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Abstract: Automated methods to extract buildings from very high resolution (VHR) remote sensing
data have many applications in a wide range of fields. Many convolutional neural network (CNN)
based methods have been proposed and have achieved significant advances in the building extraction
task. In order to refine predictions, a lot of recent approaches fuse features from earlier layers of
CNNs to introduce abundant spatial information, which is known as skip connection. However,
this strategy of reusing earlier features directly without processing could reduce the performance of
the network. To address this problem, we propose a novel fully convolutional network (FCN) that
adopts attention based re-weighting to extract buildings from aerial imagery. Specifically, we consider
the semantic gap between features from different stages and leverage the attention mechanism to
bridge the gap prior to the fusion of features. The inferred attention weights along spatial and
channel-wise dimensions make the low level feature maps adaptive to high level feature maps in a
target-oriented manner. Experimental results on three publicly available aerial imagery datasets show
that the proposed model (RFA-UNet) achieves comparable and improved performance compared to
other state-of-the-art models for building extraction.

Keywords: building extraction; fully convolutional neural network (FCN); attention mechanism;
high resolution aerial images

1. Introduction

Automatic extraction of buildings from remote sensing imagery is of paramount importance
in many application areas such as urban planning, population estimation, and disaster response [1].
Assigning a semantic building class label to each pixel in very high resolution (VHR) imagery of
urban areas is a challenging task because of high intra-class and low inter-class variabilities [2,3].
This is because in high resolution images, the building category contains many different sized
manmade-objects in urban areas, where the amount of clutters is increasing—e.g., the shadow of tall
buildings—the similarity of rooftops to some roads. The result is that it is difficult to label buildings
reliably and accurately.

We have witnessed a rapid, revolutionary change in computer vision research, mainly driven by
convolutional neural network (CNN) [4] and the availability of large scale training data [5]. Recently,
several CNNs-based semantic segmentation methods have been used in building extraction from
earth observation images [6–8]. The patch-based CNNs methods [9–13] were initially adopted for
prediction in dense urban areas. These patched-CNNs label the center pixel by processing an image
patch through a neural network. They tend to be computationally expensive and are usually used
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to detect large objects [14,15]. Since Long et al. [16] adapted the classification network into fully
convolutional network (FCN) for semantic segmentation, FCN and its extensions have gradually
become the preferred solution in the field of semantic labeling [17–20]. Though FCN-based methods
can produce dense pixel-wise output directly, the pixel-wise classification derived from the final score
map is quite coarse because of the sequential sub-sampling operations in the FCN.

To address the problem of coarse predictions, recent research [21–26] have further improved
FCN-based methods for semantic labeling of remote sensing images. There is a growing body of
literature that many studies [27–31] employ the encoder–decoder architecture with skip connection.
UNet [32], a typical model in the style of encoder–decoder, reuses low-level information to refine the
output, and results in better performance. For obtaining accurate labeling of VHR images, an effective
structure to integrate the high-resolution, low-level features, and the low-resolution, high-level features
is needed. The skip connection fuses features so as to compensate the loss of spatial information caused
by repeating local operations (e.g., pooling and strided convolution). Features via skip connection are
multi-scale in nature due to the increasingly large receptive field sizes [33]. However, one thing to
note is that most existing approaches that are built on top of a contemporary classification network
are good at aggregating global contexts. While the reuse of information from early encoding layers
contributes to localization in the decoding phase, it may introduce redundant information which
results in over-segmentation [34] and unexpected ambiguous representations [35,36]. To be specific,
the low level features in the encoder are computed in the shallow layers of the network, while the
high level features in the decoder are computed in the deep layers of the network. Obviously, we can
assume that the latter has undergone more processing and there is a semantic gap between the features
of encoder and decoder. For example, a deep layer in the decoding stage may confidently discriminate
between a gray pixel belonging to ‘asphalt roads’ or ‘rooftops’, because more global contexts are passed
through a long path from the low layers to the high layers. However, the signals from the symmetric
layer early have different levels of discrimination that are specific to the primary class ‘impervious
surface’ and therefore express confidence in both subclasses. As a result, integrating these features
directly through skip connection may decrease the accuracy of prediction. A new research has shown
that fusing semantically dissimilar features from the encoder and decoder subnetworks directly can
degrade segmentation performance [37]. Thus, it is important to bridge the semantic gap between
features of encoder and decoder prior to fusion.

