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Abstract

The task of camera-based localisation aims to quickly and precisely pinpoint the
location (and viewing direction) in which a given image was taken, relative to a pre-
captured large-scale map of the environment. This technique can be used in many
3D vision applications, such as AR/VR, robot navigation (SLAM) and autonomous
driving.

Mapping the world is a prerequisite for camera-based localisation because a pre-
stored map serves as a reference for a query image/sequence. In this thesis, we
leverage three readily available sources: (i) satellite images; (ii) ground-view images;
(iii) 3D points cloud. Based on the above three sources, we propose solutions to lo-
calise a query image both effectively and efficiently, i.e., accurately localising a query
image under a variety of lighting and viewing conditions within a small amount of
time.

The main contributions of this thesis are summarised as follows.
In chapter 3, we present a minimal 4-point and 2-point solver to estimate a relative

and absolute camera pose. The core idea is to exploit the gravity direction from IMU
or vanishing point to derive a closed-form solution of quartic and quadratic equations
for the relative and absolute camera pose, respectively.

In chapter 4, we propose a method to localise a ground-view query image against
a satellite map. Inspired by the insight that humans commonly use orientation in-
formation as an important cue for spatial localisation, we propose a method that
endows deep neural networks with the ‘commonsense’ of orientation. We design a
Siamese network that explicitly encodes each pixel’s orientation of the ground-view
and satellite images. Our method boosts the learned deep features’ discriminative
power, leading to better localisation performance outperforming previous methods.

In chapter 5, we present a method to localise a ground-view query image against a
ground-view image database. We propose a representation learning method having
higher location-discriminating power. The core idea is learning discriminative im-
age embedding, such that similarities among intra-place images (viewing the same
landmarks) are maximised while similarities among inter-place images (viewing dif-
ferent landmarks) are minimised. The method is easy to implement, and easy to be
plugged into any CNN layer. Experiments show that our proposed method improves
the localisation performance on standard benchmarks by a large margin.

In chapter 6, we propose a method to localise a ground-view query image against
a large-scale 3D points cloud with visual descriptors. To address the ambiguities in
direct 2D–3D feature matching, we introduce a global matching method that har-
nesses global contextual information exhibited both within the query image and
among all the 3D points in the map. The core idea is to find the optimal 2D set to 3D
set matching. Tests on standard benchmark datasets show that our method achieves
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both higher precision and comparable recall, compared with the state-of-the-art.
In chapter 7, we present a method to localise a ground-view query image against

a 3D points cloud with only coordinates. The problem is also known as blind
Perspective-n-Point. We propose a deep method that simultaneously solves for both
the 6-DoF absolute camera pose and 2D–3D correspondences. The core idea is ex-
tracting point-wise 2D and 3D features from their coordinates and matching features
effectively in a global feature matching module. Extensive tests on both real and
simulated data have shown that our method substantially outperforms existing ap-
proaches and can process thousands of points a second with state-of-the-art accuracy.

In chapter 8, we study the potential of using 3D lines. Specifically, we study the
problem of aligning two partially overlapping 3D line reconstructions in Euclidean
space. This technique can be used for localisation with respect to a 3D line database
when query 3D line reconstructions are available (e.g., from stereo triangulation). We
propose a neural network, taking Plücker representations of lines as input, and solv-
ing for line-to-line matches and estimate a 6-DoF rigid transformation. Experiments
on indoor and outdoor datasets show that our method’s registration (rotation and
translation) precision outperforms baselines significantly.

Keywords: Mapping and Localisation, 6-DoF Camera Pose, Minimal Solvers, Ground-
view and Satellite Images, Points and Lines, Registration.
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8.2 PlückerNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.2.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.2.2 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.2.3 Feature matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.2.4 Pose estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.3.1 Datasets and evaluation methodology . . . . . . . . . . . . . . . . 107
8.3.2 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . 109

8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

9 Conclusion 117
9.1 Summary & Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A Appendix: Building a Large-Scale Map for Localisation 123
A.1 Building a Ground-view Image Database . . . . . . . . . . . . . . . . . . 123

A.1.1 Google street view . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.1.2 A hand-crafted GPS/IMU/Stereo mapping system . . . . . . . . 127

A.2 Building a Satellite Image Database . . . . . . . . . . . . . . . . . . . . . 134
A.3 Reconstructing a 3D points Cloud Database . . . . . . . . . . . . . . . . 136



xiv Contents



List of Figures

1.1 GPS signals can be easily blocked or transmitted in multi-paths to the receiver in a
city. This example is taken from Moreau et al. [2017]. . . . . . . . . . . . . . . . . 1

1.2 Given a ground-view query image, we aim to estimate its 6-DoF pose (Rotation
and translation) in a world coordinate system. Left: a ground-view query image
(panorama) taken near the Brian Anderson Building on the ANU campus. Right:
the 6-DoF pose of the query image. . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 This figure illustrates two exemplar applications of camera-based geo-localisation.
Left: hand-held location-aware AR (Augmented Reality). Right: camera-based pre-
cise vehicle localisation to support autonomous (or semi-autonomous) driving. The
two examples are from the Blue Vision Labs (Platinsky et al. [2020]). . . . . . . . . 2

1.4 Illustration of mutual visibility relationship between database images and 3D points.
Left: An image; Right: 3D points. The image and 3D points are taken from the Point
Cloud Visibility Dataset (Biasutti et al. [2019]). . . . . . . . . . . . . . . . . . . 3

1.5 A general framework of image-retrieval based localisation using a pre-stored image
database with geographical tags. The query image is compared against an image
database to find the most visually similar database image. The geographic location
of the retrieved database image is deemed as that of the query. For this example, red
box bounded images are not matchable with respect to the query, while the green box
bounded image is matchable with respect to the query. The query image is captured
in Moraine lake. The query and database images are taken from the Google Landmark
dataset Google [b]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 An example of 2D–3D matching based localisation using a pre-stored 3D points
cloud. For the query image (Left), it is matched against the 3D points cloud (Right) to
find matchable 2D–3D pairs. 2D–3D matches are fed to a RANSAC-PnP procedure
to estimated a 6-DoF camera pose. The query image and 3D points cloud are taken
from the Dubrovnik dataset. (Li et al. [2010]) . . . . . . . . . . . . . . . . . . . . 5

1.7 A hierarchical coarse-to-fine localisation strategy, which combines image retrieval and
2D–3D matching. Given a query image, image retrieval is utilised to retrieve local
3D points with respect to the query. Given the query image and local 3D points, 2D–
3D matching is performed to find putative 2D–3D matches, with a PnP-RANSAC
procedure to estimate the 6-DoF pose (Geographic position and orientation) of the
query image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.8 The overall structure of this thesis. . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.9 We drive along the Daley road in the ANU campus to build our HD map, which is

composed of 3D points, ground-view and satellite images. . . . . . . . . . . . . . . 7

xv



xvi LIST OF FIGURES

4.1 Given a ground-level spherical omnidirectional image (a) (or its panoramic represen-
tation as shown in (b)) as a query image, the task of image-based localisation (IBL)
is to estimate the location of the query image by matching it to a large satellite image
database covering the same region, as given in (c). The found correct match is shown
in (d), which is centred at the very same location as (a). . . . . . . . . . . . . . . . 30

4.2 Our baseline Siamese network: the inputs to the two branches are ground-level
panoramas and satellite images, respectively. Features are learned by minimising
a triplet loss (Hu et al. [2018b]). . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 We use spherical angles (azimuth and altitude) to define the orientation at each pixel
of a ground-level panorama (shown on the left), and use polar coordinates (azimuth
and range) to define the orientation for pixels in a satellite image (shown on the right). 34

4.4 Colour-coded orientation maps (i.e., U-V maps) . Left: U-V map for ground-level
panorama; Right: U-V map for aerial view. . . . . . . . . . . . . . . . . . . . . . 34

4.5 Two schemes to incorporate orientation information. Scheme-I (top): orientation
information (U-V map) are injected to the input layer only; Scheme-II (bottom):
orientation information (U-V map) are injected to all layers. . . . . . . . . . . . . . 35

4.6 Our overall network architecture (in Scheme-I). Cross-view images and their associ-
ated orientation maps are jointly fed to the Siamese net for feature embedding. The
learned two feature vectors are passed to a triplet loss function to drive the network
training. The numbers next to each layer denote the number of filters. . . . . . . . . 36

4.7 A sample ground-level panorama and satellite image pair from CVUSA dataset. . . . 37

4.8 This graph shows that, simply by exploiting orientation information to a baseline
Siamese network (via U-V maps) we are able to boost the success rates (measured in
recalls) by over 25%. Our new method also outperforms the SOTA deep cross-view
localisation method of CVM-net. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.9 t-SNE visualisation of cross-view features learned by our method. The ID on the
top-left corner of each image denotes the index of the cross-view pair (Maaten and
Hinton [2008]). (Best viewed on screen with zoom-in) . . . . . . . . . . . . . . . . 40

4.10 Comparison of recalls with respect to errors in the ‘true north’ estimation on CVUSA.
Our method degrades gracefully as the error increases. . . . . . . . . . . . . . . . . 41

4.11 Comparison of recall performance with respect to different Field of Views on CVUSA
(Zhai et al. [2017]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.12 Example localisation results on CVACT dataset by our method. From left to right:
query image and the Top 1-5 retrieved images. Green borders indicate correct re-
trieved results. Since our dataset densely covers a city-scale environment, a query
image may have multiple correct matches (e.g., the 3rd row). (Best viewed in colour
on screen) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.13 localisation performance of our method versus CVM-net on our new CVACT dataset. 43



LIST OF FIGURES xvii

5.1 The pipeline of our method. We use the VGG16 net (Simonyan and Zisserman
[2014]) with only convolution layers as our architecture. NetVLAD (Arandjelovic
et al. [2016]) pooling is used to obtain compact image representations. The feature
vectors are post L2 normalised. The L2 distance between the query-positive and the
query-negative images are calculated, and converted to a probability distribution. The
estimated probability distribution is compared with the ground-truth match-ability
distribution, yielding the Kullback-Leibler divergence loss. . . . . . . . . . . . . . 47

5.2 Triplet ranking loss imposes the constraint ‖ fθ(q)− fθ(n)‖2 > m+ ‖ fθ(q)− fθ(p)‖2.
Contrastive loss pulls the L2 distance of q ∼ p pair to infinite-minimal, while push-
ing the L2 distance of q ∼ n pair to at least τ-away. . . . . . . . . . . . . . . . . 49

5.3 Comparison of gradients with respect to p and n for different objectives. m =

0.1, τ = 0.7. (Best viewed in colour on screen) . . . . . . . . . . . . . . . . . . . 52
5.4 Comparison of the gradients with respect to n for different objectives. m = 0.1, τ =

0.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5 Handling multiple negative images. Left: The first method treats multiple negatives

independently. Each triplet focuses on the competitiveness over two places, one de-
fined by query • and positive •, and the other one defined by negative •. Right:
The second strategy jointly handles multiple negative images, which enables compet-
itiveness over multiple places. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.6 Comparison of recalls for different kernel defined SARE-objectives. From left to right
and top to down: Pitts250k-test, TokyoTM-val, 24/7 Tokyo, and Sf-0. (Best viewed
in colour on screen) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.7 Example retrieval results on Sf-0 benchmark dataset. From left to right: query image,
the heat map of Our-Ind, the heat map of NetVLAD (Arandjelovic et al. [2016]), the
top retrieved image using our method, the top retrieved image using NetVLAD.
Green and red borders indicate correct and incorrect retrieved results, respectively.
(Best viewed in colour on screen) . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.8 Comparison of recalls for deep metric learning objectives. From left to right and top
to down: Pitts250k-test, TokyoTM-val, 24/7 Tokyo, and Sf-0. (Best viewed in colour
on screen) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.1 Given a query image (Left), we first detect 2D SIFT feature points (Black) and then
aim to establish 2D–3D matches with respect to a pre-stored 3D points cloud (Right).
Due to a large number of 3D points, finding correct 2D–3D matches is very chal-
lenging. Only a small amount of correct 2D–3D matches can be found, as indicated
2D points (Green) on the left and 3D points (Red) on the right. Red points on the
left denote outlier 2D points found by “PnP+RANSAC". . . . . . . . . . . . . . . 64

6.2 We solve a large-scale image-based localisation problem by leveraging global contex-
tual information manifested as the co-visibility relationship between pairs of 3D map
points. (a) Image features extracted from the query image; (b) Assign 2D features
to visual words to obtain candidate 3D matches; (c) The matches are ranked based
on global contextual information; (d) One-to-one 2D–3D matches are disambiguated;
(e) PnP+RANSAC is used for 6-DoF camera pose recovery against the 3D map (f). . 65



xviii LIST OF FIGURES

6.3 Left: traditional local method, in which the decision is made locally and sequentially;
Right: the proposed global match scheme, where we seek an optimal set-to-set match.
Blue nodes: 2D features in the query image. Green node: 3D points in the 3D map.
Blue links indicate the co-visibility relationship among 3D points. . . . . . . . . . . 66

6.4 An illustration of a toy-sized map-graph G(V, E). Green nodes are the 3D point
clouds in the map. Blue edges are co-visibility links. The blue nodes on the bottom
represent 2D query features which assign initial probabilities to the 3D points based
on the query-vector q computed by Eq.(6.2). . . . . . . . . . . . . . . . . . . . . . 69

6.5 (a). Compare the two histograms of inlier ratios for the 800 query images of Dubrovnik.
Red: histogram by our method; Light-blue: histogram by Active-Search. The aver-
age inlier-ratio obtained is 81.1%, and 57.1%, by our method and by Active-Search,
respectively. (b). The absolute improvement in terms of inlier numbers (=#(inliers
found by our method)-#(inliers found by Active-Search)) over all query images from
Dubrovnik. A positive-valued ‘difference’ means more inliers are detected by our
method. Our method consistently outperforms the local Active-Search method for
almost all 800 queries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.6 Recall curve: i.e., the number of localised images as a function of the inlier ratio
threshold. The higher, the better. (see text for more details). . . . . . . . . . . . . . 73

6.7 localisation Precision on the Dubrovnik dataset. Left: translation error histogram;
Right: rotation error histogram. Results by our method in red, and by Active-Search
in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.8 Compared with five other existing methods, our method achieves the best localisation
precision while maintaining a high recall on the metric Dubrovnik dataset. The lower
the error bar is, the better the method. . . . . . . . . . . . . . . . . . . . . . . . . 75

6.9 Sample results on metric Dubrovnik data. The detected inlier points are shown as
circles in green, and outlier features in red, against different localisation errors. SIFT
feature points are depicted as black dots. For images with error < 18.3m, the inliers
are evenly distributed over the image. For images with 18.3m < error < 400m, the
inlier features tend to concentrate on a small region of the image. . . . . . . . . . . 75

6.10 Estimated 6-DoF camera poses with respect to the 3D point clouds on the metric
Dubrovnik dataset. The 3D points are denoted by black dots. Estimated and ground-
truth camera poses are coloured in red and blue, respectively. The number beside
the camera model is the index of the query image. (Best viewed on screen with
zoom-in.) An online demo is available at https://www.youtube.com/watch?v=
hBwdMcZhbfo&list=UUXw_IGWxWrOuhYhJ-BbmNnw . . . . . . . . . . . 76

6.11 The detected repeated structure on query images in the Dubrovnik dataset. Yellow
circles denote the feature points on the repeated structure. . . . . . . . . . . . . . . 77

https://www.youtube.com/watch?v=hBwdMcZhbfo&list=UUXw_IGWxWrOuhYhJ-BbmNnw
https://www.youtube.com/watch?v=hBwdMcZhbfo&list=UUXw_IGWxWrOuhYhJ-BbmNnw


LIST OF FIGURES xix

7.1 The overall pipeline of our method. First, the coordinates of 2D and 3D points
are passed into a two-stream network to extract point-wise deep features. Then
a global matching module estimates 2D–3D matches from these features using an
optimal mass transport (OMT) technique (Villani [2009]; Cuturi [2013]; Courty
et al. [2016]). Finally, an inlier classification CNN is used to further separate inlier
matches from those outlier matches. At test time, apart from automatically recover-
ing 2D–3D correspondences, the underlying 6-DoF camera pose is also recovered via
standard PnP solver with RANSAC. . . . . . . . . . . . . . . . . . . . . . . . . 80

7.2 Our feature extraction pipeline. Given an input set with size M × d, we first per-
form the nearest neighbor search and build a point-wise KNN graph. For each point
(anchor), we extract K× d anchor–neighbor edge features and concatenate these with
the anchor features. This is then passed through a shared MLP block and an aver-
age pooling block to aggregate local features. Hence, this feature vector encodes local
geometric information from the point-wise KNN graph. Next, the local features at
each point are passed to a context normalisation module to encode global contextual
information, followed by batch normalisation, a ReLU non-linearity, and a shared
MLP to output the final point-wise features. . . . . . . . . . . . . . . . . . . . . . 82

7.3 Our feature matching pipeline. Given an M × d feature set from the 3D data and
an N × d feature set from the 2D data, we compute the pairwise L2 distance matrix
H. Along with a unary matchability M-vector from the 3D data and N-vector from
the 2D data, the distance matrix H is transformed to a joint probability matrix W
using Sinkhorn’s algorithm. Reshaping W and sorting the 2D–3D matches by their
corresponding matching probabilities generates a prioritised 2D–3D match list. We
take the Top-K matches as our set of putative correspondences. . . . . . . . . . . . 83

7.4 Sample 3D (top row) and 2D (bottom row) points cloud from ModelNet40 (Left) and
NYU-RGBD (Middle) and real-world MegaDepth (Right) datasets. . . . . . . . . 88

7.5 The average number of inlier matches with respect to the number of found 2D–3D
matches. Left: ModelNet40. Right: NYU-RGBD. . . . . . . . . . . . . . . . . . 91

7.6 Average inlier ratio with respect to the number of found 2D–3D matches. Left: Mod-
elNet40. Right: NYU-RGBD. Top-K denotes truncating the prioritised matching list
at the Kth position. Top-K-C denotes additionally using the classification network to
disambiguate inliers from outliers. . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.7 Comparison of recall with respect to error thresholds on rotation and translation.
Top: ModelNet40. Bottom: NYU-RGBD. . . . . . . . . . . . . . . . . . . . . . 93

7.8 Comparison of rotation and translation errors on the MegaDepth dataset. Recall with
respect to error thresholds on rotation (Left), translation (Middle), and both (Right)
are plotted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



xx LIST OF FIGURES

7.9 Qualitative comparison with state-of-the-art methods on the MegaDepth dataset,
showing the projection of 3D points onto images using poses estimated by differ-
ent methods. Green border indicates the rotation/translation error of the estimated
pose is less than 5◦/0.5 while red border indicates the rotation/translation error of
the estimated pose is larger than 5◦/0.5. Our method found more correct poses. The
indices of these images on the MegaDepth testing dataset are 1, 1000, 2000, 3000,
4000, 5000, 6000 and 7000 from top to down. (best viewed in colour). . . . . . . . 95

7.10 Robustness to outliers on the MegaDepth dataset. Median rotation and translation
errors with respect to the outlier ratio. Left: synthetic. Right: real-world outliers. . 96

7.11 Comparison of the average number of inliers with respect to the number of found
2D–3D matches for different backbone networks (Left) and loss functions (Right) on
the MegaDepth dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.1 Our problem is to align two partially-overlapped line reconstructions or, equivalently,
to estimate the relative pose between two line reconstructions. Left: Red and Black
lines (depicting street-view buildings and landmarks) are in two different coordinate
systems from the Semantic3D dataset Hackel et al. [2017]. Right: our method is able
to successfully align the two line reconstructions in a one-shot manner. . . . . . . . 98

8.2 The overall pipeline of our method. First, lines are represented as 6-dim Plücker
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Chapter 1

Introduction

Spatial Location is a fundamental type of information about our physical world. In
our everyday living, we continually face the localisation problem, i.e., to determine
precisely “where am I" relative to the surrounding environment.

The GPS (Global Positioning System) is probably the best known location-sensing
device, which has been used for a wide range of applications of significant impacts.
However, GPS has several well-known limitations, to be explained below, which hin-
der its deployment in mission-critical applications.

1. The precision of most consumer-grade GPS is generally low (usually at 10m–
100m level (Zandbergen and Barbeau [2011]), even with the aid of cellular sig-
nal and map correction), not sufficient for critical tasks;

2. GPS only works outdoors, and even so, its signals can still be occluded, es-
pecially in metropolitan areas with tall buildings (e.g., while a GPS-navigator
generally works okay in rural Canberra, it is often unreliable in the CBD of
Sydney. Figure 1.1 illustrates this challenge.);

3. GPS only estimates 3 Degrees-of-Freedom (DoF) positional information, but no
orientation information (which is required in practice such as navigation/AR).

Figure 1.1: GPS signals can be easily blocked or transmitted in multi-paths to the receiver in a city.
This example is taken from Moreau et al. [2017].

Nowadays, mobile and portable devices with built-in cameras (e.g., smartphones,
in-car dashboard cameras, or vehicle surround-view cameras) are ubiquitous, which

1



2 Introduction

provide a possible new way for localisation by using visual information captured
by a camera. In this thesis, we aim to exploit such rich visual information for the
purpose of localisation. Specifically, our problem (c.f., Figure 1.2) is: given a query
image from a camera, determine its 6-DoF pose (Rotation and translation) in a
world coordinate system. The solution to such an image-based localisation (IBL)
problem can be used in many 3D computer vision applications. For example, in an
AR/VR application, a prerequisite of interacting between virtual instances and real
scenes is knowing the accurate 6-DoF pose of an agent; in a self-driving application,
a prerequisite of safe driving is accurately knowing the 6-DoF pose of an agent in
the geographical world coordinate system. The above two examples are visualised
in Figure 1.3.

Figure 1.2: Given a ground-view query image, we aim to estimate its 6-DoF pose (Rotation and
translation) in a world coordinate system. Left: a ground-view query image (panorama) taken near
the Brian Anderson Building on the ANU campus. Right: the 6-DoF pose of the query image.

Figure 1.3: This figure illustrates two exemplar applications of camera-based geo-localisation. Left:
hand-held location-aware AR (Augmented Reality). Right: camera-based precise vehicle localisation to
support autonomous (or semi-autonomous) driving. The two examples are from the Blue Vision Labs
(Platinsky et al. [2020]).

In the follows, we will first explain the image-based localisation problem and its
typical solution techniques in Section 1.1, and then conclude this chapter by sum-
marising our main contributions an well as this thesis’s structure in Section 1.2.
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1.1 Solving the Camera Localisation Problem

A prerequisite to solving the camera localisation problem is mapping a scene of
interest to capture robust scene representations (i.e., invariant to lighting, season,
and viewpoint changes). This prior mapping step is indispensable 1 as it provides
an absolute reference for query images. Although the importance of mapping is
well-known, there is no universal agreement on what information the map should
contain. The two most commonly used map components are (i) database images
with geographic location information; (ii) 3D points with visual descriptors. There
are two parallel techniques based on the two components: (i) Image retrieval; (ii)
Direct 2D–3D matching. Suppose the database consists of registered images and 3D
points. In that case, the best practice is using a hierarchical coarse-to-fine strategy
to achieve state-of-the-art localisation performance, which combines image retrieval
and 2D–3D matching. Here, being registered means the mutual visibility relationship
between database images and 3D points is known. Given a database image, its visible
3D points can be automatically retrieved, and vice versa. Figure 1.4 illustrates this
mutual visibility relationship.

Figure 1.4: Illustration of mutual visibility relationship between database images and 3D points.
Left: An image; Right: 3D points. The image and 3D points are taken from the Point Cloud Visibility
Dataset (Biasutti et al. [2019]).

1.1.1 Image retrieval based localisation

Image retrieval 2, i.e., given a query image, finding the most similar database images
from a database image repository. In the localisation context, each database image
is associated with a geo-tag, and the position of the best database image is deemed
as that of the query image, or the positions of the top N database images are fused
to estimate the position of the query image (Sattler et al. [2012b, 2017]; Song et al.
[2016]). The success of image-retrieval based localisation depends on whether we
can find true-matchable database images as the query. Wrongly retrieving false-
positive database images will lead to the failure of localisation. A general framework

1Though direct regression based methods (e.g., PoseNet) do not explicitly have this mapping step,
they generalise poorly to large-scale scenes.

2We focus on content-based, not concept-based image retrieval throughout this thesis.
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Figure 1.5: A general framework of image-retrieval based localisation using a pre-stored image
database with geographical tags. The query image is compared against an image database to find the
most visually similar database image. The geographic location of the retrieved database image is deemed
as that of the query. For this example, red box bounded images are not matchable with respect to the
query, while the green box bounded image is matchable with respect to the query. The query image is
captured in Moraine lake. The query and database images are taken from the Google Landmark dataset
Google [b].

of image-retrieval based localisation is given in Figure 1.5. For image retrieval, the
core research problem is extracting discriminative image representations such that
they can be used to find true-matchable database images for a query. In chapter
4 and 5, we separately present two methods to extract image representations, one
for retrieving a satellite image database and the other for retrieving a ground-view
image database.

Scalability is an important feature of image-retrieval based localisation methods.
Constructing an image database, adding images to the image database, or deleting
images from the image database is easy. For example, the Google Maps and Flicker
are two rich sources. A drawback of image-retrieval based localisation methods is
that only 3-DoF locations can be estimated. Even if database images are associated
with 3-DoF orientations, using database orientations as that of the query is often
far from the query’s ground-truth orientation. Despite the above weak-point, image
retrieval is now broadly adopted in state-of-the-art localisation methods (e.g., Sarlin
et al. [2019]; Shi et al. [2020a]) as it can prune out irrelevant database information
and find a local map for the query. Suppose additional coarse (phone-level) GPS
information is available for the query image to narrow down the retrieval scope.
In that case, image retrieval can be used in a city-scale AR system (Platinsky et al.
[2020]).

1.1.2 Direct 2D–3D matching based localisation

For a database consisted of 3D points with visual descriptors (e.g., Scale-Invariant
Feature Transform (SIFT)), direct 2D–3D matching based localisation methods first
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Figure 1.6: An example of 2D–3D matching based localisation using a pre-stored 3D points cloud.
For the query image (Left), it is matched against the 3D points cloud (Right) to find matchable 2D–3D
pairs. 2D–3D matches are fed to a RANSAC-PnP procedure to estimated a 6-DoF camera pose. The
query image and 3D points cloud are taken from the Dubrovnik dataset. (Li et al. [2010])

extract 2D feature points from the query image and then establish 2D–3D matches
using descriptor matching. With 2D–3D matches, an off-the-shelf Perspective-n-Point
(PnP) method 3 is adopted in a Random Sample Consensus (RANSAC) framework
to estimate a 6-DoF camera pose. An example of 2D–3D matching based localisation
is given in Figure 1.6. Though straightforward, direct 2D–3D matching is difficult for
large-scale 3D points cloud. The reason is, as the map size grows bigger, many 3D
points can be visually very similar–or even identical–causing severe ambiguities in
2D–3D descriptor matching. The key of direct 2D–3D matching based localisation is
to quickly and unambiguously find the correct 2D–3D matches between a query
image and the large 3D map. In this thesis, we present a global matching method to
establish 2D–3D matches in chapter 6.

Given 2D–3D matches, a standard approach is to apply a PnP method with
RANSAC to obtain a 6-DoF camera pose. Here, RANSAC is used to discriminate
inlier matches from outliers. Recently, learning-based methods (Dang et al. [2018];
Liu et al. [2020b]) show that inlier 2D–3D matches can also be discriminated pre-
emptively by only looking at 2D and 3D coordinates, which is promising for the
localisation task. Besides, using more advanced RANSAC schemes is also impor-
tant. For example, Jin et al. [2020] show that SIFT + MAGSAC (Barath et al. [2019]))
achieves state-of-the-art performance in a similar image matching task.

1.1.3 Hierarchical coarse-to-fine localisation

Current state-of-the-art solutions (Sarlin et al. [2019]; Germain et al. [2019]; Shi et al.
[2020a]) adopt a hierarchical coarse-to-fine strategy. They first use image retrieval to
find a potential matchable map (i.e., a local 3D map and top N most similar database
images) for the query and then establish 2D–3D matches between the query image

3With vertical direction, we propose a Perspective-2-Point method in Section 3.3.2.
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Figure 1.7: A hierarchical coarse-to-fine localisation strategy, which combines image retrieval and
2D–3D matching. Given a query image, image retrieval is utilised to retrieve local 3D points with
respect to the query. Given the query image and local 3D points, 2D–3D matching is performed to find
putative 2D–3D matches, with a PnP-RANSAC procedure to estimate the 6-DoF pose (Geographic
position and orientation) of the query image.

and the local map. This process is illustrated in Figure 1.7. The advantage of this
coarse-to-fine strategy is that it both inherits the merit of scalability from image re-
trieval and accurately estimating a 6-DoF pose with 2D–3D matching. In chapter 7,
we present a learning-based 2D–3D matching method between the query image and
the local map by only using 2D and 3D coordinates. The proposed method can be
used when database 3D points are not associated with visual descriptors (e.g., from
Lidar scanning).

1.2 Contributions & Thesis Outline

In this thesis, we first introduce fundamental concepts and techniques for camera-
based localisation (Chapter 3), and then contribute to the two core parts in camera-
based localisation: image retrieval (Chapter 4, 5) and 2D–3D matching (Chapter 6,
7). We also provide a 3D lines based camera pose estimation method (Chapter 8),
being an alternative to 3D points based camera pose estimation methods. The overall
structure of this thesis is given in Figure 1.8.

In chapter 3, we present technical components along the camera-based localisa-
tion pipeline, namely, camera model, image feature extraction, sparse feature match-
ing, and camera pose estimation. For the camera pose estimation, we introduce two
effective and efficient minimal solvers with vertical direction from IMU or vanish-
ing point: a 4-point relative pose solver and a 2-point absolute pose solver. The
2-point absolute pose solver can be used for globally localising a camera in a world
coordinate system. The 4-point relative pose solver can be used for locally propa-
gating consecutive camera poses in case of the failure of globally localising image
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Chapter 3. Foundations

Chapter 5. Localisation With Respect 
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Localisation With Visual Descriptors
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Chapter 8. Align 3D Line 
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Chapter 9. Conclusions

Image-retrieval based methods 2D-3D matching based methods 3D-3D matching based method

Figure 1.8: The overall structure of this thesis.

sequences. Both the 4-point relative and the 2-point absolute pose solver can be used
by a monocular or a multi-camera system.

In the appendix A, we also present engineering practices to build a database
composed of ground-view images, satellite images, and 3D points cloud. An example
of the ANU campus database is given in Figure 1.9. For ground-view images, we
can download them from the Google street-view repository or build a hand-crafted
mapping system with GPS/IMU/camera. For satellite images, they are available
from the Google static map. For 3D points cloud, they can be reconstructed using
Structure-from-Motion techniques.

After introducing foundations, we present specific camera localisation methods.

3D Model

Ground-view and Satellite imagesGround-view and Satellite images

Ground-view and Satellite images

Driving path

ANU campus 

Figure 1.9: We drive along the Daley road in the ANU campus to build our HD map, which is
composed of 3D points, ground-view and satellite images.
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For the image retrieval part, we propose two methods for localising a ground-view
query image: one with respect to a satellite image database (Chapter 4) and the other
with respect to a ground-view image database (Chapter 5); For the 2D–3D matching
part, we propose two methods to establish 2D–3D matches: one for 2D–3D matching
with visual descriptors (Chapter 6) and the other for 2D–3D matching with only
coordinates (Chapter 7).

In chapter 4, we give a method for localising a ground-view query image with
respect to a satellite image database. This is a challenging task due to the drastic
differences in their viewpoints and visual appearances, resulting in two different do-
mains for ground-view and satellite images. Our main contribution is to leverage the
orientation correspondences between the ground-view and satellite images. This is
inspired by the fact that, in everyday life, humans commonly use orientation informa-
tion as an important cue for spatial localisation. Based on this insight, we propose
a method that endows deep neural networks with the ‘commonsense’ of orientation.
Specifically, we design a Siamese network that explicitly encodes each pixel’s ori-
entation of ground-view and satellite images. Our method significantly boosts the
learned deep features’ discriminative power, leading to a much higher recall and pre-
cision outperforming all previous methods. Our network is also more compact using
only 1/5th number of parameters than a previously best-performing network. An-
other feature of our method is that it can be trained from scratch, without relying on
pre-trained networks using ImageNet (Deng et al. [2009]). To evaluate our method’s
generalisation ability, we also create a large-scale cross-view localisation benchmark
containing 100K geo-tagged ground-aerial pairs covering the Canberra city. Many
researchers have now used the dataset, which serves as a standard benchmark for
the cross-view image localisation task.

In chapter 5, a method for localising a ground-view query image with respect
to a ground-view image database is given. To solve the problem, a critical task is
to learn discriminative image representation that captures informative information
relevant for localisation. Our main contribution is proposing a representation learn-
ing method (termed as SARE) having higher location-discriminating power. This
representation learning method is compared with other methods (e.g., triplet rank-
ing (Arandjelovic et al. [2016]) and contrastive losses (Radenović et al. [2016])). We
also give theoretical comparisons and show why SARE is better by analyzing gra-
dients. Our SARE is easy to implement and pluggable into any CNN. Experiments
show that our method improves the localisation performance on standard bench-
marks (e.g., large-scale San Francisco dataset (Chen et al. [2011]; Sattler et al. [2017]),
24/7 Tokyo dataset (Torii et al. [2015a]) with lighting changes) by a large margin.
Demonstrating the broad applicability of our method, we obtain the 3rd place out of
209 teams in the 2018 Google Landmark Retrieval Challenge (Google [b]). The pro-
posed method is also used in our winning solution in the 2018 Baidu Self-localisation
Challenge (Huang et al. [2019]).

In chapter 6, a global direct 2D–3D matching based localisation method is given.
This is a challenging task, especially for large-scale problems. As the map size grows
bigger, many 3D points in the wider geographical area can be visually very similar–
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or even identical–causing severe ambiguities in 2D–3D feature matching. The key is
to quickly and unambiguously find the correct matches between a query image and
the large 3D map. Our main contribution is introducing a global 2D–3D matching
method that harnesses global contextual information exhibited both within the query
image and among all the 3D points in the map. This is achieved by a novel global
ranking algorithm, applied to a Markov network built upon the 3D map, which takes
account of not only visual similarities between individual 2D–3D matches, but also
their global compatibilities (as measured by co-visibility) among all matching pairs
found in the scene. Tests on standard benchmark datasets show that our method
achieves both higher precision and comparable recall, compared with the state-of-
the-art.

