose. The core idea is exploiting the vertical direction from IMU or vanishing point to derive a closed-form solution of a quartic equation and a quadratic equation for the relative and absolute camera pose, respectively. In chapter 4, we localize a ground-view query image against a satellite map. Inspired by the insight that humans commonly use orientation information as an important cue for spatial localization, we propose a method that endows deep neural networks with the 'commonsense' of orientation. We design a Siamese network that explicitly encodes each pixel's orientation of the ground-view and satellite images. Our method boosts the learned deep features' discriminative power, outperforming all previous methods. In chapter 5, we localize a ground-view query image against a ground-view image database. We propose a representation learning method having higher location-discriminating power. The core idea is learning discriminative image embedding. Similarities among intra-place images (viewing the same landmarks) are maximized while similarities among inter-place images (viewing different landmarks) are minimized. The method is easy to implement and pluggable into any CNN. Experiments show that our method outperforms all previous methods. In chapter 6, we localize a ground-view query image against a large-scale 3D points cloud with visual descriptors. To address the ambiguities in direct 2D--3D feature matching, we introduce a global matching method that harnesses global contextual information exhibited both within the query image and among all the 3D points in the map. The core idea is to find the optimal 2D set to 3D set matching. Tests on standard benchmark datasets show the effectiveness of our method. In chapter 7, we localize a ground-view query image against a 3D points cloud with only coordinates. The problem is also known as blind Perspective-n-Point. We propose a deep CNN model that simultaneously solves for both the 6-DoF absolute camera pose and 2D--3D correspondences. The core idea is extracting point-wise 2D and 3D features from their coordinates and matching 2D and 3D features effectively in a global feature matching module. Extensive tests on both real and simulated data have shown that our method substantially outperforms existing approaches. Last, in chapter 8, we study the potential of using 3D lines. Specifically, we study the problem of aligning two partially overlapping 3D line reconstructions in Euclidean space. This technique can be used for localization with respect to a 3D line database when query 3D line reconstructions are available (e.g., from stereo triangulation). We propose a neural network, taking Pluecker representations of lines as input, and solving for line-to-line matches and estimate a 6-DoF rigid transformation. Experiments on indoor and outdoor datasets show that our method's registration (rotation and translation) precision outperforms baselines significantly

    Weakly Supervised Learning for Multi-Image Synthesis

    Get PDF
    Machine learning-based approaches have been achieving state-of-the-art results on many computer vision tasks. While deep learning and convolutional networks have been incredibly popular, these approaches come at the expense of huge amounts of labeled data required for training. Manually annotating large amounts of data, often millions of images in a single dataset, is costly and time consuming. To deal with the problem of data annotation, the research community has been exploring approaches that require less amount of labelled data. The central problem that we consider in this research is image synthesis without any manual labeling. Image synthesis is a classic computer vision task that requires understanding of image contents and their semantic and geometric properties. We propose that we can train image synthesis models by relying on sequences of videos and using weakly supervised learning. Large amounts of unlabeled data are freely available on the internet. We propose to set up the training in a multi-image setting so that we can use one of the images as the target - this allows us to rely only on images for training and removes the need for manual annotations. We demonstrate three main contributions in this work. First, we present a method of fusing multiple noisy overhead images to make a single, artifact-free image. We present a weakly supervised method that relies on crowd-sourced labels from online maps and a completely unsupervised variant that only requires a series of satellite images as inputs. Second, we propose a single-image novel view synthesis method for complex, outdoor scenes. We propose a learning-based method that uses pairs of nearby images captured on urban roads and their respective GPS coordinates as supervision. We show that a model trained with this automatically captured data can render a new view of a scene that can be as far as 10 meters from the input image. Third, we consider the problem of synthesizing new images of a scene under different conditions, such as time of day and season, based on a single input image. As opposed to existing methods, we do not need manual annotations for transient attributes, such as fog or snow, for training. We train our model by using streams of images captured from outdoor webcams and time-lapse videos. Through these applications, we show several settings where we can train state-of-the-art deep learning methods without manual annotations. This work focuses on three image synthesis tasks. We propose weakly supervised learning and remove requirements for manual annotations by relying on sequences of images. Our approach is in line with the research efforts that aim to minimize the labels required for training machine learning methods