In recent years, several researchers have begun to apply attention mechanisms to CNNs. Initially,
attention in CNNs was used to interpret the gradient of a class output score with respect to the input
image [38]. Later trainable self-attention was deployed for image captioning, image classification,
object detection, and image segmentation [39–42]. A large body of literature exploring different
gating architectures has emerged. For instance, Oktay et al. [43] proposed a self-attention gating
module that can be utilized in FCN models for medical image segmentation. Zagoruyko et al. [44]
improved the performance of a student CNN by transferring the attention maps from a teacher network.
Different from the above, where they used the grid-attention technique to capture spatial salient
regions, Hu et al. [45] proposed channel-wise attention to highlight important feature dimensions.
Subsequent studies [46–49] have demonstrated the performance of channel-wise attention mechanism
in the semantic segmentation task. In remote sensing, some attempts [50–52] have been made to adopt
attention mechanisms on the building extraction task. Yang et al. [52] used a spatial attention module
that weights map generated by applying sigmoid function at the deep features. Pan et al. [50] used
a generative adversarial network with spatial [34] and channel [45] attention to extract buildings.
Though there are a few differences in the above attention modules, most of these implementations can
be attributed to the use of self-attention to enhance the representation of single-layer features.

Since the attention can model interdependency and adjust the response of a position or a channel in
the input feature maps, we expect to exploit it to alleviate the semantic difference between features from
different depths in the skip connection. Similar to [39,46], we employ a joint attention module (RFA) in
the deep neural network, while our focus is to bridge gap between hierarchical representations. To this
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end, we proposed an attention re-weighting process that could be integrated into UNet model for
the building extraction task in VHR images. The proposed attention module emphasizes meaningful
features and suppress insignificant features along both channel and spatial dimensions adaptively,
under the guidance of deep features. Benefitting from global context information captured by joint
attention, the semantic information of high spatial resolution but low level features in the encoder are
gradually enriched in a task-oriented direction before fusion. In summary, the contributions of our
work are summarized as follows:

(1) We implement joint spatial and channel-wise attention mechanism to enhance consistency of
features across layers in the U-shaped FCN. Experimental results show that using attention jointly is
effective to reduce semantic differences between features.

(2) We integrate the proposed attention module into existing UNet model and propose an
end-to-end method (RFA-UNet) for the building extraction task, which attains comparable and stable
performance with other state-of-the-art model on three public datasets.

The remainder of this paper is organized as follows. Section 2 introduces the proposed method.
The experimental results are presented in Section 3. The discussion about the method and experiments
is given in Section 4. Section 5 concludes this paper.

2. Methods

In this section, we wish to put forward an end-to-end method (RFA-UNet) based on the common
semantic segmentation architecture UNet with a new attention module. Our approach leverages the
benefits of typical segmentation architecture with the skip connections. An overview of the proposed
architecture is shown in Figure 1. First, input images are progressively filtered (convolution) and
downsampled by factor of 2 (pooling) at each level in the contracting path. Second, features from each
encoding stage are filtered by attention module before skip connection. Different from most existing
methods, we introduce discriminative information from coarser scales to help generate joint attention
maps. After that, the refined features are concatenated to the corresponding decoding features again
through skip connection. The rest of this section describes the details of RFA-UNet.
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2.1. Semantic Labeling Using UNet

In general, the UNet model including an encoder and a decoder can make dense pixel-wise
prediction naturally. UNet constructs the encoder part by applying a classification network. A cascaded
convolution and pooling operations downsamples the output feature maps at each stage and increases
the feature map channel number simultaneously through the contracting path. To generate results that
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are the same size as the input image, an expansive path symmetric to the contracting path is adopted as
the decoder. The size of feature maps is retrieved gradually, and each upsampling operation is followed
by two convolution layers. In order to yield more precise localization, the network propagates spatial
precision from earlier layer in encoding to deep layers at the decoding stage, i.e., skip connection.

It is well known that a deep network is built upon supervised training in a big dataset such as
the ImageNet dataset [53]. In most cases, however, manual labelling for training data is a costly task,
and it is also the same when using CNN for remote sensing classification. UNet has proven itself useful
for segmentation problems with a relatively small datasets, e.g., satellite image analysis and medical
image analysis [54,55]. For this reason, we choose UNet as the baseline architecture for our study.