In chapter 7, we present a 2D–3D matching based 6-DoF camera pose estimation
method, only using 2D and 3D coordinates. The method can be applied to a scenario
where visual descriptors are not available (e.g., Lidar) or are too expensive to be
saved to a database. Since we do not know 2D–3D correspondences, the task is the
very challenging blind PnP problem. Our main contribution is proposing a first deep
CNN model that simultaneously solves for both the 6-DoF absolute camera pose
and 2D–3D correspondences. This is achieved by a two-stream network extracting
discriminative features from the 2D and 3D point sets, and a global feature matching
network based on a recurrent Sinkhorn layer to find 2D–3D correspondences. The
network is trained end-to-end by maximising the matching probabilities of inlier
2D–3D matches. With 2D–3D matches, our training loss can be optionally extended
by adding a 6-DoF pose loss, by minimising the difference between the estimated
6-DoF camera pose from a PnP–RANSAC procedure and the ground-truth 6-DoF
camera pose (Campbell∗ et al. [2020]). Extensive tests on both real and simulated
data have shown that our method substantially outperforms existing approaches and
can process thousands of points a second with state-of-the-art accuracy.

Finally, in chapter 8, we study the problem of aligning two 3D line reconstructions
in the Euclidean space: one from the query and the other from the database (e.g.,
using a 3D line based retrieval method (Taubner et al. [2020]) to find the potential
matchable database line reconstructions for the query). Our main contribution is
presenting a learning-based approach to estimate line-to-line matches and query-
to-database relative pose jointly. This is achieved by a line-based feature extraction
network and a global line-to-line matching method based on the optimal transport
theory (Villani [2009]; Cuturi [2013]; Courty et al. [2016]). With line matches, we
present a 2-line minimal solver with RANSAC to register 3D line reconstructions in
Euclidean space. To validate the performance of our method, we propose two 3D line
registration baselines (iterative closet lines and direct regression), three benchmark
datasets build upon works (Zheng et al. [2020a]; Hackel et al. [2017]; Baidu [2020])
and show the state-of-the-art performance of our method.

We conclude this thesis in chapter 9 by summarising our major contributions and
providing future research directions. We have made our source codes and datasets
available at https://github.com/Liumouliu for facilitating reproducible research.

https://github.com/Liumouliu
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Chapter 2

Literature Survey

In this chapter, we survey related image-based localisation works. Image-based local-
isation has received increased attention as a research subject due to heavy reliance of
important applications, such as augmented reality and autonomous driving. In gen-
eral, we divide current works into three categories: (i) image retrieval based on an
image database (Section 2.1); (ii) direct 2D–3D matching based on 3D points cloud
(Section 2.2); (iii) hierarchical coarse-to-fine strategy (Section 2.3), which combines
the best practices from (i) and (ii). At the end of this chapter, we summarise current
benchmark datasets for image-based localisation.

2.1 Image-retrieval Based Localisation

Image-retrieval based localisation methods aim to find the most similar database im-
ages for a query image. Traditionally, only ground-view images are used to construct
this image database. Recently, there are increasing numbers of works concerning us-
ing satellite images to construct an image database. Ground-view database images
are mostly clustered around landmarks and urban areas. Instead, satellite images
globally cover the earth, thus are very precious to build a complete geo-referenced
dataset. In the following paragraphs, we separately introduce methods for localis-
ing a query image against a satellite and ground-view database, in Section 2.1.1 and
Section 2.1.2, respectively.

2.1.1 Satellite based localisation

Finding a matchable satellite image from the database for a ground-view query im-
age is very challenging due to drastic differences in their viewpoints and visual
appearances. For cross-view localisation, traditional methods are mostly based on
hand-crafted features. For example, Lin et al. [2013] represent both ground-view
and satellite images using a combination of four features: HoG (Dalal and Triggs
[2005]), self-similarity (Shechtman and Irani [2007]), gist (Oliva and Torralba [2001]),
and color histograms.

With the success of modern deep learning, almost all current state-of-the-art
cross-view localisation methods (Hu et al. [2018b]; Workman and Jacobs [2015];

11
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Workman et al. [2015]; Vo and Hays [2016]; Liu and Li [2019]; Shi et al. [2019]; Zheng
et al. [2020b]) adopt deep Convolutional Neural Networks (CNN) to extract discrim-
inative image features. Paper Workman and Jacobs [2015] demonstrates that deep
features learned from a classification model pre-trained on the Places (Zhou et al.
[2014]) dataset outperform hand-crafted features. They further extend the work to
include cross-view training and show improved localisation performance (Workman
et al. [2015]). Vo and Hays [2016] explore several deep CNN architectures (e.g., Clas-
sification, Hybrid, Siamese and Triplet CNN) for the cross-view matching task, and
propose a soft margin triplet loss to boost the performance of triplet embedding.
They also give a deep regression network to estimate the orientation of a ground-
view image and utilise multiple possible orientations of aerial images to estimate
the ground-view orientation. Similarly, an orientation normalisation network (Tian
et al. [2020]) is proposed to regress rotations, transforming differently oriented im-
ages of the same location to the same orientation. Hu et al. [2018a] propose to use
NetVLAD (Arandjelovic et al. [2016]) as a feature aggregation method on top of the
VGG (Simonyan and Zisserman [2014]) architecture pre-trained on the ImageNet
dataset (Deng et al. [2009]), and obtain good performance with large number of net-
work parameters. Wang et al. [2020b] use a square-ring partition design to partition
cross-view images into multiple patches, extract multiple feature vectors, and com-
bine them to obtain a contextual representation of images. Inspired by ground-to-
satellite orientation correspondences, Liu and Li [2019] encode pixel-wise cross-view
image orientations to CNN to bridge the gap of cross-view images, boosting the dis-
criminative power of the learned deep features. Their lightweight network can be
trained from scratch without relying on pre-trained VGG (Simonyan and Zisserman
[2014]) or ResNet (He et al. [2016]).

Explicitly design modules to bridge the cross-view domain gap is important. For
example, a conditional GAN-based generator (Regmi and Shah [2019]) is adopted
to synthesise a satellite representation of a ground-view query, and the synthesised
satellite image is used to minimise the domain gap between the two views. A fea-
ture transport module based on optimal transport (Courty et al. [2016]) is adopted
to bridge cross-view domain gap in the paper (Shi et al. [2020b]). Even preemptively
change the appearance of satellite images using the polar transformation can help
to align cross-view images (Shi et al. [2019]). Apart from designing a cross-view
feature transform module, lending cross-view semantics is also effective as seman-
tic correspondences between cross-view images are kept despite viewpoint changes.
For example, Zhai et al. [2017] show that it is possible to predict the semantic of a
ground-view image from its corresponding satellite image. To localise a ground-view
query with respect to a satellite map with semantics, the input of network can be a
segmented ground-view image (e.g., traffic signs, lakes, roads, foliage, etc. (Castaldo
et al. [2015])), or a segmented satellite image (N. Samano [2020]).

In parallel with studying the problem of matching a ground-view image with
a satellite image, Lin et al. [2015]; Tian et al. [2017] tackle the ground to bird-eye
view (45-degree oblique views) matching problem, which is a relatively easier task
in the sense that more overlaps (e.g., building facade) between a ground-level and
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a 45-degree view can be found. In another perspective, images from this oblique-
view can be used as a tie to bridge the visual gap between ground-view and satellite
images (Zheng et al. [2020b]).

2.1.2 Ground-view based localisation

As stated in Section 1.1.1, the key point of image-retrieval based localisation methods
is extracting discriminative image representations.

Before deep learning dominates this area, traditional image-retrieval methods are
based on hand-crafted SIFT (Lowe [2004]) or ORB (Rublee et al. [2011]) features.
Local hand-crafted features are aggregated into a global feature vector using the Bag
of Words (BoWs (Sivic and Zisserman [2008])) model. The BoWs model represents
each image as a set of visual words obtained by quantising the features extracted
from the image. Visually similar database images can then be found by searching
for images with similar visual words, usually implemented efficiently using inverted
files (Sivic et al. [2003]). Usually, the similarity of two BoWs vectors is defined as
the L1 or L2 distance (Nister and Stewenius [2006]; Gálvez-López and Tardos [2012]).
Although it is very efficient to calculate the distance between two BoWs vectors and
it has been widely used in state-of-the-art SLAM systems (Mur-Artal et al. [2015];
Mur-Artal and Tardós [2017]; Campos et al. [2020]), the weak point is that it assumes
the independent visual words, thus treats each entry of the BoWs vector containing
the same entropy. However, the independence assumption is often violated (Jégou
et al. [2009]). Penalising the common visual words (Jégou et al. [2009]; Torii et al.
[2015b]), suppressing the confusing features (Knopp et al. [2010]), using hamming
embedding to fine-characterising the visual words (Jégou et al. [2009]; Sattler et al.
[2012b]), or recording the co-existence of visual words (Stumm et al. [2016]; Cummins
and Newman [2010, 2011]) are effective to alleviate the independence assumption.

With powerful feature extraction ability of modern deep networks (VGG (Si-
monyan and Zisserman [2014]) or ResNet (He et al. [2016])), state-of-the-art retrieval
performance is achieved by learning-based methods. Based on a dense feature map
extracted from an image by CNN, one key point of these learning-based methods is
how to aggregate the dense feature map to obtain a compact image representation.
Max-pooling (Radenović et al. [2016]; Noh et al. [2017]), GeM-pooling (Radenović
et al. [2018]) and NetVLAD (Arandjelovic et al. [2016]; Kim et al. [2017]; Sattler et al.
[2017]) are commonly used to aggregate the feature map. Kim et al. [2017] add a
re-weighting layer to capture the contextual information in the feature map, leading
to improved performance. The same wisdom is also shared by Noh et al. [2017], in
which learned contextual weights are treated as attention scores. Gordo et al. [2016,
2017] extend the max-pooling method by using regional-max-pooling (Tolias et al.
[2015]), leading to better performance. Besides the above methods concerning feature
map aggregation, Liu et al. [2019] show that loss functions used in training networks
are also important, and they propose a kernel-based stochastic attraction-repulsion
loss to supervise the CNN training process. Besides loss functions, sampling good
positive and negative images for training the CNN is also important. For example,
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Radenović et al. [2016] show that both hard positive and negative images are impor-
tant in improving the performance in particular object retrieval with compact codes.
Ge et al. [2020] explore the usage of difficult positives to improve the generalisation
ability of networks. Finally, Pion et al. [2020] benchmark common image-retrieval
based localisation methods on several standard datasets.

The above traditional and deep methods all have an explicit “retrieval" process by
comparing a query image with all database images. Instead of teaching a CNN how
to extract a global image feature-vector based on image contents, PoseNet-based
(Kendall et al. [2015]; Kendall and Cipolla [2017]; Clark et al. [2017]; Walch et al.
[2017]) methods teach a network how to regress a camera pose based on image con-
tents. Though PoseNet is fast and memory-efficient (there is no need to save database
feature vectors), Sattler et al. [2019] show that it is actually again doing an image re-
trieval. For outdoor applications, it is difficult to regress an image pose directly. The
above limitation of generalisation ability also fits for the “Differentiable RANSAC"
(DSAC) family (Brachmann et al. [2017]; Brachmann and Rother [2020]), in which a
depth map is regressed for a query image to establish 2D–3D matches for the PnP-
RANSAC absolute pose. DSAC works well in indoor scenes but poorly in large-scale
outdoor scenes.

Besides retrieval and direct-regression, Planet (Weyand et al. [2016]), IM2GPS-
CNN (Vo et al. [2017]), and CPlaNet (Seo et al. [2018]) formulate the image-based
localisation problem as a geographic position classification task. They first partition
a 2D geographic space into cells using GPS-tags and then define a class per-cell. CNN
training process is supervised by the cross-entropy classification loss, which penalises
incorrectly classified images. At testing time, each query image is classified into a
pre-defined geo-cell (class). The accuracy of these classification-based methods is
limited due to CNN learns features relevant for localisation at a coarse level.

2.2 Direct 2D–3D Matching Based localisation

As stated in Section 1.1.2, the key of direct 2D–3D matching based localisation is find-
ing good 2D–3D matches for the subsequent PnP-RANSAC absolute pose. Irschara
et al. [2009] first propose the 2D–3D matching method for camera localisation. To
overcome limited viewpoints in the database images, they artificially synthesise novel
view images to augment the database. Alcantarilla et al. [2011] learn a similarity
metric between images based on poses to predict which 3D points are visible at the
current camera pose. By assuming known gravity direction, Svarm et al. [2014, 2016]
and Zeisl et al. [2015] develop methods to handled outliers. Sattler et al. [2015] per-
form matching via a fine-grained vocabulary search. Feng et al. [2016] propose to
use binary feature descriptors to speed up the search. All these methods are local
methods in the sense that they seek to find one-to-one feature matches based on local
similarity comparison. Liu et al. [2017] propose a global matching method, treating
2D and 3D points as two sets and trying to find the optimal set-to-set matching. Shar-
ing a similar idea of not rejecting positive 2D–3D matches prematurely, Cheng et al.



§2.2 Direct 2D–3D Matching Based localisation 15

[2019] adopt a two-stage matching method – one for preserving potentially correct
matches, and the other for obtaining high-quality matches.

An important cue can be adopted to help the 2D–3D matching process. It is the
co-visibility relationship among 3D points, describing whether two 3D points can be
simultaneously viewed by images. For example, 3D co-visibility has been adopted
by several works (e.g., Choudhary and Narayanan [2012]; Li et al. [2010, 2012]; Sat-
tler et al. [2016c]), though in a local heuristic manner (for example, to improve local
search efficiency via query expansion, to prioritise candidate matches, or to filter out
false 3D points via geometric validation (Sattler et al. [2015, 2012a, 2016b])). Since
their processes are often performed at individual match level, they often need a good
initialisation (Choudhary and Narayanan [2012]; Li et al. [2010, 2012]). Instead of util-
ising 3D co-visibility relationship at individual match level, Liu et al. [2017] globally
handle co-visibilities, encoding pairwise 3D co-visibilities in a sparse left-stochastic
matrix. They further use the sparse left-stochastic matrix to prioritise putative 3D
points and establish high-quality 2D–3D matches.

If semantic labels of 2D and 3D points are available, the constraint of semantic
matching consistency for 2D–3D matches can be imposed to help the 2D–3D match-
ing process. For example, Shi et al. [2020a] use the semantic consistency scores of
2D–3D matches as prioritised sampling weights in the PnP-RANSAC pose estimation
stage and improve the probability of finding a minimal number of 2D–3D matching
set for PnP. Similarly, with vertical direction, Toft et al. [2018] first obtain a camera
pose hypothesis for each 2D–3D match, and then using this pose to project 3D points
to the query image to measure a semantic consistency score. These semantic con-
sistency scores are also used to weight 2D–3D matches in the PnP-RANSAC pose
estimation stage. Semantic labels can also be fed to a deep network. For example,
Schönberger et al. [2018] train a CNN network to encode semantic labels of 3D points,
obtaining more robust descriptors for matching across the viewpoint, illumination,
and seasonal changes.

If only coordinates of 2D and 3D points are available, it’s very difficult to es-
tablish 2D–3D matches to solve a 6-DoF camera pose. The problem is also known
as “Blind PnP”. The local optimisation method SoftPOSIT (David et al. [2004]) iter-
ates between solving for correspondences and solving for a pose. The correspon-
dences are estimated from a zero–one assignment matrix using Sinkhorn’s algorithm
(Sinkhorn [1964]). This method requires a good pose prior and can only find a
locally-optimal pose within the convergence basin of the prior. BlindPnP (Moreno-
Noguer et al. [2008]) also relies on good pose priors to restrict the number of pos-
sible 2D–3D matches. To avoid getting trapped in local optima, the global methods
GOPAC (Campbell et al. [2017]) and GOSMA (Campbell et al. [2019]) were proposed.
Though guaranteed to find the optimum, they can only handle a moderate number
of points (often hundreds) since the time-consuming branch-and-bound (Land and
Doig [2010]) algorithm is used. Furthermore, they are affected by geometric ambi-
guities, meaning that many different camera poses can be considered equivalently
good. With a deep network, Liu et al. [2020b] propose to learn point-wise features
from the geometry of points alone and match these 2D and 3D features in a one-shot
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manner to establish high-quality 2D–3D matches. They (Campbell∗ et al. [2020]) fur-
ther extend the method by adding an end-to-end trainable PnP-RANSAC module,
where they allow gradients of the PnP-RANSAC module to backpropagate through
layers.

2.3 Hierarchical Coarse-to-fine localisation

As stated in Section 1.1.3, the key insight of hierarchical coarse-to-fine localisation is
using image retrieval to prune out irrelevant database information, bounding 2D–3D
matching within a local 3D map. The idea is first available in the paper (Irschara
et al. [2009]), improved by works (Sattler et al. [2012b, 2015, 2017]), and obtains state-
of-the-art performance with deep learning (Sarlin et al. [2019]; Germain et al. [2019];
Shi et al. [2020a]; Zhang et al. [2020]). Improving the performance of both image
retrieval and 2D–3D matching can boost the performance of hierarchical localisa-
tion. For example, Sarlin et al. [2019] improve their previous work (Sarlin et al.
[2018]) by using learned local descriptors (using SuperPoint (DeTone et al. [2018]) to
replace SIFT) for 2D and 3D points, and achieve better performance for long-term
localisation. Shi et al. [2020a] use semantic labels, SIFT and R2D2 (Revaud et al.
[2019]) descriptors of 2D and 3D points to improve the performance of local 2D–3D
matching. Zhang et al. [2020] use the poses of the most similar database images
as the initial poses of the query image, and then iteratively refines the poses based
on feature matches against a rendering of the 3D model from the current pose esti-
mate. More results of hierarchical coarse-to-fine localisation methods can be found
at https://www.visuallocalization.net/benchmark/.

2.4 Visual localisation datasets

Many benchmark datasets for visual-based localisation have been proposed over the
years. We separately introduce datasets for localising a query image against a satellite
and ground-view database.

2.4.1 Cross-view datasets

For a cross-view dataset, there is a significant viewpoint difference for a query image
and a database image. Current datasets are summarised in Table 2.1. Specifically,

• University-1652 (Zheng et al. [2020b]). It focuses on multi-view images, pro-
viding drone, ground-view and satellite-view images of buildings.

• CVUSA (Zhai et al. [2017]), CVACT (Liu and Li [2019]) and Vo et al (Vo and
Hays [2016]). They focus on localising a ground-view image with respect to a
satellite database, providing paired ground-satellite images. Furthermore, the
CVACT dataset provides fine-grained GPS tags for city-scale cross-view images,
enabling evaluating metric location accuracy.

https://www.visuallocalization.net/benchmark/
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Dataset University-1652 CVUSA CVACT Lin et al. Tian et al. Vo et al.

Platform
Drone, Ground
/Satellite

Ground
/Satellite

Ground
/Satellite

Ground
/45◦Aerial

Ground
/45◦Aerial

Ground
/Satellite

#Training 50.2K 35.5k×2 35.5k×2 37.5k×2 15.7k×2 900K×2
#Query 41.1K 8.8K 92.8K 12.5K N/A 210K
Ground truth Match-IDs Match-IDs GPS tags Match-IDs Match-IDs Match-IDs
Evaluation Recall@K & AP Recall@K Recall@K PR & AP PR & AP Recall@K

Table 2.1: Comparison of representative cross-view geo-localization datasets.

• Lin et al ((Lin et al. [2015])) and Tian et al ((Tian et al. [2017])). They focus on
localising a ground-view image with respect to a 45 ◦ aerial database.

2.4.2 Ground-view datasets

For a ground-view dataset, both a query image and a database image are captured
in the same ground view. Current datasets are summarised in Table 2.2. Specifically,

• SF-0 (Chen et al. [2011]), Dubrovnik (Li et al. [2010]), Rome (Li et al. [2010]), and
Vienna (Irschara et al. [2009]). They focus on large-scale 2D-3D matching using
traditional SIFT descriptors and vocabulary trees. They are the ideal testbeds
for proposing schemes to find good 2D-3D correspondences. Hence they are
used in Chapter 6.

• Pitts250k, Pitts30k, TokyoTM (Arandjelovic et al. [2016]) and Tokyo 24/7 (Torii
et al. [2015a]). They focus on large-scale image retrieval in a city-scale environ-
ment. They are the ideal testbeds for proposing schemes to find correct image
matches. Hence they are used in Chapter 5.

• Aachen Day-Night (Zhang et al. [2020]). This dataset focuses on matching day-
night images with significant lighting differences.

• CMU-Seasons and RobotCar Seasons (Sattler et al. [2018]). They focus on
matching cross-season images with weather and season variations in land-
marks.

• InLoc (Taira et al. [2018]). It focuses on localising an indoor image in a large-
scale indoor environment, with large viewpoint changes, moving furniture,
occluders or changing illumination.

• 7-Scenes (Shotton et al. [2013]) and Cambridge (Kendall et al. [2015]). They fo-
cus on room-level or building-level localisation, with limited variations in view-
point and visual appearance. Hence they are the ideal testbeds for proposing
schemes to regress scene coordinates or camera poses.
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Datasets Database #Query Ground truth Evaluation
SanFrancisco SF-0 610K training images 803 points from building inlier count
Dubrovnik 1.9M 3D points, 6044 images 800 Metric SfM pose metric error
Rome 4.1M 3D points, 15K images 1000 N/A inlier count
Vienna 1.1M 3D points, 1324 images 266 N/A inlier count
Pitts250k 84K images 8280 GPS-tags Recall@K
Pitts30k 10K images 6816 GPS-tags Recall@K
TokyoTM 49K images 7186 GPS-tags Recall@K
Tokyo 24/7 75K images 315 GPS-tags Recall@K
Aachen Day-Night 2.3M 3D points, 6697 images 1015 Metric SfM pose metric error
CMU-Seasons 6.5M 3D points, 60937 images 56613 Metric SfM pose metric error
RobotCar Seasons 36.2M 3D points, 26121 images 11934 Metric SfM pose metric error
InLoc 9972 RGBD images 329 Metric SfM pose metric error
7-Scenes 7 RGBD sequences 17000 Metric pose metric error
Cambridge 6848 training images 4081 Metric pose metric error

Table 2.2: Comparison of representative ground-view geo-localization datasets.



Chapter 3

Preliminaries

In this chapter, we introduce some fundamental concepts and techniques for image-
based localisation. These concepts and techniques will be used throughout the thesis.
Specifically, we will explain the geometric camera models in Section 3.1, which in-
clude the standard pinhole camera model and generalised multiple camera model.
In Section 3.2, we will explain how to extract distinctive features (point features and
line features) from images and how to match two sets of sparse feature.

Based on the matching scenarios (2D–2D or 2D–3D), we will separately introduce
relative and absolute pose solvers in Section 3.3. This chapter also includes our
original contribution of deriving two minimal solvers: one for relative camera pose
and the other for absolute camera pose.

A pre-stored database is a prerequisite for an image-based localisation method.
To this end, in the Appendix A, we will present engineering practices to build a geo-
referenced database, which is composed of a ground-view image database, a satellite
image database, and a 3D points cloud database. Interested readers can refer to the
Appendix for details.

3.1 Camera Model

3.1.1 Monocular pinhole camera model

Denote Xw ∈ R3 as the coordinate of a 3D point in the world coordinate system, it is
mapped to an image as follows:

First, transform Xw to a local camera coordinate system via the relative pose
between the camera and world coordinate system.

Xc = RXw + t, (3.1)

where R ∈ SO(3) and t ∈ R3 are the relative rotation matrix and translation vector,
respectively. Xc is the coordinate of the 3D point in the local camera coordinate
system.

Second, let’s assume a standard pinhole camera model (Hartley and Zisserman
[2003]) is used, the local point coordinate Xc is mapped to a point xc = (x, y, z) in an
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image plane via
xc = KXc, (3.2)

where the intrinsic camera matrix K is defined by

K =

 fx s cx

0 fy cy

0 0 1

 , (3.3)

where fx and fy are the focal length of the camera in terms of pixel dimensions in
the x and y direction respectively. Usually fx = fy. cx and cy are the location of
camera principal point in the x and y direction respectively. s is referred to as the
skew parameter, s = 0 for most cameras.

Last, the 2D pixel coordinates of xc can be easily computed as (x/z, y/z).
In the opposite direction, given 2D pixel coordinates

(
xp, yp

)
of xc, we can nor-

malise it to obtain a ray connecting the camera center and Xc by using K−1 (xp, yp, 1
)T

.
Performing this data normalisation is important if feature point coordinates are used
as input for a neural network (Liu et al. [2020b]; Campbell∗ et al. [2020]; Moo Yi et al.
[2018a]).

Lens distortions. The above pinhole camera model is a linear projection model,
without considering real-world non-linear lens distortions. Many distortion models
have been proposed, e.g., (i) the most popular radial-tangential model (Zhang [2000];
Heikkila and Silven [1997]); (ii) polynomial model (Scaramuzza et al. [2006]) for fish-
eye cameras. Please refer to the paper (Ricolfe-Viala and Sanchez-Salmeron [2010])
for more distortion models and their comparisons. No matter what distortion model
is used, after distortion removal, we can always obtain a normalised ray connect-
ing the camera center and Xc. Normalised rays are used as input to derive minimal
solvers to estimate absolute and relative camera poses.

3.1.2 Multi-camera generalised camera model

For a multi-camera system, the generalised camera model is used to combine mul-
tiple cameras as one camera geometrically. The complete definition can be found
in the paper (Pless [2003]). In the following, we briefly summarise the generalised
camera model.

For a multi-camera system, it is first calibrated to obtain Ki, Ri, and ti. Ki is the
intrinsic matrix of the i-th camera. Ri and ti are the rotation matrix and translation
vector from the coordinate frame of camera i to a reference coordinate system FG
respectively. FG can be the coordinate system of one camera in the multi-camera
system or attached to the body frame of an agent.

Given a calibrated multi-camera system, we can first obtain normalised rays for
each feature point in each camera using the method described in Section 3.1.1. We
then transform ray directions ri,j from each camera to ui,j in the reference coordinate
system FG by ui,j = Riri,j, where j is the ray index in the i-th camera. A ray in FG can
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be uniquely parameterised by a 6-dim Plücker coordinate:

`i,j =
[
u

T

i,j,
(
ti × ui,j

)T]T
(3.4)

After applying the generalised camera model, a multi-camera system can be con-
sidered as a single camera. Note that under the degenerate case where only one cam-
era is available in a multi-camera system, equation (3.4) can still be used (last three
elements equal 0 when FG is attached to the single camera). Due to the increased
Field-of-View, a multi-camera system has wide applications in VO/SLAM/localisa-
tion.

3.2 Image Features Extraction & Matching

3.2.1 Point features

There is a long history of detecting and describing 2D feature points from an image.
For hand-crafted features, the most commonly used are SIFT (Lowe [2004]) and ORB
(Rublee et al. [2011]).

The discriminative power of a 128-dim SIFT descriptor can be improved by a
simple algebraic extension, called RootSIFT (Arandjelović and Zisserman [2012]). By
square-rooting the original 128-dim vector, element-wise, RootSIFT can tone down
the potential bad effect of large elements when computing the distance between SIFT
descriptors. RootSIFT is used in the state-of-the-art Structure from Motion toolbox
COLMAP (Schönberger and Frahm [2016]). Currently, SIFT features can be obtained
very fast via GPUSIFT (Wu [2007]) or CUDASIFT (Björkman et al. [2014]). Though
inferior to SIFT for discriminative power, binary ORB features are very fast to detect
and match, and are widely used in SLAM systems, e.g., the ORB-SLAM family (Mur-
Artal et al. [2015]; Mur-Artal and Tardós [2017]; Campos et al. [2020]).

With deep learning, there are some data-driven feature extractors, e.g., LIFT (Yi
et al. [2016]), which mimics the SIFT; D2-net (Dusmanu et al. [2019]) which jointly
detects feature points and describes them on a convolutional feature map. Though
promising, these learned features are yet to be validated as sometimes a simple
baseline (SIFT + a carefully tuned RANSAC-based method MAGSAC (Barath et al.
[2019])) outperforms them in the image matching task (Jin et al. [2020]).

3.2.2 Line features

Compared with point features, there are limited works concerning line features. For
hand-crafted features, LSD (Von Gioi et al. [2008]) and EDLines (Akinlar and Topal
[2011]) are the two state-of-the-art line segment detection methods. For learning-
based methods, recent wire-frame methods (Xue et al. [2020]; Zhou et al. [2019])
detect junctions from a convolutional feature map and propose line segments con-
necting junctions. These learning-based methods work well in indoor scenes. For
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outdoor applications, their performance is yet to be validated as a very limited out-
door dataset (YorkUrban (Denis et al. [2008])) with ground-truth line segment anno-
tations is available at this moment.

Given a line segment on an image, a hand-crafted LBD descriptor (Zhang and
Koch [2013]) is commonly used to describe it. More hand-crafted descriptors and
their performance evaluations can be found in the paper (Li et al. [2016]). To obtain
a learning-based line descriptor, LoI pooling (Zhou et al. [2019]) can be used. The
method first computes the coordinates of a number of uniformly spaced middle
points along the line with linear interpretation. It then aggregates points’ features
from the convolutional feature map to obtain a fixed-length descriptor.

3.2.3 Feature matching

There are two categories in feature matching: (i) sparse feature matching; (ii) dense
feature matching. This thesis focuses on sparse feature matching, as our localisation
method is based on matching sparse 2D features from a query image to 3D features
from the database map. Dense feature matching is more commonly used in optical
flow (Teed and Deng [2020]) and stereo matching (Zhang et al. [2019]).

Given two sparse feature descriptor set S and T , for each element fi ∈ S , nearest
neighbor search using Euclidean distance is performed to find the nearest descriptor
f j ∈ T . If the number of descriptors in S or T is large, a vocabulary tree can
be exploited to speed-up the searching, though sacrificing matching performance
compared with exhaustive searching. As nearest neighbor search is not accurate with
returning many false-positive matches, usually ratio-test or mutual nearest neighbor
constraint (Lowe [2004]) is imposed to filter matches.

In this thesis, we give a global feature matching method based on the optimal
transport theory (Villani [2009]; Cuturi [2013]; Courty et al. [2016]) in chapter 7. The
method can be used for end-to-end training in a deep neural network.

3.3 Camera Pose Estimation

Estimating a 6-DoF pose is the ultimate goal of a camera-based localisation system.
There are two components: (i) relative pose; (ii) absolute pose. A relative pose is
the pose of a camera relative to a local camera coordinate system. An absolute pose
is the pose of a camera relative to a global world coordinate system. A number
of relative pose and absolute pose solvers are available at the OpenGV (Kneip and
Furgale [2014]), OpenCV (Bradski and Kaehler [2008]) and Theia (Sweeney [2015])
libraries. Though estimating an absolute pose is the ultimate goal of geo-localisation,
relative camera pose estimation can be used when the global pose estimation fails.
In these failure cases, we can locally propagate camera poses with respect to the
absolute pose from the last global localisation.
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3.3.1 Relative camera pose

Given 2D–2D feature matches for an image pair from calibrated cameras (with known
K), we are able to recover the relative 6-DoF pose between the image pair. For the
monocular camera, the most well-known ones being the normalised 8-point algo-
rithm (Hartley [1997]) and the 5-point minimal algorithm (Nistér [2004]; Li and Hart-
ley [2006]). For a multi-camera system, Stewenius et al. [2005] proposed a minimal
solution for the generalised epipolar equation using the Groebner basis (Cox et al.
[2007]). More related works can be found in (Guan et al. [2020]).

In the following, we present a minimal 4-point algorithm which is based on our
original contribution (Liu et al. [2018]). The core idea is exploiting the vertical direc-
tion from IMU or vanishing point and the small motion prior for on-road vehicles.
By far, our method is still state-of-the-art in terms of efficiency, with comparable pose
accuracy with respect to the state-of-the-art method (Guan et al. [2020]). Our code is
available at https://github.com/Liumouliu/fourpt_relative_pose.

With known vertical direction correspondence between two successive frames,
we can obtain the roll and pitch angles. In this case, the only rotation angle left to
estimate is the yaw angle. Denote the corresponding rotation matrices between frame
0 and frame 1 as

(
R′y, R′p, R′r

)
↔
(
Ry, Rp, Rr

)
, where the subscripts (y, p, r) denote

yaw, pitch and roll, and the corresponding pitch and roll rotation matrix rotate the
directions of image rays to the reference direction. At this stage, without loss of
generality, we assume that the reference direction is the z axis of the Earth coordinate
system since both aligning the vertical vanishing points and directly exploiting IMU
measurements will lead to the z axis of the Earth coordinate system. Note that R′y
and Ry are inaccurate for exploiting IMU priors and unobservable for aligning the
vertical vanishing points, which are the unknowns to solve. The relative rotation Rypr

can be written as
Rypr = R′

T

r R′
T

p R′
T

y RyRpRr. (3.5)

There is an implicit ambiguity in equation (3.5). Since R′
T

y Ry can be merged into
one yaw rotation matrix which is denoted as ∆Ry, only the relative yaw rotation
matrix can be solved.

We adopt the generalised camera model (Ref. Section 3.1.2) to represent a 3D ray
in the reference coordinate system FG. For matched rays, the generalised epipolar
relationship relating two corresponding Plücker lines is expressed as

`′
T

i,j

[
[t]×R, R

R, 0

]
`i,j = 0, (3.6)

where `′i,j and `i,j are matched Plücker lines from the two frames 0 and 1, t and R are
the translation vector and rotation matrix of FG.

Denote RpRr and R′pR′r as Rpr and R′pr, respectively and substituting equation

https://github.com/Liumouliu/fourpt_relative_pose
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(3.5) into equation (3.6) yields:([
R′pr, 0
0, R′pr

]
`′
)T [

[t̃]×∆Ry, ∆Ry

∆Ry, 0

] [
Rpr, 0
0, Rpr

]
` = 0, (3.7)

where t̃ = R′prt and the subscripts i, j are dropped for simplicity.

In equation (3.7), the unknowns are t̃ and ∆Ry. Utilizing the small relative rotation
assumption, we apply the first-order approximation to ∆Ry, parameterizing it by a
3-vector ry = [0, 0, ry]T:

∆Ry ≈ I +
[
ry
]
×. (3.8)

We parameterise t̃ as

t̃ =
[

tx, ty, tz
]T

. (3.9)

Substituting equation (3.8), (3.9) into equation (3.7) yields

a1 + a2tx + a3ty + a4tz + a5ry + a6txry + a7tyry + a8tzry = 0, (3.10)

where a1 to a8 are the coefficients formed with the Plücker line correspondence `′ ↔
`, parameterised by a 6-vector `′ =

[
l′x, l′y, l′z, l′u, l′v, l′w

]T
and ` =

[
lx, ly, lz, lu, lv, lw

]T
,

respectively. 

a1 = l′xlu + lxl′u + l′ylv + lyl′v + l′zlw + lzl′w,
a2 = l′zly − l′ylz,
a3 = l′xlz − l′zlx,
a4 = l′ylx − l′xly,
a5 = l′ylu − l′uly + l′vlx − l′xlv,
a6 = l′zlx,
a7 = l′zly,
a8 = −l′xlx − l′yly.