    Deep Learning based Vehicle Detection in Aerial Imagery

    Get PDF
    Der Einsatz von luftgestützten Plattformen, die mit bildgebender Sensorik ausgestattet sind, ist ein wesentlicher Bestandteil von vielen Anwendungen im Bereich der zivilen Sicherheit. Bekannte Anwendungsgebiete umfassen unter anderem die Entdeckung verbotener oder krimineller Aktivitäten, Verkehrsüberwachung, Suche und Rettung, Katastrophenhilfe und Umweltüberwachung. Aufgrund der großen Menge zu verarbeitender Daten und der daraus resultierenden kognitiven Überbelastung ist jedoch eine Analyse der Luftbilddaten ausschließlich durch menschliche Auswerter in der Praxis nicht anwendbar. Zur Unterstützung der menschlichen Auswerter kommen daher in der Regel automatische Bild- und Videoverarbeitungsalgorithmen zum Einsatz. Eine zentrale Aufgabe bildet dabei eine zuverlässige Detektion relevanter Objekte im Sichtfeld der Kamera, bevor eine Interpretation der gegebenen Szene stattfinden kann. Die geringe Bodenauflösung aufgrund der großen Distanz zwischen Kamera und Erde macht die Objektdetektion in Luftbilddaten zu einer herausfordernden Aufgabe, welche durch Bewegungsunschärfe, Verdeckungen und Schattenwurf zusätzlich erschwert wird. Obwohl in der Literatur eine Vielzahl konventioneller Ansätze zur Detektion von Objekten in Luftbilddaten existiert, ist die Detektionsgenauigkeit durch die Repräsentationsfähigkeit der verwendeten manuell entworfenen Merkmale beschränkt. Im Rahmen dieser Arbeit wird ein neuer Deep-Learning basierter Ansatz zur Detektion von Objekten in Luftbilddaten präsentiert. Der Fokus der Arbeit liegt dabei auf der Detektion von Fahrzeugen in Luftbilddaten, die senkrecht von oben aufgenommen wurden. Grundlage des entwickelten Ansatzes bildet der Faster R-CNN Detektor, der im Vergleich zu anderen Deep-Learning basierten Detektionsverfahren eine höhere Detektionsgenauigkeit besitzt. Da Faster R-CNN wie auch die anderen Deep-Learning basierten Detektionsverfahren auf Benchmark Datensätzen optimiert wurden, werden in einem ersten Schritt notwendige Anpassungen an die Eigenschaften der Luftbilddaten, wie die geringen Abmessungen der zu detektierenden Fahrzeuge, systematisch untersucht und daraus resultierende Probleme identifiziert. Im Hinblick auf reale Anwendungen sind hier vor allem die hohe Anzahl fehlerhafter Detektionen durch fahrzeugähnliche Strukturen und die deutlich erhöhte Laufzeit problematisch. Zur Reduktion der fehlerhaften Detektionen werden zwei neue Ansätze vorgeschlagen. Beide Ansätze verfolgen dabei das Ziel, die verwendete Merkmalsrepräsentation durch zusätzliche Kontextinformationen zu verbessern. Der erste Ansatz verfeinert die räumlichen Kontextinformationen durch eine Kombination der Merkmale von frühen und tiefen Schichten der zugrundeliegenden CNN Architektur, so dass feine und grobe Strukturen besser repräsentiert werden. Der zweite Ansatz macht Gebrauch von semantischer Segmentierung um den semantischen Informationsgehalt zu erhöhen. Hierzu werden zwei verschiedene Varianten zur Integration der semantischen Segmentierung in das Detektionsverfahren realisiert: zum einen die Verwendung der semantischen Segmentierungsergebnisse zur Filterung von unwahrscheinlichen Detektionen und zum anderen explizit durch Verschmelzung der CNN Architekturen zur Detektion und Segmentierung. Sowohl durch die Verfeinerung der räumlichen Kontextinformationen als auch durch die Integration der semantischen Kontextinformationen wird die Anzahl der fehlerhaften Detektionen deutlich reduziert und somit die Detektionsgenauigkeit erhöht. Insbesondere der starke Rückgang von fehlerhaften Detektionen in unwahrscheinlichen Bildregionen, wie zum Beispiel auf Gebäuden, zeigt die erhöhte Robustheit der gelernten Merkmalsrepräsentationen. Zur Reduktion der Laufzeit werden im Rahmen der Arbeit zwei alternative Strategien verfolgt. Die erste Strategie ist das Ersetzen der zur Merkmalsextraktion standardmäßig verwendeten CNN Architektur mit einer laufzeitoptimierten CNN Architektur unter Berücksichtigung der Eigenschaften der Luftbilddaten, während die zweite Strategie ein neues Modul zur Reduktion des Suchraumes umfasst. Mit Hilfe der vorgeschlagenen Strategien wird die Gesamtlaufzeit sowie die Laufzeit für jede Komponente des Detektionsverfahrens deutlich reduziert. Durch Kombination der vorgeschlagenen Ansätze kann sowohl die Detektionsgenauigkeit als auch die Laufzeit im Vergleich zur Faster R-CNN Baseline signifikant verbessert werden. Repräsentative Ansätze zur Fahrzeugdetektion in Luftbilddaten aus der Literatur werden quantitativ und qualitativ auf verschiedenen Datensätzen übertroffen. Des Weiteren wird die Generalisierbarkeit des entworfenen Ansatzes auf ungesehenen Bildern von weiteren Luftbilddatensätzen mit abweichenden Eigenschaften demonstriert
    corecore