2.2. Residual Feature Map Attention

The complex structure of different buildings increases the difficulty of determining the building
outlines in VHR images. Though the low-level features captured by the earlier layers can help refine
the feature maps in the deepen layers via skip connections, these should be employed with caution to
avoid introducing inconsistencies across different stages. In this work, we wish to make the low-level
feature maps Xl ∈ RH×W×Cl adaptive to high-level feature maps Xh ∈ RH×W×Ch in the skip connection.
First, the feature maps are re-weighted by a channel-wise weighted vector, thus the network tends to
learn the most salient features that contribute to the classification. Then, a spatial attention map X̃S

shows where the network focuses in order to highlight informative regions, as a complement to the
channel attention map X̃C. Figure 2 illustrates the structure of the residual feature map attention (RFA).
The proposed joint attention module can be summarized as

X̃C = fC(Xl,α), (1)

X̃S = fS( X̃C, β
)
, (2)

X̃ = Xl ⊕ X̃S, (3)

where α represents channel attention weights, β represents spatial attention weights, fC(·) denotes
multiplication of feature maps and corresponding weights on the channel dimension, fS(·) is the
pixel-wise multiplication between spatial regions of feature maps and corresponding weights and ⊕
denotes element-wise addition.

Remote Sens. 2019, 11, x FOR PEER REVIEW 4 of 20 

 

contracting path is adopted as the decoder. The size of feature maps is retrieved gradually, and each 
upsampling operation is followed by two convolution layers. In order to yield more precise 
localization, the network propagates spatial precision from earlier layer in encoding to deep layers at 
the decoding stage, i.e., skip connection. 

It is well known that a deep network is built upon supervised training in a big dataset such as 
the ImageNet dataset [53]. In most cases, however, manual labelling for training data is a costly task, 
and it is also the same when using CNN for remote sensing classification. UNet has proven itself 
useful for segmentation problems with a relatively small datasets, e.g., satellite image analysis and 
medical image analysis [54,55]. For this reason, we choose UNet as the baseline architecture for our 
study. 

2.2. Residual Feature Map Attention 

The complex structure of different buildings increases the difficulty of determining the building 
outlines in VHR images. Though the low-level features captured by the earlier layers can help refine 
the feature maps in the deepen layers via skip connections, these should be employed with caution 
to avoid introducing inconsistencies across different stages. In this work, we wish to make the low-
level feature maps 

lX lH W C× ×∈   adaptive to high-level feature maps 
hX hH W C× ×∈   in the skip 

connection. First, the feature maps are re-weighted by a channel-wise weighted vector, thus the 
network tends to learn the most salient features that contribute to the classification. Then, a spatial 
attention map SX  shows where the network focuses in order to highlight informative regions, as a 
complement to the channel attention map CX  . Figure 2 illustrates the structure of the residual 
feature map attention (RFA). The proposed joint attention module can be summarized as 

( )C lX X , ,Cf α=  (1)

 ( )S CX X , ,Sf β=    (2)

 
l SX X X ,= ⊕    (3)

where α  represents channel attention weights, β  represents spatial attention weights, ( )Cf ⋅  
denotes multiplication of feature maps and corresponding weights on the channel dimension, ( )Sf ⋅  
is the pixel-wise multiplication between spatial regions of feature maps and corresponding weights 
and ⊕  denotes element-wise addition. 

At last, a residual mapping is used to obtain the output of attention schemes. This short 
connection draws on the idea of the residual network [56], making the network easier to optimize. 

 
Figure 2. Diagram of the proposed attention module. Under the guidance of high stage features, low 
stage features are refined adaptively before passing through skip connection. 

(1) Channel Attention: Each filter performs pattern detection, and each channel of the feature 
map is a response activation of the corresponding convolutional filter [39]. In a standard CNN, the 
importance of each channel is considered to be the same. Thus, applying attention mechanisms to 
feature channels intuitively distinguishes the features in different stages, and a channel attention map 
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stage features are refined adaptively before passing through skip connection.

At last, a residual mapping is used to obtain the output of attention schemes. This short connection
draws on the idea of the residual network [56], making the network easier to optimize.

(1) Channel Attention: Each filter performs pattern detection, and each channel of the feature
map is a response activation of the corresponding convolutional filter [39]. In a standard CNN,
the importance of each channel is considered to be the same. Thus, applying attention mechanisms
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to feature channels intuitively distinguishes the features in different stages, and a channel attention
map is produced to enhance feature consistency. For channel-wise attention, we first upsample the
high stage features Xh using bilinear interpolation to make them have the same shape (except in
channel dimension) as the low stage features Xl. Then the two sequences of features are concatenated
to generate channel-wise statistics. The global information are computed using global average pooling
for the concatenated features. The generated vector z ∈ RH×W×Cl , which can be interpreted as a set of
the channel descriptors for the image, is calculated by

z = 1
H×W

W∑
i=1

H∑
j=1

([Xl; Xh])

= [z1, z2, . . . , zC],
(4)

where [;] denotes the concatenate operation, scalar zi represents i-th channel descriptor.
To ensure that the module can learn nonlinear interaction between channels, the channel vector z

is passed through two fully connected layers. Then the channel attention vector α is obtained with a
sigmoid activation