(3.11)

In order to solve for the four unknowns tx, ty, tz, and ry, one requires minimal four
Plücker line correspondences. This gives rise to a system of four polynomials with
the other three polynomials in similar form as equation (3.10) with the coefficients
denoted by b1 to b8, c1 to c8 and d1 to d8. After stacking all four correspondences and
separating ry from tx, ty, tz, we arrive at an equation system


a2 + a6ry a3 + a7ry a4 + a8ry a1 + a5ry

b2 + b6ry b3 + b7ry b4 + b8ry b1 + b5ry

c2 + c6ry c3 + c7ry c4 + c8ry c1 + c5ry

d2 + d6ry d3 + d7ry d4 + d8ry d1 + d5ry


︸ ︷︷ ︸

M(ry)


tx

ty

tz

1

 = 0. (3.12)

Since M
(
ry
)

is a square matrix and it has a non-trivial solution when the deter-
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minant of M
(
ry
)

is zero, consequently:

Ar4
y + Br3

y + Cr2
y + Dry + E = 0, (3.13)

where A, B, C, D and E are formed from the coefficients a, b, c and d of the system
of polynomials. Since the univariate polynomial (3.13) is 4-th order, it admits closed
form solutions with maximum 4 real roots (its analytic solutions are given in Planet-
Math [2020] ). Once the rotation is found, we simply use QR decomposition of the
above equation system to solve for the translation. Finally, the approximation ∆Ry in
equation (3.8) is projected to SO(3) by using the Rodrigues’ formula.

3.3.2 Absolute camera pose

Given 2D–3D matches between 2D feature points extracted from a query image and
3D points from the database map, we are ready to estimate the absolute pose. If the
intrinsic matrix K is unknown, a Perspective-6-Point method (Hartley and Zisserman
[2003]) is well-adopted. The merit of this P6P method is that it can be easily solved us-
ing the Direct Linear Transform, and used for end-to-end training a deep network. Our
implementation in Tensorflow is available at https://github.com/Liumouliu/Deep_
blind_PnP/blob/master/utils/tf_pose_loss.py.

When assuming the 2D pixel locations of the principal point of a camera lying on
the center of an image, a P4P method (Bujnak et al. [2008]) or a P3.5P method (Wu
[2015]) simultaneously solves the camera pose and focal length. If a camera is fully
calibrated with known K, the most common one would be the P3P method (Kneip
et al. [2011]). Furthermore, if the vertical direction can be obtained, the most accurate
and efficient one is the P2P method (Sweeney et al. [2015]).

In the following, we present a P2P method, which is our original contribution.
The proposed method achieves exactly the same precision as the method (Sweeney
et al. [2015]), with a 20% speed-up. Our code is available at https://github.com/
Liumouliu/p2p_vertical_direction.

We use Plücker line to represent each ray since it includes both the camera center

position and ray direction. We denote a 6-vector Plücker line as `j =
[
u

T

j , q
T

j

]T
,

where j is the line index, uj is the ray direction and qj is the ray starting point.
A 3D Point XG

j lying on the line is given by (Lee et al. [2015])

XG
j = qj + λjuj, (3.14)

where λj is the depth of the point and the superscript G stands for the local camera
coordinate system.

Our goal is to solve the unknown rotation R and translation t such that they
transform a 3D point XW

j in the world frame W to the local frame G

XG
j = RXW

j + t. (3.15)

https://github.com/Liumouliu/Deep_blind_PnP/blob/master/utils/tf_pose_loss.py
https://github.com/Liumouliu/Deep_blind_PnP/blob/master/utils/tf_pose_loss.py
https://github.com/Liumouliu/p2p_vertical_direction
https://github.com/Liumouliu/p2p_vertical_direction
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With vertical direction, Plücker lines can be aligned to the world coordinate sys-
tem, and the problem is transformed to solve the unknown rotation angle s about the
vertical direction g and translation t, such that

qj + λjuj = R (g, s)XW
j + t. (3.16)

Sweeney et al. [2015] utilise the distance preserving nature of SE(3) transforma-
tion. They first solve depths of 3D points and then align points in the coordinate
system G to W to solve R and t.

In different from the method (Sweeney et al. [2015]), we directly solve R and t and
do not estimate the unknown depths of 3D points. Equation (3.16) can be rearranged
to eliminate the unknown depth λj,

uj ×
[
R (g, s)XW

j + t− qj

]
= 0. (3.17)

This gives three equations, only two of which are linearly independent since
rank

([
uj
]
×

)
= 2. In total, we have four unknowns (one for the angle s and three for

the translation t), thus two 2D–3D correspondences are needed to solve the absolute
pose.

The normalised rotation matrix R (g, s) 1 is given by

R (g, s) =
1

s2 + 1

 s2 − 1 −2s 0
2s s2 − 1 0
0 0 s2 + 1

 . (3.18)

Substituting equation (3.18) into equation (3.17), the first two linearly indepen-
dent rows are {

a1t2 + a2t3 +
a3

s2+1 +
a4s

s2+1 +
a5s2

s2+1 + a6 = 0

a7t1 + a8t3 +
a9

s2+1 +
a10s

s2+1 +
a11s2

s2+1 + a12 = 0,
(3.19)

1We assume that the vertical direction g = [0, 0, 1]
T

, which is the Z-axis.
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where coefficients a1 ∼ a12 are given by

a1 = −uj,3
a2 = uj,2
a3 = XW

j,2uj,3

a4 = −2XW
j,1uj,3

a5 = −XW
j,2uj,3

a6 = XW
j,3uj,2 + qj,2uj,3 − qj,3uj,2

a7 = uj,3
a8 = −uj,1
a9 = −XW

j,1uj,3

a10 = −2XW
j,2uj,3

a11 = XW
j,1uj,3

a12 = qj,3uj,1 − qj,1uj,3 − XW
j,3uj,1.

(3.20)

One more 2D–3D correspondence gives coefficients b1 ∼ b12, which are in the
same form as equation (3.20). With two 2D–3D correspondences, equation (3.19) is
replicated and we obtain



a1t2 + a2t3 +
a3

s2 + 1
+

a4s
s2 + 1

+
a5s2

s2 + 1
+ a6 = 0 (3.21a)

a7t1 + a8t3 +
a9

s2 + 1
+

a10s
s2 + 1

+
a11s2

s2 + 1
+ a12 = 0 (3.21b)

b1t2 + b2t3 +
b3

s2 + 1
+

b4s
s2 + 1

+
b5s2

s2 + 1
+ b6 = 0 (3.21c)

b7t1 + b8t3 +
b9

s2 + 1
+

b10s
s2 + 1

+
b11s2

s2 + 1
+ b12 = 0, (3.21d)

which can be simplified following the steps:

1. Combing (3.21a) and (3.21c) to eliminate t2;

2. Combing (3.21b) and (3.21d) to eliminate t1;

3. Combing equations from step 1 and 2 to eliminate t3.

This gives a quadratic polynomial with respect to s

As2 + Bs + C = 0, (3.22)

where coefficients A, B and C are given by
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A =
a5b1 − a1b5 + a6b1 − a1b6

a2b1 − a1b2
− a11b7 − a7b11 + a12b7 − a7b12

a8b7 − a7b8
(3.23a)

B =
a4b1 − a1b4

a2b1 − a1b2
− a10b7 − a7b10

a8b7 − a7b8
(3.23b)

C =
a3b1 − a1b3 + a6b1 − a1b6

a2b1 − a1b2
− a9b7 − a7b9 + a12b7 − a7b12

a8b7 − a7b8
. (3.23c)

Solving equation (3.22) gives at most 2 real solutions. After obtaining s, the
translation t can be solved by the least-square fitting of the equation

0 a1 a2

a7 0 a8

0 b1 b2

b7 0 b8


 t1

t2

t3

 = − 1
s2 + 1

D (s) , (3.24)

where D (s) is given by

D (s) =


(a5 + a6) s2 + a4s + a3 + a6

(a11 + a12) s2 + a10s + a9 + a12

(b5 + b6) s2 + b4s + b3 + b6

(b11 + b12) s2 + b10s + b9 + b12

 . (3.25)

Using pseudo-inverse of the left 4 × 3 matrix of equation (3.24) to obtain the
least-square solution of (t1, t2, t3)

T

is time-consuming. We can do much better by
exploiting the structure of the left 4× 3 matrix.

t3 can be solved directly by combing the 1st and 3rd row. Similarly, t3 can be also
solved by combing the 2nd and 4th row. Finally, t3 is averaged using the above two
solutions. Once t3 is obtained, it is substituted into the 1st and 3rd row to solve t2 and
the 2nd and 4th row to solve t1.

Root polishing. In general, our method gives at most two solutions. Utilizing the
positive depth constraint (λj ≥ 0), we can quickly prune a false solution by checking

uT
j ·
[
R (g, s)XW

j + t− qj

]
≥ 0. (3.26)



Chapter 4

Localisation with respect to
Satellite Image Database

In this chapter, we study ground-to-aerial cross-view matching based IBL. The goal is
to predict a ground-view query image’s spatial location by matching the query image
to a large scale geo-referenced satellite image database. This is a challenging task
due to the drastic differences in their viewpoints and visual appearances. Existing
deep learning methods for this problem have been focused on maximising feature
similarity between the spatially nearby image pairs, while minimising other image
pairs that are spatially far apart. They do so by deep feature embedding based on
visual appearance in those ground-and-satellite images.

However, in everyday life, humans commonly use orientation information as an
important cue for spatial localisation. Inspired by this insight, this chapter proposes
a method that endows deep neural networks with the ‘commonsense’ of orientation.
Given a ground-view spherical panoramic image as query input (and a large geo-
referenced satellite image database), we design a Siamese network that explicitly
encodes the orientation (i.e., spherical directions) of each pixel of the images.

Our method significantly boosts the learned deep features’ discriminative power,
leading to a much higher recall and precision outperforming all previous methods.
Our network is also more compact, using only 1/5th number of parameters than a
previously best-performing network. To evaluate our method’s generalisation ability,
we also created a large-scale cross-view localisation benchmark containing 100K geo-
tagged ground-satellite pairs covering the Canberra city. Our codes and datasets are
available at https://github.com/Liumouliu/OriCNN.

This chapter’s content is largely based on (Liu and Li [2019]), and the rest of
this chapter is organised as follows. We first give an introduction in Section 4.1 and
then present our method overview in Section 4.2. Our proposed method of jointly
encoding cross-view images and orientations is given in Section 4.3. Experimental
results are given in Section 4.4.

29
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(a) Query image (b) Ground-level panorama

(c) Our satellite dataset (with GPS footprints) (d) The matched satellite image

Figure 4.1: Given a ground-level spherical omnidirectional image (a) (or its panoramic representation
as shown in (b)) as a query image, the task of image-based localisation (IBL) is to estimate the location
of the query image by matching it to a large satellite image database covering the same region, as given
in (c). The found correct match is shown in (d), which is centred at the very same location as (a).

4.1 Introduction

We investigate the problem of image-based geo-localisation using ground-to-aerial
image matching. Given a ground-level query image, we aim to recover the absolute
geospatial location at which the image is taken. This is done by comparing the query
image with a large collection of geo-referenced aerial images (e.g., satellite images)
without the aid of other localisation sensors (such as GPS). Figure 4.1 illustrates an
example scenario of such ground-to-aerial cross-view localisation problem.

While previous image-based geolocalisation methods have been primarily based
on ground-to-ground (street-view level) image matching (e.g., Arandjelovic et al.
[2016]; Radenović et al. [2018]; Liu et al. [2019, 2017, 2018]; Sattler et al. [2019]), using
ground-to-aerial cross-view matching (i.e., matching ground-level photos to aerial
imagery ) is becoming an attractive approach for image-based localisation, thanks to
the widespread coverage (over the entire Earth) and easy accessibility of satellite and
aerial survey images. In contrast, the coverage of ground-level street views (such as
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Google-Map or Bing-Map) is at best limited to urban areas.
Another advantage of using ground-to-aerial matching, which has been over-

looked in recent IBL literature, is that the way to localise using ground-to-aerial
matching resembles what a human would localise himself using a traditional paper
map. A map can be considered as a (coarse) aerial image depicting the geographic
region. Imagine the following scenario where a tourist is lost in a foreign city, yet
he has no modern localisation aid with him (e.g., no GPS, no cell phone, no google
map) except for a paper-version tourist map. In such a circumstance, a natural way
for him to re-localise (by himself) is to match the city map (i.e., an aerial drawing)
with what he sees (i.e., a ground-level street view). In this human localisation sce-
nario, to re-orientate himself (i.e., knowing where the geographic True North is, both
on the map and in the surroundings) is critically important, greatly simplifying the
localisation task.

Inspired by this insight, we propose a novel deep convolutional neural network
that explicitly encodes and exploits orientation (directional) information aiming for
more accurate ground-to-aerial localisation. Specifically, we intend to teach a deep
neural-network the concept of “direction" or “orientation" at every pixel of the query
or database images. We do so by creating an orientation map, used as additional
signal channels for the CNN. We hope to learn more expressive feature represen-
tations which are not only appearance-driven and location-discriminative, but also
orientation-selective. The novel way we propose to incorporate orientation informa-
tion is compact, thus our orientation map can be easily plugged into other deep-
learning frameworks or for other applications as well.

Our work makes the following contributions: (1) A simple yet efficient way to
incorporate per-pixel orientation information to CNN for cross-view localisation; (2)
A novel Siamese CNN architecture that jointly learns feature embeddings from both
appearance and orientation geometry information; (3) Our method establishes a new
state-of-the-art performance for ground-to-aerial geolocalisation; Besides, as a by-
product of this work, we also created a new large-scale cross-view image benchmark
dataset (CVACT) consisting of densely covered and geo-tagged street-view panora-
mas and satellite images covering a city. CVACT is much bigger than the most
popular CVUSA (Zhai et al. [2017]) panorama benchmark (Ref. Table 4.4). We hope
this will be a valuable addition and contribution to the field.

4.2 Method Overview

4.2.1 Siamese network architecture

Using ground-to-aerial cross-view matching for image-based localisation is a chal-
lenging task. This is mainly because of the ultra-wide baseline between the ground
and aerial images, which causes a vast difference in their visual appearances despite
depicting the very same geographic location. Such a difficulty renders conventional
local descriptor based method (e.g., Bag of SIFTs) almost useless. Deep-learning
has been adopted for solving this problem and obtained remarkable success (e.g., Hu
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et al. [2018b]; Vo and Hays [2016]; Workman and Jacobs [2015]; Workman et al. [2015];
Lin et al. [2015]). A common paradigm that has been used by those deep methods is
to formulate the problem as feature embedding and extract location-sensitive features
by training a deep convolutional neural network. They do so by forcefully pulling
positive ground-and-aerial matching pairs closer in feature embedding space while
pushing those features from non-matchable pairs far apart.

In this chapter, we adopt a Siamese-type two-branch CNN network of 7 layers
(showing in Figure 4.2) as the basis of this work. Each branch learns deep features
that are suitable for matching between the two views. Unlike previous Siamese
networks for ground-to-ground localisation, the two branches of our Siamese net
do not share weights because the domains (and modalities) of the ground and aerial
imagery are different. It is beneficial to allow more degrees of freedom for their
weights to evolve.

Ground-level panorama

Satellite image

CNN

CNN

Loss

Figure 4.2: Our baseline Siamese network: the inputs to the two branches are ground-level panora-
mas and satellite images, respectively. Features are learned by minimising a triplet loss (Hu et al.
[2018b]).

4.2.2 Use of orientation information

As discussed previously, we notice that most of those previous deep localisation
networks all focus on capturing image similarity in terms of visual appearance (and
semantic content); they have overlooked an important geometric cue for localisation,
namely, the orientation or directional information of the views - an important cue
that humans (and many animals) often use for spatial awareness and localisation
(Wiki).

Indeed, knowing the orientation (i.e., knowing in which direction every point in
an image is pointing to) will greatly simplify the localisation task. Almost all off-
the-shelf satellite image databases are geo-referenced, in which the geographic ‘true
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North’ direction is always labeled on the images. Suppose one can identify the True
North on a ground-level query image in the context of image-based localisation. In
this case, the image can be placed in a geometrically meaningful coordinate frame
relative to the satellite images’ reference frame. This will significantly reduce the
search space for finding the correct ground-to-satellite matches, resulting in much
faster searches and more accurate matches. To show the importance of knowing
orientation with respect to localisation, let us return to our previous example and ex-
amine what a disoriented tourist would do to quickly re-localise himself in a foreign
city with a paper map. First, he needs to identify in which direction lies the true
geographic North in the foreign street he is standing in; Second, face the True North
direction, and at the same time rotate the paper map so that its ‘North’ is pointing the
same direction; Third, look in certain directions and try to find some real landmarks
(along with those directions) that match the landmarks printed on the map. Finding
enough good matches suggests that the location of him is recovered.

This chapter provides an efficient way to teach deep neural networks the notion
of (geographic) orientation – this is one of the key contributions of the work. Next,
we explain how we encode such per-pixel orientation information in a convolutional
neural network.

4.2.3 Representing orientation information

Many real-world problems involve orientation or directional variables, e.g., in target
detection with radar or sonar, microphone array for stereo sound/acoustic signal
processing, and in robot navigation. However, few neural networks addressed or
exploited such directional information, with only a few exceptions including the
complex-valued Boltzmann network (Zemel et al. [1995]). While our method to be
described in this chapter was originally inspired by paper (Zemel et al. [1995]), we
find it unsuitable for the task of image-based localisation for two reasons. First, in
image-based localisation, the direction of each pixel is actually two dimensional (i.e.,
the two spherical angles parameterised by ((θ, φ)) –azimuth and altitude), rather than
a single phase angle. There is no simple way to represent two angles with a single
complex number. Second, both the time and memory complexities of a complex-
valued network are expensive. Given these reasons, we abandoned the idea of using
a complex network. Instead, we propose a very simple (and straightforward) way to
directly inject per-pixel orientation information via orientation maps. Details are to be
given next.

Parameterisation. We consider a ground-level query image as a spherical view cov-
ering a full omnidirectional 360°× 180° Field-of-View (FoV). Each pixel’s orientation
is parameterised by two spherical angles: azimuth and altitude θ and φ. The map-
ping between a spherical image to a rectangular panoramic image can be done by
using equirectangular projection. Note that we assume the input panorama image is
intrinsically calibrated to know the relative angle between pixels. Getting intrinsic
calibration is an easy task. Moreover, for the sake of IBL, even a very coarse estimate
of the camera intrinsics is adequate for the task. Since satellite view captures an im-
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Figure 4.3: We use spherical angles (azimuth and altitude) to define the orientation at each pixel of
a ground-level panorama (shown on the left), and use polar coordinates (azimuth and range) to define
the orientation for pixels in a satellite image (shown on the right).

age orthogonal to the ground plane, we assume the observer is standing at the centre
location of the satellite view without loss of generality. We then simply use polar
angle (in the polar coordinate system) to represent the azimuth angle θi, and range ri
to represent the radial distance of a pixel in the satellite image relative to the centre,
i.e., ri = (y2

i + x2
i )

1/2; θi = arctan 2(yi, xi).

Colour-coded orientation maps. We borrow the same colour-coding scheme devel-
oped for visualising 2D optical-flow field (for Image Processing [2020]) to represent
our 2D orientation map. Specifically, the hue (H) and saturation (S) channels in a
colour map each represents one of the two orientation parameters. Specifically, for a
ground-level panorama, the two channels are θ (azimuth) and φ (altitude), and for an
overhead satellite image, the two channels are θ (azimuth) and r (range). This way,
we can simply consider the orientation map as nothing but two additional colour-
channels (we denote them as U-V channels) besides the original 3-channel RGB input
image. Figure 4.4 shows such two colour orientation maps.

Figure 4.4: Colour-coded orientation maps (i.e., U-V maps) . Left: U-V map for ground-level
panorama; Right: U-V map for aerial view.

With the increasing impact of Transformer (Vaswani et al. [2017]) in the computer
vision community, we are aware that our 2D orientation map could be represented
by using positional encoding. For example, a recent paper (Yang et al. [2021]) adds
learnable 1D positional embedding to the image patch embeddings to make visual
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Figure 4.5: Two schemes to incorporate orientation information. Scheme-I (top): orientation infor-
mation (U-V map) are injected to the input layer only; Scheme-II (bottom): orientation information
(U-V map) are injected to all layers.

features position-dependent.

4.3 Joint Image and Orientation Embedding

Now that with the above preparations in place, we are ready to describe our joint
image and orientation feature embedding method.

4.3.1 Where to inject orientation information?

Our network is based on the Siamese architecture of 7 convolutional layers, which are
cropped from the generator network in view synthesis (Regmi and Borji [2018]; Isola
et al. [2017]). Each layer consists of convolution, leaky-ReLU, and batch-normalisation.
Implementation details are deferred to Section 4.4.

We devise two different schemes (Scheme-I and Scheme-II) for injecting orienta-
tion information to the Siamese net at different layers. In Scheme-I, we concatenate
cross-view images and orientation masks along RGB channels to yield cross-view in-
puts. In Scheme-II, besides concatenating cross-view images and orientation masks
as inputs, we also inject orientation information to intermediate convolutional blocks.
Down-sampled cross-view orientation maps are concatenated with the output feature
map of each convolutional block. These two schemes are illustrated in Figure 4.5.

4.3.2 Deep feature embedding

We aggregate feature maps obtained at the last three layers to form multi-scale fea-
ture vectors. Intermediate feature maps are resized and concatenated along the fea-
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Figure 4.6: Our overall network architecture (in Scheme-I). Cross-view images and their associated
orientation maps are jointly fed to the Siamese net for feature embedding. The learned two feature
vectors are passed to a triplet loss function to drive the network training. The numbers next to each
layer denote the number of filters.

ture dimension to form a 3D tensor Xi, i ∈ {g, s} of WixHixD dimension, where Wi,
Hi, and D are the width, height, and feature dimension, respectively.

We aim to extract a compact embedding from Xi. We add a pooling layer act-
ing on Xi and outputs a vector fi. Since cross-view images usually have differ-
ent sizes, we adopted the generalised-mean pooling (proposed in Radenović et al.
[2018]; Dollár et al. [2009]) to get the following embedding: fi =

[
f 1
i , .., f D

i
]T , f k

i =(
1

Wi Hi
∑Wi

w=1 ∑Hi
h=1 xp

w,h,k

)1/p
. Variable xw,h,k is a scalar at the k-th feature map of tensor

Xi, and p is a scalar. We set D = 1536, and normalise all f′is to be unit L2-norm.

4.3.3 Triplet loss for cross-view metric learning

Given embeddings fg and fs of the ground-view panorama and satellite image, re-
spectively, the aim of cross-view metric learning is to embed the cross-view embed-
dings to a same space, with metric distances (L2-metric) between embeddings reflect
the similarity/dissimilarity between cross-view images. There are many metric learn-
ing objective functions available, e.g., triplet ranking (Arandjelovic et al. [2016]), SARE
(Liu et al. [2019]), contrastive (Radenović et al. [2018]), angular (Wang et al. [2017])
losses. All losses try to pull the L2 distances between matchable cross-view embed-
dings, while pushing the L2 distances among non-matchable cross-view embeddings.
We adopt the weighted soft-margin ranking loss (Hu et al. [2018b]) to train our
Siamese net for its state-of-the-art performance in this cross-view localisation task.
The loss function L is defined by: L = log

{
1 + exp

[
α
(∥∥fg − fs

∥∥2 −
∥∥fg − f∗s

∥∥2
)]}

,
where fg and fs are features from matchable cross-view pair, and f∗s is non-matchable
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to fg. α is a parameter chosen empirically.

4.4 Experiments

Training and testing datasets. We use the CVUSA panorama dataset (Zhai et al.
[2017]) to evaluate our method. CVUSA is a standard cross-view dataset, containing
35,532 ground-and-satellite image pairs for training and 8,884 for testing. It has been
popularly used by many previous works (Hu et al. [2018b]; Workman et al. [2015];
Vo and Hays [2016]; Zhai et al. [2017]), thus allows for easy benchmarking. A sample
pair of a ground-level panorama and satellite image from CVUSA is displayed in
Figure 4.7. In the course of this research, in order to evaluate our network’s gener-

Figure 4.7: A sample ground-level panorama and satellite image pair from CVUSA dataset.

alisation ability, we also collected and created a new (and much larger) cross-view
localisation benchmark dataset – which we call the CVACT dataset – containing 92,802
testing pairs (i.e., 10× more than CVUSA) with ground-truth geo-locations. Details
about the CVACT dataset will be given in a later subsection, Section 4.4.4.

Implementation details. We train our 7-layer Siamese network from scratch, i.e.,
from randomly initialised network weights (with zero mean and 0.02 stdv. Gaus-
sian noise). We use 4× 4 convolution kernel throughout and strides at 2 with zero
padding. The smaller slope for the Leaky-ReLU is 0.2. Momentum in batch normali-
sation is set at 0.1, and gamma is randomly initialised with Gaussian noise with unit
mean, and stdv=0.02. In computing the triplet loss, we use the same α = 10 as in Hu
et al. [2018b]. For the generalised-mean pooling layer, we set p = 3 as recommended
by Radenović et al. [2018]. Our CNN is implemented in Tensorflow using Adam op-
timiser (Kingma and Ba [2014]) with a learning rate of 10−5 and batch size of B = 12.
We use an exhaustive mini-batch strategy (Vo and Hays [2016]) to maximise the num-
ber of triplets within each batch. Cross-view pairs are fed to the Siamese net. There
are one positive satellite image and B− 1 negative satellite images for each ground-
view panorama, resulting in a total of B(B− 1) triplets. There are also one positive
ground-view panorama and B− 1 negative ground-view panoramas for each satellite
image, resulting in a total of B(B− 1) triplets. In total, we employ 2B(B− 1) triplets.

Data augmentation. To improve our network’s robustness against errors in the global
orientation estimation of a query image, we adopt a ‘data augmentation’ strategy.
This is done by circularly shifting the input ground-level panorama and orientation
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Table 4.1: Recall performance on CVUSA dataset (Zhai et al. [2017]).

Method|Recalls r@1 r@5 r@10 r@ top 1%
Baseline (RGB) 9.83 23.66 32.68 68.61
Our -I (RGB-UV) 31.71 56.61 67.57 93.19
Our -II (RGB-UV) 31.46 57.22 67.90 93.15

map by a random relative angle, resulting in a random rotation of the ground-level
image along the azimuth direction (i.e., estimated ‘True North’ direction).

Evaluation metrics. The most commonly used metric for evaluating IBL methods’
performance is the recall rates (among the found top-K candidates, where K = 1, 2,
3,...). For ease of comparison with previous methods, we use recalls at top 1% as
suggested by works (Hu et al. [2018b]; Vo and Hays [2016]; Workman et al. [2015])
– detailed definition can be found therein. This chapter displays the recalls at top-1,
top-5, top-10, up to top 1%.

4.4.1 Effect of orientation map

This is our first (and very important) set of experiments. We intend to show that
lending orientation information to a deep network greatly improves the performance
of cross-view matching based geo-localisation.

Recall that we have developed two different schemes of adding orientation infor-
mation to our Siamese network. In Scheme-1, we simply augment the input signal
from a 3-channel RGB image to having five channels (i.e., RGB + UV); and in Scheme-
2, we inject the UV map to each of the seven CNN layers. Our experiments, however,
found no major difference in the performances of these two schemes. For this reason,
in all our later experiments, we only test Scheme-1. Scheme-1 is not only easy to use,
but also can be plugged to any type of network architectures (e.g., VGG Simonyan
and Zisserman [2014], ResNet (He et al. [2016]), U-net (Ronneberger et al. [2015]), or
DenseNet (Huang et al. [2017])) without effort. Figure 4.6 gives our CNN architecture
based on Scheme-1.

Baseline network. We first implemented a simple 7-layer Siamese net, and the net
is trained using standard 3-channel RGB input. This is our baseline network for
comparison. Note that all ground-view panoramas are aligned to the north direction.
The first row of Table 4.1 shows this baseline performance, namely, recalls for the
top-1, top-5 and top-10 and top-1% candidates are 9.8%, 23.6%, 32.6%, and 68.6%,
respectively.

Our new network. We then trained and tested our new method with 5-channel input
(for both Scheme-1 and Scheme-2), and obtained much higher recalls throughout the
experiments. The results are shown in the 2nd and 3rd rows of Table 4.1. For example,
by our Scheme-1 we obtained recalls for top-1, top-5, top-10, and top-1% at 31.7%,
56.6%, 67.5%, and 93.1% respectively – showing significant improvements of more
than 25 percentage all-round.
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Figure 4.8: This graph shows that, simply by exploiting orientation information to a baseline Siamese
network (via U-V maps) we are able to boost the success rates (measured in recalls) by over 25%. Our
new method also outperforms the SOTA deep cross-view localisation method of CVM-net.

Table 4.2: Comparison of recall @top 1% recalls by state-of-the-art methods on the CVUSA dataset
(Zhai et al. [2017]).

Ours Workman et al. Zhai et al. Vo et al. CVM-net
r@top 1% 93.19 34.30 43.20 63.70 91.54

4.4.2 Comparisons with other methods

We compare our method with state-of-the-art methods, which include Workman et
al. (Workman et al. [2015]), Vo et al. (Vo and Hays [2016]), Zhai et al. (Zhai et al. [2017])
and CVM-Net (Hu et al. [2018b]). The results (of recall top 1%) are given in Table 4.2.

Table 4.3 gives more results in terms of recalls. CVM-net leverages the feature
maps obtained by VGG16 net (Simonyan and Zisserman [2014]) pre-trained on Ima-
geNet (Deng et al. [2009]), and uses NetVLAD (Arandjelovic et al. [2016]) for feature
aggregation. Compared with CVM-net (Hu et al. [2018b]), our method achieves a
relative improvement of +1.65% for recall@top 1% and +12.91% for recall@top-1.
Furthermore, our network is more compact than CVM-net, can be quickly trained
from scratch. The total number of trainable parameters and storage cost of our net
is 30-millions and 368MB, while in the case of CVM-Net (Hu et al. [2018b]), the
corresponding numbers are 160-millions and 2.0GB, respectively. Based on a single
GTX1080Ti GPU, the total training time for our 7-layer Siamese net took about three
days on the CVUSA dataset. The average query time is only at 30 ms per query,
about 1/3 of CVM-net. We also experimented with plugging our orientation map
into a 16-layer VGG net, and similar improvements are obtained.
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Table 4.3: Comparison of recall performance with CVM-net (Hu et al. [2018b]) on CVUSA dataset
(Zhai et al. [2017]).

Method r@1 r@5 r@10 r@top 1%
Our 7-layer network 31.71 56.61 67.57 93.19
Our 16-layer VGG 27.15 54.66 67.54 93.91
CVM-net (Hu et al. [2018b]) 18.80 44.42 57.47 91.54

4.4.3 Detailed analyses of the proposed network

t-SNE visualisation of the feature embedding. Our network learns location-discriminative
feature embeddings. To visualise the embeddings, we plot those learned features in
2D using t-SNE (Maaten and Hinton [2008]). Figure 4.9 shows a result for CVUSA
(Zhai et al. [2017]). Spatially near-by cross-view image pairs are embedded to close
to each other.

Figure 4.9: t-SNE visualisation of cross-view features learned by our method. The ID on the top-left
corner of each image denotes the index of the cross-view pair (Maaten and Hinton [2008]). (Best
viewed on screen with zoom-in)

Robustness to errors in orientation estimation. Our method utilises North-direction
aligned street-view panoramas and satellite images for cross-view localisation. Note
that satellite images are always north-aligned, and it is not difficult to roughly align
street-view panoramas to the true North with a smart-phone or compass (e.g., a
Google Nexus-4 has an average orientation error of 3.6°(Ma et al. [2013])). Neverthe-
less, it is important to know the impact of errors in the estimated ‘North’. We add
different levels of noise between 0 to 20°. At each error level, we generate a random
angle and rotate the ground-level panorama by this random angle. For an equirect-
angular rectified panorama, this is done by a simple circular crop-and-paste. Figure
4.10 gives the recall performance at top 1% and recall@K accuracy with different er-
rors. As can be seen, both the recall at top 1% and recall@K decrease gracefully with
the increase of error levels.
Robustness to limited Field-of-Views. Our method uses street-view panoramas
with omnidirectional Field of Views (FoVs) in azimuth direction for cross-view locali-
sation. To test our method’s robustness to limited Field-of-Views (i.e., non-panoramic
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Figure 4.10: Comparison of recalls with respect to errors in the ‘true north’ estimation on CVUSA.
Our method degrades gracefully as the error increases.

image with less than 360°field-of-view), we cut the image and orientation map and
show the recall performance of top 1% and recall@K accuracy with different FoVs in
Figure 4.11. As can be seen there, both the recall at top 1% and recall @ K accuracy
decrease gracefully with the reduction in FoV angles.

4.4.4 ACT city-scale cross-view dataset

To validate our method’s generalisation ability on larger-scale geographical localisa-
tion instances, we collect and create a new city-scale and fully GPS-tagged cross-view
dataset (named the ‘CVACT dataset’) densely covering Canberra. GPS footprints of
the dataset are displayed in Figure 4.1 (c). Street-view panoramas are collected from
Google Street View API (Google [c]) covering a geographic area of 300 square miles
at zoom level 2. The image resolution of panoramas is 1664× 832. Satellite images
are collected from Google Map API (Google [a]). For each panorama, we download
the matchable satellite image at the GPS position of the panorama at the best zoom
level 20. The image resolution of satellite images is 1200× 1200 after removing the
Google watermark. The ground resolution for satellite images is 0.12 meters per
pixel. A comparison between our CVACT dataset and CVUSA is given in Table 4.4.
Figure 4.1 (b,d) gives a sample cross-view image pair of our dataset.

Since our dataset is equipped with accurate GPS-tags, we are able to evaluate met-
ric location accuracy. We tested 92, 802 cross-view image pairs – viz. 10× bigger than
CVUSA dataset (Zhai et al. [2017]). Image pairs in the training set and the testing set
are captured at different geographic locations in the Canberra city. We use the metric
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Figure 4.11: Comparison of recall performance with respect to different Field of Views on CVUSA
(Zhai et al. [2017])

(a) Query (b) Top 1 (c) Top 2 (d) Top 3 (e) Top 4 (f) Top 5

Figure 4.12: Example localisation results on CVACT dataset by our method. From left to right:
query image and the Top 1-5 retrieved images. Green borders indicate correct retrieved results. Since
our dataset densely covers a city-scale environment, a query image may have multiple correct matches
(e.g., the 3rd row). (Best viewed in colour on screen)

Table 4.4: Comparison of CVUSA and CVACT datasets

Ground-view
FoV/image res.

GPS-tag
Satellite
resolution

#training #testing

CVACT 360/1664x832 Yes 1200x1200 35,532 92,802
CVUSA 360/1232x224 No 750x750 35,532 8,884
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in (Arandjelovic et al. [2016]) to measure the localisation performance. Specifically,
the query image is deemed localised if at least one of the top N retrieved database
satellite images is within 5 meters from the ground-truth location. A recall@K curve
is given in Figure 4.13. We can see that our method outperforms CVM-net (Hu et al.
[2018b]), with an improvement of 15.84% at top-1. This result also reveals the diffi-
culty of our new dataset, namely only 19.90% query images get to be localised within
an accuracy of ≤ 5m-level; We hope this will motivate other researchers to tackle this
challenging task and use our CVACT dataset. Some example localisation results by
our method are shown in Figure 4.12.
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Figure 4.13: localisation performance of our method versus CVM-net on our new CVACT dataset.

