12 research outputs found

    Threshold Anonymous Announcement in VANETs.

    Get PDF
    Vehicular ad hoc networks (VANETs) allow wireless communications between vehicles without the aid of a central server. Reliable exchanges of information about road and traffic conditions allow a safer and more comfortable travelling environment. However, such profusion of information may allow unscrupulous parties to violate user privacy. On the other hand, a degree of auditability is desired for law enforcement and maintenance purposes. In this paper we propose a Threshold Anonymous Announcement service using direct anonymous attestation and one-time anonymous authentication to simultaneously achieve the seemingly contradictory goals of reliability, privacy and auditability

    Secure and robust multi-constrained QoS aware routing algorithm for VANETs

    Get PDF
    Secure QoS routing algorithms are a fundamental part of wireless networks that aim to provide services with QoS and security guarantees. In Vehicular Ad hoc Networks (VANETs), vehicles perform routing functions, and at the same time act as end-systems thus routing control messages are transmitted unprotected over wireless channels. The QoS of the entire network could be degraded by an attack on the routing process, and manipulation of the routing control messages. In this paper, we propose a novel secure and reliable multi-constrained QoS aware routing algorithm for VANETs. We employ the Ant Colony Optimisation (ACO) technique to compute feasible routes in VANETs subject to multiple QoS constraints determined by the data traffic type. Moreover, we extend the VANET-oriented Evolving Graph (VoEG) model to perform plausibility checks on the exchanged routing control messages among vehicles. Simulation results show that the QoS can be guaranteed while applying security mechanisms to ensure a reliable and robust routing service

    SPCS: Secure and Privacy-Preserving Charging-Station Searching using VANET

    Get PDF
    Electric vehicle has attracted more and more attention all around the world in recent years because of its many advan- tages such as low pollution to the environment. However, due to the limitation of current technology, charging remains an important issue. In this paper, we study the problem of finding and making reservation on charging stations via a vehicular ad hoc network (VANET). Our focus is on the privacy concern as drivers would not like to be traced by knowing which charging stations they have visited. Technically, we make use of the property of blind signature to achieve this goal. In brief, an electric vehicle first generates a set of anonymous credentials on its own. A trusted au- thority then blindly signs on them after verifying the identity of the vehicle. After that, the vehicle can make charging station searching queries and reservations by presenting those signed anonymous credentials. We implemented the scheme and show that the credential signing process (expected to be the most time consuming step) can be completed within reasonable time when the parameters are properly set. In particular, the process can be completed in 5 minutes when 1024 bits of RSA signing key is used. Moreover, we show that our scheme is secure in terms of authentication and privacy-preserving.published_or_final_versio

    Security models in Vehicular ad-hoc networks: a survey

    Get PDF
    The security and privacy issues of vehicular ad-hoc networks (VANETs) must be addressed before they are implemented. For this purpose, several academic and industrial proposals have been developed. Given that several of them are intended to co-exist, it is necessary that they consider compatible security models. This paper presents a survey on the underlying security models of 41 recent proposals. Four key aspects in VANET security are studied, namely trust on vehicles, trust on infrastructure entities, existence of trusted third parties and attacker features. Based on the survey analysis, a basic mechanism to compare VANET security models is also proposed, thus highlighting their similarities and differences.This work is partially founded by Ministerio de Ciencia e Innovacion of Spain under grant TIN2009-13461 (project E-SAVE).Publicad

    Practical Secure Transaction for Privacy-Preserving Ride-Hailing Services

    Get PDF

    Anonymous threshold signatures

    Get PDF
    Aquest treball tenia l'objectiu de trobar un esquema de llindar de signatura an\`onima compacte. Tot i no haver-ne trobat cap, s'analitzen diverses solucions que s'acosten a l'objectiu publicades per altres autors i es proposa una millora per obtenir un esquema com el desitjat, però costós i interactiu

    Security in Swarm Robotics

    Get PDF

    Securing Fog Federation from Behavior of Rogue Nodes

    Get PDF
    As the technological revolution advanced information security evolved with an increased need for confidential data protection on the internet. Individuals and organizations typically prefer outsourcing their confidential data to the cloud for processing and storage. As promising as the cloud computing paradigm is, it creates challenges; everything from data security to time latency issues with data computation and delivery to end-users. In response to these challenges CISCO introduced the fog computing paradigm in 2012. The intent was to overcome issues such as time latency and communication overhead and to bring computing and storage resources close to the ground and the end-users. Fog computing was, however, considered an extension of cloud computing and as such, inherited the same security and privacy challenges encountered by traditional cloud computing. These challenges accelerated the research community\u27s efforts to find practical solutions. In this dissertation, we present three approaches for individual and organizational data security and protection while that data is in storage in fog nodes or in the cloud. We also consider the protection of these data while in transit between fog nodes and the cloud, and against rogue fog nodes, man-in-the-middle attacks, and curious cloud service providers. The techniques described successfully satisfy each of the main security objectives of confidentiality, integrity, and availability. Further we study the impact of rogue fog nodes on end-user devices. These approaches include a new concept, the Fog-Federation (FF): its purpose to minimize communication overhead and time latency between the Fog Nodes (FNs) and the Cloud Service Provider (CSP) during the time the system is unavailable as a rogue Fog Node (FN) is being ousted. Further, we considered the minimization of data in danger of breach by rogue fog nodes. We demonstrate the efficiency and feasibility of each approach by implementing simulations and analyzing security and performance
    corecore