α = σ2(W2σ1(W1z)) (5)

where σ1 denotes the ReLU function and σ2 the sigmoid activation. Two fully connected layers with
parameters where W1 ∈ RC

r ×C with ratio r to reduce dimensions for simplicity and W2 ∈ RC×C
r to

restore dimensions.
(2) Spatial Attention: In a standard CNN, a global image descriptor derived from fully connected

layers maps the input into a high-dimensional space in order to make the classes linearly separable [38].
However, using only the global feature representation to classify pixels ignores local spatial structural
characteristics that need to be considered for semantic labeling tasks. Although FCN has made the
architecture more suitable for local positioning, the importance of each pixel location is considered
equal. In general, the identification of a pixel needs to consider its spatial context, and near pixels
are more related to each other [57]. Therefore, our spatial attention module is designed to pay more
attention to the semantic regions. A spatial attention map is produced to emphasize or suppress
feature responses in different spatial locations. We reshape current low stage features Xl by flattening
the height and width to Vl = [v1, v2, . . . , vm], where vi represents the i-th location pixel-wise vector
of length C, and m = W×H. Similarly, a gating vector Vh obtained from the upsampled high-level
features is introduced as a guidance. We employ linear transformations to make two vectors have the
same length, i.e., the same dimensional space. Finally, we add them to generate spatial attention map
β, formulated as

β = σ2
(
W3

(
σ1

(
WT

1 Vl + W2
TVh

)))
, (6)

where σ1 denotes the ReLU function and σ2 the sigmoid activation, linear transformations W1 ∈ RCl×int,
W2 ∈ RCg×int, W3 ∈ Rint×1 are computed using channel-wise 1× 1 convolutions for the two inputs.

2.3. Network Architecture

We use VGG16 that consists of 16 sequential layers as the feature encoder, but we remove
the full connected layer from the network. The architecture of the encoder is presented in Table 1.
All convolutional layers followed by a ReLU activation function have 3 × 3 kernels and the number of
output channels doubles after the max pooling operation. The output of 512 channels feature maps is
served as a bottleneck of network, separating the encoder from the decoder.
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Table 1. Architecture of encoder.

Input (320 × 320 RGB Image)

Stage Output Size Template

1
320 × 320

Conv3-64
Conv3-64

160 × 160 Maxpool

2
160 × 160

Conv3-128
Conv3-128

80 × 80 Maxpool

3 80 × 80
Conv3-256
Conv3-256
Conv3-256

40 × 40 Maxpool

4
40 × 40

Conv3-512
Conv3-512
Conv3-512

20 × 20 Maxpool

5 20 × 20
Conv3-512
Conv3-512
Conv3-512

Bottleneck (20 × 20 × 512)

In the symmetric decoder part, low spatial resolution deep features are upsampled with a
deconvolution layer. The upsampled feature map is regarded as providing consistency guidance for
the corresponding earlier low-level feature map in encoding, and both features are transmitted into the
proposed attention module (RFA) to obtain weighted feature maps. The reinforced meaningful features
are then concatenated with the upsampled high level features via skip connection (see Figure 3).
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The output of the network model passes through the softmax nonlinearity layer and results in an
image where each pixel corresponds to a probability of belonging to buildings.
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2.4. Training and Inference

In the training stage, aerial images, and corresponding annotation images are both inputs to the
model. As the building extraction task is a pixel-wise classification problem, we add cross entropy loss
and dice coefficient loss together as the loss function of segmentation, defined by

Lbe = −
1
N

 N∑
i=1

yi log(ŷi)

, (7)

Ldice =
1
N

N∑
i=0

2 · y · ŷ
y + ŷ

, (8)

Lseg = Lbe − log Ldice (9)

where ŷi is the label (1 for building, 0 for background) of pixel and yi is predicted probability for
the pixel.

As the satellite images are large, we crop patches from original images and feed them into the
network for training. In the prediction stage, we combine predictions back into the original size.
However, splitting the image into small tiles and then stitching them together later sometimes results
in blocking artifacts at the borders. In some ways, predicting a pixel in the central part of the image is
much easier than at the edge because the latter have limited shared contextual information. To predict
the pixels in the edge area of the image, one way is to make the predictions on overlapping patches and
crop the edges, but we propose a more efficient approach. Firstly, we extrapolate the missing context
by mirroring the input image [32]. After that, we add a cropping layer to the output layers of the
network, similar to [55], which solves two problems simultaneously: (1) in the predicting phase, it takes
advantage of contextual information in the margin; (2) overlapping edges of each patch are cropped
automatically in the prediction stage. Details of experimental settings is introduced in Section 3.2.