4.5 Summary

Image-based geo-localisation is essentially a geometry problem, where the ultimate
goal is to recover 6-DoF camera pose (i.e., both location and orientation). As such,
applying geometric cues (e.g., orientation) to localisation is both natural and desir-
able. However, most previous image-based localisation methods have either over-
looked such important cues or have no effective way to incorporate such geometry
information. Instead, they treat the problem as a pure content-based image retrieval
task and focus on finding the visual similarity in terms of appearance and semantic
contents of the images.

In this work, we have successfully demonstrated that by adding a simple ori-
entation map, we are able to teach a Siamese localisation network the (geometric)
notion of orientation. This results in significant improvement in localisation perfor-
mance (e.g., our top 1% recall rate is boosted by over 25% compared with without
using orientations). Our method for adding an orientation map to a neural network



44 Localisation with respect to Satellite Image Database

is transparent and straightforward; the same idea may be applied to other types of
deep networks or different applications. It is our position that, in solving geometry-
related vision problems, whenever geometry clues (or insights) are available, one
should always consider how to exploit them, rather than training a CNN end-to-end
as a blind black-box. We hope our idea can inspire other researchers working on re-
lated problems. This chapter’s second contribution is a large-scale, fully-annotated,
and geo-referenced cross-view image localisation dataset – the CVACT dataset. We
hope it is a valuable addition to the localisation benchmark and literature.



Chapter 5

Localisation With Respect to a
Ground-view Image Database

In this chapter, we study the problem of image-based localisation (IBL) by exploit-
ing geo-referenced ground-view image databases (such as Google’s StreetView). A
query camera/image’s spatial location is determined by finding out the most similar
reference images in a large database. For solving this problem, a critical task is to
learn discriminative image representation that captures informative information rele-
vant for localisation. We propose a representation learning method (Liu et al. [2019])
having higher location-discriminating power.

This chapter presents the following contributions: 1) we represent a place (loca-
tion) as a set of exemplar images depicting the same landmarks and aim to max-
imise similarities among intra-place images while minimising similarities among
inter-place images; 2) we model a similarity measure as a probability distribution
on L2-metric distances between intra-place and inter-place image representations;
3) we propose a new Stochastic Attraction and Repulsion Embedding (SARE) loss
function minimising the KL divergence between the learned and the actual probabil-
ity distributions; 4) we give theoretical comparisons between SARE, triplet ranking
(Arandjelovic et al. [2016]) and contrastive losses (Radenović et al. [2016]). It provides
insights into why SARE is better by analysing gradients.

Our SARE loss is easy to implement and pluggable to any CNN. Experiments
show that our proposed method improves the localisation performance on standard
benchmarks by a large margin. Demonstrating our method’s broad applicability,
we obtained the 3rd place out of 209 teams in the 2018 Google Landmark Retrieval
Challenge Google [b]. Our code and model are available at https://github.com/
Liumouliu/deepIBL.

The rest of this chapter is organised as follows. We first give an introduction in
Section 5.1 and then present our problem definition and method overview in Section
5.2. Two widely-used deep metric embedding objectives (triplet ranking and con-
trastive) in camera-based localisation are given in Section 5.3. Our proposed SARE
loss function is given in Section 5.4. We further compare our SARE with the triplet
ranking and contrastive objective and show their connections and differences in Sec-
tion 5.5. Experimental results are given in Section 5.7.
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5.1 Introduction

Convolution Neural Networks (CNNs) have demonstrated great success for the IBL
task (Arandjelovic et al. [2016]; Kim et al. [2017]; Noh et al. [2017]; Gordo et al. [2016,
2017]; Radenović et al. [2016]). Typically, CNNs trained for image classification task
are fine-tuned for IBL. As far as we know, all the state-of-the-art IBL methods focus
on effectively aggregating a CNN feature map to obtain discriminative image rep-
resentation but have overlooked another important aspect that can potentially boost
the IBL performance markedly. The important aspect is how to organise the aggre-
gated image representations effectively. So far, all state-of-the-art IBL methods use
triplet ranking and contrastive embedding to supervise the representation organisa-
tion process.

This chapter fills this gap by proposing a new method to organise the image rep-
resentations (embeddings) effectively. We first define a “place” as a set of images
depicting the same location landmarks, and then directly enforce the intra-place im-
age similarity and inter-place dissimilarity in the embedding space. Our goal is to
cluster learned embeddings from the same place while separating embeddings from
different places. Intuitively, we are organising image representations using places as
agents.

The above idea may directly lead to a multi-class classification problem if we can
label the “place” tag for each image. Apart from the time-consuming labeling pro-
cess, the formulation will also result in too many pre-defined classes, and we need a
large training image set to train the classification CNN net. Recently-proposed meth-
ods (Vo et al. [2017]; Weyand et al. [2016]) try to solve the multi-class classification
problem using large GPS-tagged training dataset. In their setting, a class is defined
as images captured from nearby geographic positions while disregarding their vi-
sual appearance information. Since images within the same class do not necessarily
depict the same landmarks, CNN may only learn high-level information (Vo et al.
[2017]) for each geographic position, thus inadequate for accurate localisation.

Can we capture the intra-place image “attraction” and inter-place image “repul-
sion” relationship with limited data? To tackle the “attraction” and “repulsion” rela-
tionship, we formulate the IBL task as image similarity-based binary classification in
feature embedding space. Specifically, the similarity for images in the same place is
defined as 1, and 0 otherwise. This binary-partition of similarity is used to capture
the intra-place “attraction” and inter-place “repulsion”. To tackle the limited data
issue, we use triplet images to train CNN, consisting of one query, positive (from
the same place as the query), and negative image (from a different place). Note
that a triplet is a minimum set to define the intra-place “attraction” and inter-place
“repulsion”.

We name our metric-learning objective as “Stochastic Attraction and Repulsion
Embedding (SARE)" because it captures pairwise image relationships under the
probabilistic framework. Moreover, our SARE objective can be easily extended to
handle multiple negative images coming from different places, i.e., enabling compe-
tition with multiple other places for each place. The pipeline of our method is given
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Figure 5.1: The pipeline of our method. We use the VGG16 net (Simonyan and Zisserman [2014])
with only convolution layers as our architecture. NetVLAD (Arandjelovic et al. [2016]) pooling is
used to obtain compact image representations. The feature vectors are post L2 normalised. The L2

distance between the query-positive and the query-negative images are calculated, and converted to
a probability distribution. The estimated probability distribution is compared with the ground-truth
match-ability distribution, yielding the Kullback-Leibler divergence loss.

in Figure 5.1.

5.2 Problem Definition and Method Overview

Given a large geo-tagged image database, the IBL task is to estimate the geographic
position of a query image q. Image-retrieval based methods first identify the most
visually similar image from the database for q, and then use the database image’s
location as that of q. Suppose the identified most similar image comes from the same
place as q. In that case, we deem that we have successfully localised q, and the most
similar image is a positive image, denoted as p. If the identified most similar image
comes from a different place as q, we have falsely localised q, and the most similar
image is a negative image, denoted as n.

Mathematically, an image-retrieval based method is executed as follows: First,
query image and database images are converted to compact representations (vectors).
This step is called image feature embedding and is done by a CNN network. For
example, query image q is converted to a fixed-size vector fθ(q), where f is a CNN
network and θ is the CNN weight. Second, we define a similarity function S(·) on
pairwise vectors. For example, S ( fθ(q), fθ(p)) takes vectors fθ(q) and fθ(p), and
outputs a scalar value describing the similarity between q and p. Since we compare
the entire large database to find the most similar image for q, S(·) should be simple
and efficiently computed to enable the fast nearest neighbor search. A typical choice
for S(·) is the L2-metric distance, or functions monotonically increase/decrease with
the L2-metric distance.

Relying on feature vectors extracted by un-trained CNN to perform nearest neigh-
bor search would often output a negative image n for q. Thus, we need to train CNN
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using easily obtained geo-tagged training images (Section 5.7.1). In general, the
training process defines a loss function on CNN extracted feature vectors and uses it
to update the CNN weight θ. State-of-the-art triplet ranking loss (Section 5.3) takes
triplet training images q, p, n, and imposes that q is more similar to p than n. Another
contrastive loss (Section 5.3.2) tries to separate q ∼ n pair by a pre-defined distance
margin (see Figure 5.2). While these two losses are effective, we construct our metric
embedding objective in a substantially different way.

Given triplet training images q, p, n, we have the prior knowledge that the q ∼ p
pair is matchable and the q ∼ n pair is non-matchable. This simple match-ability
prior actually defines a probability distribution. For the q ∼ p pair, the match-ability
is defined as 1. For the q ∼ n pair, the match-ability is defined as 0. Can we respect
this match-ability prior in the feature embedding space? Our answer is yes. To do
it, we directly fit a kernel on the L2-metric distances of q ∼ p and q ∼ n pairs and
obtain a probability distribution. Our metric-learning objective is to minimise the
Kullback-Leibler divergence of the above two probability distributions (Section 5.4).

What’s the benefit of respecting the match-ability prior in the feature embedding
space? Conceptually, in this way, we capture the intra-place (defined by q ∼ p
pair) “attraction” and inter-place (defined by q ∼ n pair) “repulsion” relationship in
feature embedding space. Potentially, the “attraction” and “repulsion” relationship
balances the embedded positions of the entire image database well. Mathematically,
we use gradients of the resulting metric-learning objective with respect to triplet
images to figure out the characteristics and find that our objective adaptively adjusts
the force (gradient) to pull the distance of q ∼ p pair while pushing the distance of
q ∼ n pair (Section 5.5).

5.3 Deep Metric Embedding Objectives in IBL

In this section, we first give the two widely-used deep metric embedding objectives
in IBL - the triplet ranking and contrastive embedding, and they are facilitated by
minimising the triplet ranking and contrastive loss, respectively. We then give our
objective - Stochastic Attraction and Repulsion Embedding (SARE).

5.3.1 Triplet ranking loss

The triplet ranking loss is defined by

Lθ (q, p, n) = max
(

0, m + ‖ fθ(q)− fθ(p)‖2 − ‖ fθ(q)− fθ(n)‖2
)

, (5.1)

where m is an empirical margin, typically m = 0.1 (Arandjelovic et al. [2017, 2016];
Gordo et al. [2016]; Radenović et al. [2016]). m is used to prune out triplet images
with ‖ fθ(q)− fθ(n)‖2 > m + ‖ fθ(q)− fθ(p)‖2.
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Figure 5.2: Triplet ranking loss imposes the constraint ‖ fθ(q)− fθ(n)‖2 > m+ ‖ fθ(q)− fθ(p)‖2.
Contrastive loss pulls the L2 distance of q ∼ p pair to infinite-minimal, while pushing the L2 distance
of q ∼ n pair to at least τ-away.

5.3.2 Contrastive loss

The contrastive loss imposes constraint on image pair i ∼ j by:

Lθ (i, j) =
1
2

η ‖ fθ(i)− fθ(j)‖2 +

1
2
(1− η)

(
max (0, τ − ‖ fθ(i)− fθ(j)‖)2

) (5.2)

where for q ∼ p pair, η = 1, and for q ∼ n pair, η = 0. τ is an empirical margin to
prune out negative images with ‖ fθ(i)− fθ(j)‖ > τ. Typically, τ = 0.7 (Radenović
et al. [2016]).

Intuitions to the above two losses are compared in Figure 5.2.

5.4 SARE-Stochastic Attraction and Repulsion Embedding

This section presents our Stochastic Attraction and Repulsion Embedding (SARE)
objective, which is optimised to learn discriminative embeddings for each “place”.
A triplet image q, p, n define two places, one defined by q ∼ p pair and the other
defined by n. The intra-place and inter-place similarities are defined in a probabilistic
framework.

Given a query image q, the probability q picks p as its match is conditional prob-
ability hp|q, which equals to 1 based on the co-visible or matchable prior. The condi-
tional probability hn|q equals to 0 following above definition. Since we are interested
in modeling pairwise similarities, we set hq|q = 0. The reason is that for a simple
Bayesian network defined by a parent node q with two child nodes p and n, we are
only interested in modelling the mutually transitional probabilities (or weights in
the simple graph), and there are no self-loops in the graph. Please refer to Nguyen
[2017] for more details concerning a simple Bayesian network. Note that the triplet
probabilities hq|q, hp|q, hn|q actually define a probability distribution (summing to 1).

In the feature embedding space, we would like CNN extracted feature vectors to
respect the above probability distribution. We define another probability distribution
cq|q, cp|q, cn|q in the embedding space, and try to minimise the mismatch between
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the two distributions. The Kullback-Leibler divergence is employed to describe the
cross-entropy loss and is given by:

Lθ (q, p, n) = hp|q log

(
hp|q
cp|q

)
+ hn|q log

(
hn|q
cn|q

)
. (5.3)

Since hp|q = 1 and hn|q = 0, the above equation is simplified to

Lθ (q, p, n) = − log
(

cp|q
)

, (5.4)

To define the probability q picks p as its match in the feature embedding space, we
fit a kernel on pairwise L2-metric feature vector distances. We use three typical-used
kernels to compare their effectiveness: Gaussian, Cauchy, and Exponential kernels.
In the next paragraphs, we use the Gaussian kernel to demonstrate our method.

For the Gaussian kernel, we have:

cp|q =
exp

(
−‖ fθ(q)− fθ(p)‖2

)
exp

(
−‖ fθ(q)− fθ(p)‖2

)
+ exp

(
−‖ fθ(q)− fθ(n)‖2

) . (5.5)

In the feature embedding space, the probability of q picks n as its match is given by
cn|q = 1− cp|q. If the embedded feature vectors fθ(q) and fθ(p) are sufficiently near,
and fθ(q) and fθ(n) are far enough under the L2-metric, the conditional probability
distributions c·|q and h·|q will be equal. Thus, our SARE objective aims to find an
embedding function fθ(·) that pulls the L2 distance of fθ(q) ∼ fθ(p) to infinite-
minimal, and that of fθ(q) ∼ fθ(n) to infinite-maximal.

Note that although ratio-loss (Hoffer and Ailon [2015]) looks similar to our Expo-
nential kernel exp(−||x− y||) defined loss function, they are theoretically different.
The building block of ratio-loss is exp(||x − y||), and it directly applies exp() to
distance ||x − y||. This is problematic since it is not positive-defined (Please refer
to Proposition 3&4 (Schölkopf [2001] or Schoenberg [1938])). Furthermore, with
the Gaussian kernel, our loss function boils down to a similar Proxy-NCA loss
Movshovitz-Attias et al. [2017]. In summary, our idea of minimising the mismatching
between distributions is original, and the induced kernelised loss function is general
and is compatible with learnable kernels.

5.5 Comparing the Three Losses

In this section, we illustrate the connections between the above three different loss
functions. This is approached by deriving and comparing their gradients, which
are key to the back-propagation stage in networks training. Note that gradient may
be interpreted as the resultant force created by a set of springs between image pair
(Maaten and Hinton [2008]). For the gradient with respect to the positive image p,
the spring pulls the q ∼ p pair. For the gradient with respect to the negative image
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Table 5.1: Comparison of gradients with respect to p and n for different objectives. Note that ĉp|q
and c̄p|q are different from cp|q since they are defined by Cauchy and Exponential kernels, respectively.
ĉp|q and c̄p|q share similar form as cp|q.

XXXXXXXXXXLoss
Gradients

∂L/∂ fθ(p) ∂L/∂ fθ(n)

Triplet ranking 2 ( fθ(p)− fθ(q)) 2 ( fθ(q)− fθ(n))

Contrastive fθ(p)− fθ(q) − (1− τ/ ‖ fθ(q)− fθ(n)‖) ( fθ(q)− fθ(n))

Gaussian SARE 2
(

1− cp|q
)
( fθ(p)− fθ(q)) 2

(
1− cp|q

)
( fθ(q)− fθ(n))

Cauchy SARE 2
(

1− ĉp|q
)

fθ(p)− fθ(q)
1+‖ fθ(p)− fθ(q)‖2 2

(
1− ĉp|q

)
fθ(q)− fθ(n)

1+‖ fθ(q)− fθ(n)‖2

Exponential SARE
(

1− c̄p|q
)

fθ(p)− fθ(q)
‖ fθ(p)− fθ(q)‖

(
1− c̄p|q

)
fθ(q)− fθ(n)
‖ fθ(q)− fθ(n)‖

n, the spring pushes the q ∼ n pair.
In Figure 5.3, we compare the magnitudes of gradients with respect to p and n

for different objectives. The mathematical equations of gradients with respect to p
and n for different objectives are given in Table 5.1. For each objective, the gradient
with respect to q is given by ∂L/∂ fθ(q) = −∂L/∂ fθ(p)− ∂L/∂ fθ(n).

In the case of triplet ranking loss, ‖∂L/∂ fθ(p)‖ and ‖∂L/∂ fθ(n)‖ increase lin-
early with respect to the distance ‖ fθ(q)− fθ(p)‖ and ‖ fθ(q)− fθ(n)‖, respectively.
The saturation regions in which gradients equal to zero correspond to triplet im-
ages producing a zero loss (Eq. (5.1)). For triplet images producing a non-zero loss,
‖∂L/∂ fθ(p)‖ is independent of n, and vice versa. Thus, the updating of fθ(p) disre-
gards the current embedded position of n and vice versa.

For the contrastive loss, ‖∂L/∂ fθ(p)‖ is independent of n and increase linearly
with respect to distance ‖ fθ(q)− fθ(p)‖ . ‖∂L/∂ fθ(n)‖ decreases linearly with re-
spect to distance ‖ fθ(q)− fθ(n)‖ . The area in which ‖∂L/∂ fθ(n)‖ equals zero corre-
sponds to negative images with ‖ fθ(q)− fθ(n)‖ > τ.

For all kernel defined SAREs, ‖∂L/∂ fθ(p)‖ and ‖∂L/∂ fθ(n)‖ depend on distances
‖ fθ(q)− fθ(p)‖ and ‖ fθ(q)− fθ(n)‖. The implicitly respecting of the distances comes
from the probability cp|q (Eq. (5.5)). Thus, the updating of fθ(p) and fθ(n) considers
the current embedded positions of triplet images, which is beneficial for the possibly
diverse feature distribution in the embedding space.

The benefit of kernel defined SARE-objectives can be better understood when
combined with hard-negative mining strategy, which is widely used in CNN train-
ing. The strategy returns a set of hard negative images (i.e., nearest negatives in L2-
metric) for training. Note that both the triplet ranking loss and contrastive loss rely
on empirical parameters (m, τ) to prune out negatives (c.f., the saturation regions).
In contrast, our kernel defined SARE-objectives do not rely on these parameters.
They preemptively consider the current embedded positions. For example, hard
negative with ‖ fθ(q)− fθ(p)‖ > ‖ fθ(q)− fθ(n)‖ (top-left-triangle in gradients fig-
ure) will trigger large force to pull q ∼ p pair while pushing q ∼ n pair. “semi-hard”
(Schroff et al. [2015]) negative with ‖ fθ(q)− fθ(p)‖ < ‖ fθ(q)− fθ(n)‖ (bottom-right-
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Figure 5.3: Comparison of gradients with respect to p and n for different objectives. m = 0.1, τ =
0.7. (Best viewed in colour on screen)
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Figure 5.4: Comparison of the gradients with respect to n for different objectives. m = 0.1, τ = 0.7.

triangle in gradients figure) will still trigger force to pull q ∼ p pair while pushing
q ∼ n pair, however, the force decays with increasing ‖ fθ(q)− fθ(n)‖. Here, large
‖ fθ(q)− fθ(n)‖ may correspond to well-trained samples or noise, and the gradients
decay ability has the potential benefit of reducing over-fitting.

To better understand the gradient decay ability of kernel defined SARE objectives,
we fix ‖ fθ(q)− fθ(p)‖ =

√
2, and compare ‖∂L/∂ fθ(n)‖ for all objectives in Figure

5.4. Here, ‖ fθ(q)− fθ(p)‖ =
√

2 means that for uniformly distributed feature embed-
dings, if we randomly sample q ∼ p pair, we are likely to obtain samples that are√

2-away (Manmatha et al. [2017]). Uniformly distributed feature embeddings cor-
respond to an initial untrained/un-fine-tuned CNN. For triplet ranking loss, Gaus-
sian SARE and Cauchy SARE, ‖∂L/∂ fθ(n)‖ increases with respect to ‖ fθ(q)− fθ(n)‖
when it is small. In contrast to the gradually decay ability of SAREs, triplet ranking
loss suddenly “close” the force when the triplet images produce a zero loss (Eq. (5.1)).
For contrastive loss and Exponential SARE, ‖∂L/∂ fθ(n)‖ decreases with respect to
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Figure 5.5: Handling multiple negative images. Left: The first method treats multiple negatives
independently. Each triplet focuses on the competitiveness over two places, one defined by query •
and positive •, and the other one defined by negative •. Right: The second strategy jointly handles
multiple negative images, which enables competitiveness over multiple places.

‖ fθ(q)− fθ(n)‖. Again, the contrastive loss “close” the force when the negative im-
age produces a zero loss.

5.6 Handling Multiple Negatives

In this section, we give two methods to handle multiple negative images in the CNN
training stage. Equation (5.3) defines a SARE loss on a triplet and aims to shorten
the embedded distance between the query and positive images while enlarging the
distance between the query and negative images. Usually, in IBL, the number of pos-
itive images is very small since they should depict the same landmarks as the query
image, while the number of negative images is very big since images from different
places are negative. At the same time, the time-consuming hard negative images
mining process returns multiple negative images for each query image (Arandjelovic
et al. [2016]; Kim et al. [2017]). There are two ways to handle these negative images:
one is to treat them independently, and the other is to jointly handle them, where
both strategies are illustrated in Figure 5.5.

Given N negative images, treating them independently results in N triplets, and
they are substituted to Eq. (5.3) to calculate the loss to train CNN. Each triplet fo-
cuses on the competitiveness of two places (positive VS negative). The repulsion and
attractive forces from multiple place pairs are averaged to balance the embeddings.

Jointly handling multiple negatives aims to balance the distance of positives over
multiple negatives. In our formulation, we can easily construct an objective function
to push N negative images simultaneously. Specifically, the match-ability priors for
all the negative images are defined as zero, i.e., hn|q = 0, n = 1, 2, ..., N. The Kullback-
Leibler divergence loss over multiple negatives is given by:

Lθ (q, p, n) = − log
(

c∗p|q
)

, (5.6)
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where for Gaussian kernel SARE, c∗p|q is defined as:

c∗p|q =
exp

(
−‖ fθ(q)− fθ(p)‖2

)
exp

(
−‖ fθ(q)− fθ(p)‖2

)
+ ∑N

n=1 exp
(
−‖ fθ(q)− fθ(n)‖2

) . (5.7)

In the next paragraphs, we calculate the gradients of Eq. (5.6) with respect to
query, positive, and negatives.

Substituting Eq. (5.7) into Eq. (5.6) gives:

Lθ (q, p, n) = log

(
1 +

N

∑
n=1

exp(‖ fθ(q)− fθ(p)‖2 − ‖ fθ(q)− fθ(n)‖2)

)
(5.8)

Denote 1+∑N
n=1 exp(‖ fθ(q)− fθ(p)‖2 − ‖ fθ(q)− fθ(n)‖2) as η, the gradients of Eq. (5.8)

with respect to the query, positive, and negatives are given by:

∂L
∂ fθ(p)

=
N

∑
n=1
− 2

η
exp

(
‖ fθ(q)− fθ(p)‖2 − ‖ fθ(q)− fθ(n)‖2

)
[ fθ(q)− fθ(p)] , (5.9)

∂L
∂ fθ(n)

=
2
η

exp
(
‖ fθ(q)− fθ(p)‖2 − ‖ fθ(q)− fθ(n)‖2

)
[ fθ(q)− fθ(n)] , (5.10)

∂L
∂ fθ(q)

= − ∂L
∂ fθ(p)

−
N

∑
n=1

∂L
∂ fθ(n)

. (5.11)

Similarly, for the Cauchy kernel, the loss function is given by:

Lθ (q, p, n) = log

(
1 +

N

∑
n=1

1 + ‖ fθ(q)− fθ(p)‖2

1 + ‖ fθ(q)− fθ(n)‖2

)
. (5.12)

Denote 1+∑N
n=1

1+‖ fθ(q)− fθ(p)‖2

1+‖ fθ(q)− fθ(n)‖2 as η, the gradients of Eq. (5.12) with respect to the
query, positive, and negatives are given by:

∂L
∂ fθ(p)

=
N

∑
n=1

−2

η
(

1 + ‖ fθ(q)− fθ(n)‖2
) [ fθ(q)− fθ(p)] , (5.13)

∂L
∂ fθ(n)

=
2
(

1 + ‖ fθ(q)− fθ(p)‖2
)

η
(

1 + ‖ fθ(q)− fθ(n)‖2
)2 [ fθ(q)− fθ(n)] , (5.14)

∂L
∂ fθ(q)

= − ∂L
∂ fθ(p)

−
N

∑
n=1

∂L
∂ fθ(n)

. (5.15)
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For the Exponential kernel, the loss function is given by:

Lθ (q, p, n) = log

(
1 +

N

∑
n=1

exp (‖ fθ(q)− fθ(p)‖ − ‖ fθ(q)− fθ(n)‖)
)

. (5.16)

Denote 1 + ∑N
n=1 exp(‖ fθ(q)− fθ(p)‖ − ‖ fθ(q)− fθ(n)‖) as η, the gradients of

Eq. (5.16) with respect to the query, positive, and negative images are given by:

∂L
∂ fθ(p)

=
N

∑
n=1
−exp (‖ fθ(q)− fθ(p)‖ − ‖ fθ(q)− fθ(n)‖)

η ‖ fθ(q)− fθ(p)‖ [ fθ(q)− fθ(p)] , (5.17)

∂L
∂ fθ(n)

=
exp (‖ fθ(q)− fθ(p)‖ − ‖ fθ(q)− fθ(n)‖)

η ‖ fθ(q)− fθ(n)‖
[ fθ(q)− fθ(n)] , (5.18)

∂L
∂ fθ(q)

= − ∂L
∂ fθ(p)

−
N

∑
n=1

∂L
∂ fθ(n)

. (5.19)

The gradients are back propagated to train the CNN.

5.7 Experiments

This section mainly discusses the performance of SARE objectives for training CNN.
We show that with SARE, we can improve the IBL performance on various standard
place recognition and image retrieval datasets.

5.7.1 Implementation details

Datasets. Google Street View Time Machine datasets have been widely-used in IBL
(Torii et al. [2015a]; Arandjelovic et al. [2016]; Kim et al. [2017]). It provides multiple
street-level panoramic images taken at different times at close-by spatial locations
on the map. The panoramic images are projected into multiple perspective images,
yielding the training and testing datasets. Each image is associated with a GPS-tag
giving its approximate geographic location, which can be used to identify nearby
images not necessarily depicting the same landmark. We follow (Arandjelovic et al.
[2016]; Vo et al. [2017]) to identify each query image’s positive and negative images.
For each query image, the positive image is the closest neighbor in the feature em-
bedding space at its nearby geo-position, and the negatives are far away images. The
above positive-negative mining method is very efficient, although some outliers may
exist in the resultant positive/negative images. If accurate positives and negatives
are needed, pairwise image matching with geometric validation (Kim et al. [2017])
or SfM reconstruction (Radenović et al. [2016]) can be used. However, they are time-
consuming.

The Pitts30k-training dataset (Arandjelovic et al. [2016]) is used to train CNN,
which has been shown to obtain best CNN (Arandjelovic et al. [2016]). To test our
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Table 5.2: Datasets used in experiments. The Pitts250k-train dataset is only used to train the
Geographic classification CNN (Vo et al. [2017]). For all the other CNNs, Pitts30k-train dataset is
used to enable fast training.

Dataset #database images #query images
Pitts250k-train 91,464 7,824
Pitts250k-val 78,648 7,608
Pitts250k-test 83,952 8,280
Pitts30k-train 10,000 7,416
Pitts30k-val 10,000 7,608
Pitts30k-test 10,000 6,816
TokyoTM-val 49,056 7,186
Tokyo 24/7 75,984 315
Sf-0 610,773 803
Oxford 5k 5062 55
Paris 6k 6412 55
Holidays 991 500

method for IBL, the Pitts250k-test (Arandjelovic et al. [2016]), TokyoTM-val (Arand-
jelovic et al. [2016]), 24/7 Tokyo (Torii et al. [2015a]) and Sf-0 (Chen et al. [2011];
Sattler et al. [2017]) datasets are used. To show the generalisation ability of our
method for image retrieval, the Oxford 5k (Philbin et al. [2007]), Paris 6k (Philbin
et al. [2008]), and Holidays (Jegou et al. [2008]) datasets are used. Details of these
datasets are given in Table 5.2.

CNN architecture. We use the widely-used compact feature vector extraction method
NetVLAD (Arandjelovic et al. [2016]; Noh et al. [2017]; Kim et al. [2017]; Sattler et al.
[2017, 2018]) to demonstrate the effectiveness of our method. Our CNN architecture
is given in Figure 5.1.

Evaluation Metric. For the place recognition datasets Pitts250k-test, TokyoTM-val,
24/7 Tokyo, and Sf-0, we use the Precision-Recall curve to evaluate the performance.
Specifically, for Pitts250k-test, TokyoTM-val, and 24/7 Tokyo, the query image is
deemed correctly localised if at least one of the top N retrieved database images
is within d = 25 meters from the ground truth position of the query image. The
percentage of correctly recognised queries (Recall) is then plotted for different values
of N. For the large-scale Sf-0 dataset, the query image is deemed correctly localised
if at least one of the top N retrieved database images share the same building IDs (
manually labeled by Chen et al. [2011] ). For the image-retrieval datasets Oxford 5k,
Paris 6k, and Holidays, the mean-Average-Precision (mAP) is reported.

