5 research outputs found

    Throughput and delay analysis of LWA with bursty traffic and randomized flow splitting

    Get PDF
    We investigate the effect of bursty traffic in a long term evolution (LTE) and Wi-Fi aggregation (LWA)-enabled network. The LTE base station routes packets of the same IP flow through the LTE and Wi-Fi links independently. We motivate the use of superposition coding at the LWA-mode Wi-Fi access point (AP) so that it can serve LWA users and Wi-Fi users simultaneously. A random access protocol is applied in such system, which allows the native-mode AP to access the channel with probabilities that depend on the queue size of the LWA-mode AP to avoid impeding the performance of the LWA-enabled network. We analyze the throughput of the native Wi-Fi network and the delay experienced by the LWA users, accounting for the native-mode AP access probability, the traffic flow splitting between LTE and Wi-Fi, and the operating mode of the LWA user with both LTE and Wi-Fi interfaces. Our results show some fundamental tradeoffs in the throughput and delay behavior of LWA-enabled networks, which provide meaningful insight into the operation of such aggregated systems

    Advanced Technologies Enabling Unlicensed Spectrum Utilization in Cellular Networks

    Get PDF
    As the rapid progress and pleasant experience of Internet-based services, there is an increasing demand for high data rate in wireless communications systems. Unlicensed spectrum utilization in Long Term Evolution (LTE) networks is a promising technique to meet the massive traffic demand. There are two effective methods to use unlicensed bands for delivering LTE traffic. One is offloading LTE traffic toWi-Fi. An alternative method is LTE-unlicensed (LTE-U), which aims to directly use LTE protocols and infrastructures over the unlicensed spectrum. It has also been pointed out that addressing the above two methods simultaneously could further improve the system performance. However, how to avoid severe performance degradation of the Wi-Fi network is a challenging issue of utilizing unlicensed spectrum in LTE networks. Specifically, first, the inter-system spectrum sharing, or, more specifically, the coexistence of LTE andWi-Fi in the same unlicensed spectrum is the major challenge of implementing LTE-U. Second, to use the LTE and Wi-Fi integration approach, mobile operators have to manage two disparate networks in licensed and unlicensed spectrum. Third, optimization for joint data offloading to Wi-Fi and LTE-U in multi- cell scenarios poses more challenges because inter-cell interference must be addressed. This thesis focuses on solving problems related to these challenges. First, the effect of bursty traffic in an LTE and Wi-Fi aggregation (LWA)-enabled network has been investigated. To enhance resource efficiency, the Wi-Fi access point (AP) is designed to operate in both the native mode and the LWA mode simultaneously. Specifically, the LWA-modeWi-Fi AP cooperates with the LTE base station (BS) to transmit bearers to the LWA user, which aggregates packets from both LTE and Wi-Fi. The native-mode Wi-Fi AP transmits Wi-Fi packets to those native Wi-Fi users that are not with LWA capability. This thesis proposes a priority-based Wi-Fi transmission scheme with congestion control and studied the throughput of the native Wi-Fi network, as well as the LWA user delay when the native Wi-Fi user is under heavy traffic conditions. The results provide fundamental insights in the throughput and delay behavior of the considered network. Second, the above work has been extended to larger topologies. A stochastic geometry model has been used to model and analyze the performance of an MPTCP Proxy-based LWA network with intra-tier and cross-tier dependence. Under the considered network model and the activation conditions of LWA-mode Wi-Fi, this thesis has obtained three approximations for the density of active LWA-mode Wi-Fi APs through different approaches. Tractable analysis is provided for the downlink (DL) performance evaluation of large-scale LWA networks. The impact of different parameters on the network performance have been analyzed, validating the significant gain of using LWA in terms of boosted data rate and improved spectrum reuse. Third, this thesis also takes a significant step of analyzing joint multi-cell LTE-U and Wi-Fi network, while taking into account different LTE-U and Wi-Fi inter-working schemes. In particular, two technologies enabling data offloading from LTE to Wi-Fi are considered, including LWA and Wi-Fi offloading in the context of the power gain-based user offloading scheme. The LTE cells in this work are subject to load-coupling due to inter-cell interference. New system frameworks for maximizing the demand scaling factor for all users in both Wi-Fi and multi-cell LTE networks have been proposed. The potential of networks is explored in achieving optimal capacity with arbitrary topologies, accounting for both resource limits and inter-cell interference. Theoretical analyses have been proposed for the proposed optimization problems, resulting in algorithms that achieve global optimality. Numerical results show the algorithms’ effectiveness and benefits of joint use of data offloading and the direct use of LTE over the unlicensed band. All the derived results in this thesis have been validated by Monte Carlo simulations in Matlab, and the conclusions observed from the results can provide guidelines for the future unlicensed spectrum utilization in LTE networks

    Design of LTE-Wi-Fi Aggregation with Multiple Wi-Fi APs for Heterogenous Network

    Get PDF
    The growth in mobile data traffic is forcing network operators to find ways to deliver higher bandwidth, better coverage, and better quality of service (QoS) at lower development costs. One method that can be used to meet this need is the aggregation technique. Aggregation techniques that run on several different technologies are called heterogeneous networks (HetNet). Recently, some advanced technologies have been proposed to aggregate different long-term evolution (LTE) carriers or different radio access technologies (RAT) to generate higher bandwidth. Many efforts have been made to improve the throughput of heterogeneous networks. One of the factors that affects the maximum LTE-WLAN aggregation (LWA) throughput is the Wi-Fi access point (AP) signal strength. Since the power of small cells is very low, the LWA range is not very large, so the LWA range needs to be increased. This paper proposes the solution that can be implemented by using multiple Wi-Fi Aps scheme. From the experiments, it found that LWA with multiple Wi-Fi APs has better signal strength than LWA with a single Wi-Fi AP. LWA with multiple Wi-Fi APs further increase the coverage of the network

    one6G white paper, 6G technology overview:Second Edition, November 2022

    Get PDF
    6G is supposed to address the demands for consumption of mobile networking services in 2030 and beyond. These are characterized by a variety of diverse, often conflicting requirements, from technical ones such as extremely high data rates, unprecedented scale of communicating devices, high coverage, low communicating latency, flexibility of extension, etc., to non-technical ones such as enabling sustainable growth of the society as a whole, e.g., through energy efficiency of deployed networks. On the one hand, 6G is expected to fulfil all these individual requirements, extending thus the limits set by the previous generations of mobile networks (e.g., ten times lower latencies, or hundred times higher data rates than in 5G). On the other hand, 6G should also enable use cases characterized by combinations of these requirements never seen before, e.g., both extremely high data rates and extremely low communication latency). In this white paper, we give an overview of the key enabling technologies that constitute the pillars for the evolution towards 6G. They include: terahertz frequencies (Section 1), 6G radio access (Section 2), next generation MIMO (Section 3), integrated sensing and communication (Section 4), distributed and federated artificial intelligence (Section 5), intelligent user plane (Section 6) and flexible programmable infrastructures (Section 7). For each enabling technology, we first give the background on how and why the technology is relevant to 6G, backed up by a number of relevant use cases. After that, we describe the technology in detail, outline the key problems and difficulties, and give a comprehensive overview of the state of the art in that technology. 6G is, however, not limited to these seven technologies. They merely present our current understanding of the technological environment in which 6G is being born. Future versions of this white paper may include other relevant technologies too, as well as discuss how these technologies can be glued together in a coherent system

    Throughput and Delay Analysis of LWA With Bursty Traffic and Randomized Flow Splitting

    No full text
    corecore