3. Results

3.1. Dataset

Massachusetts Building Dataset (Mass. Buildings): This is proposed by Mnih [9]. It includes
151 RGB images of the Boston area with a spatial resolution of 1 m. The ground truth obtained from
the OpenStreetMap project are all available. There are 137 images in the training set, 10 images in the
test set, and 4 images for validation.

ISPRS Potsdam Challenge Dataset (Potsdam) [58]: This dataset contains 38 images with a spatial
resolution of 5 cm. The size of each tile is 6000 × 6000 pixels. Among them, 24 images with available
ground truth are provided for training and 14 images are remained for test. We randomly split the
24 images into 17 for training and 7 for validation. It is noted that we only use three-band IRRG images
for fair comparison with existing models.

WHU Aerial Dataset (WHU) [59]: This dataset contains 8189 RGB tiles with 0.3 m ground
resolution, including 187,000 samples of building in New Zealand. These 512 × 512 images are divided
into three parts by the provider: 4736 tiles for training, 1036 tiles for validation, and 2416 tiles for test.
Each tile has a corresponding Boolean raster map derived from the building vector map. Figure 4
shows some images and reference data from three datasets.
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3.2. Experimental Setting

In order to train an effective deep model using a relatively small dataset, we cropped the raw
images into small patches with the size of 320 × 320 pixels with the overlap of 80 pixels. Only with
the WHU dataset did we maintain the original size of images at 512 × 512 pixels, following the
settings of the providers. For each patch, we applied data augmentation consisting of flipping in the
vertical or horizontal dimension and rotation of 90 degrees. It should be noted that for a given patch,
we performed above transformations randomly rather than applying all of them each time. Table 2
shows the detailed number of patches of the three augmented datasets.

Table 2. Detailed information of experimental setting on three datasets.

Dataset
Training Set Validation Set Test Set

Images Patches Images Patches Images

Mass. buildings 137 16,439 4 479 10
Potsdam 17 21,250 7 8750 14

WHU 14,208 / 3108 / 2416

In the prediction stage, we followed the abovementioned overlay cropping and stitching process
to output the classification result of the large aerial imagery. Firstly, the size of test patch was set
to 704 × 704 pixels for Mass. Buildings and Potsdam, and the overlapping pixels between adjacent
patches were 204 pixels. Then, we cropped the outputs along the edge by 102 pixels and got images
with size of 500 × 500 pixels, which was easily stitched into a large test image. For the WHU dataset,
since the images of its test sets have been cropped into isolated tiles of 512 × 512 pixels, there is no
need to do the process like the aforementioned datasets.

We implemented our models in the experiments by using the Keras framework with Tensorflow
backbend. We initialized network parameters using Xavier uniform [60] and adopted Adam [61] as
the weights optimization algorithm, with initial learning rate of 0.001. We set a batch size of 8 to suit
the memory of graphics of the workstation used in the study. All experiments were processed on a
desktop with 32GB of RAM and a 24GB Nvidia P6000 GPU.

3.3. Evaluation Metrics

We used overall accuracy to evaluate the global performance of the methods. In addition,
the F1-score of the positive (building) class and Intersection over Union (IoU) were used to evaluate
classification performance. The F1-score and IoU metric are defined by

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

, (10)
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F1 = 2
Precison×Recall
Precison + Recall

, (11)

IoU =
TP

FP + TP + FN
, (12)

where TP is the number of true positives, FP the number of false positives, and FN the number of
false negatives.

3.4. Evaluations of Attention

We evaluated the effect of the proposed joint attention module in UNet for building extraction in
the VHR images. Furthermore, we compared our attention module with existing advanced attention
modules on the three datasets. The information of these attention mechanisms is described as follows:
(1) CAB [48]: A channel-wise attention block, which reweights the feature maps of low stage by using
a weight vector inferred from concatenated features stage by stage. (2) GRID [43]: A grid attention
gate module for medical imaging that learns to identify salient image regions of varying shapes and
sizes by a grid signal conditioned to image spatial information from deep features. (3) DenseAN [52]:
A spatial attention fusion module uses the high level features activation output to reweight the low level
features before summation. (4) DualAN [62]: A dual attention module for scene segmentation which
captures long-range contextual information in spatial dimension and channel dimension respectively.
(5) RFA (Ours): A joint residual attention module consists of channel attention and spatial attention
for enhancing the semantic consistency of features across layers. In the training phase, the training
parameters and strategies adopted for these methods are same as ours.