Training Details. We use the training method of Arandjelovic et al. [2016] to compare
different objectives. For the state-of-the-art triplet ranking loss, the off-the-shelf im-
plementation (Arandjelovic et al. [2016]) is used. For the contrastive loss (Radenović
et al. [2016]), triplet images are partitioned into q ∼ p and q ∼ n pairs to calculate
the loss (Eq. (5.2)) and gradients. For our method which treats multiple negatives
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Table 5.3: Comparison of Recalls on the Pitts250k-test, TokyoTM-val, 24/7 Tokyo, and Sf-0 datasets.

`````````̀Method
Dataset Pitts250k-test TokyoTM-val 24/7 Tokyo Sf-0

r@1 r@5 r@10 r@1 r@5 r@10 r@1 r@5 r@10 r@1 r@5 r@10
Our-Ind. 88.97 95.50 96.79 94.49 96.73 97.30 79.68 86.67 90.48 80.60 86.70 89.01
Our-Joint 88.43 95.06 96.58 94.71 96.87 97.51 80.63 87.30 90.79 77.75 85.07 87.52
CRN 85.50 93.50 95.50 - - - 75.20 83.80 87.30 - - -
NetVLAD 85.95 93.20 95.13 93.85 96.77 97.59 73.33 82.86 86.03 75.58 83.31 85.21

independent (Our-Ind.), we first calculate the probability cp|q (Eq. (5.5)). cp|q is then
used to calculate the gradients (Table 5.1) with respect to the images. The gradients
are back-propagated to train CNN. For our method which jointly handles multiple
negatives (Our-Joint), we use Eq.(5.6) to train CNN. Our implementation is based on
MatConvNet (Vedaldi and Lenc [2015]). A third-party Pytorch implementation is
available at https://github.com/yxgeee/OpenIBL.

5.7.2 Kernels for SARE

To assess the impact of kernels on fitting the pairwise L2-metric feature vector dis-
tances, we compare CNNs trained by Gaussian, Cauchy, and Exponential kernel
defined SARE-objectives, respectively. All the hyper-parameters are the same for dif-
ferent objectives, and the results are given in Figure 5.6. CNN trained by Gaussian
kernel defined SARE generally outperforms CNNs trained by others.

We find that handling multiple negatives jointly (Gaussian-Joint) leads to better
training and validation performances than handling multiple negatives indepen-
dently (Gaussian-Ind.). However, when testing the trained CNNs on Pitts250k-test,
TokyoTM-val, and 24/7 Tokyo datasets, the recall performances are similar. The rea-
son may come from the negative image sampling strategy. Since the negative images
are dropped randomly from far-away places from the query image using GPS-tags,
they potentially are already well-balanced in the whole dataset; thus the repulsion
and attractive forces from multiple place pairs are similar, leading to a similar perfor-
mance of the two methods. Gaussian-Ind. behaves surprisingly well on the large-scale
Sf-0 dataset.

5.7.3 Comparison with state-of-the-art

We use Gaussian kernel defined SARE objectives to train CNNs, and compare our
method with state-of-the-art NetVLAD (Arandjelovic et al. [2016]) and NetVLAD
with Contextual Feature Reweighting (Kim et al. [2017]), denoted as CRN. The com-
plete Recall@N performance for different methods are given in Table 5.3.

CNNs trained by Gaussian-SARE objectives consistently outperform state-of-the-
art CNNs by a large margin on almost all benchmarks. For example, on the chal-
lenging 24/7 Tokyo dataset, our-Ind. trained NetVLAD achieves recall@1 of 79.68%
compared to the second-best 75.20% obtained by CRN (Kim et al. [2017]), i.e., a rel-
ative improvement in recall of 4.48%. On the large-scale challenging Sf-0 dataset,
our-Ind. trained NetVLAD achieves recall@1 of 80.60% compared to the 75.58% ob-

https://github.com/yxgeee/OpenIBL
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Figure 5.6: Comparison of recalls for different kernel defined SARE-objectives. From left to right and
top to down: Pitts250k-test, TokyoTM-val, 24/7 Tokyo, and Sf-0. (Best viewed in colour on screen)
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(a) Query (b) Our-map (c) NetVLAD-map (d) Our-top1 (e) NetVLAD-top1

Figure 5.7: Example retrieval results on Sf-0 benchmark dataset. From left to right: query image, the
heat map of Our-Ind, the heat map of NetVLAD (Arandjelovic et al. [2016]), the top retrieved image
using our method, the top retrieved image using NetVLAD. Green and red borders indicate correct
and incorrect retrieved results, respectively. (Best viewed in colour on screen)

tained by NetVLAD (Arandjelovic et al. [2016]), i.e., a relative improvement in recall
of 5.02%. Note that we do not use the Contextual Reweighting layer to capture the
“context” within images, which has been shown to be more effective than the orig-
inal NetVLAD structure (Kim et al. [2017]). Similar improvements can be observed
in other datasets. This confirms the important premise of this work: formulating the
IBL problem in the competitive learning framework and using SARE to supervise
the CNN training process can learn discriminative yet compact image representa-
tions for IBL. We visualise 2D feature embeddings of query images from 24/7 Tokyo
and Sf-0 datasets. Images taken from the same place are mostly embedded to nearby
2D positions despite the significant variations in viewpoint, pose, and configuration.

5.7.4 Qualitative evaluation

To visualise the areas of the input image which are most important for localisation,
we adopt Grün et al. [2016] to obtain a heat map showing the importance of differ-
ent areas of the input image. The results are given in Figure 5.7. As can be seen,
our method focuses on regions that are useful for image geo-localisation while em-
phasising the distinctive details on buildings. On the other hand, the NetVLAD
(Arandjelovic et al. [2016]) emphasises local features, not the overall building style.

5.7.5 Generalisation on image-retrieval datasets

To show our method’s generalisation ability, we compare the compact image rep-
resentations trained by different methods on standard image retrieval benchmarks
(Oxford 5k, Paris 6k, and Holidays) without any fine-tuning. The results are given
in Table 5.4 . Comparing the CNN trained by our methods and the off-the-shelf
NetVLAD (Arandjelovic et al. [2016]) and CRN (Kim et al. [2017]), in most cases, the
mAP of our methods outperform theirs’. Since our CNNs are trained using a city-
scale building-oriented dataset from urban areas, it lacks the ability to understand
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Table 5.4: Retrieval performance of CNNs on image retrieval benchmarks. No spatial re-ranking or
query expansion is performed. The accuracy is measured by the mean Average Precision (mAP).

Method
Oxford 5K Paris 6k

Holidays
full crop full crop

Our-Ind. 71.66 75.51 82.03 81.07 80.71
Our-Joint 70.26 73.33 81.32 81.39 84.33
NetVLAD 69.09 71.62 78.53 79.67 83.00
CRN 69.20 - - - -

the natural landmarks (e.g., water, boats, cars), resulting in a performance drop com-
pared with the city-scale building-oriented datasets. CNN trained by images similar
to images encountered at test time can increase the retrieval performance (Babenko
et al. [2014]). However, our purpose here is to demonstrate the generalisation ability
of SARE trained CNNs, which has been justified.

5.7.6 Comparison with metric-learning methods

Although deep metric-learning methods have shown their effectiveness in classifica-
tion and fine-grain recognition tasks, their abilities in the IBL task are unknown. As
another contribution of this chapter, we show the performances of six current state-
of-the-art deep metric-learning methods in IBL, and compare our method with : (1)
Contrastive loss used by (Radenović et al. [2016]); (2) Lifted structure embedding
(Oh Song et al. [2016]); (3) N-pair loss (Sohn [2016]); (4) N-pair angular loss (Wang
et al. [2017]); (5) Geo-classification loss (Vo et al. [2017]); (6) Ratio loss (Hoffer and
Ailon [2015]).

The implementation details of the above losses are:

1. Contrastive loss: we set margin τ = 0.7, and negative images producing a
non-zero loss are used in gradient computation. Note that positive images are
always used in training since they are not pruned out;

2. Lifted structure embedding: we use the smooth loss function (Eq. (4) in their
paper). Note that training images producing a zero loss ( J̃i,j < 0) are pruned
out.

3. N-pair loss: we use the N-pair loss function (Eq. (3) in their paper).

4. N-pair angular loss: we use the N-pair loss function (Eq. (8) in their paper)
with α = 45◦ as it achieves the best performance on the Stanford car dataset.

5. Geo-classification loss: we use the Pitts250k-train dataset for training. We first
partition the 2D geographic space into square cells, with each cell size at 25m.
The cell size is selected the same as the evaluation metric for compatibleness
so that the correctly classified images are also the correctly localised images
according to our evaluation metric. We remove the Geo-classes which do not
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Figure 5.8: Comparison of recalls for deep metric learning objectives. From left to right and top to
down: Pitts250k-test, TokyoTM-val, 24/7 Tokyo, and Sf-0. (Best viewed in colour on screen)

contain images, resulting in 1637 Geo-classes. We append a fully connected
layer (random initialisation, with weights at 0.01× randn) and Softmax-log-loss
layer after the NetVLAD pooling layer to predict which class the image belongs
to.

6. Ratio loss: we use the MSE loss function since it achieves the best performance
in their paper.

Figure 5.8 shows the results of the quantitative comparison between our method
and other deep metric learning methods. Our theoretically-grounded method out-
performs the Contrastive loss (Radenović et al. [2016]) and Geo-classification loss (Vo
et al. [2017]), while remains comparable with other state-of-the-art methods.
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5.8 Summary

Learning discriminative image representations is the major challenge for the task of
Image-Based localisation (IBL) if an image-retrieval based method is employed. This
chapter focuses on how to effectively organise global image representations and pro-
pose a new Stochastic Attraction and Repulsion Embedding (SARE) objective for this
task. Our key idea is representing a place (location) as a set of exemplar images de-
picting the same landmarks, and we aim to maximise similarities among intra-place
images while minimising similarities among inter-place images. The proposed SARE
objective takes global image representations (embeddings) and enforces the “attrac-
tion" and “repulsion" constraints on intra-place and inter-place feature embeddings
in a similarity-based binary classification framework. We further give theoretical
comparisons between SARE and traditional triplet ranking and contrastive objec-
tives, showing the advantages of SARE. Our experiments show that SARE improves
IBL performance, outperforming other state-of-the-art methods.



Chapter 6

2D-to-3D Matching for Localisation
With Visual Descriptors

We have introduced an image-retrieval based localisation method with respect to
satellite and ground-view image database in chapter 4 and 5, respectively. This
chapter presents a direct 2D–3D matching based localisation method with respect
to a large-scale 3D points cloud map.

Given an image of a street scene in a city, this chapter develops a method that
can quickly and precisely pinpoint at which location (and viewing direction) the image
was taken, against a pre-stored large-scale 3D point-cloud map of the city. We adopt
the 2D–3D direct feature matching framework for this task (Irschara et al. [2009]; Sattler
et al. [2011, 2012a, 2016b]; Li et al. [2010, 2012]). This is a challenging task especially
for large-scale problems. As the map size grows bigger, many 3D points in the wider
geographical area can be visually very similar–or even identical–causing severe am-
biguities in 2D–3D feature matching. The key is to quickly and unambiguously find
the correct matches between a query image and the large 3D map. Existing methods
solve this problem mainly via comparing individual features’ visual similarities in a
local and per feature manner, thus only local solutions can be found, inadequate for
large-scale applications.

In this chapter, we introduce a global method which harnesses global contextual
information exhibited both within the query image and among all the 3D points in
the map. This is achieved by a novel global ranking algorithm, applied to a Markov
network built upon the 3D map, which takes account of not only visual similarities
between individual 2D–3D matches, but also their global compatibilities (as mea-
sured by co-visibility) among all matching pairs found in the scene. Tests on stan-
dard benchmark datasets show that our method achieved both higher precision and
comparable recall, compared with the state-of-the-art.

The rest of this chapter is organised as following. We first give an introduction in
Section 6.1 and then present an overview of our method in Section 6.2 . In Section
6.3, we explain key steps of our method. Experimental results are given in Section
6.4.

63
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Figure 6.1: Given a query image (Left), we first detect 2D SIFT feature points (Black) and then
aim to establish 2D–3D matches with respect to a pre-stored 3D points cloud (Right). Due to a large
number of 3D points, finding correct 2D–3D matches is very challenging. Only a small amount of
correct 2D–3D matches can be found, as indicated 2D points (Green) on the left and 3D points (Red)
on the right. Red points on the left denote outlier 2D points found by “PnP+RANSAC".

6.1 Introduction

Getting accurate estimation of 6-DoF camera pose from an image is essential for
many computer vision applications such as robot navigation (Davison et al. [2007];
Mur-Artal et al. [2015]), augmented reality (Middelberg et al. [2014]; Ventura et al.
[2014]), and image-based 3D reconstruction (Agarwal et al. [2011]). While more and
more consumer-grade cameras are equipped with in-built GPS sensors which can
provide some rough location estimation, the accuracy is rather coarse (at tens of
meters (Zandbergen and Barbeau [2011]; Chen et al. [2011])) and is inadequate for
many critical applications.

This chapter proposes a method for image-based camera localisation (or IBL in
short) against a pre-computed 3D point-cloud map. Our method follows the frame-
work of direct 2D–3D matching (Irschara et al. [2009]; Sattler et al. [2011, 2012a, 2016b];
Li et al. [2010, 2012]). Under this framework, camera pose is computed by directly
matching 2D image features (e.g., SIFT (Lowe [2004])) from the query image to 3D
points in the map, then solve a standard camera absolute pose problem via PnP
(perspective-n-points). An illustration of the framework of direct 2D–3D matching
is given in Figure 6.1. If the 2D–3D matches found are contaminated by some small
portion of outliers (i.e., wrong matches), RANSAC is conventionally applied to clean
up the matches. However, this “PnP+RANSAC” scheme only works for small or
moderately large problems. When the 3D map is very large, for example, covering
a wide geographical area of an entire city or even a country, there may have tens of
thousands or millions of 3D map points, which poses two major challenges to the
problem: (1) how to quickly search (match) within a massive database of millions
of 3D points; and (2) how to accurately find correct matches without suffering from
ambiguity. The latter is more critical because, as the 3D map grows larger, more and
more 3D features (e.g., SIFT) can become visually very similar or even identical due
to repetitive structures. As such, one is facing an extremely difficult task of “find-
ing a particular needle in a huge haystack containing many other similarly-looking needles”.
Applying RANSAC to this situation is doomed to fail because the inlier ratio in the
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(a) (b) (c) (d)

PnP+RANSAC

camera pose

✄

✄

✄

✄

� �

(e) (f)

3D Point Clouds

Figure 6.2: We solve a large-scale image-based localisation problem by leveraging global contextual
information manifested as the co-visibility relationship between pairs of 3D map points. (a) Image
features extracted from the query image; (b) Assign 2D features to visual words to obtain candidate
3D matches; (c) The matches are ranked based on global contextual information; (d) One-to-one 2D–
3D matches are disambiguated; (e) PnP+RANSAC is used for 6-DoF camera pose recovery against
the 3D map (f).

putative matches can be as low as e.g., ≤ 0.01 (Svarm et al. [2014, 2016]).

To solve this scalability issue, existing direct 2D–3D methods often adopt ad-
vanced retrieval techniques, such as “vocabulary tree” and “ratio test” to remove
ambiguous matches (Sattler et al. [2011, 2012b,a, 2015, 2016b]). However, they do this
largely in a local, sequential fashion on an individual per feature basis. In their meth-
ods, the match-or-not decision is only made locally based on comparing individual
feature match’s visual similarity. When the 3D map is very large, it may have many
repeated structures, spurious or ambiguous matches are almost inevitable. As a re-
sult, the matches found by a local method may be overwhelmed by outliers, leading
to wrong localisation.

In this chapter, we introduce a principled method that finds optimal 2D–3D
matches in a global manner. In contrast to existing methods which rely on local (per
feature basis) visual similarity comparison, we advocate a global scheme that exploits
global contextual information exhibited not only within 2D features from the query
image, but also among all matched 3D points in the map. More specifically, our
new method no longer treats each 2D–3D match in isolation but takes account of the
compatibilities (or coherencies) among all 2D–3D matches. To measure such com-
patibility, we do not consider 3D points in the map as unordered “clouds of points”.
Instead, every 3D point joins with other neighboring 3D points via co-visibility rela-
tionship. A precise definition of the co-visibility relation and how to use it for global
matching will be described in detail later in the chapter.

Tested on standard benchmark datasets for 2D–3D IBL, our new method shows
superior performance, outperforming state-of-the-art methods in many aspects. Com-
pared with methods (Sattler et al. [2012a, 2016b]), it halves the median localisation
error (higher precision) while maintaining a comparable level of recall. More impor-
tantly, our method is a principled global approach, thus allows for versatile exten-
sions.
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Figure 6.3: Left: traditional local method, in which the decision is made locally and sequentially;
Right: the proposed global match scheme, where we seek an optimal set-to-set match. Blue nodes: 2D
features in the query image. Green node: 3D points in the 3D map. Blue links indicate the co-visibility
relationship among 3D points.

6.2 Method Overview

Contrast to previous works, we propose a global method that exploits global contextual
information to resolve the matching ambiguity. Specifically, we harness two types of
global contextual information. For one thing, instead of focusing on matching each
2D feature, we treat the entire set of features in the query image jointly. For the
second, we no longer consider each possible 2D–3D match in isolation but consider
all tentative 2D–3D matches together. We obtain set-to-set matches instead of finding
one-to-one matches in the first place and defer the disambiguation task until a later
stage of the computation. Figure 6.2 gives an overall pipeline of our method. Figure
6.3 illustrates the conceptual difference between traditional local methods and our
new global method.

To define the global contextual information among 3D points, we use co-visibility
relationship. Our method’s central mechanism is a probabilistic inference procedure
applied to a Markov graph, built upon the 3D map points as graph-nodes, connected
by graph-edges representing inter-point co-visibility relationships. The inference is
done globally, taking account of all 2D query features, all 3D map points, and the
co-visibility encoded as graph-edges.

To solve the inference task on a Markov graph, we resort to the Random Walk
with Restart (RWR) algorithm (Tong et al. [2006]). Google’s PageRank (Brin and
Page [1998]) algorithm is in fact a well-known variant of RWR algorithm (Tong et al.
[2006]). The probability distribution of graph nodes in a Markov graph evolves in
a stochastic manner via a random walk. When it converges, the stable state of a
node measures the “relatedness” (i.e., “matchability”) between the node and the set
of query features. Recall that one of the key innovations of this chapter is to seek
global optimal (set-to-set) matches, rather than local one-to-one matches.
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6.3 Global 2D–3D Matching for localisation

We go directly to explain the key steps of our new method.

6.3.1 Build a Map-Graph with pairwise co-visibility edges

Traditionally, a 3D map is often encoded as a set of unordered point clouds (Sattler
et al. [2012a, 2011, 2016b]). In this work, we aim to bring order to the clouds, by con-
necting (organising) all 3D points in the map in a well-structured map-graph, and
denote it as G(V, E), with V indicating the set of graph-nodes, each corresponds to a
3D point (as well as its associated descriptors (visual words)); and E the set of graph
edges. A pair of 3D points are connected with a graph edge if and only if they can
be seen simultaneously from the same viewing point. Like many other works, we
assume our 3D map was pre-computed via Structure-from-Motion (Agarwal et al.
[2011]; Schönberger and Frahm [2016]) technique using a large set of database im-
ages. Therefore, the co-visibility relationship among 3D points can be obtained using
the database images.

We require G(V,E) to be weighted and bi-directed. Thus, for every pair of co-visible
3D points in the graph (i and j), there are two edges (eij and eji) connecting them,
with non-negatively-valued weights of cij and cji. The weights measure how strong
the co-visibility relationships between the two points are, as per the following sense:
If an image set sees point-j, the value of cij measures how likely the point-i can also be seen
from the same image set. cji can be defined conversely, and cji 6= cij in general.

Formally, suppose there are N nodes and M edges in the graph. We devise
the following procedure to compute cij, using database images used in the map-
construction stage. For the i-th 3D point, denote the set of database images that
contain this point as Ai. If two distinct 3D points i and j are co-visible, they will cast
“support” or “endorsement” to each other, and the strength of the “endorsement”
from point-j to point-i (i.e., cij) is defined as:

cij =

∣∣Ai ∩ Aj
∣∣∣∣Aj

∣∣ , (6.1)

where
∣∣Aj
∣∣ is the cardinality of set Aj, and Ai ∩ Aj denotes the set-intersection op-

erator. This equation can be understood as follows. Since point-j is known to be
visible, the probability that point-i and point-j are co-visible is proportional to the
total number of database images that contain both points, normalised by the total
number of images that contain point-j. Conceptually this is similar to the idea of tf-
idf (term-frequency/inverse document frequency) as commonly used in information
retrieval (Rajaraman and Ullman [2011]).

Collecting all cijs into a square matrix C = [cij] of size N × N, and normalising
each column to have a unit norm, we are able to represent the entire graph G by its
C matrix. The reason of normalisation is to make C a left stochastic matrix (Gagniuc
[2017]), and every cij can be interpreted as a probability. We call C the state (proba-
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bility) transition matrix, for reasons that will be clear in the rest of the chapter. Note
also C is often a sparse matrix, especially for a large graph. Note that C is based
on database images and the 3D map only, hence it is query-independent and can be
pre-computed off-line.

The top part of the graph in Figure 6.4 illustrates a toy-sized map-graph with
15 nodes (i.e., nodes coloured in green) and some bi-directed co-visibility edges (i.e.,
links coloured in blue).

6.3.2 Compute query vector

Given a query image, we first detect a set of 2D feature points, along with their view-
invariant descriptors (e.g., SIFT (Lowe [2004]) ). Next, for every 2D feature, we find
a set of tentative matches from the 3D graph nodes by comparing their descriptor
similarity via an efficient vocabulary-tree search mechanism (Muja and Lowe [2014]).
Instead of seeking one-to-one 2D–3D matches, here we only look for one-to-many
matches; the reason is to avoid local matches (which may be pre-mature) by deferring
the one-to-one disambiguation process until a later stage.

Vocabulary-tree search. We assign all the 3D points to a pre-trained Bag-of-Words
vocabulary-tree using Voronoi vector quantisation (Nister and Stewenius [2006]). We
use the same integer-mean assignment method suggested by (Sattler et al. [2011, 2012a,
2016b]) to obtain 2D–3D matches. Note that one 3D point may be assigned to mul-
tiple visual words, and conversely, one visual word may correspond to multiple 3D
points (ref. (Sattler et al. [2012a, 2016b])). However, for each 2D feature from the
query image, we only assign one visual word for efficiency.

Query vector. We use the Hamming embedding distance H( f , i) to measure the sim-
ilarity between a 2D query feature f and a 3D map point i. For brevity we refer
the reader to the paper (Jegou et al. [2008]) for a precise definition of Hamming em-
bedding distance. Next, inspired by papers (Sattler et al. [2016a]; Jegou et al. [2008];
Sattler et al. [2012b]; Arandjelović and Zisserman [2014]), we define the similarity
between 2D feature- f and 3D point-i as w f i = exp(−H2( f , i)/σ2), ∀i ∈ [1..N], where
σ is typically set to 1/4 of the dimension of the descriptor according to the paper
(Arandjelović and Zisserman [2014]). Note that the similarity is computed at per
visual word basis.

By summing up all the similarities from the entire set of query features at every
3D point, and stacking the results into a single vector, we obtain a vector q ∈ RN

whose i-th element is:

qi = ∑
f∈O(i)

√w f i

Ni
· log

(
N
N f

)
, (6.2)

where O(i) is the set of 2D query features which are (tentatively) matched to point-i;
Ni is the size of O(i), N is the total number of 3D points in the map, and N f is the
number of 3D points which are tentatively matched to feature- f . Once q is obtained,
we normalise it to have unit norm, i.e., qi ←

(
qi/∑N

i=1 qi

)
, ∀i ∈ [1..N]. We call such
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Figure 6.4: An illustration of a toy-sized map-graph G(V, E). Green nodes are the 3D point clouds in
the map. Blue edges are co-visibility links. The blue nodes on the bottom represent 2D query features
which assign initial probabilities to the 3D points based on the query-vector q computed by Eq.(6.2).

a (normalised) q the query vector. Intuitively, the i-th entry of a query vector (i.e.,
qi), measures the probability of point-i belongs to the optimal sub-set of 3D points
that can be matched to the set of 2D query features – based on their visual word
similarity only.
A remark. Existing methods for direct 2D–3D matching are primarily built upon
the comparison of local 2D–3D feature similarity (e.g., perform 2D–3D ratio-test at
per visual word basis (Sattler et al. [2011, 2012a, 2016b])); they fail to capture global
information among all the matches.

6.3.3 Random walk on map-graph

Given a map-graph G(V,E) along with a state transition matrix C (Sec. 6.3.1). we
formulate it as a Markov Network (aka. Markov Random Field). Suppose we are
present with a query image, we first compute its query vector q with respect to the
graph G (Sec. 6.3.2).

Our idea to seek a global match between the 2D query image and 3D map is to run
a Random Walk algorithm on this graph, conditioned on the input query vector q. When
the random walks converge, we then deem that the steady-state probability obtained
at each 3D node on the graph measures how well it is matched (or matchable) to the
query image. The higher a node’s steady-state probability is, the more probable it
belongs to the correct 3D point set.

In essence, a random walk algorithm simulates a randomly-moving walker travers-
ing through the graph. At every time tick, the walker moves to a randomly chosen
neighboring node based on the probability stored in matrix C. Probability pv(t) is
defined as the probability of finding the random walker at node v at time t. There-
fore, when t goes to infinity, pv(∞) gives the probability that the random walker
eventually ends at node v.

In the 2D–3D matching context, our idea is to capture both local feature appear-
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ance similarity information and global points co-visibility information. For this pur-
pose, we require the random walk to respect both visual-word similarity (prescribed
by the query vector q) and global co-visibility structure (provided by the transition
matrix C). We design the following Random Walk with Restart (RWR) iterative pro-
cedure, where the random walker has a tendency (though at a small probability) to
return to the set of starting nodes prescribed by the query-vector q.

Random Walk with Restart.

p(t + 1) = αCp(t) + (1− α)q. (6.3)

Here p(t) ∈ RN is the graph’s state probability vector at time t. α is a trade-off
parameter, often chosen empirically between 0.8–0.9. The second term in the right
hand of the iteration equation is known as the restarting term, which gives the random
walker a small probability of returning to the states prescribed by the query vector.
For readers who are familiar with MRF, we can say that: the first term of the right-
hand side of the equation is the “prior” or “smoothness” term, which describes how
the network behaves if no external query signal is presented. The second term is the
“data term” which encourages the result to respect the input query signal.

To start the iteration, we initially concentrate all the probability mass uniformly
over all 2D query features (e.g., in Figure 6.4, the 2D query features are coloured in
blue), i.e., all the 2D query features have the same probabilities of being matched
to 3D points. We then connect these query features to the 3D graph nodes by one-
way directed edges (Vocabulary-tree search), and inject probability mass to the graph
based on the probabilities stored in q, i.e., the original probabilities of 3D points are
initialised by q. Once the iteration converges, we sort this steady-state probability
vector p(∞) in descending order, which gives the final “matchability” of every 3D
point to the set of 2D query features.

Remarks. As proved by Ipsen et al. (Ipsen and Kirkland [2006]), convergence of the
above iteration is guaranteed when C is aperiodic and irreducible. In our particular
map-graph, both conditions are satisfied because aperiodicity is true since the state
transition probabilities in Eq.(6.1) are different for distinct pair of 3D points, and the
irreducibility is true since our graph is (two-way) bi-directed connected. There are
no so-called dangling nodes as all 3D map points were computed from SfM triangu-
lation from two or more views; therefore, they cannot exist alone without co-visible
neighbors. The above iteration is intimately related to Google’s PageRank (Google
matrix [2020]). This is not surprising because the task we solve in this chapter is a
typical information retrieval (IR) task, and PageRank is a well-known IR tool efficient
in solving large-scale IR problems. However, despite this, to the best of our knowl-
edge, random-walk has not been applied to Camera localisation. Moreover, there are
important differences between our method and PageRank, which make our method
particularly relevant for IBL: (1) We use a bi-directed graph with two-way weights to
capture co-visibility neighborhood relations, in contrast to Google’s undirected “Web
graph” with binary (1/0) hyperlink neighbors. (2) We do not use Google’s uniform
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teleportation vector and replace it with a query vector. In spirit, ours is akin to a
personalised version of PageRank (Haveliwala [2002]). (3) Our state transition matrix
and similarity query vector have taken account of the special structure of the direct
2D–3D method.

6.3.4 Camera pose computation

Recover one-to-one correspondences. The steps so far have only achieved set-to-set
global matching. To facilitate camera pose computation, ultimately, we still need one-
to-one matches. Since after our previous random walk algorithm, positive 3D points
will likely be ranked highly, making it amenable to a simple ratio-test (Lowe [2004])
to resolve the one-to-many ambiguity. Other more sophisticated matching methods
(such as Hungarian assignment (Kuhn [1955])) are also applicable. We do not insist
on finding perfect putative one-to-one matches at this point because the matches will
be fed into the subsequent PnP-RANSAC for further outlier removal. We simply use
the ratio-test to retrieve one-to-one matches. The ratio-test is performed by compar-
ing the descriptor distances between the 3D points (one-by-one in the ranking list
after random walk iterations) and 2D feature points when they are at the same visual
words in the vocabulary tree. The one-to-one match is accepted when it passes the
ratio test.

RANSAC camera pose. The obtained one-to-one correspondences are fed directly
to a RANSAC absolute pose routine. We use the P4P approach (Bujnak et al. [2008];
Lourakis and Zabulis [2013]) to solve the unknown focal length, camera position, and
orientation.

6.4 Experiments

Benchmark datasets. We conducted extensive experiments to validate the efficacy
of the proposed global method. We evaluate its performance against four standard
publicly available benchmark datasets for city-scale localisation (Sattler et al. [2012a];
Chen et al. [2011]): (1) Dubrovnik, (2) Rome, (3) Vienna, and (4) San Francisco (SF-0),
where the first 3 have about millions of 3D map points, but the last one is much
bigger in size (e.g., by 1 or 2 orders of magnitude larger in terms of the total number
of 3D points or database images). Information about the 4 datasets is summarised in
Table-6.1.

Table 6.1: Statistics of the benchmark datasets: the numbers of database images, 3D points and query
images.

Dataset #(images) #(points) #(query images)
Dubrovnik (Li et al. [2010]) 6,044 1,975,263 800
Rome (Li et al. [2010]) 15,179 4,067,119 1,000
Vienna (Irschara et al. [2009]) 1,324 1,123,028 266
SF-0 (Chen et al. [2011]) 610,773 30,342,328 803
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Experiment setting. To evaluate the algorithm performance, we mainly use (a) recall-
rate (i.e., how many images have been successfully localised), (b) precision (i.e., cam-
era localisation errors), (c) accuracy (i.e., what is the inlier ratio in the final matched
2D–3D feature pairs after applying RANSAC), as well as (d) scalability (i.e., by test-
ing on the largest dataset of SF-0 containing over 30 Millions map points). Our
experiments were conducted on a single CPU thread based on a regular laptop with
Intel i7-6700K CPU at 4GHz. Note for localisation precision comparison, we only
report results on the Dubrovnik dataset, because it is the only dataset among the
four that has metric ground-truth information to 6 DoF camera locations. For SF-
0, we only found rough estimations of camera positions given out by the GPS-tag
of each query image. In implementing the visual-vocabulary-tree search, we use a
pre-trained vocabulary of 100K visual words (Sattler et al. [2011]), generated with ap-
proximate k-means clustering (Philbin et al. [2007]) of SIFT descriptors, and choose a
tree branching factor at 10. We perform the 3D-2D ratio-test at level 3 to recover the
one-to-one correspondences. The ratio-test threshold used to reject outlier matches is
set to 0.6, which is the same as Active Search (Sattler et al. [2012a, 2016b]). We used
P4P (Bujnak et al. [2008]; Lourakis and Zabulis [2013]) and RANSAC. In RANSAC,
the re-projection error for rejecting outliers was set to 4 pixels, and the belief level
at 0.99, and the expected inlier-threshold at 0.4. We used a damping parameter of
α = 0.85 and stopped the algorithm after ten iterations (enough for converging, i.e.,
the permutation of 3D points are fixed after the iterations).

6.4.1 The effectiveness of global search

In our first set of experiments, we want to verify (and to evaluate) whether or not
the use of global contextual information (as defined by the Markov graph using pair-
wise 3D point co-visibilities) is effective. For this purpose, we compare our method
with the Active Search method (Sattler et al. [2012a, 2016b])– which is considered as
the state-of-the-art local search method. In other words, it is expected that results
obtained by Active-Search represent what the best-performing local methods should
achieve. We conducted experiments on the metric version of the Dubrovnik dataset
with sub-maps with reduced sizes of up to 40, 000 map points. The sub-map for
each query image is generated by including the 3D points observed by its nearby
database images, using image-retrieval techniques (Sattler et al. [2017]) or GPS data
of the query/database image if available (Chen et al. [2011]; Lane Level Localization
on a 3D Map [2020]).

We use the final inliers set reported by PnP+RANSAC as the found inlier matches.
We keep all parameters for the RANSAC process the same for both our method and
Active Search for the sake of fair comparison. After running both algorithms, we
compare the histograms (distributions) of the obtained inlier ratios. The higher the
inlier ratio is, the better the method. Figure 6.5 (a) gives the distributions of inlier ra-
tios for the two methods. From this, one can clearly see that our global method
statistically outperforms Active-Search. To evaluate whether the improvement is
consistent across all query images, we plot the differences between the numbers
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Figure 6.5: (a). Compare the two histograms of inlier ratios for the 800 query images of Dubrovnik.
Red: histogram by our method; Light-blue: histogram by Active-Search. The average inlier-ratio
obtained is 81.1%, and 57.1%, by our method and by Active-Search, respectively. (b). The absolute
improvement in terms of inlier numbers (=#(inliers found by our method)-#(inliers found by Active-
Search)) over all query images from Dubrovnik. A positive-valued ‘difference’ means more inliers
are detected by our method. Our method consistently outperforms the local Active-Search method for
almost all 800 queries.

of correctly-detected inliers (out of the top 100 ranked candidate matches), one was
obtained by our method and one by the Active-Search method. Figure 6.5 (b) shows
this result. Again, except for a few exceptions, our global method outperforms the
Active Search method consistently for almost all 800 query images.
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Figure 6.6: Recall curve: i.e., the number of localised images as a function of the inlier ratio threshold.
The higher, the better. (see text for more details).

Recall Curve. To evaluate the recall performance (i.e., numbers of query images
that can be successfully localised under different inlier-ratio-thresholds), we vary the
inlier-ratio thresholds between [0–1]. We then plot the obtained two recall curves
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Table 6.2: Numbers of localised images v/s inlier ratio thresholds.

Method Inlier thresholds
0.2 0.3 0.4 0.5 0.6 0.7 0.8

Active Search (Sattler et al. [2012a, 2016b]) 709 673 607 528 420 287 162
Our method 791 774 757 730 690 607 516

(one by our global method, one by the local Active Search method). As shown in
Figure 6.6, our method has consistently localised more images at all threshold levels.
A detailed numerical comparison for the two methods under different inlier-ratio
thresholds is given in Table 6.2:
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Figure 6.7: localisation Precision on the Dubrovnik dataset. Left: translation error histogram; Right:
rotation error histogram. Results by our method in red, and by Active-Search in blue.

Localisation Precision. We also compare the 6-DoF camera pose precisions obtained
by the two methods. Rotation error is measured by ε = arccos((trace(RT

gtRes) −
1)/2), where Rgt is the ground-truth rotation, and Res the estimated one. Translation
