311 research outputs found

    Design and prototype of a train-to-wayside communication architecture

    Get PDF
    Telecommunication has become very important in modern society and seems to be almost omnipresent, making daily life easier, more pleasant and connecting people everywhere. It does not only connect people, but also machines, enhancing the efficiency of automated tasks and monitoring automated processes. In this context the IBBT (Interdisciplinary Institute for BroadBand Technology) project TRACK (TRain Applications over an advanced Communication networK), sets the definition and prototyping of an end-to-end train-to-wayside communication architecture as one of the main research goals. The architecture provides networking capabilities for train monitoring, personnel applications and passenger Internet services. In the context of the project a prototype framework was developed to give a complete functioning demonstrator. Every aspect: tunneling and mobility, performance enhancements, and priority and quality of service were taken into consideration. In contrast to other research in this area, which has given mostly high-level overviews, TRACK resulted in a detailed architecture with all different elements present

    Throughput, Smoothness Analysis of SCTP Over AODV and DSR MANET Routing Protocols

    Get PDF
    Mobile Ad hoc Network (MANET) is a wireless network of mobile-mobile node that has no fixed routers. In MANET, mobile nodes can communicate via the wireless interface while nodes are moving freely without using the network infrastructure. Each node in addition to functioning as a host, also serves as a router that can receive and forward packets to next the node. Nowadays existence of a new Internet protocol technology, that is, SCTP, the performance in a MANET Routing Protocol is still unknown. The general objective of this research is to analyze and make the comparative performance of Stream Control Transportation Protocol (SCTP) with Ad-hoc On-demand Distance Vector (AODV) and Dynamic Source Routing protocol (DSR) using Network Simulator(NS-2). Specifically, this research (1) to measure the behavior of SCTP in terms of throughput and smoothness and (2) to determine routing protocol in Mobile Ad-hoc Network (MANET) will have significant effect in SCTP. Internet Engineering Task Force (IETF) issued a new protocol called SCTP; the interaction of SCTP will be investigated through the examination of traffic flows through a number of network topologies. This research use Network Simulator 2 (NS-2), type of the traffic is CBR and packet size is 1000. This performance analysis is over MANET Routing Protocol that enables to analyst the several performance metrics such as Throughput and Smoothness. This topology consists of 16 nodes placed in a 1500m x 1500m rectangle because the researcher uses static topology, consisting of a 4x4 metric with SCTP transport layer and using routing protocol AODV and DSR. The data sent consists of five speeds at 5 m/s, 10 m/s, 15 m/s, 20 m/s, 25 m/s, and then these speeds are used in AODV and DSR simulation. Throughput of SCTP over AODV is highest than DSR and the smoothness of SCTP over DSR is highest than AODV depends on five types of speed. This research it was found that MANET did not have a great impact on the throughput of SCTP. In other words, MANET only amounted to 0-2% impact on the throughput of SCTP. Furthermore, the speed of node movement does not significantly affect the smoothness

    IP-Based Mobility Management and Handover Latency Measurement in heterogeneous environments

    Get PDF
    One serious concern in the ubiquitous networks is the seamless vertical handover management between different wireless technologies. To meet this challenge, many standardization organizations proposed different protocols at different layers of the protocol stack. The Internet Engineering Task Force (IETF) has different groups working on mobility at IP level in order to enhance mobile IPv4 and mobile IPv6 with different variants: HMIPv6 (Hierarchical Mobile IPv6), FMIPv6 (Fast Mobile IPv6) and PMIPv6 (Proxy Mobile IPv6) for seamless handover. Moreover, the IEEE 802.21 standard provides another framework for seamless handover. The 3GPP standard provides the Access Network and Selection Function (ANDSF) to support seamless handover between 3GPP – non 3GPP networks like Wi-Fi, considered as untrusted, and WIMAX considered as trusted networks. In this paper, we present an in-depth analysis of seamless vertical handover protocols and a handover latency comparison of the main mobility management approaches in the literature. The comparison shows the advantages and drawbacks of every mechanism in order to facilitate the adoption of the convenient one for vertical handover within Next Generation Network (NGN) environments. Keywords: Seamless vertical handover, mobility management protocols, IEEE 802.21 MIH, handover latenc

    Connection robustness for wireless moving networks using transport layer multi-homing

    Get PDF
    Given any form of mobility management through wireless communication, one useful enhancement is improving the reliability and robustness of transport-layer connections in a heterogeneous mobile environment. This is particularly true in the case of mobile networks with multiple vertical handovers. In this thesis, issues and challenges in mobility management for mobile terminals in such a scenario are addressed, and a number of techniques to facilitate and improve efficiency and the QoS for such a handover are proposed and investigated. These are initially considered in an end-to-end context and all protocols and changes happened in the middleware of the connection where the network is involved with handover issues and end user transparency is satisfied. This thesis begins by investigating mobility management solutions particularly the transport layer models, also making significant observation pertinent to multi-homing for moving networks in general. A new scheme for transport layer tunnelling based on SCTP is proposed. Consequently a novel protocol to handle seamless network mobility in heterogeneous mobile networks, named nSCTP, is proposed. Efficiency of this protocol in relation to QoS for handover parameters in an end-to-end connection while wired and wireless networks are available is considered. Analytically and experimentally it has been proved that this new scheme can significantly increase the throughput, particularly when the mobile networks roam frequently. The detailed plan for the future improvements and expansion is also provided.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Transport layer protocols and architectures for satellite networks

    Get PDF
    Designing efficient transmission mechanisms for advanced satellite networks is a demanding task, requiring the definition and the implementation of protocols and architectures well suited to this challenging environment. In particular, transport protocols performance over satellite networks is impaired by the characteristics of the satellite radio link, specifically by the long propagation delay and the possible presence of segment losses due to physical channel errors. The level of impact on performance depends upon the link design (type of constellation, link margin, coding and modulation) and operational conditions (link obstructions, terminal mobility, weather conditions, etc.). To address these critical aspects a number of possible solutions have been presented in the literature, ranging from limited modifications of standard protocols (e.g. TCP, transmission control protocol) to completely alternative protocol and network architectures. However, despite the great number of different proposals (or perhaps also because of it), the general framework appears quite fragmented and there is a compelling need of an integration of the research competences and efforts. This is actually the intent of the transport protocols research line within the European SatNEx (Satellite Network of Excellence) project. Stemming from the authors' work on this project, this paper aims to provide the reader with an updated overview of all the possible approaches that can be pursued to overcome the limitations of current transport protocols and architectures, when applied to satellite communications. In the paper the possible solutions are classified in the following categories: optimization of TCP interactions with lower layers, TCP enhancements, performance enhancement proxies (PEP) and delay tolerant networks (DTN). Advantages and disadvantages of the different approaches, as well as their interactions, are investigated and discussed, taking into account performance improvement, complexity, and compliance to the standard semantics. From this analysis, it emerges that DTN architectures could integrate some of the most efficient solutions from the other categories, by inserting them in a new rigorous framework. These innovative architectures therefore may represent a promising solution for solving some of the important problems posed at the transport layer by satellite networks, at least in a medium-to-long-term perspective. Copyright (c) 2006 John Wiley & Sons, Ltd
    • …
    corecore