The comparisons with different attentions on the three test sets are presented as follows:
(1) Mass. Buildings: As shown in Figure 5, CAB (Figure 5c) and Ours-RFA (Figure 5g) achieved

better global performance than other attention methods visually. There are many FPs and FNs in
the results of both GRID (Figure 5d) and DenseAN (Figure 5e). DualAN (Figure 5f) had difficulty
in recognizing the small and dense buildings. Figure 6 shows the close-ups (as marked in yellow
rectangles in Figure 5a) of the results for detailed inspection. The results in Figure 6 demonstrating that
most buildings were correctly identified using all five methods, but CAB, GRID, and DenseAN tended
to misclassify pixels as some FPs are found in the areas covered by ground or shadows (Figure 6c–e).
DualAN (Figure 6f) performed better in the large building pixels. However, the FPs and FNs in the
dense residential areas indicate that DualAN does not perform well enough.
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(2) Potsdam: Figure 7 displays the classification results on Potsdam test sets. Ours-RFA (Figure 7g)
outperforms the other four methods because there are many FPs generated in the prediction (Figure 7c–f).
The result of DenseAN is slightly better, except that some FPs in the first two rows of Figure 7e. The FPs
in the results of CAB, GRID, and DualAN (Figure 8c,d,f) indicate that these models are sensitive to the
low vegetation and roads, and they frequently misclassify vegetation pixels similar to the color of the
rooftops as building pixels. Though the result of DualAN in the last row (Figure 8f) has more TPs,
it also tends to have more FPs. Compared the other attention methods, except DualAN, Ours-RFA
(Figure 8g) achieves better performance which has more TPs and less FPs.
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(3) WHU: Figure 9 exhibits the results of proposed attention method and its comparisons. The result
obtained by using Ours-RFA (Figure 9g) are more complete, which indicates that the proposed attention
module improves the performance of labeling fine-structured buildings in the VHR images. Closer
inspection of the 2 rd row in Figure 10 testifies our point, only Ours-RFA method identified almost
building pixels and a small number of misclassified pixels, while other methods struggled with
identifying the rooftop and the results of them have many FNs. The results of CAB (Figure 9c) are
relatively good, but still some FPs presented in Figure 10c, indicating that CAB did not distinguish
ground pixels well enough. Most FNs in the results of GRID (see the third row in Figure 10d) implies
that GRID does not fully utilize the context information and lack ability of identifying rooftop pixels
with complex texture.
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Building (white) and background (black). True positive (TP) is marked as green, false positive (FP) as
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Table 3 provides the summary statistics for quantitve comparisons of different attention modules.
Ours-RFA obtained the best result with the overall accuracy, the F1-score and the IoU score among
all attention methods on three datasets, and the result of quantitative comparison is consistent with
visual effect. Both on the Mass. Buildings test sets and WHU test sets, CAB achieved the second best
performance. DenseAN had a comparable result of the overall accuracy with the proposed RFA on the
Potsdam test sets but the IoU score was 6.63% lower than that of Ours-RFA. The quantitive results of
DualAN on three datasets are not satisfactory, implying that the strategy of only applying refinement
on the deep feature is not stable for building extraction in the VHR images.

Table 3. Quantitative comparison with other attention modules (%) on three test sets, where values in
bold are the best and the underlined values are the second best.

Dataset Attention Overall Accuracy F1-Score IoU

Mass. Buildings

CAB 93.83 83.00 70.94
GRID 93.33 82.35 70.00

DenseAN 93.54 82.36 70.01
DualAN 89.83 71.17 55.24

RFA(Ours) 94.71 85.65 74.91

Potsdam

CAB 92.81 85.89 75.27
GRID 94.95 89.38 80.80

DenseAN 95.97 91.58 84.48
DualAN 95.62 90.90 83.33

RFA(Ours) 97.79 95.35 91.11

WHU

CAB 98.34 92.51 86.07
GRID 97.92 90.57 82.77

DenseAN 98.06 91.28 83.96
DualAN 97.89 90.40 82.49

RFA(Ours) 98.84 94.75 90.02

3.5. Comparison with State-of-the-Art

To evaluate the effectiveness of the proposed attention model, comparisons were made with
other existing FCNs methods for building detection. The list of models includes the following: (1)
RFA-UNet (Ours): an encoder–decoder style fully convolutional network with extended hybrid
attention module. (2) UNet: an architecture originally proposed for segmentation of biomedical
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images that captures context information at multiple scales via contracting and expansive paths.
(3) SegNet [63]: an encoder–decoder architecture for scene segmentation, in which the decoder uses
pooling indices computed in the max-pooling step of the corresponding encoder to perform non-linear
upsampling. (4) RefineNet [64]: a multi-path refinement network that exploits multi-level features for
high-resolution prediction with long-range residual connections, achieving the state-of-the-art results
on several public datasets. (5) FC-DenseNet [65]: a model adopts dense connected convolutional
networks into U-shape architectures to tackle the problem semantic segmentation. By using dense
connections, multiple level features are concatenated iteratively to form a dense block. It should be
noted that we implemented the methods above (the training parameters for these methods are same as
ours) and also incorporated some advanced numerical results on each of the three datasets reported in
the literatures [52,66,67].