error is measured by the absolute distance between the estimate and the ground-
truth camera centre. Figure 6.7 gives the histogram over the position errors and
rotation errors. Our method outperforms the Active Search method at almost all
position/rotation levels, localising more frames while maintaining accuracy.

Table 6.3: localisation errors on metric Dubrovnik.

Method quartile errors (m) num. of images
1st median 3rd <18.3m >400m #(reg.)

Our method 0.24 0.70 2.67 743 7 794
act. se. (Sattler et al. [2012a, 2016b]) 0.40 1.40 5.30 704 9 795

all desc. (Sattler et al. [2011]) 0.40 1.40 5.90 685 16 783
int. mean (Sattler et al. [2011]) 0.50 1.30 5.10 675 13 782

P2F (Li et al. [2010]) 7.50 9.30 13.40 655 - 753
vis. prob. (Choudhary and Narayanan [2012]) 0.88 3.10 11.83 - - 788
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Figure 6.8: Compared with five other existing methods, our method achieves the best localisation
precision while maintaining a high recall on the metric Dubrovnik dataset. The lower the error bar is,
the better the method.

error < 18.3m

18.3m<error 

< 400m

error > 400m

Figure 6.9: Sample results on metric Dubrovnik data. The detected inlier points are shown as circles
in green, and outlier features in red, against different localisation errors. SIFT feature points are
depicted as black dots. For images with error < 18.3m, the inliers are evenly distributed over the
image. For images with 18.3m < error < 400m, the inlier features tend to concentrate on a small
region of the image.

6.4.2 Comparisons with other state-of-the-art

In this section, we compare our method with several other state-of-the-art local meth-
ods. Following papers (Li et al. [2010, 2012]; Sattler et al. [2012a, 2016b]), we deem an
image is localised if the best-pose found by RANSAC contains ≥ 12 inlier matches.
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We first compare the localisation precision and the results are presented in Table
6.3 and Figure 6.8. Our method achieves the best localisation accuracy at all three
quartile levels of location errors, almost halving the localisation errors obtained by
other methods. It localises 743 (out of 800) query images under a localisation error
of < 18.3m. The average query time is 1.73s.

Examples of detected inlier and outlier features for some sample query images
are shown in Figure 6.9. A point-cloud view of the estimated camera locations is
given in Figure 6.10. Our method outperforms a very recent pose-voting method
(Zeisl et al. [2015]) in terms of location precision (pure voting with a median error at
1.69m), although it used IMU information (for vertical direction determination). We
did not compare method (Svarm et al. [2016]) (which also exploited known vertical
direction information) because their results were obtained on synthetic data only.

Figure 6.10: Estimated 6-DoF camera poses with respect to the 3D point clouds on the metric
Dubrovnik dataset. The 3D points are denoted by black dots. Estimated and ground-truth camera
poses are coloured in red and blue, respectively. The number beside the camera model is the index
of the query image. (Best viewed on screen with zoom-in.) An online demo is available at https:
//www.youtube.com/watch?v=hBwdMcZhbfo&list=UUXw_IGWxWrOuhYhJ-BbmNnw

We also experimented on the Rome and Vienna datasets. They have about 4-
millions and 1-millions 3D map points, respectively. Our method has localised 990
(out of 1000) and 213 (out of 266) query images for these two datasets, respectively.
The average query time by our unoptimised code was 2.35s and 1.67s, which while
slower than Active-Search, are adequate for interactive applications ( Sattler et al.
[2012a, 2016b]; Li et al. [2010, 2012]; Irschara et al. [2009]; Sattler et al. [2011]; Cao
and Snavely [2015]).

If the 3D map is very large, it is almost inevitable to find repetitive structures.
To test our method’s resilience to repetitive structures, we made one modification
of Torii et al. [2015c] that repeated feature points share the common low-level visual
word in the vocabulary tree, not at least one common visual word in their top K (K =
50) visual word assignments. Moreover, to speed up the detection of the repeated

https://www.youtube.com/watch?v=hBwdMcZhbfo&list=UUXw_IGWxWrOuhYhJ-BbmNnw
https://www.youtube.com/watch?v=hBwdMcZhbfo&list=UUXw_IGWxWrOuhYhJ-BbmNnw
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structure, only the low-level visual word with the largest number of feature points
is processed, which corresponds to the largest repeated structure. The parameters
involved in repeated structure detection are the same as Torii et al. [2015c]. We have
compared our method in terms of with and without the repetitive structure removal
versions, and the conclusion is that the localisation performance is the same. Four
sample images on the detected repeated structure are given in Figure 6.11.

Figure 6.11: The detected repeated structure on query images in the Dubrovnik dataset. Yellow
circles denote the feature points on the repeated structure.

6.4.3 Test on a very large scale dataset (SF-0)

Now we attempt to test our method on the San Francisco (SF-0) dataset (Chen et al.
[2011]), which is the largest one among the four, containing about 30-millions map
points. Besides its huge size, there are also other challenges associated with this
dataset: e.g., the provided images have very different characteristics ( i.e., some were
taken by cell-phone; some were cropped sub-images of Google street-view with un-
specified camera model). Moreover, its total memory footprint for 3D points/de-
scriptors is 28.5GB, exceeding our PC’s memory size (24GB RAM). To be able to
process the data, we used the raw GPS data provided for the query image to limit
the search within a geographic region of about 600-meters in diameter, and we aim to
refine GPS’s coarse location estimation to very high precisions ( e.g., in meter or sub-
meter/sub-degree) ). Note that previous work on SF-0 also used GPS prior (Chen
et al. [2011]). As before, if the number of inliers after RANSAC exceeds 12 points,
we deem the localisation is successful. Our method successfully localises 652 images
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(out of a total number of 803 query images), and the average time spent per image
is 0.30s. We also ran Active Search (Sattler et al. [2012a, 2016b]) on the same dataset
under the same simplification using GPS. However, it failed in most cases and was
only able to localise 31 images. We suspect that the reason is due to the existence
of a large number of similar or repetitive visual descriptors in this very large-scale
map (also confirmed by (Li et al. [2012])), and Active-Search only makes local 2D–3D
match decision based on visual word similarity. To the best of our knowledge, only
two other methods have handled SF-0 data efficiently, but they used different local
search heuristics, and none exploited global coherencies of the query set and the 3D
point clouds. This test demonstrates that our method is able to handle problems
of such bigger sizes, yet still under the same “random walk on Markov network”
framework. In the future, we plan to tackle larger, e.g., billion-point problems.

6.5 Summary

Scalability and Ambiguity are two major challenges for camera localisation if a di-
rect 2D–3D matching approach is employed. This chapter has proposed a principled
global method to address both issues in the same framework. Our key idea is, con-
trary to existing methods which mostly rely on local similarity search, we formulate
the problem as a global inference task performed on a Markov graph of the 3D map.
The special structure of the graph, in particular through its edges which encode
the co-visibility relationships among all 3D points, allows the inference procedure
to take account of not only individual feature match’s visual similarity, but also the
global compatibilities as measured by the pair-wise co-visibility. Inspired by Google’s
PageRank, we solved the inference task via a random walk algorithm. To the best
of our knowledge, this chapter represents an original contribution to the literature
of image-based camera localisation. Since the proposed method advocates a global,
holistic view of the problem, we hope it will inspire other new ideas that may lead to
more powerful solutions. For instance, currently, we are investigating the potential
usefulness of other MRF inference techniques (such as Efficient-LBP (Yedidia et al.
[2003]) or graph-cut with co-occurrence (Ladicky et al. [2010])) for solving even larger
camera localisation instances.



Chapter 7

2D-to-3D Matching for Localisation
With Only 2D and 3D Coordinates

In chapter 6, we have presented a 2D–3D matching method for localisation with
visual descriptors. Without using visual descriptors, we introduce a 2D–3D matching
method with only 2D and 3D coordinates in this chapter. Given coordinates of 2D
image pixels and 3D points, we aim to estimate a 6-DoF absolute camera pose.

Conventional absolute camera pose via a Perspective-n-Point (PnP) solver often
assumes that the correspondences between 2D image pixels and 3D points are given.
When the correspondences between 2D and 3D points are not known a priori, the
task becomes the much more challenging blind PnP problem. This chapter proposes a
deep CNN model that simultaneously solves for both the 6-DoF absolute camera pose
and 2D–3D correspondences. Our model comprises three neural modules connected
in sequence. First, a two-stream PointNet-inspired network is applied directly to both
the 2D image keypoints and the 3D scene points in order to extract discriminative
point-wise features harnessing both local and contextual information. Second, a
global feature matching module is employed to estimate a matchability matrix among
all 2D–3D pairs. Third, the obtained matchability matrix is fed into a classification
module to disambiguate inlier matches. The entire network is trained end-to-end,
followed by a robust model fitting (P3P-RANSAC) at test time only to recover the
6-DoF camera pose. Extensive tests on both real and simulated data have shown
that our method substantially outperforms existing approaches, and is capable of
processing thousands of points within a second with state-of-the-art accuracy.

The rest of this chapter is organised as following. We first give an introduction
in Section 7.1 and then explain our method in section 7.2. Experimental results are
given in Section 7.3.

7.1 Introduction

Solving the Perspective-n-Point (PnP) problem with unknown correspondences in-
volves estimating the 6-DoF absolute pose (rotation R and translation t) of the cam-
era with respect to a reference coordinate frame, given a 2D point set from an image
captured by the camera and a 3D point set of the environment in the reference frame.

79
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Figure 7.1: The overall pipeline of our method. First, the coordinates of 2D and 3D points are passed
into a two-stream network to extract point-wise deep features. Then a global matching module esti-
mates 2D–3D matches from these features using an optimal mass transport (OMT) technique (Villani
[2009]; Cuturi [2013]; Courty et al. [2016]). Finally, an inlier classification CNN is used to further
separate inlier matches from those outlier matches. At test time, apart from automatically recovering
2D–3D correspondences, the underlying 6-DoF camera pose is also recovered via standard PnP solver
with RANSAC.

Importantly, 2D–3D correspondences are unknown: any 2D point could correspond
to any 3D point or to none. This is a non-trivial chicken-and-egg problem since the
estimation of correspondence and pose is coupled. Moreover, cross-modal corre-
spondences between image pixels and 3D points are difficult to obtain. Even if the
2D and 3D sets are known to overlap, finding the specific correspondences between
2D and 3D points is an unsolved problem.

When correspondences are known, the problem reduces to the standard PnP
problem (Grunert [1841]; Kneip et al. [2011]; Zheng et al. [2013]; Lepetit et al. [2009]).
When correspondences are unknown, the problem is blind PnP, for which several tra-
ditional geometry-based methods were proposed, including SoftPoSIT (David et al.
[2004]), BlindPnP (Moreno-Noguer et al. [2008]), GOPAC (Campbell et al. [2017]) and
GOSMA (Campbell et al. [2019]). These local methods (David et al. [2004]; Moreno-
Noguer et al. [2008]) require a good pose prior to finding a reasonable solution, while
global methods (Campbell et al. [2019, 2017]) systematically search the space of R and
t for a global optimum with respect to an objective function and are thus quite slow.

Instead of relying on a good prior on camera pose or exhaustively searching
over all possible camera poses, we propose to estimate the correspondence matrix
directly. Once the 2D–3D correspondences have been found, the camera pose can be
recovered efficiently using an off-the-shelf PnP solver inside a RANSAC (Fischler and
Bolles [1981]) framework. While a straightforward idea, finding the correspondence
matrix is challenging because we need to identify inliers from a correspondence set
with cardinality M× N, where M is the number of 3D points and N is the number
of 2D points. A naïve RANSAC-like search of this correspondence space (Grimson
et al. [1990]) has complexity O(MN3 log N) (David et al. [2004]). We instead estimate
the correspondence matrix directly using a CNN-based method that takes only the
original 2D and 3D coordinates as input.

The proposed method extracts discriminative feature descriptors from the point
sets that encode both local geometric structure and global context at each point. The
intuition is that the local geometric structure about a point in 3D is likely to bear
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some resemblance to the local geometric structure of the corresponding point in 2D,
modulo the effects of projection and occlusion. We then combine the features from
each point set in a novel global feature matching module to estimate the 2D–3D cor-
respondences. This module computes a weighting (joint probability) matrix using
optimal transport, where each element describes the matchability of a particular 3D
point with a particular 2D point. Sorting the 2D–3D matches in decreasing order by
weight produces a prioritised match list, which can be used to recover the camera
pose. To further disambiguate inlier and outlier 2D–3D matches from the prioritised
match list, we append an inlier classification CNN similar to that of Yi et al. (Moo Yi
et al. [2018b]) and use the filtered output to estimate the camera pose. Our correspon-
dence estimation CNN is trained end-to-end, and the code and data will be released
to facilitate future research. The overall framework is illustrated in Figure 7.1. Our
contributions are:

1. a new deep method to solve the blind PnP problem with unknown 2D–3D cor-
respondences. To the best of our knowledge, there is no existing deep method
that takes unordered 2D and 3D point-sets (with unknown correspondences)
as inputs, and outputs a 6-DoF camera pose;

2. a two-stream network to extract discriminative features from the point sets,
which encodes both local geometric structure and global context; and

3. an original global feature matching network based on a recurrent Sinkhorn
layer to find 2D–3D correspondences, with a loss function that maximises the
matching probabilities of inlier matches.

Our method achieves state-of-the-art performance, orders of magnitude faster (>
100×) than existing blind PnP approaches.

7.2 Learning Correspondences for Blind PnP

7.2.1 Problem formulation

Let X = {x1, . . . , xM} denote a 3D point set with M points xi ∈ R3 in the reference
coordinate system, Y = {y1, . . . , yN} denote a 2D point set with N points yj ∈ R2

in an image coordinate system, and C ∈ RM×N denote the correspondence matrix
between X and Y . We assume that the camera is calibrated, and thus the intrinsic
camera matrix K (Hartley and Zisserman [2003]) is known.

Blind PnP aims to estimate a rotation matrix R and a translation vector t which
transforms 3D points X to align with 2D points Y . Specifically, ∠

(
Rxi + t, K−1ŷj

)
≈

0 for Cij = 1, where ŷ = (y, 1) is the homogeneous coordinate of y. The difficult
part of this problem is to estimate the correspondence matrix C. Once it is found, a
traditional PnP algorithm can solve the problem.

We propose to estimate C using a deep neural network. Specifically, for each
tentative 2D–3D match in C, we calculate a weight Wij for i ∈ [1, M] and j ∈ [1, N]
describing the matchability of xi and yj. We can obtain a set of 2D–3D matches by
taking the Top-K matches according to these weights.
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Figure 7.2: Our feature extraction pipeline. Given an input set with size M× d, we first perform
the nearest neighbor search and build a point-wise KNN graph. For each point (anchor), we extract
K × d anchor–neighbor edge features and concatenate these with the anchor features. This is then
passed through a shared MLP block and an average pooling block to aggregate local features. Hence,
this feature vector encodes local geometric information from the point-wise KNN graph. Next, the
local features at each point are passed to a context normalisation module to encode global contextual
information, followed by batch normalisation, a ReLU non-linearity, and a shared MLP to output the
final point-wise features.

We present our method for extracting point-wise discriminative features in Sec-
tion 7.2.2. We then describe our global feature matching method for obtaining 2D–3D
match probabilities in Section 7.2.3. Finally, we provide our match refinement strat-
egy using a classification CNN to further disambiguate inlier and outlier matches in
Section 7.2.4.

7.2.2 Feature extraction

To learn discriminative features fxi and fyj for each 3D point xi and 2D point yj
respectively, we propose a two-stream network. One branch takes 3D points from
X as inputs and the other takes 2D points from Y . The two branches do not share
weights. Both aim to encode information about the local geometric structure at each
point as well as global contextual information. The detailed structure for a single
branch is given in Figure 7.2.

Pre-processing: The 2D points are transformed to normalised coordinates using the
camera intrinsic matrix K to improve numerical stability (Hartley and Zisserman
[2003]). The 3D points are aligned to a canonical direction, similarly to PointNet
(Qi et al. [2017a]), which is beneficial for extracting features. Specifically, a 3 × 3
transformation matrix is learned and applied to the original coordinates of 3D points.

Encoding local geometry: To extract point-wise local features, we first perform an
L2 nearest neighbor search and build a point-wise KNN graph. For a KNN graph
around the anchor point indexed by q, the edges from the anchor to its neighbors
capture the local geometric structure. Similar to EdgeConv (Wang et al. [2018]),
we concatenate the anchor and edge features, and then pass them through an MLP
module to extract local features around the q-th point. Specifically, the operation is
defined by

E
(
oq
)
= avgk∗,k∗∈f(q)

(
θ
(
ok∗ − oq

)
+ φoq

)
, (7.1)
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Figure 7.3: Our feature matching pipeline. Given an M × d feature set from the 3D data and an
N × d feature set from the 2D data, we compute the pairwise L2 distance matrix H. Along with a
unary matchability M-vector from the 3D data and N-vector from the 2D data, the distance matrix
H is transformed to a joint probability matrix W using Sinkhorn’s algorithm. Reshaping W and
sorting the 2D–3D matches by their corresponding matching probabilities generates a prioritised 2D–
3D match list. We take the Top-K matches as our set of putative correspondences.

where k∗ ∈ f(q) denotes that point k∗ is in the neighborhood f(q) of point q, θ and φ

are MLP weights performed on the edge
(
ok∗ − oq

)
and anchor point oq respectively,

and avg() denotes that we perform average pooling in the neighborhood f(q) after
the MLP to extract a single feature for point q. We detail the above operations in
Figure 7.2. To consume the input 3D and 2D points, we use a simple MLP module to
lift the dimensions of 3D and 2D points to d = 128, yielding the input set with size
M× d in Figure 7.2 .

Encoding global context: After extracting point-wise local features, we aim to also
embed global contextual information within them. We use Context Normalisation
(Moo Yi et al. [2018b]) to share global information while remaining permutation
invariant. This layer normalises the feature distribution across the point set, applying
the non-parametric operation CN(oq) = (oq − µ)/σ, where oq is the q-th feature
descriptor (output of the local feature extraction module), and µ and σ are the mean
and standard deviation across the point set. Context normalised features are then
passed through batch normalisation, ReLU, and shared MLP layers to output the
final point-wise features.

We replicate the local and global feature extraction modules F times with residual
connections (He et al. [2016]) to extract deep features. Finally, we L2 normalise all
feature vectors to embed them to a metric space, yielding feature fxi at point xi .

7.2.3 Global feature matching

Given a learned feature descriptor per point in X and Y , we perform global feature
matching to estimate the likelihood that a given 2D–3D pair matches. To do so,
we compute the pairwise distance matrix H ∈ RM×N

+ , which measures the cost of
assigning 3D points to 2D points. Each element of H is the L2 distance between
the features at point xi and yj, i.e., , Hij = ‖fxi − fyj‖2. Furthermore, to model the
likelihood that a given point has a match and is not an outlier, we define unary
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matchability vectors, denoted by r and s for the 3D and 2D set, respectively.
From H, r and s we estimate a weighting matrix W ∈ RM×N

+ where each element
Wij represents the matchability of the 3D–2D pair {xi, yj}. Note that each element
Wij is estimated from the cost matrix H and the unary matchability vectors r and
s, rather than locally from Hij. In other words, the weighting matrix W globally
handles pairwise descriptor distance ambiguities in H, while respecting the unary
priors. The overall pipeline is given in Figure 7.3.

Prior matchability: For each point, we define a prior unary matchability measuring
how likely it is to have a match. Formally, let ri and sj denote the unary matchabilities
of points xi and yj respectively. Collecting the matchabilities for all 2D or 3D points
yields a matchability histogram, a 1D probability distribution, given by r ∈ ΣM and
s ∈ ΣN , where a simplex in RM is defined as ΣM =

{
r ∈ RM

+ , ∑i ri = 1
}

.
We make the assumption that the unary matchabilities are uniformly distributed,

that is, ri = 1/M, sj = 1/N. This means that each point has the same prior likelihood
of matching. While our model can predict non-uniform priors, we found that using
learned priors led to overfitting.

Algorithm 1: Sinkhorn’s Algorithm to solve (7.2). Hadamard (elementwise)
division is denoted by �.

Inputs: H, r, s, b = 1N , λ, and iteration number Iter
Output: Weighting matrix W

1 Υ = exp (−H/λ)
2 Υ = Υ/ ∑ Υ // normalise Υ to be a joint probability matrix
3 while it < Iter do
4 a = r� (Υb) // alternatively updating a and b
5 b = s� (ΥTa)
6 end
7 W = diag(a)Υ diag(b) // assemble to build the weighting matrix W

Solving for W: From optimal transport theory (Villani [2009]; Cuturi [2013]; Courty
et al. [2016]), the joint probability matrix W can be obtained by solving

arg min
W∈Π(r,s)

〈H, W〉 − λE (W) , (7.2)

where 〈·, ·〉 is the Frobenius dot product and Π(r, s) is the transport polytope that
couples two unary matchability vectors r and s, given by

Π (r, s) =
{

W ∈ RM×N
+ , W1N = r, WT1M = s

}
, (7.3)

where 1N = [1, 1, ..., 1]T ∈ RN . The constraint on W ensures that we assign the
binary matchabilities of each 3D point to all 2D points without altering the unary
matchability of the point. The entropy regularisation term E (W) facilitates efficient
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computation (Cuturi [2013]) and is defined by

E (W) = −∑
i,j

Wij
(
log Wij − 1

)
. (7.4)

To solve (7.2), we use a variant of Sinkhorn’s Algorithm (Sinkhorn [1964]; Mar-
shall and Olkin [1968]), given in Algorithm 1. Unlike the standard algorithm that
generates a square, doubly-stochastic matrix, our version generates a rectangular
joint probability matrix, whose existence is guaranteed (Theorem 4 (Marshall and
Olkin [1968])).

Joint probability loss function: To train the feature extraction and matching net-
work, we apply a loss function to the weighting matrix W. Since W models the joint
probability distribution of r and s, we can maximise the joint probability of inlier
correspondences and minimise the joint probability of outlier correspondences using

L =
M

∑
i

N

∑
j

(
1− 2Cgt

ij

)
Wij, (7.5)

where the ground-truth correspondence matrix Cgt
ij is 1 if {xi, yj} is a true correspon-

dence and 0 otherwise. The loss is bounded, with L ∈ [−1, 1), since ∑M
i=1 ∑N

j=1 Wij =
1.

If ground-truth correspondence labels Cgt
ij are not available, they can be obtained

in a weakly-supervised fashion by projecting the 3D points onto the image using the
ground-truth camera pose and applying an inlier threshold.

Remark 1: A common objective in geometry optimisation is minimising re-projection
error. With estimated weighting matrix W, the weighted angular reprojection error
is defined by:

Lrep =
M

∑
i

N

∑
j

Wij

(
1−N (Rgtxi + tgt)

TN (K−1ŷj)
)

, (7.6)

where Rgt and tgt are the ground-truth rotation and translation and N (·) denotes L2

normalisation. This loss minimises the sum of weighted angular distances between
image rays N (K−1ŷj) and rays connecting the camera centre and the transformed
3D points N (Rgtxi + tgt). While this loss is geometrically meaningful, we will show
in the experiments that it is inferior to our loss.

Remark 2: A common technique for learning discriminative cross-modal features is
deep metric learning. We tested a triplet loss (Hu et al. [2018a]) that minimises the
feature distance between matchable 2D–3D pairs and maximises the feature distance
between non-matchable 2D–3D pairs, given by

Ltri =
M

∑
i

log
(

1 + eα(‖fxi−f+y ‖2
2−‖fxi−f−y ‖2

2)
)

, (7.7)
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where α = 10 is chosen empirically. We use the ground-truth labels to find the
positive and negative anchors, that is f+y = fyj for Cgt

ij = 1 and f−y = fyj for Cgt
ij = 0,

selected at random. f−yj
is randomly selected from non-matchable features. While this

loss is effective, it also performs worse than our loss.

Retrieving correspondences: To retrieve the 2D–3D correspondences from the weight-
ing matrix W, we test the following methods.

1. Top-K prioritised matches: To obtain a list of prioritised matches, we have (i)
reshape W into a 1D correspondence probability vector, sort by decreasing proba-
bility; or (ii) reshape H into a 1D correspondence distance vector, sort by increasing
distance, and then retrieve the associated 2D and 3D point indices. Given this list of
matches (xi, yj, Wij) or (xi, yj, Hij) prioritised by weight or distance, respectively, we
truncate it to obtain the Top-K matches. We denote the former by Top-K_w and the
latter by Top-K_f. Instead of enforcing one-to-one 2D–3D matches, we defer disam-
biguation to the match refinement stage.

2. Nearest Neighbors (NNs): For each 2D point yj, we find its nearest 3D neighbor
xi? with respect to (i) the probability matrix, that is i? = arg maxi Wij; or (ii) the
regressed descriptor, that is i? = arg mini ‖fxi − fyj‖2. We denote the former by
NN_w and the latter by NN_f. This approach retrieves N matches.

3. Mutual Nearest Neighbors (MNNs): We extend the previous approach by also
enforcing a one-to-one constraint, that is, only keeping the correspondence (x, y) if
x is the nearest neighbor of y and y is the nearest neighbor of x. We again com-
pute nearest neighbors with respect to (i) the probability matrix (MNN_w); or (ii)
the regressed descriptors (MNN_f). This approach retrieves fewer than min{M, N}
correspondences.

7.2.4 Correspondence set refinement

We now have a set of putative 2D–3D correspondences, some of which are outliers,
and we want to estimate the camera pose. This is the standard PnP problem with out-
lier correspondences, and may be solved using RANSAC (Fischler and Bolles [1981])
with a minimal P3P solver (Grunert [1841]). However, recent works (Moo Yi et al.
[2018b]; Dang et al. [2018]) have shown that outliers can be filtered more efficiently
using deep learning. Therefore, we apply the 2D–2D correspondence classification
network from Yi et al. (Moo Yi et al. [2018b]) to reject outliers, with a modified in-
put dimension and loss function. All other components are kept the same as Yi et
al. (Moo Yi et al. [2018b]).

Regression loss: We directly regress rotation R and translation t using the weighted
Direct Linear Transform (DLT). Given at least six correspondences (xi, yj), R and t
can be estimated by solving a SVD problem (Hartley and Zisserman [2003]). We first
construct the linear equation Ap = 0, where each 2D–3D match supplies two rows
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in A, giving [
0T −xTi vjxTi
xTi 0T ujxTi

]
︸ ︷︷ ︸

A

[R1 t1 R2 t2 R3 t3]
T︸ ︷︷ ︸

p

= 0, (7.8)

where (uj, vj) = yj, (t1, t2, t3) = t, and Ri is the ith row of the rotation matrix. The
camera pose can be estimated by taking the SVD of AT diag(w)A, where w is the
vector of weights predicted by the classification network. The eigenvector associated
with the smallest eigenvalue is the solution p from which R and t can be assembled
up to a sign ambiguity. Given ground-truth rotation Rgt and translation tgt, we define
our pose loss as

Lp = min
{∥∥R−Rgt

∥∥2
F ,
∥∥R + Rgt

∥∥2
F

}
+ min

{∥∥t− tgt
∥∥2

2 ,
∥∥t + tgt

∥∥2
2

}
. (7.9)

Although we do not impose an orthogonality constraint on R, minimising the above
loss function pushes R towards the Lie group of SO(3).
RANSAC and nonlinear optimisation: At test time, we can further refine the pose
by identifying inliers using RANSAC (Fischler and Bolles [1981]) with a minimal P3P
solver (Grunert [1841]), followed by nonlinear optimisation of the inlier reprojection
error using the Levenberg–Marquardt (Moré [1978]) algorithm.

7.3 Experiments

Our experiments are conducted on both synthetic (ModelNet40 (Wu et al. [2015]) and
NYU-RGBD (Nathan Silberman and Fergus [2012])) and real-world (MegaDepth (Li
and Snavely [2018])) datasets. Sample 3D and 2D point clouds from these datasets
are given in Figure 7.4. We first validate the components of our pipeline and then
compare it with state-of-the-art methods.

ModelNet40 (Wu et al. [2015]): We use the default train and test splits of 9 843 and
2 468 CAD mesh models respectively. We uniformly sample M = 1 000 3D points
from the surface of each model and generate virtual camera viewpoints as follows:
Euler rotation angles are uniformly drawn from [0◦, 45◦], translations are uniformly
drawn from [−0.5, 0.5], and a translation offset of 4.5 is applied along the z axis to
ensure that all 3D points are in front of the camera. The 3D points are projected onto
a virtual image plane with size 640× 480 and focal length 800 and Gaussian pixel
noise (σ = 2) is added to the M 2D points. In total, 40 000 training and 2 468 testing
2D–3D pairs are generated.

NYU-RGBD (Nathan Silberman and Fergus [2012]): We use train and test splits of
1 100 and 349 aligned RGB and depth image pairs, respectively, from the labeled NYU
Depth V2 dataset. We uniformly sample M = 1 000 2D points from each RGB image,
normalise the points using the intrinsic camera matrix, and find the corresponding
3D points in the depth image. We transform the 3D points using virtual rotations
and translations generated in the same way as for the ModelNet40 dataset, without
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Figure 7.4: Sample 3D (top row) and 2D (bottom row) points cloud from ModelNet40 (Left) and
NYU-RGBD (Middle) and real-world MegaDepth (Right) datasets.

the translation offset, and add Gaussian pixel noise (σ = 2) to the 2D points. In total,
40 000 training and 10 000 testing 2D–3D pairs are generated. Note that the scenes in
the train and test sets do not overlap.

MegaDepth (Li and Snavely [2018]): MegaDepth is a multi-view Internet photo
dataset with multiple landmark scenes obtained from Flickr. It has diverse scene con-
tents, image resolutions, 2D–3D point distributions, and camera poses. The dataset
provides 3D point sets reconstructed using COLMAP (Schönberger and Frahm [2016]),
and 2D SIFT keypoints detected from images. We randomly select several landmarks,
yielding a total number of 40 828 2D–3D training sets and 10 795 testing sets. The
number of 2D–3D correspondences varies from tens to thousands. Note that the
landmarks in the train and test sets do not overlap.

Evaluation metrics: We report the number of inlier 2D–3D matches among all matches
found, using ground-truth correspondence labels. We also report the rotation error,
given by ε = arccos((trace(RT

gtR) − 1)/2), where Rgt is the ground-truth rotation
and R is the estimated rotation, and the translation error, given by the L2 distance
between the estimated and ground-truth translation vectors.

We also calculate the recalls (percentage of poses) by varying pre-defined thresh-
olds on rotation and translation error. For each threshold, we count the number of
poses with errors less than that threshold, and then normalise the number by the
total number of poses.

Implementation details: Our 12-layer two-stream network is implemented in Tensor-
Flow and is trained from scratch using the Adam optimiser (Kingma and Ba [2014])
with a learning rate of 10−5 and a batch size of 12. Every layer has an output channel
dimension of 128. The number of Sinkhorn iterations is set to 20, λ is set to 0.1,
and the number of neighbors in the KNN-graph is set to 10. We utilise a two-stage
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training strategy: we first train our feature extraction and matching network until
convergence and then train the classification network to refine 2D–3D matches. Our
model is trained on a single NVIDIA Tesla P40 GPU in three days.

We also compare our method with state-of-the-art methods, and the configuration
details of baselines are given below.

GOSMA (Campbell et al. [2019]): We provide a translation domain to the GOSMA
algorithm in the following way, in order to reduce the search space for the algo-
rithm: (i) find the axis-aligned bounding box that includes all points in the 3D model
excluding outliers (i.e., excluding the 2.5% percentile minimum and maximum); (ii)
extend the bounding box to include the ground-truth camera position; and (iii) in-
crease the size of the resulting bounding box by 10%. In this way, we ensure that the
search space encompasses all reasonable camera positions. The runtime is set to a
maximum of 30s per alignment for time considerations. As a result, the algorithm
does not always converge to the global optimum or provide an optimality guaran-
tee, which can require minutes per alignment and is therefore impractical for a large
dataset.

SoftPOSIT (David et al. [2004]): SoftPOSIT requires an initial estimate of the rotation
and translation. For the synthetic datasets ModelNet40 and NYU-RGBD, we use
the mean translation and the average rotation to initialise SoftPOSIT. The median
initial rotation error is 21.5◦, and the median initial translation error is 0.49. For the
real-world dataset MegaDepth, we set the initial pose by adding a perturbation to
the ground-truth poses. The angular perturbation on rotation is uniformly drawn
from [−10, 10] degrees, and the perturbation on translation is uniformly drawn from
[−0.5, 0.5]. The number of iterations is set to 25, which corresponds to ∼ 30s for
∼1000 2D/3D points in our experiments.

P3P-RANSAC: We compare our method against P3P-RANSAC with randomly-sampled
2D–3D correspondences. For randomly-sampling 2D–3D correspondences in P3P-
RANSAC, the probability of finding inlier 2D–3D correspondences approximates
zero within 30s. The number of RANSAC iterations k is given by:

k = log(1− p)/ log(1− wq) (7.10)

where p is the confidence level, w is the ground-truth inlier ratio of 2D–3D corre-
spondences, and q = 4 is the minimal number of 2D–3D correspondences for P3P
(one more 2D–3D correspondence to prune multiple solutions of P3P). For a moder-
ate confidence p = 90%, the number of 2D and 3D points at 1000 (w = 1/1000), the
number of RANSAC iterations k approximates 2.3× 1012.

Within 30s, we can evaluate 8.7× 105 hypotheses, resulting in a RANSAC success
ratio at 3.8× 10−7.

To show the effectiveness of our method at regressing point-wise descriptors, we
compare four networks, and the implementation details of these baselines are given
below.
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PointNet (Qi et al. [2017a]): The architecture is cropped from the segmentation
model. The input point cloud is passed to a transformation network to regress a
3× 3 matrix. The matrix is applied to each point. After this alignment stage, the
point cloud is passed to an MLP (64,64) network (with layer output sizes 64, 64)
for each point. The output features are then passed to a transformation network to
regress a 64× 64 matrix. The matrix is applied to each feature. After the feature-
alignment, features are passed to an MLP (64,128,1024) network. The output feature
of each point is L2 normalised to embed it to a metric space.

PointNet++ (Qi et al. [2017b]): The architecture is cropped from the segmenta-
tion model. The input point cloud is passed to 4 set abstraction modules (SA)
and 4 feature propagation layers (FP). The configuration of SAs are: SA (1024,
0.1, [32,32,64]), SA (256, 0.2, [64,64,128]), SA (64, 0.4, [128,128,256]) and SA (16, 0.8,
[256,256,512]). The configuration of FPs are: FP (256,256), FP (256,256), FP (256,128)
and FP (128,128,128). The output feature of each point is L2 normalised.

Dgcnn (Wang et al. [2018]): The architecture is cropped from the part segmentation
model. The number of nearest neighbors is set to 10. It contains 3 MLP blocks.
For the first MLP block, the points cloud is passed to MLP (64,64) network (with
layer output sizes 64, 64) on each point. Local features are aggregated using max-
pooling. For the second MLP block, features are passed to MLP (64,64) network.
Local features are aggregated using max-pooling. For the last MLP block, features
are passed to MLP (64) network. Local features are aggregated using max-pooling.
The outputs of 3 MLP blocks are concatenated and passed to MLP (1024) network.
The output feature of each point is L2 normalised.

CnNet (Moo Yi et al. [2018b]): The architecture is cropped before the ReLU+Tanh
operation. The output feature of each point is L2 normalised.

7.3.1 Synthetic data experiments

To validate the components of our pipeline, we perform experiments on the syn-
thetic ModelNet40 (Wu et al. [2015]) and NYU-RGBD (Nathan Silberman and Fergus
[2012]) datasets.

The effectiveness of global matching: Given a point-wise regressed descriptor and
a 2D–3D weighting matrix W, we have 6 methods for retrieving 2D–3D correspon-
dences as listed in Section 7.2.3: Top-K_w, Top-K_f, NN_w, NN_f, MNN_w and
MNN_f. We calculate the number of inlier matches using ground-truth labels, and
the results are shown in Figure 7.5. The number of inlier 2D–3D correspondences
found by NN_w and MNN_w is consistently greater than the number found by
NN_f and MNN_f respectively. This demonstrates that retrieving 2D–3D matches
from the weighting matrix W is better than performing the nearest neighbor search
using the regressed descriptors.

For the methods Top-K_w and Top-K_f, since we can truncate the prioritised
2D–3D matching list at the Kth (K ≤ MN) position, we plot the curve showing the
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Figure 7.5: The average number of inlier matches with respect to the number of found 2D–3D
matches. Left: ModelNet40. Right: NYU-RGBD.
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Figure 7.6: Average inlier ratio with respect to the number of found 2D–3D matches. Left: Mod-
elNet40. Right: NYU-RGBD. Top-K denotes truncating the prioritised matching list at the Kth

position. Top-K-C denotes additionally using the classification network to disambiguate inliers from
outliers.

number of inliers with respect to the number of found 2D–3D correspondences for
K up to 2000. Again, method Top-K_w outperforms Top-K_f. Interestingly, match–
inlier tuples found by NN_w and MNN_w lie very close to the Top-K_w curve. We
use the Top-K_w method (omit the subscript) in the remaining experiments, since it
enables us to select a sufficient number of matches while also finding a large number
of inliers. Our method finds fewer inlier correspondences on the ModelNet40 dataset
than on the NYU-RGBD dataset, since the virtual camera can only view part of the
whole 3D model with the remainder being occluded.

The effectiveness of 2D–3D classification: We evaluate the ability of the 2D–3D
correspondence classification module to disambiguate inlier and outlier correspon-
dences by running this network with the Top-K (K ∈ [1, 2000]) matches from the
prioritised 2D–3D match list. We calculate the average inlier ratio (#inlier/#matches)
with respect to the number of found 2D–3D matches, as shown in Figure 7.6. The
results demonstrate that the classification network significantly improves the average
inlier ratio, which considerably improves the pose estimation, as shown in the next
experiment.
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Table 7.1: Comparison of rotation and translation errors on the ModelNet40 and NYU-RGBD
datasets. Q1 denotes the first quartile, Med. denotes the median, and Q3 denotes the third quartile.

XXXXXXXXXXMethod
Dataset ModelNet40 NYU-RGBD

Q1 Med. Q3 Q1 Med. Q3

Top-K Rot. err. (◦) 4.316 10.85 19.30 0.303 0.448 0.645
Trans. err. 0.041 0.088 0.196 0.014 0.022 0.033

Top-K-C Rot. err. (◦) 1.349 2.356 5.260 0.202 0.291 0.407
Trans. err. 0.018 0.037 0.070 0.009 0.014 0.020

Table 7.2: Comparison of rotation and translation errors on the ModelNet40 and NYU-RGBD
datasets.

hhhhhhhhhhhhhhhMethod
Dataset ModelNet40 NYU-RGBD

Q1 Med. Q3 Q1 Med. Q3

P3P-RANSAC Rot. err. (◦) 90.82 138.6 164.8 40.11 99.26 154.0
Trans. err. 0.433 1.147 3.077 0.827 1.295 2.023

SoftPOSIT Rot. err. (◦) 16.10 21.75 28.00 12.88 20.61 31.32
Trans. err. 0.332 0.488 0.719 0.646 0.935 1.299

GOSMA Rot. err. (◦) 10.08 22.06 52.01 1.364 3.184 21.98
Trans. err. 0.254 0.464 0.746 0.126 0.212 0.688

Our Rot. err. (◦) 1.349 2.356 5.260 0.202 0.291 0.407
Trans. err. 0.018 0.037 0.070 0.009 0.014 0.020

Estimating 6-DoF pose: Once the 2D–3D matches have been established, we apply
the P3P algorithm in a RANSAC framework to estimate the 6-DoF camera pose. We
compare two methods: (a) P3P with Top-K matches (K = 2000); and (b) P3P with
Top-K matches and classification network filtering. The results are shown in Fig-
ure 7.7. Observe that after classification filtering, we consistently obtain larger recalls
at each error threshold. The same trend is visible in the rotation and translation er-
ror statistics, shown in Table 7.1. Due to these conclusive results, we thus use the
Top-K + Classification (Top-K-C) method as our default configuration. The perfor-
mance of state-of-the-art methods on ModelNet40 and NYU-RGBD are presented in
Table 7.2. Our method outperforms all others by a large margin, in addition to a
> 100× speed-up.

Table 7.3: Comparison of rotation and translation errors on the MegaDepth dataset.

XXXXXXXXXXMethod
Error Rotation (◦) Translation

Q1 Med. Q3 Q1 Med. Q3
P3P-RANSAC 66.64 122.1 155.4 6.796 15.18 28.18
SoftPOSIT 1.806 21.39 165.4 0.242 1.532 6.101
GOSMA 8.685 86.78 144.5 1.070 5.670 9.335
Ours 0.028 0.056 0.137 0.002 0.005 0.018
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Figure 7.7: Comparison of recall with respect to error thresholds on rotation and translation. Top:
ModelNet40. Bottom: NYU-RGBD.

7.3.2 Real data experiments

We further demonstrate the effectiveness of our method to handle real-world data on
the MegaDepth (Li and Snavely [2018]) dataset.

Comparison with state-of-the-art methods: The unavailability of Gaussian pose pri-
ors and the sheer number (∼1000) of 2D and 3D points precludes the use of the meth-
ods BlindPnP (Moreno-Noguer et al. [2008]) and GOPAC (Campbell et al. [2017]).
We compare our method against P3P-RANSAC with randomly-sampled 2D–3D cor-
respondences and the state-of-the-art local solver SoftPOSIT (David et al. [2004]) and
global solver GOSMA (Campbell et al. [2019]). All methods are terminated at ∼30s
per alignment for time considerations, returning the best value found so far. Note
that with this approach, GOSMA’s guarantee of global optimality is traded off against
its runtime. For randomly-sampling 2D–3D correspondences in P3P-RANSAC, the
probability of finding minimal inlier correspondences set approximates zero. Since
SoftPOSIT requires a good prior pose, we simulate it by adding a small perturba-
tion to the ground-truth pose, with the angular perturbation drawn uniformly from
[−10◦, 10◦] and the translation perturbation drawn uniformly from [−0.5, 0.5]. The
performance for 6-DoF pose estimation is shown in Figure 7.8 and Table 7.3. It shows
that our method outperforms the second-best method GOSMA1, with median rota-
tion and translation errors of 0.056◦ and 0.005 for our method, and 86.784◦ and 5.670
for GOSMA. The qualitative comparisons in Figure 7.9 show that the projection of
3D points using our method’s pose aligns very well with the images. The average

1SoftPOSIT is initialised with a good prior pose from the ground-truth, and so cannot be compared
directly.
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Figure 7.8: Comparison of rotation and translation errors on the MegaDepth dataset. Recall with
respect to error thresholds on rotation (Left), translation (Middle), and both (Right) are plotted.

runtime of our method, SoftPOSIT, P3P-RANSAC, and GOSMA is 0.15s, 18s, 30s, and
30s respectively, where the last three algorithms were run for a maximum runtime of
30s.

Robustness to outliers: To demonstrate our method’s effectiveness at handling out-
liers, we add outliers to both the 3D and 2D point-sets. Specifically, for original 3D
and 2D point-sets with cardinality M and N, we add νM and νN outliers to the
3D and 2D point-sets, respectively, for an outlier ratio ν ∈ [0, 1]. We add two types
of outliers: synthetic and real. For synthetic outliers, they are generated uniformly
within the bounding box enclosing the 3D and 2D point-sets. The rotation and trans-
lation errors with respect to the outlier ratio are given in Figure 7.10 (Left). For
real outliers, 2D outliers are added from detected SIFT keypoints that do not have
a matchable 3D point, and 3D outliers are added from 3D model points that do not
have a matchable 2D point. The rotation and translation errors with respect to the
outlier ratio are given in Figure 7.10 (Right). It shows that the performance of our
method degrades gracefully with respect to an increasing outlier ratio.

Backbone networks: To demonstrate the effectiveness of our method at regressing
point-wise descriptors, we use different backbone networks to replace our network
to extract point-wise 2D and 3D descriptors. We compare four networks: PointNet
(Qi et al. [2017a]), PointNet++ (Qi et al. [2017b]), CnNet (Moo Yi et al. [2018b]) and
Dgcnn (Wang et al. [2018]). The features from PointNet (Qi et al. [2017a]) and Dgcnn
(Wang et al. [2018]) are taken before global pooling and have dimension 1024. Cn-
Net (Moo Yi et al. [2018b]) and PointNet++ (Qi et al. [2017b]) generate features with
dimension 128. For all networks, the output point-wise feature vectors are L2 nor-
malised to embed them in a metric space. We compute the average number of inliers
with respect to the number of found 2D–3D matches using each backbone network,
as shown in Figure 7.11 (Left). It demonstrates that our feature extraction network
significantly outperforms all other networks, finding more inlier 2D–3D matches.

Loss functions: To show the effectiveness of our proposed inlier set probability max-
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(a) GT (b) Our (c) GOSMA (d) SoftPOSIT (e) P3P-RANSAC

Figure 7.9: Qualitative comparison with state-of-the-art methods on the MegaDepth dataset, show-
ing the projection of 3D points onto images using poses estimated by different methods. Green border
indicates the rotation/translation error of the estimated pose is less than 5◦/0.5 while red border indi-
cates the rotation/translation error of the estimated pose is larger than 5◦/0.5. Our method found more
correct poses. The indices of these images on the MegaDepth testing dataset are 1, 1000, 2000, 3000,
4000, 5000, 6000 and 7000 from top to down. (best viewed in colour).
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Figure 7.10: Robustness to outliers on the MegaDepth dataset. Median rotation and translation
errors with respect to the outlier ratio. Left: synthetic. Right: real-world outliers.
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Figure 7.11: Comparison of the average number of inliers with respect to the number of found
2D–3D matches for different backbone networks (Left) and loss functions (Right) on the MegaDepth
dataset.

imisation loss, we compare it with two others: (a) a reprojection loss; and (b) a triplet
loss. For the triplet loss, we use an exhaustive mini-batch strategy to maximise the
number of triplets. Using the weighting matrix W learned using the different losses,
we calculate the average number of inliers with respect to the number of found
2D–3D matches, shown in Figure 7.11 (Right). It shows that the proposed loss out-
performs other losses, finding more inlier matches.

7.4 Summary

We have proposed a deep network to solve the blind PnP problem of simultaneously
estimating the 2D–3D correspondences and 6-DoF camera pose from 2D and 3D
points. The key idea is to extract discriminative point-wise feature descriptors that
encode local geometric structure and global context, and use these to establish 2D–
3D matches via a global feature matching module. The high-quality correspondences
found by our method facilitates the direct application of traditional PnP methods to
recover the camera pose. Our experiments show that our method significantly out-
performs traditional geometry-based methods with respect to speed and accuracy.



Chapter 8

Align 3D Line Reconstructions for
Localisation

In this chapter, we present a localisation method using 3D line reconstructions. The
method can be used when both query and database 3D line reconstructions are avail-
able. We aim to align query line reconstructions to database line reconstructions, to
recover the 6-DoF pose of the query.

Aligning two partially-overlapped 3D line reconstructions in Euclidean space
is challenging, as one needs to solve correspondences and relative pose between
line reconstructions simultaneously. This chapter proposes a deep neural network
based method, which consists of three successive modules: (i) a Multilayer Percep-
tron (MLP) based network takes Plücker representations of lines as inputs, to extract
discriminative line-wise features and matchabilities (how likely each line is going to
have a match), (ii) an Optimal Transport (OT) layer takes two-view line-wise features,
and matchabilities as inputs to estimate a 2D joint probability matrix, with each item
describes the matchness of a line pair, and (iii) line pairs with Top-K matching prob-
abilities are fed to a 2-line minimal solver in a RANSAC framework to estimate a six
Degree-of-Freedom (6-DoF) rigid transformation. Experiments on both indoor and
outdoor datasets show that the registration (rotation and translation) precision of our
method outperforms baselines significantly.

The rest of this chapter is organised as following. We first give an introduction in
Section 8.1. In this section 8.2, we present PlückerNet – our method for aligning 3D
line reconstructions. Experimental results are given in Section 8.3.

8.1 Introduction

Lines reveal strong structural geometry information of environments (even for texture-
less indoor scenes), and are widely used in many applications, e.g., SLAM (Smith
et al. [2006]; Zhou et al. [2015]), visual servoing (Andreff et al. [2002]), place recog-
nition (Taubner et al. [2020]) and camera pose estimation (Liu et al. [1990]; Lee and
Hwang [2019]). The underlying 3D lines can be obtained from structure from mo-
tion (Taylor and Kriegman [1995]), SLAM (Zhang et al. [2015]) or laser scanning (Ma
et al. [2019]). Compared with 3D points, scene represented by lines is more com-

97
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Figure 8.1: Our problem is to align two partially-overlapped line reconstructions or, equivalently, to
estimate the relative pose between two line reconstructions. Left: Red and Black lines (depicting street-
view buildings and landmarks) are in two different coordinate systems from the Semantic3D dataset
Hackel et al. [2017]. Right: our method is able to successfully align the two line reconstructions in a
one-shot manner.

plete and requires significantly less amount of storage (Koch et al. [2016]; Hofer et al.
[2015]; Xiaohu et al. [2019]). Given 3D lines in space, a fundamental problem is how
to register them (Figure 8.1). Registration is used in building a complete 3D map,
robot localisation, SLAM, etc.

This chapter studies the problem of aligning two partially-overlapped 3D line
reconstructions in Euclidean space. This is not doable for traditional methods as
it’s very hard to find line matches by only checking 3D line coordinates, often one
needs to manually set line matches (Bartoli and Sturm [2001]; Bartoli et al. [2003]) or
assumes lines are mostly located on planes (Koch et al. [2016]) and windows (Cohen
et al. [2016]). With deep neural networks, we give a learning-based solution, dubbed
as PlückerNet.

It is non-trivial to learn from lines, as we need to handle line parameterisation
and geometry carefully. For example, local structure defined by geometric nearest
neighbor is a core-component in point-based networks (e.g., PointNet++ (Qi et al.
[2017a])). However, for a line-based network, defining geometric nearest neighbor is
non-trivial as there is no universally agreed error metric for comparing lines (Bartoli
and Sturm [2001]).

We parameterise a 3D line using a 6-dim Plücker (Pottmann and Wallner [2009])
representation with a 3-dim direction vector lying on a 3D unit hemisphere and a
3-dim moment vector. To capture local line structure, for each line we first extract
local features in the subspace of direction and moment, and then combine them to
obtain a global high-dim line feature. To make line-wise features discriminative for
matching, we use a graph neural network with attention mechanism (Sarlin et al.
[2020]; Simon et al. [2020]), as it can integrate contextual cues considering high-dim
feature embedding relationships.
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As we are addressing a partial-to-partial matching problem, lines do not neces-
sarily have to match. We model the likelihood that a given line has a match and is not
an outlier by regressing line-wise prior matchability. Combined with line-wise fea-
tures from two line reconstructions, we are able to estimate line correspondences in a
global feature matching module. This module computes a weighting (joint probabil-
ity) matrix using optimal transport, where each element describes the matchability
of a particular source line with a particular target line. Sorting the line matches in
decreasing order by weight produces a prioritised match list, which can be used to
recover the 6-DoF relative pose between source and target line reconstructions.

With line matches, we develop a 2-line minimal pose solver (Bartoli et al. [2003])
to solve for the relative pose in Euclidean space. We further show how to integrate the
solver within a RANSAC framework using a score function to disambiguate inliers
from outliers.

Our PlückerNet is trained end-to-end. The code and data will be released to
facilitate future research. The overall framework is illustrated in Figure 8.2. Our
contributions are:

1. A simple, straightforward and effective learning-based method to estimate a
rigid transformation aligning two line reconstructions in Euclidean space;

2. A deep neural network extracting features from lines, while respecting the line
geometry;

3. An original global feature matching network based on the optimal transport
theory to find line correspondences;

4. A 2-line minimal solver with RANSAC to register 3D line reconstructions in
Euclidean space;

5. We propose two 3D line registration baselines (iterative closet lines and direct
regression), three benchmark datasets build upon (Zheng et al. [2020a]; Hackel
et al. [2017]; Baidu [2020]) and show the state-of-the-art performance of our
method.

8.2 PlückerNet

In this section, we present PlückerNet – our method for aligning 3D line recon-
structions. We first define the problem in Section 8.2.1, then describe our pipeline.
Specifically, we present our method for extracting line-wise discriminative features
in Section 8.2.2. We then describe our global feature matching method for obtaining
3D–3D line match probabilities in Section 8.2.3. Finally, we provide the relative pose
solver, a 2-line minimal solver in a RANSAC framework in Section 8.2.4.
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Figure 8.2: The overall pipeline of our method. First, lines are represented as 6-dim Plücker co-
ordinates, passed into a Siamese network to extract line-wise deep features via subspace coding and
discriminative feature embedding (Section 8.2.2). Then a global feature matching module estimates
line matches from these features using an optimal transport (OT) technique (Villani [2009]; Cuturi
[2013]; Courty et al. [2016]) (Section 8.2.3). Finally, at test time, apart from automatically recovering
line correspondences, the 6-DoF relative pose (R and t) between two coordinate systems is recovered
via a 2-line minimal solver with RANSAC (Section 8.2.4).

8.2.1 Problem definition

Plücker line. A line ` in a 3D space has 4 degrees of freedom. Usually, we have three
ways to denote a 3D line: 1) a direction and a point the line passes through; 2) two
points the line passes through 1, i.e., line segment with two start and end junction
points; 3) the Plücker coordinates (v, m) (Hodge et al. [1994]), where v is the 3-dim
direction vector and m is the 3-dim moment vector. We choose Plücker coordinates to
parameterise a 3D line for its uniqueness once fixing its homogeneous freedom and
its mathematical completeness. We fix homogeneous freedom of a 6-dim Plücker line
by first L2 normalising its direction vector v to a unit-sphere, and then set the value
of the first dimension of v to be greater than 0. This ensures v lie on a hemisphere.

Partial-to-Partial registration. Let LS = {`i}, i = 1, ..., M denote a 3D line set with M
Plücker lines in the source frame, LT = {`′j}, j = 1, ..., N denote a 3D line set with N
Plücker lines in the target frame, and C ∈ RM×N denote the correspondence matrix
between LS and LT .

We aim to estimate a rotation matrix R and a translation vector t which transforms
source line set LS to align with the target line set LT . Specifically, `

′
j ≈ T`i for Cij = 1,

where the line motion matrix T (Bartoli and Sturm [2001]) is given by:

T =

(
R [t]×R
0 R

)
, (8.1)

1Extracting endpoints of lines accurately and reliably is difficult due to viewpoint changes and
occlusions (Zhang et al. [2015]; Li et al. [2016]).
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where [t]× is a skew-symmetric matrix.
The difficulty of this registration problem is to estimate the correspondence ma-

trix C. We propose to estimate C using a deep neural network. Specifically, for each
tentative line match in C, we calculate a weight Wij describing the matchability of `i

and `
′
j. We can obtain a set of line matches by taking the Top-K matches according to

these weights. With line matches, we give a minimal 2-line method with RANSAC
to solve the problem.

8.2.2 Feature extraction

Basic block. Our input is a set of unordered lines. Inpired by PointNet (Qi et al.
[2017a]) which consumes a set of unordered points, we also use MLP blocks to ex-
tract line-wise features. An MLP block, e.g., MLP(128, 128) denotes a two layers
perceptron, with each layer size being 128. In our network, Groupnorm (Wu and He
[2018]) with GeLU (Hendrycks and Gimpel [2016]) is used for all layers (except the
last layer) in an MLP block. We found Groupnorm (Wu and He [2018]) and GeLU
(Hendrycks and Gimpel [2016]) is better than the commonly used Batchnorm (Ioffe
and Szegedy [2015]) and ReLU, respectively.

Subspace coding. For a 6-dim Plücker line, its direction v and moment m lies in two
domains. v lies on a hemisphere and m is unbounded with constraint v ·m = 0. ‖m‖2
gives the distance from the origin to the line (iff v is L2-normalised). To bridge this
domain gap, we first use two parallel networks without sharing weights to process v
and m independently, and then concatenate features from them to embed a Plücker
line to a high-dim space 2. The benefits of this subspace coding process lie in two
parts: 1) the domain gap between v and m is explicitly considered; 2) we are able
to define geometric nearest neighbors in each subspace of direction v and moment
m. Angular distance and L2 distance is used to find geometric nearest neighbors in
the subspace of v and m, respectively. Note that we cannot define nearest neighbors
in 6-dim space, as there is no universally agreed global distance metric between two
Plücker lines, see discussions in Section 8.2.4.

For each oi (oi can be vi or mi, and i is a line index) in a subspace, we first
perform nearest neighbor search and build a line-wise Knn graph. For a Knn graph
around the anchor oi, the edges from oi to its neighbors capture the local geometric
structure. Similar to EdgeConv (Wang et al. [2018]), we concatenate the anchor and
edge features, and then pass them through an MLP layer to extract local features
around the i-th line. Specifically, the operation is defined by

E (oi) = avgok ,ok∈f(oi)
(θ (ok − oi) + φoi) , (8.2)

where ok ∈ f(oi) denotes that ok is in the neighborhood f(oi) of oi, θ and φ are
MLP weights performed on the edge (ok − oi) and anchor oi respectively, and avg(·)

2For features from the two subspace, we find no additional benefit of imposing the orthogonal
constraint via the Gram-Schmidt process, though the original direction v is orthogonal to the moment
m.
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Figure 8.4: The pipeline of discriminative feature embedding. The network takes M and N 128-dim
line features from subspace coding as input, improve feature discriminativeness via both self and cross
attention. We use 6 attention blocks in total.

denotes that we perform average pooling in the neighborhood f(oi) after the MLP
to extract a single feature for the i-th line.

After extracting line-wise local features E (vi) and E (mi) in the subspace of v
and m independently, we lift them to high-dim spaces by using an MLP block
MLP(8, 16, 32, 64). Output features from the two subspaces are concatenated, and
further processed by an MLP block MLP(128, 128, 128) to embed to a 128-dim space.
This subspace coding process is given in Figure 8.3.

Discriminative feature embedding. After coding 6-dim Plücker lines to 128-dim
features, we aim to make these features discriminative for matching. Inspired by the
success of attention mechanism and graph neural network in 3D–3D points cloud
registration (Wang and Solomon [2019]; Dang et al. [2020]; Simon et al. [2020]) and
two-view image matching (Sarlin et al. [2020]), we adopt both self-attention and
cross-attention to extract line-wise discriminative features. This process is given in
Figure 8.4.

We first define two complete graphs for source and target line reconstructions,
denoted by GLS and GLT , respectively. Nodes in GLS and GLT corresponds to lines `i
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and `
′
j, respectively. Node values corresponds to line features, and are denoted by

(t)f`i and (t)f
`
′
j
, where t is the layer index. Initial node values (t = 1) are outputs of

subspace coding.
The two complete graphs (GLS , GLT ) form a multiplex graph (Mucha et al. [2010];

Nicosia et al. [2013]). It contains both intra-frame (or self) edges Eself and inter-frame
(or cross) edges Ecross. Intra-frame edges connecting all lines within the same line
reconstructions. Inter-frame edges connecting one line from GLS to all lines in GLT ,
and vice versa.

Node values are updated using multi-head self and cross attention in a message-
passing framework (Sarlin et al. [2020]; Simon et al. [2020]). The merit of using this
framework is integrating both intra-frame and inter-frame contextual cues to increase
the distinctiveness of line features. For self-contain purposes, we briefly summarise
it.

Node values in GLS are updated via (same for GLT ):

(t+1)f`i =
(t) f`i + U

(
(t)f`i ||mE→`i

)
, (8.3)

where ·||· denotes concatenation, mE→`i denotes message from E to node `i, and U (·)
denotes feature propagation and is implemented as an MLP block MLP(256, 256, 128).
The message mE→`i encodes propagation of all nodes which are connected to node
`i via edges E (E = Eself or Ecross). In our implementation, the total depth of network
is set to 12 (i.e., t ∈ [1, T], T = 12) and we alternate to perform self and cross message
passing with increasing network depth, i.e., E = Eself if t is odd and E = Ecross if t is
even.

Message mE→`i is calculated through attention (Vaswani et al. [2017]):

mE→`i = Σj:(i,j)∈E αi,jvj, (8.4)

where attention weight αi,j is the Softmax over the key kj to query qi similarites, αi,j =

Softmaxj
(
qTi kj

/√
D), D = 128 is the feature dimension. In our implementation, the

key kj, query qi and value vj are obtained via linear projection of line features, using
different projection matrix. Following common practice, multi-head (4-heads in this
chapter) attention is used to improve the performance of Eq. (8.4). We do not use
recent works (Choromanski et al. [2020]; Wang et al. [2020a]) concerning speed-up
the computations of Eq. (8.4) as they all decrease the performance of our PlückerNet.

8.2.3 Feature matching

Given a learned feature descriptor per line in LS and LT , we perform global feature
matching to estimate the likelihood that a given Plücker line pair matches.

Matching cost. We first compute the pairwise distance matrix H ∈ RM×N
+ , which

measures the cost of assigning lines in LS to LT . To calculate H, we linearly project
outputs (T)f`i and (T)f

`
′
j

from discriminative feature embedding process to obtain fxi

and fyj for lines in LS and LT , respectively. fxi and fyj are post L2 normalised to
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embed them to a metric space. Each element of H is the L2 distance between the
features at line `i and `

′
j, i.e., Hij = ‖fxi − fyj‖2.

Prior Matchability. We are solving a partial-to-partial registration problem. Lines in
LS and LT do not necessarily have to match. To model the likelihood that a given
line has a match and is not an outlier, we define unary matchability vectors, denoted
by r and s for lines in LS and LT , respectively. To estimate r (same for s), we add a
lightweight matchability regression network, and the operation is defined by:

r`i = Softmaxi

(
P
(
(T)f`i ||avg

`
′
j∈LT

(T)f
`
′
j
||max

`
′
j∈LT

(T)f
`
′
j

))
, (8.5)

where avg
`
′
j∈LT

(·) and max
`
′
j∈LT

(·) denotes performing average and max pooling at

each feature dimension, aiming to capture global context of line features for LT .
P(·) denotes feature propogation and is implemented as MLP(384, 256, 256, 128, 1).
Softmax is used to convert lines’ logits to probabilities. Eq. (8.5) is based on the idea
of looking at global context of cross frame LT to regress line-wise matching prior for
current frame LS .

Collecting the matchabilities for all lines in LS or LT yields a matchability his-
togram, a 1D probability distribution, given by r ∈ ΣM and s ∈ ΣN , where a simplex
in RM is defined as ΣM =

{
r ∈ RM

+ , ∑i ri = 1
}

.

Global matching. From H, r, and s, we estimate a weighting matrix W ∈ RM×N
+

where each element Wij represents the matchability of the Plücker line pair {`i, `
′
j}.

Note that each element Wij is estimated from the cost matrix H and the unary match-
ability vectors r and s, rather than locally from Hij. In other words, the weighting
matrix W globally handles pairwise descriptor distance ambiguities in H, while re-
specting the unary priors. The overall pipeline is given in Figure 8.5.

Sinkhorn solver. From optimal transport theory (Villani [2009]; Cuturi [2013]; Courty
et al. [2016]), the joint probability matrix W can be solved by

arg min
W∈Π(r,s)

〈H, W〉 − λE (W) , (8.6)

where 〈·, ·〉 is the Frobenius dot product and Π(r, s) is the transport polytope that
couples two unary matchability vectors r and s, given by

Π (r, s) =
{

W ∈ RM×N
+ , W1N = r, WT1M = s

}
, (8.7)

where 1N = [1, 1, ..., 1]T ∈ RN . The constraint on W ensures that we assign the
matchabilities of each line in LS (or LT ) to all lines in LT (or LS ) without altering its
matchability. The entropy regularisation term E (W) facilitates efficient computation
(Cuturi [2013]) and is defined by

E (W) = −∑
i,j

Wij
(
log Wij − 1

)
. (8.8)
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Figure 8.5: Our feature matching pipeline. Given an M × 128 feature set from discriminative
feature embedding of source line set LS and an N × 128 feature set from the target line set LT , we
compute the pairwise L2 distance matrix H. Along with a unary matchability M-vector r from LS
and N-vector s from LT , the distance matrix H is transformed to a joint probability matrix W using
Sinkhorn’s algorithm. Reshaping W and sorting the line matches by their corresponding matching
probabilities generates a prioritised line match list. We take the Top-K matches as our set of putative
correspondences.

To solve (8.6), we use a variant of Sinkhorn’s Algorithm (Sinkhorn [1964]; Mar-
shall and Olkin [1968]), given in Algorithm 2. Unlike the standard algorithm that
generates a square, doubly-stochastic matrix, our usage generates a rectangular joint
probability matrix, whose existence is guaranteed (Theorem 4 (Marshall and Olkin
[1968])).

Algorithm 2: Sinkhorn’s Algorithm to solve (8.6). Hadamard (elementwise) division is
denoted by �.

Inputs: H, r, s, b = 1N , λ, and iterations Iter
Output: Weighting matrix W

1 Υ = exp (−H/λ)
2 Υ = Υ/ ∑ Υ

3 while it < Iter do
4 a = r� (Υb); b = s� (ΥTa)
5 end
6 W = diag(a)Υ diag(b)

Loss. To train our feature extraction and matching network, we apply a loss function
to the weighting matrix W. Since W models the joint probability distribution of r and
s, we can maximise the joint probability of inlier correspondences and minimise the
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joint probability of outlier correspondences using

L =
M

∑
i

N

∑
j

γi,jF
(

Cgt
ij , Wij

)
, (8.9)

where Cgt
ij equals to 1 if {`i, `

′
j} is a true correspondence and 0 otherwise. F

(
Cgt

ij , Wij

)
and γi,j are given by, F

(
Cgt

ij , Wij

)
= − log Wij; γi,j = 1/Atrue if Cgt

ij = 1

F
(

Cgt
ij , Wij

)
= − log

(
1−Wij

)
; γi,j = 1/Afalse if Cgt

ij = 0,
(8.10)

where γi,j is a weight to balance true and false correspondences. Atrue and Afalse are
the total number of true and false correspondences, respectively.

8.2.4 Pose estimation

We now have a set of putative line correspondences, some of which are outliers, and
want to estimate the relative pose between source and target line reconstructions.
According to (Bartoli et al. [2003]), we need minimal 2 line correspondences to solve
the relative rotation R and translation t in similarity space. In Euclidean space, by
substituting Eq. (8.1) to `

′
j = T`i, we obtain,

m
′
j = Rmi + [t]×Rvi (8.11)

v
′
j = Rvi. (8.12)

Note t is not contained in Eq. (8.12). We can first solve R, then substitute R to
Eq. (8.11) to solve t.

According to Eq. (8.12), R aligns line direction vi to v
′
j. In Horn et al. [1988],

authors show that R is the closest orthonormal matrix to M = ∑ v
′
jv

T

i . Let M = UΣV
T

be the singular value decomposition of M, then R = UV
T
. The sign ambiguity of R

is fixed by R = R/ det(R).
Substitute estimated R to Eq. (8.11), and reshape it as:

[Rvi]
T

×t = m
′
j −Rmi. (8.13)

Stacking along rows for i = 1, 2 yields a linear equation At = b, where A is a 6× 3
matrix and b is a 6× 1 vector. The least square solution is given by t = A+b, where
A+ is the pseudo-inverse of A.

2-line minimal solver in RANSAC framework. Given the above 2-line minimal
solver, we are ready to integrate it into the RANSAC framework. We need to de-
fine the score function, which is used to evaluate the number of inlier line corre-
spondences given an estimated pose from the minimal solver. Our score function is
defined by:

S(`′ , `) =
∥∥∥`′ − T`

∥∥∥
2

, (8.14)
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Figure 8.6: Sample 3D line reconstructions from Structured3D (Left), Semantic3D (Middle), and
Apollo (Right) datasets.

where we use estimated line motion matrix T (Eq. (8.1)) to transform 6-dim Plücker
lines from LS to LT , and measure the L2 distance between 6-dim Plücker lines.

We choose to use L2 distance for its simplicity and quadratic for easy-minimisation.
Though L2 distance only works in a neighborhood of `

′
(v and m lie in two differ-

ent subspaces), in practice, transformed lines from LS using our estimated pose lie
within the local neighborhood of their matching line in LT (if have), leading to the
success of using L2 distance. Despite Plücker lines lie in a 4-dim Klein manifold
(Pottmann and Wallner [2009]), we do not use distance defined via Klein quadric as
it needs to specify two additional planes for each line pair, which introduces many
hyper-parameters (Pottmann et al. [2004]).

For a Plücker line matching pair, if the score function defined in Eq. (8.14) is
smaller than a pre-defined threshold ε, it is deemed as an inlier pair. After RANSAC,
all inlier matching pairs are used to optimise Eq. (8.14) jointly.

8.3 Experiments

8.3.1 Datasets and evaluation methodology

We first conduct experiments on both indoor (Structured3D (Zheng et al. [2020a]))
and outdoor (Semantic3D (Hackel et al. [2017])) datasets, and then show our results
of addressing real-world line-based visual odometry on the Apollo dataset (Baidu
[2020]). Sample 3D line reconstructions from these datasets are given in Figure 8.6.

Structured3D (Zheng et al. [2020a]) contains 3D annotations of junctions and lines
for indoor houses. It has 3, 500 scenes/houses in total, with the average/median
number of lines at 306/312, respectively. The average size of a house is around
11m× 10m× 3m. Since the dataset captures structures of indoor houses, most lines
are parallel or perpendicular to each other. We randomly split this dataset to form a
training and testing dataset, with numbers at 2975 and 525, respectively.

Semantic3D (Hackel et al. [2017]) contains large-scale and densely-scanned 3D points
cloud of diverse urban scenes. We use the semantic-8 dataset, and it contains 30
scans, with over a billion points in total. For each scan, we use a fast 3D line detec-
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tion method (Xiaohu et al. [2019]) to extract 3D line segments. Large-scale 3D line
segments are further partitioned into different geographical scenes/cells, with cell
size at 10m× 10m for the X–Y dimensions. Scenes with less than 20 lines are re-
moved. We obtain 1, 981 scenes in total, with the average/median number of lines at
676/118, respectively. We randomly split this dataset to form a training and testing
dataset, with numbers at 1683 and 298, respectively.

Partial-to-Partial registration. For 3D lines of each scene (LS ), we sample a ran-
dom rigid transformation along each axis, with rotation in [0◦, 45◦] and translation
in [−2.0m, 2.0m], and apply it to the source line set LS to obtain the target line set
LT . We then add noise to lines in LS and LT independently. Specifically, we first
transform Plücker representation of a line to point-direction representation, with
the point at the footprint of line’s perpendicular through the origin. Gaussian noise
sampled fromN (0m, 0.05m) and clipped to [−0.25m, 0.25m] is added to the footprint
point, and the direction is perturbed by a random rotation, with angles sampled form
N (0◦, 2◦) and clipped to [−5◦, 5◦]. After adding noises, point-direction representa-
tions are transformed back to Plücker representations. To simulate partial scans of
LS and LT , we randomly select 70% lines from LS and LT independently, yielding
an overlapping ratio at ∼ 0.7.

Implementation details. Our network is implemented in Pytorch and is trained
from scratch using the Adam optimiser (Kingma and Ba [2014]) with a learning rate
of 10−3 and a batch size of 12. The number of nearest neighbors for each line is set to
10 in Eq. (8.2). The number of Sinkhorn iterations is set to 30, λ is set to 0.1, Top-200
line matches are used for pose estimation, the inlier threshold ε is set to 0.5m, and
the number of RANSAC iterations is set to 1000. Our model is trained on a single
NVIDIA Titan XP GPU in one day. Code and data will be released.

Evaluation metrics. We use the angle difference ζ = arccos((trace(RT
gtR) − 1)/2)

to calculate the rotation error, where Rgt and R is the ground-truth and estimated
rotation, respectively. The translation error is given by the L2 distance between the
ground-truth and the estimated translation vector. We also calculate the recalls (per-
centage of poses) by varying pre-defined thresholds on rotation and translation error.
For each threshold, we count the number of poses with errors less than that thresh-
old, and then normalise the number by the total number of poses.

Baselines. There is no off-the-shelf baseline available. We propose and implement:
1) ICL. an Iterative-Closest-Line (ICL) method, mimicking the pipeline of traditional
Iterative-Closest-Point (ICP) method. 2) Regression. This baseline does not estimate
line-to-line matches. After extracting line-wise features, we append a global max-
pooling layer to obtain a global feature for each source and target set. A concatenated
global feature is fed to an MLP block to regress the rotation and translation directly.
Details are given below.

Iterative Closest Line (ICL). ICL exactly follows the pipeline of ICP (Iterative Closest
Point), and the algorithm steps are:
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Table 8.1: Comparison of rotation and translation errors on the Structured3D and Semantic3D
dataset. Q1 denotes the first quartile, Med. denotes the median, and Q3 denotes the third quartile.

XXXXXXXXXMethod
Error Structured3D Semantic3D

Rotation (◦) Translation (m) Rotation (◦) Translation (m)
Q1 Med. Q3 Q1 Med. Q3 Q1 Med. Q3 Q1 Med. Q3

ICL 0.353 0.520 0.795 0.030 0.044 0.078 0.803 2.050 5.239 0.084 0.226 0.881
Regression 2.436 3.610 4.935 0.151 0.240 0.367 15.902 20.934 24.947 1.347 1.871 2.281
Ours 0.342 0.468 0.621 0.013 0.019 0.026 0.482 0.961 1.791 0.032 0.064 0.119

1. For each line from the source line set LS , find the closest line in the target line
set LT . L2 distances on 6-dim Plücker coordinates of lines are employed here.

2. Given line-to-line correspondences, estimate the relative rotation and transla-
tion using the method proposed in the pose estimation section

3. Transform the source line set LS using the estimated rigid transformation.

4. Iterate the above process until stopping conditions are satisfied. We use stan-
dard stopping conditions: 1) the maximum number of iterations is reached
(100); 2) relative change of the L2 distance between LS and LT is sufficiently
small.

Regression. This baseline does not estimate line-to-line matches. It directly regresses
a relative pose to align LS to LT .

We first obtain line-wise features from the output of discriminative feature em-
bedding layer (T)f`i and (T)f

`
′
j

for LS and LT , respectively.

Line-wise features from LS and LT are globally max-pooled to obtain a global
feature vector fLS and fLT , respectively. fLS and fLT are concatenated, and passed
to a MLP block MLP(256, 128, 128, 64, 64, 7) to regress a 4-dim quaternion and 3-dim
translation. We post L2 normalise the quaternion, and ensure the first component of
the quaternion to be greater than 0.

Given regressed relative pose, we use the pose regression loss to train the net-
work:

Lreg =
∥∥tgt − t

∥∥
2 +

∥∥qgt − q
∥∥

2 , (8.15)