Figures 11–13 demonstrate the close-up views of the five classification results using three subset
images of three test sets, respectively. SegNet obtained comparable results on Potsdam (Figure 12c) but
cannot distinguish large building objects on WHU, and obvious FNs appeared in the last two rows
of Figure 13c, indicating that SegNet is not robust to identify complex manmade objects. The results
of FC-DenseNet and RefineNet are relatively smooth, while they are still less accurate. As shown
in Figures 11d and 12e, FC-DenseNet and RefineNet did not perform well, as many FPs and FNs
appeared in the second row of their results. Similar to the results on Mass. Buildings, there were also
some FPs in the results of FC-DenseNet and RefineNet (see the first row in Figure 12d,e) on Potsdam.
These findings suggest that their strategies for simply reusing features densely or using long-range
residual connections are not efficient enough due to the categorical ambiguity of the low level features.
Our RFA-UNet model were more effective in the recognition of building objects on three test sets.
Though the result of RFA-UNet have a few flaws, they still perform more precise localization and
accurate labeling (see Figure 11g, Figure 12g, and Figure 13g). Meanwhile, the performance of our
model also shows that the RFA module has improved the classification ability of network, as compared
to the performance of the UNet method.
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According to Table 4, compared with abovementioned FCNs-based semantic segmentation models
and recently published methods in the remote sensing fields, our method is better than them on the
same datasets. On the test set of Mass. Buildings (spatial resolution of 1.0 m), our method surpasses
second best model by 0.64% in terms of F1-score. For the test set with higher spatial resolution, the IoU
score of our model was around 2.42% higher than that of the second best model RefineNet on the
Potsdam (0.05 m), and 1.0% higher than that of pervious best model SRI-Net on the WHU (0.3 m).
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Table 4. Quantitative comparison with other deep models (%) on three test sets, where values in bold
are the best and the underlined values are the second best.

Dataset Methods 1 Overall Accuracy F1-Score IoU

Mass. Buildings

UNet (baseline) 93.33 81.69 69.04
SegNet 92.84 80.25 67.00

RefineNet 91.54 75.55 60.71
FC-DenseNet 93.57 82.90 70.79

Deeplab-v3plus 93.83 82.97 70.89
MFRN [66] 94.51 85.01 /

RFA-UNet (Ours) 94.71 85.65 74.91

Potsdam

UNet (baseline) 91.84 84.19 72.69
SegNet 95.92 91.40 84.16

RefineNet 97.10 94.00 88.69
FC-DenseNet 94.33 87.73 78.14

DAN [52] 96.16 92.56 86.71
RFA-UNet (Ours) 97.79 95.35 91.11

WHU

UNet (baseline) 98.07 91.35 84.08
SegNet 98.18 91.18 84.88

RefineNet 98.64 93.87 88.45
FC-DenseNet 98.44 93.11 87.10

Deeplab-V3+ [67] / 93.22 87.31
SRI-Net [67] / 94.23 89.09

RFA-UNet (Ours) 98.84 94.75 90.02
1 This table incorporates the results by ourselves and numerical results reported by other authors.

4. Discussion

Applying the attention mechanism to the segmentation model UNet, we observe that our joint
attention module improves the performance of existing architecture for the task of building extraction
in VHR images. The reason why the proposed attention improves the performance might be related
to the inherent attributes of CNNs and the flaw of the plain skip connection in the encoder–decoder
architectures. Generally, CNNs increase the receptive field by stacking convolution layers, which
means the receptive field of a given layer only focus on a local region, especially at the shallow of
the network. Therefore, the difference between deep layer and shallow layer in the use of context
information leads to the variation of classification capacities. On the other hand, the spatial information
of low level features is important to localize the classified objects, but these low level features also
bring debatable noisy information that results in categorical errors [68]. In this paper, we rethink the
relationship between shallow and corresponding deep layers in the skip connection at the feature level.
In order to leverage the spatial information from shallow layers and the context information from
deep layers, we employ the attention mechanism that highlights advantageous features and suppress
features making less contribution. The channel-wise attention part of the proposed module applies
global average pooling to the concatenated features, which extracts global categorical information of
two input features. Two subsequent fully connected layers play an important role in capturing feature
dependencies in the channel dimension. This way ensures the cross-layers information exchange.
Thus, the rescaled low level output activated by sigmoid is more dynamically consistent with high
level features. Furthermore, the spatial attention part uses additive attention to refine the low level
features with the aid from the high level features that with larger receptive fields, which introduces
more elaborate context to improve the classifying ability of the features.