where tgt and t are the ground-truth and estimated translation, respectively. qgt and
q are the ground-truth and estimated quaternion, respectively.

8.3.2 Results and discussions

Comparison with baselines. In this experiment, we show the effectiveness of our
method to estimate a 6-DoF pose. We compare our method against baselines. The
pose estimation performance is given in Table 8.1 and Figure 8.7. It shows that our
method outperforms baselines with much higher recalls at each level of pre-defined
error thresholds. For example, the median rotation and translation error on Se-
mantic3D dataset for our method, ICL and regression is 0.961◦/2.050◦/20.934◦ and
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Figure 8.7: Recall of rotation (Left) and translation (Right) on the Structured3D (Top-row) and
Semantic3D (Bottom-row) datasets, with respect to an error threshold. The regression baseline diverges
on the Semantic3D dataset, leading to the poor performance.
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Figure 8.8: Median rotation (Left) and translation error (Right) on the Structured3D (Top-row) and
Semantic3D (Bottom-row), with respect to increasing level of partial overlapping ratio.

0.064m/0.226m/1.871m, respectively. We found that the regression baseline can be
trained to converge on the Structured3D dataset, while diverges on the Semantic3D
dataset. This shows that directly regressing the relative pose between line recon-
structions falls short of applying to different datasets. Since both our method and
ICL outperforms the regression baseline significantly, we only compare our method
with ICL for the following experiments.

Robustness to overlapping ratios. We test the robustness of our network to overlap-
ping ratios for partial-to-partial registration. Overlapping ratios are set within [0.2, 1],
where overlapping ratio at 1 means source and target line reconstructions have one-
to-one line match. For overlapping ratios smaller than 0.2, both our method and ICL
fail to estimate meaningful poses. Note we do not re-train networks. The median
rotation and translation errors with respect to increasing levels of the overlapping
ratio are given in Figure 8.8. Our method outperforms ICL on the Structured3D and
Semantic3D datasets.

The effectiveness of regressing line-wise matching prior. We validate the effec-
tiveness of regressing line-wise matching prior by looking at regressed probabilities.
For source and target line reconstructions of each scene, we calculate the averaged
matching probabilities of matchable and non-matchable lines using ground-truth la-
bels. The result is given in Figure 8.9. For almost all scenes, the estimated probability
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of matchable lines outweighs the probability of non-matchable lines, justifying the
effectiveness of our matchability regression module.
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Figure 8.9: The averaged probabilities on the Structure3D (Left) and Semantic3D (Right) dataset
for matchable and non-matchable lines. For better visualisation, the first 100 scenes for each dataset
are given.

Robustness to noises. Though we have already added noise to line reconstructions
(see paragraph partial-to-partial registration), to further evaluate the robustness of
our networks to noise, we perform experiments with different levels of Gaussian
noise for both source and target line reconstructions. A line direction and footprint
is perturbed by a random rotation and translation, respectively. Rotation angles
and footprint translations are sampled from N (0, σa) and N (0, σf ), respectively. We
construct consecutive tuples for (σa, σf ), ranging from (0, 0) to (5, 0.1). Note that
we do not re-train networks. The median rotation and translation error with respect
to an increasing level of noise is given in Figure 8.10. Our method gets similar
median rotation errors as ICL on the Structured3D dataset while outperforms it for
translation error. Our method outperforms ICL on the Semantic3D dataset.

Generalisation ability. We test the generalisation ability of our network via cross-
dataset validation, i.e., using a network trained on the Structured3D to test its per-
formance on the Semantic3D, and vice versa. The comparison of recall performance
is given in Figure 8.11. For the Structured3D dataset, our network trained on the Se-
mantic3D dataset get a similar recall performance as the network trained on the
Structured3D dataset, both outperforming the ICL method. For the Semantic3D
dataset, though there is a recall performance drop for our cross-dataset trained net-
work, its performance is comparable to the ICL method.

Real-world line-based visual odometry. In this experiment, we demonstrate the
effectiveness of our method for a real-world application of registering 3D line recon-
structions, i.e., visual odometry. We randomly select one sequence (road02_ins) from
the apollo repository (Baidu [2020]), and it contains 5123 frames. For each frame,
we first use a fast line segment detector (Akinlar and Topal [2011]) to obtain 2D line
segments, and then use the provided depth map (from Lidar) to fit 3D lines (He et al.
[2018]). The median number of 3D lines is 1975. Sample 2D and 3D line segments
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Figure 8.10: Median rotation (Left) and translation error (Right) on the Structured3D (Top-row)
and Semantic3D (Bottom-row) dataset, with respect to increasing level of noise.

are given in Figure 8.12.
Given 3D line segments from each frame, we use Plücker representations of line

segments to compute relative poses for consecutive frames, using our model trained
on the Semantic3D dataset without fine-tuning. We compare our method with ICL,
and the results are given in Figure 8.13. Our method outperforms ICL with higher
rotation and translation recalls, as well as lower median rotation and translation error
at 1.13◦/0.44m and 2.83◦/1.12m, respectively.

Computational efficiency. We compare the computation time of our approach to
ICL. The averaged time breakdowns for our method are 0.037s/0.008s/0.327s (Struc-
tured3D), 0.036s/0.024s/0.335s (Semantic3D) for feature extraction, matching and
RANSAC pose estimation, respectively. The averaged time for ICL is 0.055s/0.144s
for Structured3D and Semantic3D, respectively. The most time-consuming part of
our method is the RANSAC pose estimation step, which is programmed in Python.
Interested readers can speed-up the time-consuming RANSAC iterations in C++.

8.4 Summary

In this chapter, we have proposed the first end-to-end trainable network for solv-
ing the problem of aligning two partially-overlapped 3D line reconstructions in Eu-
clidean space. The key innovation is to directly learn line-wise features by param-
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Figure 8.11: Recall of rotation (Left) and translation (Right) on the Structured3D (Top-row) and
Semantic3D (Bottom-row), with respect to an error threshold. Ours_cross denotes using a network
trained on one dataset to test on the other.

Figure 8.12: Sample 2D (Left) and 3D (Right) line segments from the Apollo dataset.
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Figure 8.13: Recall of rotation (Left) and translation (Right) on the Apollo dataset, with respect to
an error threshold. We directly use model trained on Semantic3D dataset without fine-tuning.

eterising lines as 6-dim Plücker coordinates and respecting line geometry during
feature extraction. We use these line-wise features to establish line matches via a
global matching module under the optimal transport framework. The high-quality
line correspondences found by our method enable us to apply a 2-line minimal-case
RANSAC solver to estimate the 6-DOF pose between two line reconstructions. Ex-
periments on three benchmarks show that the new method significantly outperforms
baselines (iterative closet lines and direct regression) in terms of registration accuracy.
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Chapter 9

Conclusion

9.1 Summary & Contributions

Estimating the 6-DoF pose of a camera view with respect to global World coordi-
nate frame is a fundamental problem in geometric computer vision, which has also
important practical relevance such as in autonomous driving. In this thesis, after
introducing the fundamental concepts and existing techniques for image-based geo-
localisation, we have focused on two core approaches for image-based localisation:
(i) image retrieval approach for scalable localisation, and (ii) 2D–3D matching ap-
proach for accurate 6-DoF pose estimation. As an alternative, we also provide a
3D lines based camera pose estimation approach, to be used in cases where 3D line
measurements can be readily obtained.

Contributions to foundations of image-based localisation. In chapter 3, we have
provided a general introduction to the problem of image-based localisation. Specif-
ically, we explain useful camera models, features extraction & matching, and 6-DoF
camera pose estimation. For camera pose estimation, we have presented an original
contributions of deriving two minimal solvers: one for relative camera pose and the
other for absolute camera pose. Both of the methods have been applied to real-world
image/video based localisation scenario.

Contributions to image-retrieval based localisation. In chapter 4 and chapter 5, we
have developed new methods to localise a ground-view query image with respect
to a satellite image database and a ground-view image database. The goal of the
methods in the two chapters is the same, namely, to learn most discriminative image
representations that accurately describe matchable or non-matchable relationships
between a query and the database images.

In chapter 4, we have proposed to exploit cross-view orientation correspondences
to bridge the domain gap between ground-view and satellite images, resulting in
more discriminative feature embeddings to match cross-view images. Our other con-
tribution is to collect a new large-scale cross-view localisation benchmark containing
100K geo-tagged and high-resolution ground-aerial pairs covering the Canberra city.
This dataset is now broadly used by research communities.

In chapter 5, for the ground-view to ground-view matching task, our key con-
tribution is a kernel-based image representation learning method. Our method has
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been adopted by other researchers (e.g. Ge et al. [2020]) for developing a new train-
ing image sampling scheme and obtains superior performances on standard bench-
mark datasets. Furthermore, our method has been used in Liu et al. [2020a] for
Autonomous Driving. Our ground-to-ground localisation method establishes a new
state-of-the-art method and is an important addition to ground-view based camera
localisation.

Contributions to 2D–3D matching based localisation. In chapter 6 and chapter 7,
we have presented new methods to localise a ground-view query image with respect
to a 3D points cloud with and without visual descriptors. The same goal of the two
chapters is to establish good 2D–3D correspondences for the subsequent RANSAC-
PnP procedure.

In chapter 6, to localise a ground-view query image with respect to a large-scale
3D map with visual descriptors, we have introduced a global method which har-
nesses global contextual information exhibited both within the query image and
among all the 3D points in the map. Tests on standard benchmark datasets show
that our method achieves higher precision at comparable recall, reaching the current
state-of-the-art.

In chapter 7, we present a method of localising a ground-view query image with
respect to a 3D map without relying on visual descriptors. This is also known as a
blind Perspective-n-Point problem, as we only use coordinates of 2D feature points
and 3D points to estimate a 6-DoF camera pose. Our key contribution is proposing a
deep CNN model that simultaneously solves for both the 6-DoF absolute camera pose
and 2D–3D correspondences. Extensive tests on both real and simulated data have
shown that our method substantially outperforms existing methods, and is capable
of processing thousands of points within a second with state-of-the-art accuracy.

Contributions to 3D line-based localisation. We investigate the possibility of using
3D lines to localise a camera. Lines contain strong structural geometry information
of environments (even for texture-less indoor scenes). Compared with 3D points, a
scene represented by lines is more complete and requires significantly less amount
of storage (Koch et al. [2016]; Hofer et al. [2015]; Xiaohu et al. [2019]).

In chapter 8, we present a method of aligning two partially overlapping 3D line
reconstructions in Euclidean space. This method can be used to localise a camera if
query 3D lines are available (e.g., from stereo triangulation) and the database consists
of 3D lines. Our key contribution is proposing a neural network based method to
solve this partial-to-partial registration problem. Experiments on both indoor and
outdoor datasets show that the registration (rotation and translation) precision of
our method outperforms baselines significantly.

Contributions to large-scale map for localisation. In the appendix, we present engi-
neering practices to build a map for image-based localisation, consisting of ground-
view and satellite images, and 3D points cloud. Interested readers can get ideas
from our practices to build their mapping systems, or directly follow our practices to
download images from the Google map service. Our newly created geo-referenced
database is valuable for future camera localisation research and applications.
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9.2 Future Work

In this section, we discuss some possible future research directions in image-based
localisation.

Accurate 3D city modeling. An accurate 3D model enables accurate localisation, as
the coordinates of 3D points are used in the “RANSAC+PnP" camera pose estimation
stage. Currently, in a city-scale application, the widely used SfM can output incorrect
or warped 3D maps under challenging conditions such as occlusions, moving objects,
or camera failures (Platinsky et al. [2020]). Furthermore, only with additional GPS
measurements or known metric distances of scene points can we recover the metric
scale of SfM reconstructed 3D model. In light of the above limitations of SfM, it’s
natural to ask how to improve the robustness and metric-scale accuracy of SfM.

To improve the robustness of SfM, a good practice is using robust feature ex-
traction and matching methods, as they are the backbones of SfM. For example,
the “SuperPoint+SuperGlue" (Hierarchical-Localization [2020]) is used to replace the
“SIFT+RatioTest" in the pipeline of SfM to generate better 3D models for localisation.

With rich data sources nowadays, there are potentials to improve the robustness
and accuracy of SfM. Specifically, (i) perform semantic/instance-level segmentation
of database images to remove dynamic objects such as pedestrians and vehicles; (ii)
incorporate vertical directions from IMU or vertical vanishing point to improve the
accuracy and robustness of pairwise relative pose, pose graph optimisation, and
global bundle adjustment in the pipeline of SfM. For example, an accurate 4-point
minimal solver is given in Chapter 3 to solve the relative pose. For the stage of pose
graph optimisation and global bundle adjustment, vertical directions of cameras can
be used as global anchors, providing additional constraints during the optimisa-
tion; (iii) incorporate satellite images to fetch global metric scale. Since each pixel
of a satellite image is geographically tagged, if pixel-level 2D–2D matches between
ground-view database images and satellite images are obtained, we can directly im-
pose the ground-plane distance constraints on 3D points in the stage of global bun-
dle adjustment. Though challenging for the ultra-wide baseline matching problem,
a neural network-based solution is expected to address it, in a weakly supervised
framework (with ground-truth image-level ground-to-satellite matching pairs) or su-
pervised framework (with ground-truth pixel-level ground-to-satellite 2D–2D corre-
spondences); (iv) incorporate Lidar scanned 3D points. If Lidar scanned 3D points
are available, we can include them in the stage of global bundle adjustment, by first
identifying 3D–3D matches between SfM reconstructed 3D points and Lidar scanned
3D points, and then impose the metric distance constraints among SfM reconstructed
3D points. Since both SfM reconstructed and Lidar scanned 3D points are sparse, and
there are no visual descriptors associated with Lidar scanned 3D points, it would be
challenging to establish 3D–3D matches only based on the coordinates of 3D points.
A neural network-based solution is expected to address it, inspired by the recent
successes of registering 3D reconstructions with deep neural networks.

Semantic visual localisation. Robust visual localisation under a wide range of view-
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ing conditions is still the main research topic nowadays. Due to the stability of
semantic information with respect to lighting/seasonal/viewpoint changes, the po-
tential of including semantic labels of 2D or 3D points in a localisation pipeline has
been demonstrated by recent methods (Shi et al. [2020a]; Carl et al. [2018]; Toft et al.
[2018]). These methods’ core idea is to enforce the 2D–3D semantic label consistency
constraint for 2D–3D matches. Often, this consistency constraint is used as a post-
processing step. Though promising, the question of using semantic labels to robustly
describing a scene is still left open. It is non-trivial to encode pre-defined semantic
labels to 2D/3D points’ coordinates or visual descriptors, as they lie in different do-
mains. A point-net based network could be a good start to fuse semantic labels with
2D or 3D points. Specifically, there are two potential methods of fusing semantic
labels to improve the accuracy of visual localisation: (i) incorporate discrete semantic
labels of 2D or 3D points to learn robust point-wise descriptors. For example, the
semantic labels can be first concatenated with the coordinates and visual descriptors
of 2D or 3D points, and then fed to a point-net based network to learn robust point-
wise descriptors. An alternative of direct concatenation is using high-dimensional
convolution, inspired by the Minkowski network (Choy et al. [2019]). With robust
point-wise descriptors of 2D and 3D points, it would be easier to establish accu-
rate 2D–3D matches for the subsequent “RANSAC+PnP" pose estimation step; (ii)
Directly minimise the 6-DoF camera pose. With a precise estimation of the camera
pose, the semantic labels of projections of 3D points on the query image would align
well with the query image’s semantic labels. In other words, the Intersection over
Union (IoU) score would be maximised. Inspired by the above finding, a neural
network is expected to be developed to maximise the IoU score with respect to the
6-DoF camera pose.

Line-based localisation. 3D points clouds have been widely used for estimating a
6-DoF camera pose in for example autonomous vehicle etc applications. It is how-
ever very expensive to store a large-scale (e.g city-scale or country scale) 3D points
clouds in memory. Moreover, establishing 2D–3D correspondences is very difficult
for texture-less scenarios (e.g., indoor), and is also challenging for seasonal and light-
ing changes. In future work, we propose to include 3D lines as new element in our
database. Compared with 3D points, 3D lines contain strong structural geometry
information and require a small amount of storage. Furthermore, for indoor locali-
sation, it is difficult to detect 2D feature points in texture-less scenes. In contrast, it
is easy to detect 2D lines from a query image.

We have presented a registration method for aligning 3D line reconstructions in
chapter 8. The method has potentials in building a large-scale 3D line map (merging
multiple local maps) and localising a query image. However, the complete pipeline of
localising a query image against a large-scale 3D line map is blurry at this moment.
Recently, Taubner et al. [2020] present a line-based place recognition method. It uses
3D line segments detected from RGB-D images to retrieve the most similar one in a
pre-stored line database, obtaining promising results.

Localisation with new sensors. With the development of imaging sensors, it would
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be interesting to investigate localisation methods with event camera (Pan et al. [2020a,b,
2019d]), dual-pixel camera (Pan et al. [2021]), etc. Deriving a mathematical model to
localise an image with motion blur (Pan et al. [2019b,a,c, 2018, 2017]) for a real-world
moving camera is interesting.
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Appendix A

Appendix: Building a Large-Scale
Map for Localisation

A pre-stored map is a prerequisite for camera-based localisation. There is no univer-
sal agreement on what the map should have. In this thesis, we exploit three readily
available sources: (i) ground-view images; (ii) satellite images; (iii) 3D points cloud.
The three references can be pre-registered easily by using geographical coordinates.
An example of the ANU campus map is given in Figure 1.9. In the following, we
separately introduce engineering practices to build a map from the three sources.

A.1 Building a Ground-view Image Database

We can build a ground-view image database with the Google street view, Flicker,
or a hand-crafted mapping system. In the following, we separately introduce two
methods to construct a ground-view image database, one using the Google street
view images and the other using a hand-crafted GPS/IMU/stereo mapping system.

A.1.1 Google street view

The Google street view data are mostly captured by cars equipped with multi-
ple cameras, GPS, IMU, and Lidar scanners (See Figure A.1 for an example). The
street view data are recorded approximately every 15m on the road. A panorama,
GPS/IMU data, and Lidar scanned point clouds are stored at each position. The
panorama is stored at different resolutions named zoom levels, and at each zoom
level, the panorama is separated into several image tiles for downloading.

Lidar scanned point clouds are post-processed as a set of 3D planes (See Figure
A.2 for an example). Planes are fitted to the original point clouds via RANSAC.
Plane parameters can be fetched from the Google server as metadata. The number of
planes varies for different point clouds.

The metadata includes a GPS location (latitude, longitude, and elevation), a yaw
angle (car heading) with respect to the absolute North, and the direction of gravity.
Besides, the metadata also includes links to spatially adjacent panoramas. Based
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Figure A.1: An example of Google street view car. For each frame, images from multiple cameras
are stitched to generate a panorama. The image is taken from https://petapixel.com/2012/10/
15/a-glimpse-of-googles-fleet-of-camera-equipped-street-view-cars/. For more mobile mapping
systems, please refer to the paper (Petrie [2010]) for details.

Figure A.2: An example of planes and the corresponding depth map. Left: for each image pixel, it
is associated with an index (showing with different colours) of 3D planes. Right: the corresponding
depth map.

https://petapixel.com/2012/10/15/a-glimpse-of-googles-fleet-of-camera-equipped-street-view-cars/
https://petapixel.com/2012/10/15/a-glimpse-of-googles-fleet-of-camera-equipped-street-view-cars/
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on this linkage information, we can propagate to download images in an entire city
given an initial panorama. An overview of this metadata is given in Figure A.3.

Figure A.3: The database structure of the Google street view metadata. This database sample can
be fetched by calling http://maps.google.com/cbk?output=json&ll=-35.2741483,149.1211071&
dm=1

For each panorama, its metadata also includes links to its temporal neighbors,
i.e., panoramas which are captured nearly at the same GPS positions but at different
times. These links are not directly available. However, we can obtain them using
methods proposed in the paper (Gronát et al. [2011]).

The Google street view image. We can download high-resolution images (tiles) and
their corresponding depth data from the Google street view service via APIs: http://
maps.google.com/cbk?output=XX&ll=XX,XX&dm=X or http://geo0.ggpht.com/cbk?
output=XX&ll=XX,XX&dm=X, where

• output: can be xml or json;

• ll: is a comma-separated list with two variables: latitude and longitude;

• dm: is a boolean value to indicate whether to include depth data or not.

For example, by calling the following URL, we can download the data near the
Brain Anderson Building on the ANU campus:

http://maps.google.com/cbk?output=json&ll=-35.2741483,149.1211071&dm=1
http://maps.google.com/cbk?output=json&ll=-35.2741483,149.1211071&dm=1
http://maps.google.com/cbk?output=XX&ll=XX,XX&dm=X
http://maps.google.com/cbk?output=XX&ll=XX,XX&dm=X
http://geo0.ggpht.com/cbk?output=XX&ll=XX,XX&dm=X
http://geo0.ggpht.com/cbk?output=XX&ll=XX,XX&dm=X
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Figure A.4: A sample panorama at the GPS location {-35.2741483,149.1211071}.

http://maps.google.com/cbk?output=json&ll=-35.2741483,149.1211071&dm=1.
A sample panorama at the above GPS location is given in Figure A.4. Note that

using the above link to download the JSON data at the GPS location {-35.2741483,149.1211071}
will not directly generate a panorama. Instead, it will retrieve JSON data showing in
Figure A.3. The panorama is uniquely defined by the panoId in the JSON data.

Given the panoId, we can fetch a panorama with tiles in a grid. To get an im-
age like the one given in Figure A.4, we need to stitch different tiles together. The
API to download tiles is given by http://maps.google.com/cbk?output=tile&panoid=
[PANODID]&zoom=[ZOOM]&x=[TILEX]&y=[TILEY], where

• output: must be tile.

• panoid: the ID of the panorama. The panoid is obtained from the JSON data.

• zoom: the desired zoom level. This relates to the dimensions of the image.

• x: the column number in the tile grid.

• y: the row number in the tile grid.

Note that each tile has a dimension of 512× 512 (corresponding to the tile_width
and tile_height in Figure A.3). At each zoom level, different number of tiles are
fetched, and they are stitched to form an equirectangular panorama.

The relationship between the number of tiles and the zoom level is determined
experimentally, and the results are given in Table A.1. Note the width and height of
panoramas are not divisible by the tile size (512), and the reason is that tiles are first
stitched and then cropped to remove redundant pixels. Let’s use zoom level at 0 as
an example to show how to obtain a panorama.

For zoom level at 0, only one tile is retrieved. Note there are mirrored pixels
(on the left-hand and right-hand side) in Figure A.5, and there are no values in the

http://maps.google.com/cbk?output=json&ll=-35.2741483,149.1211071&dm=1
http://maps.google.com/cbk?output=tile&panoid=[PANODID]&zoom=[ZOOM]&x=[TILEX]&y=[TILEY]
http://maps.google.com/cbk?output=tile&panoid=[PANODID]&zoom=[ZOOM]&x=[TILEX]&y=[TILEY]
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Table A.1: Panorama resolutions and the number of image tiles.

Zoom level Panorama width Panorama height Number of tiles (x,y)
0 416 208 (1,1)
1 832 416 (2,1)
2 1664 832 (4,2)
3 3328 1664 (7,4)
4 6656 3328 (13,7)
5 13312 6656 (26,13)

Figure A.5: A sample image fetched with zoom level at 0. It is obtained by calling http://maps.
google.com/cbk?output=tile&panoid=ThsNoESrE0MahcFF6cw6wQ&zoom=0&x=0&y=0.

bottom half. The image needs to be cropped to restore the original equirectangular
image, which has a width to height ratio of 2.0. For other zoom levels, please first
stitch tiles and then crop the stitched panoramas to correct sizes according to Table
A.1.

A.1.2 A hand-crafted GPS/IMU/Stereo mapping system

A hand-crafted GPS/IMU/Stereo mapping system can be used to accurately map-
ping the environment in an outdoor scenario. GPS and IMU provide the absolute
geographic 6-DoF pose of each recorded database image in this system. The main
difficulty in building this system is the synchronisation and calibration between GP-
S/IMU and cameras. We build the following GPS/IMU/Stereo mapping system and
present methods for synchronisation and calibration.

http://maps.google.com/cbk?output=tile&panoid=ThsNoESrE0MahcFF6cw6wQ&zoom=0&x=0&y=0
http://maps.google.com/cbk?output=tile&panoid=ThsNoESrE0MahcFF6cw6wQ&zoom=0&x=0&y=0
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Figure A.6: A stereo camera rig. The cameras are connected to a laptop by USB3.0 cables (Green)
and are synchronised by GPIO cables (Grey).

Stereo camera. We use two Flea@3 USB cameras (FL3-U3-13E4C-C) by FLIR Inc (FLIR
[2018-4-17b]) to build the stereo camera rig. We choose Flea@3 USB cameras because
we can easily control recording parameters (e.g., fps, exposure time, etc. ). We use
a 3.5mm lens (edmundoptics [2018-4-17]). The stereo cameras are wire-connected
to the USB3.0 port of a laptop to record images by using the off-the-shelf software
FlyCapture 2.12 (FLIR [2018-4-17c]). For each camera, we also need a GPIO cable
(ptgrey [2018-4-17]) to trigger and control the stereo camera rig. Figure A.6 shows a
sample image of the stereo camera system.

Note that although the FlyCapture allows us to control and acquire images from
cameras simultaneously, the two image streams are not synchronised since cameras
are connected to a laptop by USB3.0, not 1394b. To accurately synchronise those two
streams, we use the trigger ports of cameras and trigger signals from the GPS/IMU
to accurately time-stamp stereo images. The configurations of the stereo camera rig
are given in Table A.2.

GPS/IMU. The GPS/IMU is a standard MTi by the Xsens Inc (Xsens [2018-4-17c]).
It is wire-connected to a USB2.0/3.0 port of a laptop to record positions (outdoor),
orientations, and accelerations by the MT Software Suite (Xsens [2018-4-17a]). Figure
A.7 gives a sample image of the GPS/IMU.
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Table A.2: Configurations of the stereo camera rig

Resolution 1280 x 1024
Frame rate 15Hz
Chroma Colour
Focal lens 3.5mm
Image format bmp

Figure A.7: A sample image of the GPS/IMU.

Synchronisation. We use the clock from the GPS/IMU to synchronise the stereo
camera rig. Note that the voltage of the trigger signal from the SyncOut port (pin
6 (Xsens [2018-4-17b])) of the IMU should lie within the tolerable voltage range of
cameras. In our setting, the trigger signal’s output voltage is within the range of
3.0-3.3V, which is safe for the Flea@3 USB cameras.

The Flea@3 USB camera has a GPIO connector port, which is used for synchroni-
sation. The trigger in port (Black port (FLIR [2018-4-17a])) is connected to the SyncOut
port of the GPS/IMU. Note that the GND ports of the two devices need to be wired.
The synchronisation configuration is given in Figure A.9.

Assuming GPS/IMU works with internal frequency at M-Hz. However, the fre-
quency of the output trigger signal is not at M-Hz. The frequency of the trigger
signal is controlled by a Skip factor at n. The final trigger signal frequency is given
by M/(n + 1)-Hz. The configuration of the IMU internal clock is given in Figure

Figure A.8: General Purpose Input/Output (GPIO) pins. The black and blue pins are used.
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Figure A.9: The synchronisation configuration of the GPS/IMU/Stereo system.

A.10. For our GPS/IMU/stereo system, we set M at 150Hz, and n at 9. This yields a
data rate at 15 fps for the stereo camera rig.

The concrete steps to record synchronised GPS/IMU outputs and stereo image
sequences are listed as follows:

1. Stop the GPS/IMU. Note that once the trigger signal from the GPS/IMU is
imported to cameras, both the GPS/IMU and cameras start recording. How-
ever, the initial time-stamps are not aligned. Just click the gotoConfig button, the
GPS/IMU will stop recording and sending trigger signals. Since the cameras
are in the trigger mode, cameras are waiting for trigger signals to initiate their
recording in a loop. The GUI for stopping the GPS/IMU is given in Figure
A.11.

2. Set cameras to the hard-trigger mode. In default, the stereo cameras are config-
ured to the soft-trigger mode, and we need to configure them to hard-trigger
mode. The configuration of stereo cameras is given in Figure A.12.

3. Recording. After configuring both the GPS/IMU and the cameras, it’s time
to record data. For the cameras, the GUI is given in Figure A.13. For the
GPS/IMU, click the red bullet in the MT software.

4. Start the GPS/IMU. Note that both the GPS/IMU and cameras have not recorded
any data yet, although they are all “well-prepared”. The reason is that we have
stopped the GPS/IMU, and cameras are waiting for the trigger signal from the
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Figure A.10: The internal clock of the IMU.

Figure A.11: The configuration of the GPS/IMU in the trigger mode.



132 Appendix: Building a Large-Scale Map for Localisation

Figure A.12: The configuration of cameras in the trigger mode.

GPS/IMU. We need to click the gotoMeasurement button shown in Figure A.11.
Both the GPS/IMU and cameras will start recording data, and they are syn-
chronised. Finally, please click the gotoConfigure button again to stop recording
data if you want to stop.

Calibration Since the GPS/IMU and stereo cameras are rigidly connected, we can
estimate a fixed 6-DoF relative pose between them. A hand-eye calibration method
(Daniilidis [1999]) can be used. In the following, we present a method to estimate the
relative rotation between the IMU and camera (we use the stereo rig’s left camera as
the reference camera).

If both the IMU and camera are used to measure the vertical direction, with a set
of observations at several positions, the unknown relative rotation between them can
be determined. Suppose n observations are made for distinct positions, recording
the IMU’s vertical direction and the vertical vanishing point of scene structures. In
that case, the relative orientation can be determined using Horn’s method (Horn
et al. [1988]), which estimates a rotation matrix by aligning the above two vertical
directions.

Let Ivi be a measurement of the vertical direction by the IMU, and Cvi be the
corresponding measurement from the scene vanishing point. We want to determine
the unit quaternion q that rotates the vertical direction in the IMU coordinate system
to the camera frame. Mathematically, we aim to estimate the unit quaternion q, by
maximising the objective function ∑n

i=1 (qIvi q
∗) ·Cvi , where q∗ is the conjugate of q.

The solution of q is given in the paper (Lobo and Dias [2007]).

Vertical direction from the IMU
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Figure A.13: The configuration of cameras.
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In principle, only when IMU is in the static state can it measures the gravity
direction. Otherwise, the measured acceleration is corrupted by the motion of the
rig. This brings a lot of trouble for our calibration since we need to stop the rig
multiple times to ensure the measured gravity direction is not corrupted by the rig’s
motion.

Fortunately, the IMU also provides absolute orientations with respect to the earth
coordinate system. We use it to recover the vertical direction in the IMU coordinate
system. Given the vertical direction [0, 0, 1]

T
in the earth coordinate system, the

vertical direction in the IMU coordinate system is given by:

Ivi = R
T

IMU[0, 0, 1]
T
, (A.1)

where RIMU is the IMU orientation matrix. Note that the IMU needs several seconds
to initialise, and the warming-up orientation measurements should not be used.

Vertical direction from the camera
The vertical direction can be obtained from the vertical vanishing point. We place

a chessboard perpendicular to the ground plane in our experiments, and the Y-axis
is the vertical direction.

Given the vertical direction [0, 1, 0]
T

in the chessboard coordinate system, the
vertical direction in the camera coordinate system is given by:

Cvi = Rc[0, 1, 0]
T
, (A.2)

where Rc is the orientation matrix of the chessboard with respect to the camera
coordinate system.

A.2 Building a Satellite Image Database

Satellite images can be downloaded with the Google map API https://maps.googleapis.
com/maps/api/staticmap?center=XX&zoom=XX&size=XX&scale=XX&maptype=satellite&
key=XX, where

• center: the centre of the map, equidistant from all edges of the map. A comma-
separated latitude and longitude pair;

• zoom: the zoom level of the map, which determines the magnification level of
the map. This parameter takes a numerical value corresponding to the zoom
level of the region desired. It is directly related to the ground resolution (meters
per pixel);

• size: the rectangular dimensions of the map image. This parameter takes a
string of the form {horizontal value} x {vertical value}. For example, 500x400
defines a map with 500 pixels wide by 400 pixels high. Maps smaller than
180 pixels in width will display a reduced-size Google logo. This parameter

https://maps.googleapis.com/maps/api/staticmap?center=XX&zoom=XX&size=XX&scale=XX&maptype=satellite&key=XX
https://maps.googleapis.com/maps/api/staticmap?center=XX&zoom=XX&size=XX&scale=XX&maptype=satellite&key=XX
https://maps.googleapis.com/maps/api/staticmap?center=XX&zoom=XX&size=XX&scale=XX&maptype=satellite&key=XX
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Table A.3: Maximal size values at each scale value.

API scale=1 scale=2 scale=4
Free 640x640 640x640 (returns 1280x1280 pixels) Not available.
Pay 2048x2048 1024x1024 (returns 2048x2048 pixels) 512x512

Figure A.14: An sample satellite image with total length of width or height at 156.008m.

is affected by the scale parameter, described below; the final output size is the
product of the size and scale values;

• scale: the number of pixels that are retrieved. scale=2 retrieves twice as many
pixels as scale=1 while retaining the same coverage area and level of detail (i.e.,
the map contents don’t change). The maximal values for the size parameter at
each scale value is given in Table A.3;

• key: a key for applying or buying. For free usage, 25, 000 map loads per 24
hours.

Ground resolution The ground resolution (GSD) of satellite images is defined by the
zoom level and the latitude,

GSD = 156543.03392 ∗ cos(lat. ∗ π/180)/2zoom. (A.3)

A sample image with parameters center = (−35.2741483, 149.1211071), zoom =
19, size = (640, 640) is given in Figure A.14. The ground resolution is 0.244m per
pixel, and the total length of the rectangular dimension is 156.008m.
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Figure A.15: A sample 3D points cloud database reconstructed by SfM. GPS/IMU is used to
provide absolute 6-DoF poses, and unify multiple submaps.

A.3 Reconstructing a 3D points Cloud Database

3D points cloud can be reconstructed using Structure-form-Motion (SfM) on a ground-
view image database or by Lidar scanning. An example of SfM reconstructed 3D
points cloud using a GPS/IMU/camera system is given in Figure A.15.

For SfM (Crandall et al. [2012]; Schönberger and Frahm [2016]), the three main
components are: (i) pose graph initialisation by performing pair-wise image match-
ing and relative pose estimation; (ii) pose graph optimisation (Rotation and transla-
tion averaging) and triangulation (two-view or multi-view) to reconstruct an initial
set of 3D points and image-wise 6-DoF camera poses; (iii) joint bundle adjustment
(solving large scale linear equation Ax = b) to optimise the structure (3D points) and
6-DoF camera poses. Note that image-only SfM can only reconstruct the structure
and poses up to an unknown scale. To recover a metric scale, one can use known
distances between points or cameras (Li et al. [2012]), register the SfM point cloud
onto building outlines (Strecha et al. [2010]), or fusing GPS provided metric scales
with Bundle adjustment (Lhuillier [2011]).

Compared with SfM reconstructed 3D points, Lidar scanned 3D points are much
more accurate. However, the number of scanned 3D points is very large and often
needs to be compressed (Tu et al. [2019]) if we want to save them to a large-scale
map.
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