Compared to other existing attention method, flexibility is an advantage of our proposed attention
module. The experimental results on three different datasets demonstrate that RFA module can better
deal with the task of building extraction with different sources of aerial images. Taking channel and
spatial dimensions into account successively allows for a more robust interaction of context information
between the feature layers in the segmentation model. Meanwhile, the residual mapping branch of



Remote Sens. 2019, 11, 2970 16 of 21

RFA alleviates the gradient vanishing in the training process. These are two reasons why the proposed
RFA attention module outperforms other single attention methods in this study. With respect to
DualAN that also uses two kinds of attentions in the comparison, our approach is quite different
from it. In particular, DualAN applies attention mechanisms in parallel to the bottleneck of network,
which focuses on employing self-attention to enhance representation of deep features, rather than
reducing the semantic discrepancy between different level features. Moreover, because of the high cost
of intermediate matrix multiplication in the DualAN, the authors [62] just place it for the bottleneck
features with low spatial resolution. The experimental results imply this strategy is not effective enough
for building extraction in the aerial images. However, our practice has shown that the proposed joint
attention only increases small cost of additional model parameters (see Table 5, about 0.4 million) and
computation (about 1.53 MB), even when applied at every level of the network. This flexibility implies
the possibility of embedding RFA in other architectures in the future.

Table 5. Comparison with baseline.

Methods Parameters Dataset Training Time Inference Time 1

UNet (baseline) 25.71 million

Mass.
Buildings ~2 h 0 m 5 s

Potsdam ~6 h 3 m 4 s
WHU ~11 h 2 m 20 s

RFA-UNet (Ours) 26.11 million

Mass.
Buildings ~2 h 0 m 6 s

Potsdam ~12 h 6 m 15 s
WHU ~8 h 4 m 10 s

1 Time consumed by the method to predict the complete test set.

There is abundant room for further studies. First, the proposed RFA module does not validate the
possible improvements it might bring on the other encoder–decoder models. At present, the reason we
do not apply the RFA module to other models is that many factors need to be considered, such as the
computational resource consumption of the models, the applicability of models themselves to different
data sets and hyperparameter settings of models. The comparison with other methods in training time
also means further hyperparameter optimization of the proposed module is possible (see Tables 5
and A1). Therefore, it is needed to provide a more comprehensive comparison of these methods in the
future. Second, we have conducted the experiments on three datasets of urban buildings in the public
domain (e.g., Mass. Buildings, Potsdam, and WHU). It is promising to develop the RFA applied models
on multi-source data and rural residential buildings. Finally, we only focus on the task of building
extraction in this paper. Since the proposed RFA-UNet can be easily transformed into a multi-class
semantic segmentation models, we plan to extend our model with extra geometric constraints and to
multiple classes.

5. Conclusions

In this paper, an end-to-end attention FCN model was proposed for building extraction in very high
resolution aerial imagery. We have implemented a re-weighting technique based attention mechanism
to adjust the response of features dynamically in channel-wise and spatial dimensions. With the aid of
the context information from high level features, the proposed joint attention module can effectively
enhance the semantic consistency of features across layers so as to improve the discrimination power
of the UNet model for the building extraction task. Experiments on three different high resolution
building datasets verified the effectiveness of attention mechanism, and the proposed RFA-UNet model
achieved state-of-the-art performance on these popular benchmarks.
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Appendix A

Table A1. Complexity comparison with other attention modules.

Methods Dataset Training Time Inference Time 1

CAB
Mass. Buildings ~3 h 0 m 6 s

Potsdam ~7 h 2 m 40 s
WHU ~13 h 4 m 35 s

GRID
Mass. Buildings ~2 h 0 m 5 s

Potsdam ~8 h 2 m 14 s
WHU ~12 h 3 m 49 s

DenseAN
Mass. Buildings ~2 h 0 m 5 s

Potsdam ~10 h 6 m 10 s
WHU ~13 h 3 m 45 s

DualAN
Mass. Buildings ~4 h 0 m 6 s

Potsdam ~19 h 6 m 19 s
WHU ~15 h 3 m 12 s

RFA(Ours)
Mass. Buildings ~2 h 0 m 6 s

Potsdam ~12 h 6 m 15 s
WHU ~8 h 4 m 10 s

1 the time consumed by the method to predict the complete test set.
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